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Summary 

A number of local interpolation methods suitable for statistical and graphical meteoro- 
logical applications, including weighted averages, least-squares polynomials and successive 
corrections, were compared in this study. Daily observations of temperature and geo- 
potential height recorded in two years by 71 European stations were used as data sources; 
the results of the interpolations were checked against the observed values in 19 selected 
stations, the data of which were assumed as missing. The methods were tested in points 
with different conditions of data density and isotropy. 
The best results were obtained with algorithms based on simple weighted averages, in 
one or more steps; in these methods a proper choice of the influence radii appears to be 
the key factor in determining the accuracy of the approximation. In particular, a succes- 
sive correction (SC) method using a weighted average with a large radius as a first guess 
and two correction steps proved to give the highest accuracy with a reasonable com- 
putational time. The SC method was also used to generate grid-point fields of geo- 
potential height in a six-month winter period, and the main statistical properties of this 
sample were compared with those of the corresponding fields analysed by the European 
Centre for Medium Range Weather Forecasts. The mean field, the standard deviations, 
and the principal components that explain the most part of the total variance were 
correctly reproduced in the sample generated by the SC method. 

Zusammenfassung 

Ein Vergleich lokaler N~ihemngsverfahren zur Analyse meteorologischer Daten 

In dieser Untersuchung werden einige lokale Interpotationsmethoden, wie gewichtete 
Mittel, Polynome aufgrund der kleinsten Quadrate oder eine schrittweise Korrektur, 
die ftir statistische und graphische meteorologische Anwendungen geeignet sind, mit- 
einander verglichen. Die tgglichen Beobachtungen der Temperatur und der geopoten- 
tiellen H6he yon 2 Jahren und 71 europ~iischen Stationen wurden ats Datenmaterial 
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herangezogen. Die Ergebnisse der Interpolationen wurden mit den Messungen yon 
19 ausgesuchten Stationen verglichen, deren Daten als fehlend angenommen worden 
waren. Die Methoden wurden in Punkten mit verschiedener Datendichte und Daten- 
isotropie getestet. 
Die besten Ergebnisse lieferten die gewichteten Mittel - bei dieser Methode erwies sich 
die Wahl geeigneter Einflufiradien als entscheidend flir die Genauigkeit. Besonders die 
Methode der stufenweisen Korrektur mit einem gewichteten Mittel bei einem grofie n 
Radius als ersten und zwei Korrekturschritten erwies sich bei angemessener Rechenzeit als 
die genaueste. Diese Methode wu)de auch herangezogen, um an Gitterpunkten die geo- 
potentiellen H6hen far eine sechsmonatige Winterperiode zu berechnen. Die statistischen 
Eigenschaften dieser Felder wurden mit denen des ECMWF (Europ~iisches Zentrum far 
Mittelfristvorhersagen) verglichen. Dabei wurde das mittlere Feld, die Standardabwei- 
chung und mit Einschr~inkungen die totale Varianz durch die oben erwghnte Methode 
korrekt reproduziert. 

1, Introduction 

At present, most  studies concerning the objective analysis o f  meteorological 
fields are oriented to the development o f  sophisticated data assimilation 
schemes, which have the purpose o f  providing the initial fields for numerical 
weather prediction (NWP) models. The operational analysis schemes used in 
meteorological centres are today mainly based on statistical interpolation 
methods that  were introduced by Eliassen [9] and Gandin [I 1 ]. In these 
methods,  a first guess field (usually the forecast obtained from a previous 
analysis) is corrected by linear combinations o f  the deviations o f  observed 
data from the first guess. Models o f  the correlations o f  the observational 
error and of  the first guess error are needed in order to determine the coef- 
ficients o f  these linear combinations in such a way that the theoretical 
root-mean-square (r.m.s.) errors o f  the resulting fields are minimized. 
Besides the statistical information included in the correlation models, 
physical constraints (typically, the hydrostatic and the geostrophic balances) 
are included in these schemes in order to provide a physically consistent 
description o f  the three-dimensional structure o f  the atmosphere. A review 
of  the different methods used for  meteorological analysis, including a wide 
description o f  the statistical interpolation technique, is given by Gustavsson 
[ 16]; examples o f  statistical interpolation schemes can be found in Schlatter 
[24], Schlatter et al. [25 ], Bergman [ t ], Lorenc [ 19 ]; the structure o f  the 
correlation functions used in these schemes is widely discussed by Buell [4], 
Julian and Thiebaux [17], Thiebaux [27, 28]. 
Statistical interpolation schemes including physical constraints are very 
complex and require a lot of  computat ional  time; this is true also when 
they are used for applications different f rom NWP, for example diagnostic 
studies over limited areas. In general, the main requirement for an analysis 
scheme used for dynamical studies or numerical integrations is a high ac- 
curacy rather than a low computat ional  cost. 
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However, there are many meteorological or climatological investigations that 
need fast methods for data analysis. The main field of  application of these 
fast methods is the statistical analysis of  large amounts of  sparse data, in 
which they can be used both to estimate missing data and to check the 
reliability of  the available ones. I f  the spatial distribution of  the observing 
stations is very irregular, an interpolation onto a regular grid can be neces- 
sary before carrying out subsequent analyses, for example the computation 
of empirical orthogonal functions (see Karl et al. [18]). Besides, a local 
interpolation can be used to check the spatial coherence of  the data as a 
preliminary step of more sophisticated analysis schemes; finally, fast ap- 
proximation methods are needed for a number of  meteorological graphical 
applications. 
A wide range of  local approximation techniques can be used for these 
purposes. Unfortunately, apart from early applications of  least-squares 
polynomial fitting (see Panofsky [23 ], Gilchrist and Cressman [I 2], Corby 
[7.], Endlich and Mancuso [ 10]), very little information is available about 
the performances of  these techniques for meteorological purposes. A notable 
exception is the work by Goodin et al. [ 14, 15], who compared methods 
based on distance-weighted averages with a second-degree polynomial 
fitting. However, the main conclusions of  their work was based on a test 
made with simulated data, in which an hemispheric surface was assumed as 
" t rue"  field. The form of  this surface may have influenced their results, 
causing an overestimation of  the performances of  the second-degree poly- 
nomial technique. Besides, Glahn [13] pointed out that some of  the methods 
were not properly used. 
The purpose of  our study was to compare the performances of  a number 
of  local approximation methods applied to actual meteorological data. Daily 
observations of  temperature and geopotential height at 850 mb recorded 
for two years by 71 European stations were used; the results of  the inter- 
polations were checked against the observed values in 19 selected stations, 
the data of which were assumed as missing. The methods were tested in 
points with different conditions of  data density and isotropy. 
Since the principal applications of  these techniques are in the field of  statisti- 
cal analysis, an interpolation of  a subset of  the available data onto a regular 
grid was also performed, in order to test if  the main statistical properties of  
this sample of  grid point fields were comparable to those derived from the 
operational analyses Of the European Centre for Medium Range Weather Forecasts. 

2. Mathematical Algorithms 

Let C(x, y) be the two-dimensional field of  a meteorological variable, and 
let us assume that the values of  C are known only on a discrete set of  N 
"stations" Sk ---- (xk, Yk) in the spatial domain D 

c k  = C ( x ~ ,  y k  ) = c ( s k )  . 
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In this study, the problem of estimating the value C i assumed by C on an 
arbitrary point P] - (x], y]) inside D is solved by means of  local approxi- 
mation techniques. These techniques give an estimate of  Cj using only the 
data coming from stations Sk in an appropriate neighbourhood of P/. From 

a more general point of  view, we can use the term "local approximation 
method" for an algorithm that evaluates Cj as a weighted average of the 
values of  N functions fk (x,y), each one fitting the field C in a neighbourhood 
I X of a station S k 

N N 

C/ = ~ Wjk fk (xj,Y.i)/'~'~ Wjk (1) 

k=l  k= l  

where the weights w]k are different from zero only inside a neighbourhood 
Ii of P]. Usually, the weights depend on the distance 

rik = l P j - &  1 
(but not only on it), and are zero when Ok is greater than an influence 
radius R]. 
When this general scheme is adopted, the solution of the approximation 
problem will be dependent on the choice of  four elements: 1) the neighbour- 
hood ~.; 2) the neighbourhood Ik ; 3) the mathematical form of the functions 
fk ; 4) the functional dependence of  the weights Wik on the distance rjk 
and/or other parameters. 
Two sets of  solutions are particularly simple. In the first one, the functions 
are constant (fk = Ck) and the weights Wjk depend only on the distance 
between P! and Sk 

N N 

C] = 2 w(rjk) Ck / ~ w(r]k) . (2) 

k=l k=l  

In this case the problem is reduced to the determination of  the influence 
radius R] and of an appropriate functional form for w (r]k). This scheme was 
tested in our study with different choices for these two factors. 
Other simple solutions can be obtained fitting only one function f] to the 
observed aata inside/] by means of  the least-squares technique 

Cj = J5 (xj, y j ) ,  (3) 

where the function 3) is determined by the minimization of the mean square 
error 

N N 

E2 = .~J w] k (Ck--f l ' (xk'Yk))2/ ~1 Wik " (4 )  

k=l k=i 
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Also in this case, the weights Wlk depend on the distance r;. k and are zero 
outside/]. In our work, first and second degree polynomials were used as 
approximating functions, while the influence radius was determined locally 
so that a suitable number of  stations was included in I]. 
Algorithms combining polynomial fitting and weighted averages as in eq. (1) 
were developed by Maude [20] and McLain [21, 22]. In Maude's method, 
each fk is a second degree polynomial that is fitted exactly to the observed 
values on Sx and on the 5 nearest stations. So, Ik can be defined as a circle 
having as radius the distance of  the fifth stations, while I] includes all the 
stations for which P! E I k. C 1 is obtained as a weighted average of the values 
assumed on P] by all the polynomials defined in a circle including P]. 
McLain suggested a triangulation of  the whole spatial domain, using the 
stations as vertices of  the triangles. As in Maude's algorithm, a second 
degree polynomial is fitted in the neighbourhood of  each station, but more 
than 5 data and the least-squares technique are used to define the poly- 
nomials. 6). is evaluated as a weighted average of the three functions fx 
corresponding to the vertices of  the triangle in which P/is included. 
Following the basic ideas suggested by these works, we tested an inter- 
polation scheme in which each fk is a first or second-degree polynomial 
fitted by the least-squares technique to the data included in a circular neigh- 
bourhood of  each station. The size o f I  k was chosen so that a fixed number 
of  stations had a non-zero weight in the determination o f f~ .  Also each/1 
is a circular neighbourhood, but its radius R! was determined independent- 
ly from the size of  the neighbourhood of  the stations. So the value C] is 
given by eq. (1), where a Gaussian dependence on the distance was assumed 
for the weights and the radius o f l j  was chosen according to the results ob- 
tained using constant functions fk = Ck. 
All the methods described above are single-step methods. The last algorithm 
tested in our work is a multiple-step method based on successive corrections 
of  a "first guess" field. Let C/1) and Ck (1) be the values assumed by the first 
guess field on the point P! and on the station St .  The first correction step 
can be written as 

N N 

k = l  k--1 

where a (1) (0 < C~ (1) ~" 1) is a coefficient depending on the relative weight 
assigned to the first guess. I f  the approximation given by eq. (5) is com- 
puted also for each station Sk, eq. (5) can be used iteratively to compute 
(at the m-th step) 

N N 

q . ( m + l )  = q.(m) q_ or(m) ~ W(~) (C k __c(m))/~l Wfk m) ( 5 a )  

k = l  k = l  
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Usually both the influence radius R/and  the coefficient a (m) are decreased 
at each step. 
The successive correction method was introduced in meteorology by 
Bergthorsson and D66s [2] and Cressman [8]. Bergthorsson and D6ss used 
a weighted average of  the climatology and the forecast from a previous 
analysis as a first guess for the 500 mb height field, while Cressman's first 
guess fields for different variables and levels were essentially based on the 
12-hour forecast. 

Since none of the approximation methods previously discussed uses ex- 
ternal information in addition to the data reported by the stations, we de- 
cided to test a simple version of the successive correction method in which 
the first guess is simply a weighted average of  these data computed with a 
large influence radius. 

3. Data Set and Criteria of Comparison 

The data set used for the comparison of the local interpolation schemes is 
composed by daily observations of  temperature and geopotential height at 
850 rob, extracted from the upper-air soundings of 71 European stations; 
it covers a two year period, from t January 1980 to 31 December 1981. 
These data were chosen because of  their high signal-to-noise ratio, their 
uniform reliability and the fact that the order of magnitude of  the random 
measurement errors is known, their root-mean-square (r.m.s.) values being 
about 1 °C for temperature and 10 m for geopotential height. All these 
factors are important when, as in this case, one wants to compare the results 
of the approximations with direct observations. 
To perform the comparison among the different algorithms, a subset of 
19 stations (divided into three groups) was chosen. The test of  each method 
consisted in three runs of  the corresponding FORTRAN program; in each 
run, the data from a group of stations were eliminated from the sample and 
the approximations were computed on the corresponding points. 
The choice of the 19 stations was made in the following way. For each 
station S~ = (xk, Yk) in the total sample, the 10 nearest stations were con- 
sidered (Szk, l = 1 , . . . ,  10). An index of the asymmetry of  the geographical 
distribution of  these stations around Sk was computed 

lO 

l=1 

(6) 

Then, 19 stations were selected so that they could represent the whole 
resulting range of  variability of  AS, and were divided into three groups so 
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Fig. I. European stations used as data sources; the numbered squares indicate the stations 
chosen for the verification of the approximation methods 

that the stations in a given group had the greatest possible distance from 
each other. 
Fig. 1 shows the location of the 71 meteorological stations, and in particular 
of the 19 stations selected for the comparison. Their AS indices are listed in 
Table 1. The stations can be grouped into 4 classes according to this index: 

I class: 0. ~< AS < 0,25 

II class: 0.25 ~< AS < 0.50 

IiIclass: 0.50 ~< AS < 0,75 

IV class: 0.75~< A S <  1. 

Table 1 also shows how many of the 71 stations belong to each class. 
In the following sections, the skill of  the different methods will be evaluated 
comparing the r.m.s, errors computed for each selected station from the time 
series of  the observed and the approximated values. For the most significant 
tests, the results will be shown in Tables 2a/2b where, for each AS class, the 
range of variability of  the r.m.s, error among the selected stations will be 
indicated. 

14 Arch. Met. Geoph. Biocl. B, Bd. 36, H. 2 
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Table 1. Percentages of Stations in the Four Asymmetry Classes and Asymmetry 
Indices of the Selected Stations 

AS class Selected stations AS index 
(% of stations) 

I 1 0.077 
(37%) 2 0.115 

3 0.149 
4 0.188 
5 0.217 

II 6 0.278 
(28%) 7 0.334 

8 0.392 
9 0A25 

10 0.468 

III 11 0.535 
(25%) 12 0.555 

13 0.629 
14 0.666 
15 0.733 

IV 16 0.830 
(10%) 17 0.833 

18 0.871 
19 0.934 

4. Descript ion o f  the Tests 

In this section, a detai led descr ipt ion o f  the way in which the methods  de- 
scribed in sect ion 2 were appl ied  to our  da ta  sample will be given. In o rder  
to  avoid confusion,  in the  fol lowing we shall use (as in sect ion 2) the  symbol  
P] to indicate the geographical  points  corresponding to the stat ions on 
which the results o f  the  approx imat ions  were c o m p u t e d ,  whereas we shall 
indicate  as Sx all the  o the r  s ta t ions used as data  sources. We shall also use 
the s y m b o l D k  for  the vector  point ing from P] to a surrounding s ta t ion Sk, 
while t)k = Ir]k I will be,  as usual, the  dis tance be tween  P] and Sk. 

a) Distance-Weighted Averages 

The simple m e t h o d  described by  eq. (2) was tested with di f ferent  choices 
for  the  weights and the influence radius R]. In a first series o f  tests,  cons tant  
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values were assumed for the influence radius, and two weighting functions 
were chosen 

R//rjk 0 < rjk <~ R]/2 
w~(rjk) = 16 (1 --r]k/R]) 2 R]/2 <ilk <~R] (7a) 

0 rjk >R] 

exp(--4r~k/R/2) O<~rjk <<,R//2 
wz(r]k)= 4 e  -1 (1--ryk/Ry):  Ry/2<ryk<R] (7b) 

0 r]k > R/ 

The weighting functions are continuous and derivable in r]~ = RJ2 and 
Ok = Ri: this fact ensures a smooth variation of the approximated field 
when a new station crosses the boundary of  the influence circle. Both have 
the same dependence on distance when r]k > R]/2, but they give different 
results close to the stations. As can be seen in Goodin et al. [14, 15], the 
eq. (7a) produces an approximated field that tends to the observed value 
Ck when the point P] approaches a station Sk ; besides, the first derivatives 
of  the field tend to zero. Conversely, there is no exact fit of  the data using 
eq. (7b). 

With regard to the length of  the influence radius three values of  500, 600 
and 700 km were used, according to the results of Stephens and Stitt [ 26]. 
They found that the optimum influence radius for the first step of  a cor- 
rection method with a constant value as a first guess ranges between d and 
2d, where d (the average separation between 2 stations) is the square root 
of  the ratio between the total area of  the domain and the number of  
stations. 
Six tests were so performed, using all the possible combinations of  the se- 
lected weights and radii. Comparisons of the results obtained with the same 
radius showed no significant difference between the two weighting func- 
tions, probably because very few control points were located close to the 
stations used as data sources. On the other hand, the best influence radius 
was different from point to point. 
So, two further tests were performed, using the two weights and an in- 
fluence radius dependent on the coordinates (x], y]) of  the point in a polar 
stereographic projection. A simple expression for R / =  f(x], y]) was deduced 
in the following way: 

- the domain was divided into three areas, each one with nearly uniform 
density of  stations; 
- a value R = 1.6 d was computed for each area, again according to the 
work of  Stephens and Stitt [26]; 
- a first order polynomial was fitted to these three values, assumed as re- 
presentative of the centroids of  the subdomains. 

14" 
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We obtained 
R] = 676 . - - .106  x j - -  . 210y! ,  (8) 

where x] and y / a r e  respectively measured in the eastward and northward 
direction, the origin is the point (10°E, 45°N) and all the distances are ex- 
pressed in kilometers. 
The two tests gave better results than the previous ones, and again showed 
very little differences between the two weights. In some cases, the first 
function (eq. (7a))showed a slightly better  performance; however, this 
type of  weight was not suitable for most of the other approximation 
methods because of  the exact fit over the stations, so in all the following 
tests the weights (eq. (7b)) were used. 
The results of  the weighted average method with R (xj, y / )  given by eq. (8) 
and Gaussian weights (eq. (7b)) are indicated as WA in Tables 2a/2b. 
Since the differences between the r.m.s, errors obtained with the two 
weighting functions were usually as small as 0.1°C or 1 m, these results 
are representative of  the performances of  both the weights. 

a) Averages with Direc t ion-Dependent  Weights 

In a successive test, the weights were modified in order to take into account 
the asymmetric distribution of  the stations S k around the points Pj. The 
correction factor was derived by Boone and Samuelson [3], with small 
modifications. If_V/k = r i k / r j k  is the unit vector pointing from Pi to S~, 
and ~ / i s  a weighted mean of  these vectors inside/1. 

-y__-j = Z k w (r jk)v_jk/Gk w (rjk) (9) 

then the direction-dependent weights can be defined as 

W* (r jk ) = w (rfk ) (1 - -  e • v j k .v_j) ( 1 O) 

The value of the constant c (~< 1) can be chosen according to the importance 
that one wants to give to the directional term. We chose e = 0.5, so that in 
a highly asymmetric case ( I_~/l ~ 1) the actual weights can range between 
0.5" w (r/k) (for stations along the maximum-density direction) and 1.5" w (rjk). 
Clearly, if the station distribution is completely symmetric ~ j  = 0_) the 
directional factor is 1 for all the stations. 
This test was performed using the Gaussian weights w (rik) given in eq. (7b) 
and the geographically dependent influence radius R i defined by eq. (8); 
its results are indicated as DWA in Tables 2a/2b. 

c) Least-Squares Polynomials  

The distance-weighted least-squares technique summarized by eqs. (3) and 
(4) was applied to fit first and second degree polynomials in the neighbour- 
hood I / o f  each point Pj. Around each point, the stations were ordered with 
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increasing distance, and the influence radius R] was defined as the distance 
of  the sixth station (for the first order) and of  the eleventh station (for the 
second order polynomials); in this way, respectively 5 and 10 stations contri- 
buted to the definition of  the polynomials. The Gaussian weights (eq. (7b)) 
were used for these two tests, the results of  which are indicated as LS1 
and LS2 in Tables 2a/2b. 

d) Weighted Averages o f  Least-Squares Polynomials 

As already described in section 2, the weighted-average and the least-squares 
technique can be combined as in eq. (1), where the functions fk are poly- 
nomials fitted in the neighbourhood I k of each station Sx, and the values of 
these polynomials on P] are then averaged according to the distance r]k. 
Again we used first and second degree polynomials as fitting functions, 
and each neighbourhood I k was defined so to include respectively 5 and 
10 stations in addition to the one in the centre o f lk .  On the other hand, 
for the weighted averages the influence radius was defined according to 
eq. (8). 
The Gaussian weights (eq. (7b)) were used both in the computation of  the 
polynomials and in the averages of their values, with different influence 
radii. 
The results of  these two tests are indicated as WLS1 and WLS2 in 
Tables 2a/2b. 

Table 2. a) Range of Variability of 850 mb Temperature r.m.s. Errors for the Eight Local 
Approximation Methods Tested in This Study. The results are subdivided according to the 
classes defined in the text. b) As in a), but for 850 mb geopotential height 

AS class WA DWA LS1 LS2 WLS1 WLS2 SC DSC 

a) 850 mb temperature (°C) 

I 1.t-3.1 1.0-2.8 1.0-2.4 t.2-2.8 1.1-3.1 t . t-2.8 1.0-3.0 1.0-2.8 
II 1.3-3.2 1.3-3.2 1.4-3.1 1.3-3.8 1.4-3.6 1.3-3.8 1.3-3.1 1.3-2.9 

III 1.6-4.0 1.7-3.2 1.5-3.7 1.9-5.9 1.6-3.5 1.6-6.1 1.5-3.6 1.5-3.4 
IV 2,4-3.7 2.5-3,7 3.I-5A 5.8-14.8 2.8-4.8 5.0-11A 2.5-3.2 2.3-3.3 
Total 1.1-4.0 1.0-3.7 1.0-5.4 1.2-14.8 1.1-4.8 1.1-11.4 1.0-3.6 1.0-3.4 

b) 850 mb height (m) 

I 8 . -18.  7.-16.  8 . -16.  7 . -16.  7 . - t 9 .  8 . -17.  6 . -17.  6.-16.  
II 12.-22. 10.-18. 9.-16. 9.-22. 9.-21. 8.-23. 9.-15. 9.-16. 

III 15.-35. 13.-35. 11.-39. 10.-53. 9.-27. 9.-58. 11.-29. 11.-30. 
IV 18.-36. t8.-39. 21.-53. 40.-127. 20.-37. 28.-86. 15.-27. 16.-29. 
Total 8.-36. 7.-39. 8.-53. 7.-127. 7.-37. 8.-86. 6.-29. 6.-30. 
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e) Successive Corrections 
The successive correction method (eqs. (5) and (5a)) was tested performing 
three weighted-average steps with the following influence radii: 

first guess: R] = 2000 km 
1st correction: R/= t000 km 
2nd correction: Rj = 500 km 

Other tests were carried out, with a lower (i.e. closer to 1) ratio between the 
influence radii in two successive steps or with radii of  2400, 1200 and 
600 kin, but their results were considerably worse. 
Because of  the smoothness both of  the first guess and of the first correction, 
the smallest errors were obtained with a (1) = a (2) = 1. The Gaussian 
weights were used both in the simple distance-dependent form (eq. (7b)) 
and with the directional factor (eq. (10)). The results of  these last two tests 
are indicated respectively as SC and DSC in Tables 2a/2b. 

5. Discussion on the Results of Different Methods 

As described in section 3, Tables 2a/2b summarize the results of  our tests 
showing the range of  r.m.s, errors among the 19 stations chosen as reference 
points; the minimum and maximum values for the whole group and for the 
4 classes defined according to the asymmetry index are presented. 
Three clear indications emerge from the comparison of  these results: 
- The methods based on the simple least-squares polynomial fitting (LS 1 
and LS2) give very- high errors where the distribution of  the stations as 
asymmetric (AS > 0.5); besides, the performance of this technique is worse 
using 2nd degree rather than first degree polynomials. When the values of 
the polynomials defined in the neighbourhood of  each station are averaged 
to produce the final estimates (WLS1 and WLS2), the errors become much 
smaller, and the 1 st degree polynomials give again better results. However, 
with the exception of WLS1 for the 850 mb height, these errors are still 
greater than those obtained with the algorithms based on simple weighted 
averages. 
- The results obtained introducing a directional factor in the weights used 
both in the simple averages and in the successive correction method are 
contradictory. This factor seems to be more efficient in compensating for 
small asymmetries in the station distribution (AS classes I - I I )  than for 
large ones (AS classes I I I - IV) .  In the case of  the geopotential height, the 
results of the directional weights in the last two classes are even slightly 
worse than those obtained with the simple dependency on the distance. 
Taking into account the increase in computational time (about a factor 
of 2) required by the directional weights, their introduction does not seem 
justified. 
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Fig. 2. a) R.m.s. errors of 850 mb temperature, plotted against the asymmetry index 
(AS) of the 19 stations selected for the verification, b) As in Fig. 2a, but for 850 mb 
geopotential height 

- The successive correction method gives a constant improvement over the 
simple weighted-average technique, particularly relevant in the case of  the 
geopotential height. This can be clearly seen in Fig. 2, where the r.m.s. 
errors obtained with the two techniques (using distance dependent weights) 
are plotted against the AS index of  the 19 stations selected for the verifi- 
cation. At least for the geopotential, the significance of the improvement 
seems to justify the large increase m computational time required by the 
successive correction method (about a factor 6). In our opinion, despite 
this increase, the time required by this algorithm is acceptable for most 
applications. 
In conclusion, a successive correction method based on three averaging 
steps with decreasing influence radii appears to be the most accurate among 
the local interpolation algorithms that we tested. However, if  a very short 
computational time is required, a simple weighted average technique can 
also give good results, if the influence radius is properly defined taking into 
account the local density of  stations. The errors of  these methods show a 
clear dependence on the asymmetry of  the station distribution; when this 
asymmetry is small (as for classes I and II, which include 65% of  the total 
sample of  71 stations) the interpolation errors have an amplitude that, 
at least for the geopotential, is comparable with the observational accuracy. 
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6. A Comparison with ECMWF Analyses 

In the previous section we have showed that local approximation methods 
based on one or more averaging steps, with a proper choice of the influence 
radii, can give r.m.s, errors that are acceptable if compared to the obser- 
vational errors. As we said in the introduction, one must not expect the same 
accuracy that can be obtained by more sophisticated analyses based on 
multivariate statistical interpolation methods and on data sets with a wider 
and denser spatial coverage. But, since the principal applications of these 
fast and simple techniques are in the field of statistical analysis, we must 
check if at least the main statistical properties of  a sample of  fields analysed 
by means of these methods are comparable to the corresponding ones 
derived from more accurate methods. 
To perform this test, we used the successive correction (SC) method to 
produce a sample of  grid point fields of  850 mb height over the European 
area (from 36°N to 57°N and from 9°W to 27°E, resolution 3°× 3 °, 
104 points in total). All the available data from the 71 stations of  Fig. 1 
were used for this test, but the time period was limited to 184 days in 
October, November and December 1980 and 1981, in order to work on 
a more homogeneous sample. Data for the same variable, grid and period 
were also extracted from the analyses of  the European Centre for Medium 
Range Weather Forecasts (ECMWF) and the statistical properties of  the 
two sets were computed as follows. 
For each sample a principal component analysis on the standardized fields 
was performed, and on the base of  its results the value x]t on the j-th grid 
point at time t was expressed as 

! 

xjr = #i + °i " x j t  (11) 

104 

S X j t  = c i tA i j  , (1 la )  

i=1 

where btj is the mean value on the j-th point in the 184-day period; aj is the 
corresponding standard deviation; xj' t is the standardized value of  x j t ; A i j  is 
the component of  the i-th eigenvector of  the temporal correlation matrix 
corresponding to the j-th grid point; cit is the value of the i-th principal 
component (PC) at time t. 
A first comparison can be done on the means and the standard deviations 
computed from the two data sets. These fields and their differences 
(SC-ECMWF) are shown in Fig. 3. One can see that the mean field is well 
reproduced by the successive correction method, the mean error being (in 
absolute value) less than 5 m over the most part of the selected area; the 
greatest error obviously occur over the seas where the values are extra- 
polated from the coastal reNons. 
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Fig. 3. Comparison of statistics for two samples of grid point fields of 850 mb height in 
the period October-December 1980/October-December 1981, the first one inter- 
polated by the SC method from the data of 71 stations, the second one deduced from 
ECMWF analyses: a) mean field, SC; b) mean field, ECMWF; c)mean difference, 
SC-ECMWF; d) standard deviation, SC; e) standard deviation, ECMWF; f) standard 
deviation difference, SC-ECMWF 

A more systematic difference between the two samples can be found in 
the standard deviation field. The successive correction method generates 
higher standard deviations over nearly whole Europe,  and tends to reduce 
the differences between the nor thern and the southern regions. Even though 
the largest errors (~  10 m) occur close to  the southern border  o f  the domain 
where very few data are available, an overestimation o f  the order  o f  a few 
metres also occurs in areas where the observational network is dense. Despite 
these differences (which are on average tess than 10% o f  the actual value) 
the standard deviation fields computed  from the two samples show a clear 
resemblance, and also for this parameter  the results o f  the SC method are 
satisfactory. 
I f  we now examine the similarity o f  the standardized fields, we can see that  
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the increase in variance generated by the SC method has very little influence 
on the evaluation of  the structure and the relative amplitude of the domi- 
nant modes of variation. 
As in most of the meteorological applications of PC analysis, the standard- 
ized field can be approximated very well by its expansion on a limited 
number of  eigenvectors. With a proper choice of  this number (which is 
based on the distribution of the explained variance among the PCs), one can 
retain practically the whole significant part of  the signal with a great re- 
duction of  the degrees of  freedom in the spatial domain. 

Table 3. Percentages of Total Variance Explained by the First 10 PCs 
Derived from the Fields Generated by the Successive Correction Method 
(SC) and from the ECMWF Analyses, Cumulative values in parentheses 

PCs SC ECMWF 

1 57.93 (57.93) 56.35 (56.35) 
2 I6.62 (74.55) 16.21 (72.56) 
3 13.86 (88.4 t) 14.03 (86.59) 
4 4.17 (92.58) 4.70 (91.29) 
5 2.93 (95.51) 3,18 (94.47) 
6 1.47 (96.98) 1.71 (96,18) 
7 .93 (97.91) .96 (97.14) 
8 .58 (98.49) .75 (97.89) 
9 .32 (98.81) .49 (98.38) 

10 .25 (99.06) .31 (98.69) 

Table 3 shows the percentages of  variance of the first 10 PCs deduced from 
the fields obtained by the SC method and from the ECMWF analyses. One 
can see that the distribution of variance among the two sets of  PCs is very 
similar, and that in both cases a verb, good representation of  the standard- 
ized field can be obtained by the first 6 components. 

Obviously, it is not sufficient to compare the spatial structure of  the first 
eigenvectors of  the correlation matrix to test the similarity of  the standard- 
ized field. First o f  all, Buell [5, 6] demonstrated that, over a limited area, 
the structure of  the eigenvectors is strongly influenced by the boundaries 
and, consequently, by the shape of  the domain; besides, also the differences 
between the time coefficients (i.e. the PCs) must be taken into account. So, 
a good measure of  the similarity between the standardized fields can be 
obtained computing, for each grid point, the r.m.s, difference between the 
expansions of  these fields on the leading eigenvectors deduced from the 
respective data. 
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Fig. 4. a) 1st eigenvector of SC standardized fields; b) Ist eigenvector of ECMWF 
standardized fields; c) r.m .s. difference between the expansions of the standardized fields on 
the tst eigenvector of SC and ECMWF samples; d) 2nd eigenvector of Se standardized 
fields; e) 2nd eigenvector of ECMWF standardized fields; f) r.m.s, difference between the 
expansions of the standardized fields on the first 2 eigenvectors of SC and ECMWF 
samples 

If  the superscripts S and E indicate respectively the SC and the ECMWF 
results, the r.m.s, difference between the standardized fields in the ]'-th grid 
point  can be expressed as 

t]' 6IN = ( c S A S - - c f t A  E) , (13) 

t=l i=1 

where N is the number  o f  selected eigenvectors and PCs. 
We calculated (SIN for each point  and for N = 1 , . . . ,  6. Since the r.m.s. 
amplitude o f  the standardized field is I ,  the field generated by the succes- 
sive correction method  can be considered as a good approximation o f  that 
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Fig. 5. a) 3rd eigenvector of SC standardized fields; b) 3rd eigenvector of ECMWF 
standardized fields; c) r.m.s, difference between the expansions of the standardized fields 
on the first 3 eigenvectors of SC and ECMWF samples; d) 4th eigenvector of SC 
standardized fields; e) 4th eigenvector of ECMWF standardized fields; f) r.m.s, difference 
between the expansions of the standardized fields on the first 4 eigenvectors of SC and 
ECMWF samples 

derived from the ECMWF analyses if  the r.m.s, difference does not  ex- 
ceed 0.2. 
The results o f  this comparison are shown in Figs. 4, 5, 6 where the first 
6 eigenvectors o f  each set and the distribution of  6iN are plotted. One can 
see that the eigenvectors are nearly identical in the two samples, but  the 
most  important  result is that  616 is below 0.2 over almost the whole area 
and is below 0. t over Central Europe,  where the radiosonde network is 
homogeneous.  
We can so conclude that  the statistically significant information contained 
in the sample o f  ECMWF analyses o f  850 mb height is correctly reproduced 
in the grid point fields obtained by our simple version of  the successive 
correction method;  the most  relevant deviation, in our opinion, is the 
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Fig. 6. a) 5th eigenvector of SC standardized fields; b) 5th eigenvector of ECMWF 
standardized fields; c) r.m.s, difference between the expansions of the standardized fields 
on the first 5 eigenvectors of SC and ECMWF samples; d) 6th eigenvector of SC 
standardized fields; e) 6th eigenvector of ECMWF standardized fields; f) r.m.s, difference 
between the expansions of, the standardized fields on the first 6 eigenvectors of SC 
and ECMWF samples 

increase in the standard deviation of  the field, which, however,  is less than 
10% of  the actual value over the most  part o f  Europe. This means that this 
method can be satisfactorily used for the statistical and graphical appli- 
cations indicated in the introduction, if the influence radii are properly 
chosen. 

7. Conclusions 

Several local approximation algorithms, including weighted averages, least- 
squares polynomials,  a combination o f  these two techniques, and successive 
corrections, were tested in our work using data o f  temperature and geo- 
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potential height at 850 mb from 71 European radiosondes in a two-year 
period. The comparison of  the r.m.s, differences between the observed data 
over 19 selected points and the values interpolated from the surrounding 
stations gave results that can be summarized as follows: 

- The methods based on least-squares polynomials give much worse results 
than those based on weighted averages in one or more steps, particularly on 
points surrounded by an asymmetric distribution of  observed data. 
- For the methods based on weighted averages, a proper choice of the in- 
fluence radius is much more important than the specification of the weight- 
ing function in determining the quality of  the approximation. Using a single- 
step algorithm, the lowest errors were obtained with an influence radius 
dependent on the geographical coordinates, according to the density of  
stations in the area surrounding each point. Also the successive correction 
method proved to be very sensitive to the choice of the radii in the differ- 
ent steps, and particularly to the ratio between them. Conversely, no signifi- 
cant improvement was obtained using a directional weighting function de- 
pending not only on distance but also on the distribution of  the surrounding 
stations. 
-- Among all the algorithms, a successive correction method based on a 
weighted average with a large influence radius as a first guess, two correc- 
tion steps with decreasing influence radii, and weights having a Gaussian 
dependence on distance, proved to give the best results with a reasonable 
computational time. However, good results can be obtained also with a 
single-step weighted average using, as previously indicated, an influence 
radius dependent on the local density of  station, with very low compu- 
tational time. 
- The results of  these two methods show a clear dependence on the asym- 
metry of the local distribution of data, which is particularly evident for 
the geopotential height. When the asymmetry is small, the amplitude of  the 
approximation errors is comparable to the observational accuracy; when 
the asymmetry is lane the approximation error is intermediate between 
the observational error and the standard deviation of the variable in a sea- 
sonal sample. 

A subsequent comparison between a sample of  grid-point fields generated 
by the successive correction method from the radiosonde geopotential data 
in 184 winter days and corresponding ECMWF analyses showed that the 
successive correction algorithm provides very good estimates of the main 
statistical properties of  the analysed field: namely, the mean field, the 
standard deviations, the leading eigenvalues and eigenvectors of the corre- 
lation matrix and the time dependent principal components that explain 
the most part (over 95%) of  the variance of  the sample. The errors in these 
quantities are small over the whole domain, with an obvious increase over 
areas with very few data; the only difference that has some relevance is an 
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increase in the standard deviation of  the field (generally about or less than 
10%) that tends to reduce the latitudinal gradient of  the variance. 
In conclusion, this simple version of  the successive correction method, even 
with no external first guess, appears to be adequate for most of  the statisti- 
cal and graphical applications of  meteorological data analysis. It is obvious 
that more sophisticated methods are required when a reliable physical and 
dynamical description of  the three-dimensional structure of  the atmosphere 
is required for diagnostic or prognostic studies. 

From our results it is evident that a careful choice of  the influence radii is 
fundamental to obtain the best results for any given data set. The magnitude 
of  the radius in the first step must not exceed the distance at which the 
correlation between data over different points loses its significance, while 
the radius of the last correction must be of the order of the average dis- 
tance between the data sources. Since a good value for the ratio of the 
radii in two successive corrections is about 2, these factors also determine 
the maximum number of significant corrections. However, the method 
can be easily implemented through a computer program in which, depend- 
ing on the application, the actual number of steps and the corresponding 
influence radii can be varied in order to reach the most convenient com- 
prise between accuracy and computational costs. 
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