
Commun. Math. Phys. 132, 139-153 (t990) 
Communications in 
Mathematical 

Physics 
�9 Springer-Verlag 1990 

The Time Dependent Amplitude Equation 
for the Swift-Hohenberg Problem 

P. Collet 1 and J.-P. Eckmann 2 

1 Centre de Physique Th6orique, Laboratoire UPR A14, CNRS, Ecole Polytechnique, 
F-91128 Palaiseau, France 
2 D6partement de Physique Th6orique, Universit6 de Gen6ve, CH-1211 Geneva 4, Switzerland 

Dedicated to Res Jost  and Arthur Wightman 

Abstract. Precise estimates for the validity of the amplitude approximation for 
the Swift-Hohenberg equation are given, in a fully time dependent framework. 
It is shown that small solutions of order (9(e) which are modulated like 
stationary solutions have an evolution which is well described in the amplitude 
approximation for a time of order (9(e-2). For the proofs, we use techniques for 
nonlinear semigroups and oscillatory integrals. 

1. Introduction 

In this paper, we study the relation between a multi-scale nonlinear problem and 
its associated amplitude equation in a fully time-dependent framework. In order to 
keep the exposition sufficiently simple, we state and prove our results in the 
framework of the Swift-Hohenberg equation 

t?tu(x, t)= (3~ 2 - (1  + ~2)2)u(x, t ) - u3 (x ,  t). (1.1) 

Here, u is a function R x R + --,R This equation has been studied in detail in [1], 
and we summarize those of the results which are relevant for the current study. 

1. Equation (1.1) has stationary (i.e., time-independent) solutions, for small e 
which are of the form 

u(x, t) ~ 2~ c o s ( x  ) . (1.2) 

2. Equation (1.1) has front solutions which are of the form 

u(x, t) = e Y. u , ( e x -  e2ct)e ~"x , 
n ~ Z  

with the reality conditions 

u , (y )=a_ , (y ) .  
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The solutions are front solutions because the amplitudes u, can be chosen to be 
zero for y ~  ov and nonzero for y--, - ~ .  In fact, the dominating terms in the sum 
above are the ones with u+ 1, and u_+ 1 is of order (9(1) while all other u, are at least of 
order (9(~). 

3. A multiscale analysis shows that the amplitude ul satisfies approximately the 
amplitude equation 

(4~  + cox + 3)ul - 3ullull 2 = 0. (1.3) 

The term with cox is generated by considering the un in a frame moving with speed 
~2C. 

All the solutions above can be considered to be quasistationary, i.e., constant in 
some frame of reference, or, for the case of front solutions, having constant 
envelopes in some frame of reference. Therefore, they are amenable to a low- 
dimensional study, which has been detailed in [1] and in [2]. 

In the present paper, we study the more complicated question of "full" time- 
dependence. That is, we do not restrict our attention to a submanifold of special 
solutions but instead ask for the time evolution of certain types of initial 
conditions. It is a general principle of physics that in situations of the type 
described above the "full" evolution is - for small s - still accurately described by 
the evolution of the amplitude through the amplitude equation (1.3), in which the 
e-dependent terms have been dropped. Here, we describe in detail the nature of this 
approximation, and give bounds on its regime of validity. To make this 
comparison more precise, we rewrite the function u(x, t) in the form 

u(x, t) = ~v(~x, e2t)eiX + complex conjugate, 

and we assume vo(x)= v(x, 0) is given. In terms of v, the evolution equation (1.1) 
reads 

(4~?x + 3 - 4zet?x - e Ox)v - 3vlvl - e v . (1.4) ~t l )  ~ 2 �9 3 2 4 2 2ix/~ 3 

Let us call the corresponding time evolution T,. We want to compare it with the 
time evolution St for the amplitude equation 

~,w = (4~ z + 3)w-  3wlwl 2 , (1.5) 

and ask how the difference T :  o -  S~vo evolves in time. 
Our result is the 

Theorem 1.1. Consider any function v o such that ~ v  o is in L ~~ for k = 0,. . . ,  4. There is a 
T > 0 ,  an ~o>0 and a C < ~ such that for all re(0, T] and all ee [0,eo] one has, 

II T:o - S,vo II o~ < C min(~t i/2, tltzt3/4). (1.6) 

Remark. The constant C only depends on [/O~Vo [I, for k = 0, ..., 4. The solution itself 
can be shown to exist already when one only assumes Vo in L ~176 However, the 
bounds will then show slight divergences near t = 0, because of the time which is 
needed until the evolution has smoothed the initial data. 

It is instructive to translate Theorem 1.1 back to the original equation (1.1), 
and the original time scale. Denote by ~ the time evolution defined by (1.1), and let 
v o ~ L | be given. Define 

Uo(X ) = (~Vo) (x) =- e(Vo(ex)e ix + 6o(ex)e- i~). (1.7) 
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With this definition, one has the relation 

Thus we find, 

Corollary 1.2. Consider any function Vo such that O]vo in L ~ for k = 0 .. . .  ,4. There is 
a T > 0  and an ~o>0 such that for all e~[0,eo] and all t~(O, T/~ 2] one has, 

I~Uo(X ) -- eeix(ste2Vo) (ex) - ee-ix(ste2Vo)-(ex)l _< e 3 C min (t I/2, t3/4). 

Note  that if Ilvll~=C0(l), then II~vjl~o=(~(~), so that Corollary 1.2 gives 
interesting bounds for solutions of size e. This is the size of stationary solution of 
(1.1), cf. (1.2). 

The difficulty in the proof of Theorem 1.1 is related to the fact that two 
seemingly contradictory arguments are used to eliminate the correction terms: For  
the differential operators we shall use a study of the semigroup they generate while 
for the high frequency part e 2~/~, we use WKB-like methods, which need 
smoothness. This smoothness will only appear after a short time and a careful 
study of local singularities is necessary. This is responsible for the bound (1.6), 
while the reader might have expected (9(et) instead. 

The transformation ~ can be viewed as a zero order approximation to the 
problem of finding a normal form for the Swift-Hohenberg equation. The general 
problem can be formulated as follows: We are looking for a transformation N~ 
which satisfies approximately 

where 

Y= X2 , 

X(u) (x, t) = (3e 2 - (1 + 02)2)u(x, t ) -  u3(x, t), 

Y(v) (x, t) = (402 + 3)v(x, t ) -  3vlvle(x, t). 

In this paper, we find the lowest order approximation, ~ ,  to ~ which is given by 
(1.7). 

2. A General Bound on Semigroups 

The main purpose of this paper is a comparison of semigroups. We want to show 
that they differ little, and we now explain the main techniques with which these 
differences are estimated. Since some of the perturbations have high frequency 
components as e~0 ,  we need to prove sufficient differentiability at every stage of 
the estimates. 

The basic technique to do these estimates will always be the same, but the 
details will vary sufficiently at every stage of the proof to make a separate 
treatment necessary. To guide the reader, we therefore state and prove a "generic" 
statement which is a typical example of our technique. It is a straightforward 
generalization of the classical methods, cf. e.g., Lang [3], to the case of"semiflows" 
with unbounded generator. 
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Our general setting takes place in a Banach space ~ ,  and we assume that we are 
given a "free," possibly time-dependent, evolution operator S,a o which satisfies 
St, t = 1, St, t,St,,t,, = St, t,,, for t > t '>  t", and for which the derivative below exists: 

OtSt, to =LtSt ,  to. 

We want to solve an "interacting" problem 

Otvt = Ltvt + Ft + Gtv, + ~h/'t(vt). (2.1) 

Here, we look for the unknown function t ~ vt as a map from R + to ~ .  The 
intuitive interpretation of the various terms in (2.1) is as follows: Lt is the (time- 
dependent) generator of the free evolution; Ft is an inhomogeneity; Gt is a linear 
operator (or antilinear or a sum of these); ~ is a nonlinearity. 

The formal solution (2.1) with initial data v0 is given by 

t 

vt = St, oVo + ~ dzSt,,(V~ + G~v~ + JV'~(v,)). (2.2) 
0 

Typical assumptions on the various terms in (2.1) look as follows. Denote by [I �9 II 
the norm in &. Then 

As: IlSt,~vll <s(t, ~) I[v[I, 

At:  IIr, ll ~f(z) ,  

A~: [IG~vll <g(v)Ilv[I, 

AN: II~(v)ll __<n(z)IIvll" h(llvll), where h(o)=<min(1,O ~) for some v>O. 

We shall also need some sort of control on the functional derivative of the 
nonlinearity JV (the other terms have obvious functional derivatives). 

A~: I [ ~ ( v ) - ~ ( v ' ) l l  <-_m(~)llv-v'll k(llvlr + IIv'll), where k(o)<min(1,(O/2)~'),  for 
some v' _> 0. 

We shall now study Eq. (2.2) by considering a space B of functions R + ~B.  
More precisely, given some "final time" T >  0, and a positive weight function 
b:(0, T]--->R + we define 

B=~{v~}~>ol sup b('c)[Iv~l]<~}, 
[ = I T = ~ > O  

and we equip B with the norm 

IIIvlll = sup b(T)IIv, H. 
T > ~ > O  

Remark.  In applications of this general scheme, the norm II �9 II could contain spatial 
derivatives of v and the weight b could be chosen with a (mild) singularity at zero to 
take into account the time scale on which solutions get smooth. 

In order to study Eq. (2.2) we consider a map J{: B ~ B ,  defined by 

t 

(o/gv)t = St, oVo + ~ dzSt. ,(F, + G,v, + ./V~(vO). 
0 
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IfJgv = v, then v~ is a solution of(2.1) with initial data v0. It is useful to consider in B 
the affine subspace Bw, with w e ~ ,  defined by 

Bw={veBIvo=W}.  

Clearly, Bw is the set of functions with identical initial data v o = w. To show that 
d//v = v has a solution in Bw, we show that Jg  is a contraction of a ball in B. Let 
BA= {V ~ B, ]J[v][} < A}, and assume that A is so small that A/b(~:)< 1, for z e (0, T]. 
This condition will make our estimates on Jg  simpler, but is otherwise inessential. 
In this case, we always find h(11 v [1)~ [[ v 11 ~ for v e B a. The other case is then handled 
analogously. By our assumptions we get 

b(t) ]l (J/lv)~11 < b(t)s(t, O) 11Vo 1t 
t 

+ ~ dzb(t)s(t, z) (f(z) + g(z)A/b(z) + n(z) (A/b(z)) 1 + ~). 
0 

In order to make the estimates more transparent, we define the constants 

S= sup s(t, O)b(t), 
T > _ t > O  

t 

f = sup S dzb(t)s(t, z)f(z), 
T > t > O  0 

t (2 .3)  
G = sup S dzb(t)s(t, z)g(z)/b(z), 

T > - - t > O  0 

t 

N =  sup ~ dzb(t)s(t, z)n(z)/b(z) 1 +~. 
T > t > O  0 

With these notations, a sufficient condition for b(t)H(J/v)tll =< A to hold is 

SllvolI + F +  GA + NA 1 +~ < A. (2.4) 

This is possible whenever 
(2.5) 

(S l lvo l l+F)Ni /~<( l_a) t l+~) /v (1  1 ) 
_ (1 + v ) l / ,  (1 + v ) ( l + , ) / ,  . (2 .6)  

The condition (2.5) says that the linear part of the perturbation is small and the 
condition (2.6) can be satisfied for small initial data and small inhomogeneities. 

Proof of Sufficiency of (2.6). Define x = AN1/L Then (2.4) says 

(S J[ v o 11 + F)N 1/~ + x '  +" <_ (1 -- G)x. (2.7) 

The difference of the two sides of (2.7) attains a minimum as a function of x when 
the derivatives coincide, i.e., when 

( l + v ) x ~ = ( l - G ) ,  i.e., x=((1-G) / ( l+v))  ~/~. 

The difference is then seen to be non-negative if (2.6) holds. 
Thus : / f  (2.5) and (2.6) hold, then ~ maps a ball of radius A in B into itself. We 

now work out a condition which insures that Jg  is a contraction on Bw, for 
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sufficiently small Ilwll. By definition, 

t 

( :gv ) ,  - ( :gv ' ) ,  = I d~S,.,(G~(v~ - r  + ~ ( v 3 -  ~(v;)) .  
0 

Using the assumption A~v, this leads to a bound 
t 

b(t) [I ( Jdv ) t -  (~v ' ) t  II < b(t) j dzs(t, z)g(z)b(z)- 111 v~- v; II 
0 

t 

+ b(t) f. dzs(t, z)m(z)b(z)- V'ACb(z)-I ][ v~ -  v'~ [[. 
0 

If we define the constant M by 

t 

M = sup b(t) S dzs(t, z)m(z)b(z)- ~'-1, 
T>=t>O 0 

then we see that ~ will be a contraction of the ball of radius A into itself provided 

G + M A r  < I ,  
(2.8) 

Sllvoll + F < I - G - M A  r . 

This is always possible if (2.5) holds and M, ]l vo [[, F are sufficiently small. Hence we 
have shown the 

Theorem 2.1. I f  the inequalities (2.5), (2.6), (2.8) hold, then Eq. (2.1) has, for  all 
sufficiently small initial data Vo ~ ~ a unique solution for  t < T. This solution will be 
bounded by 

IIIvlll<a. 

Remark  2.2. If Vo = 0, then the condition (2.4) shows that if G < 1, the constant A can 
t 

be chosen of order 0(F). Note that if F, which is an integral J, goes to zero like F, 
~>0,  as t ~ 0 ,  then this implies o 

IIv, ll = r 

3. Proof of Theorem 1.1 

We write the equation for 6t, which is the difference 

6, = T~vo-- S,vo. 

We denote w t = u~ 1)= Stvo, Straightforward expansion leads to the equation 

Otft = L tft + Ft + ~/~t(6t), (3.1) 

Lt = 40~i + 3 - 4i~0~ - 2 4 e O~ - 3(2[wtl 2 + w2J)--  3e2iXl'w 2 , (3.2) 

with 
# ( x ) - - f  (x), 

3 2ix/e �9 3 2 0 4  Ft = - w, e - (4te8~, + e ~)We, 
(3.3) 
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and 

~u = - 3(2w,1312 + ~t32 + 61312) - eZix/~(3wt3 2 + 6a). (3.4) 

It is our aim to show that fit, which starts out being 0 at time t = 0, will grow 
relatively slowly. Note, however, that the terms 

402 + 3 - 6lw~l 2 - 3w2j, 

give rise to an operator which is independent of e. This operator is just the tangent 
map to the flow defined by the semigroup St, and unless there is some cancellation, 
or a suitable renormalization of the "free" evolution wt, we expect this term to give 
rise to an exponentially growing error, (starting from zero). All other terms in (3.1) 
will be seen to produce error-increasing "forces" which are of order e. For  those 
having an explicit factor of e, this seems fairly obvious, and for the rapidly 
oscillating terms, this will follow by integration by parts. The difficulty in proving 
these intuitively obvious statements comes from the necessity to provide the right 
kind of regularity at the right point in the proof. 

We next describe the steps through which the function 3t will be estimated. 

Step 1. We consider the "free" equation 

OtU (1) = 4 0 2 U  (1) -F 3u ~x)- 3u")lu")l z . (3.5) 

One has the bound 

Lemma 3.1. For every initial condition U(o 1) satisfying H0ku~oX)lt oo < oo for k = 0  .. . . .  4, 
k (1) uniformly bounded for all t > 0  and k = 0  .... .  4. the norms [[O~ut II oo are 

Remark. If we require only Ilu(o'lloo<O% then for any t > 0  all derivatives are 
bounded, but not uniformly as t~0 .  

This lemma will be proved in Appendix A. 

Step 2. We next study the operator 

(2) 2 �9 3 2 4 12 = 4 0 x -  4teOx- e ~ + 3. (3.6) 

This is a part of the operator L, in (3.2). We have the following bound 

Lemma 3.2. The operator L ~2) is the generator of  a semigroup S~ 2) = exp(t/~ 2)) which 
satisfies, for r=0 ,1 ,  

II 0~S~ 2)vII oo < a,(t) Ilvl/~o, (3.7) 

where 

a,(t) = const min(t-'/2, (ezt)-r/4), (3.8) 

uniformly in t > O. 

Remark. If v is differentiable, then we can write this in the more useful way 

IIS~Z~O~v[I ~o < ar(t) Ilvll oo- (3.9) 

This lemma will be proved in Appendix B. 
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Step 3. We next add the potential terms of (3.2): 

G~ 2) = - 3 (21@)1z + (@))z j ) _  3e2,~/~(u~a))3. 

We form a new semigroup r which is the solution of ~ t ,  t '  

t 
,if(3) _ i f ( 2 )  A- f A~,ff (2)  (~ . (2 )S(3)  

t '  

with the initial condition S~3) t, = 1. (For the semigroups defined below, we shall not 
repeat this condition.) 

Lemma 3.3. There is a T > 0 and a constant C such that for r-= O, 1 one has the bound 

IIS~3,t),t~rxVlJ oo <= Car(t-  t') Ilvll ~o, (3.10) 

when O < t - t '  < T. 

Proof. This is the first application of Theorem 2.1. We begin with the case r = 0. The 
Banach space will be L =, and the weight function b will be constant. There is only 
the original semigroup S ~2) and a linear perturbation G t2). By Lemma 3.1, we see 
that for 0 < t < T, one has [r G~ 2) II co < G1. By Lemma 3.2, we see that 1] S~ 2) I] oo < S1, for 
all t >  0. Therefore the condition (2.4) reads in this case: 

TSllrvoll~ + TGIA < A. 

The condition on contractivity reads TG1 < 1. Therefore, for sufficiently small 
T > 0 ,  the Theorem 2.1 applies and this yields the Lemma 3.3 for r=0 .  

In order to study the case r = 1 we use the equation 

t 
�9 (3)  _ _ ~ ' ( 2 )  ,.~ f z ]~ ,~  '(3)('~'*(2).~'(2) ~ (3.11) 
S t ,  t ' ~ x  - -  ~ t -  t ' ~ x  - -  d ~ o ~ t ,  s u s  u s -  t ' v x  �9 

t" 

By the estimates of Lemma 3.1 and Lemma 3.2, we see that 

I[ G~E)S~2-)cC~xw [[ 0o < constal (s-  t') l[ w p[ co- 

Combining this with (3.10) for r = 0, we conclude that 

i/]~,~,(3)(~'(2)~'( ) r~ u < r os_t,vx,,][ =const( t -- t  ) .al(t--t ')  IIw[Ioo. (3.12) 

The last expression is a bound on 

t 

const ~ dsao(t- s)al(s-  t'), 
t '  

which uses the explicit form of a0 and a 1. Since the bound is dominated by that on 
S(2) ~ the proof  of Lemma 3.3 is complete. 

Step 4. We now add the other terms. We start with the inhomogeneous term 

F~3)(x) = -- e2i~/~(u ~ 1)(x)) 3. (3.13) 
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It can be rewritten as 

- 2ie ax(F~3)(x) ) + ~/e2iX/~SxF~3, 2)(x), (3.14) 

where p(3, 2)_(,,(xh3 We define further 

8F~ 3' 3)(x) = -- (4ie8 3 + e2O4)@)(x), (3.15) 

which is the second term in (3.3). We have the following bounds, using Lemma 3.1" 

LIFI 3' 3)11 o~ < F2,  

I[F~3)I] o~ < t a ,  

uniformly in e, for 0 < t <  T. Note that h[0xF~3)ll ~ diverges like (9(l/e) as e~0 .  
Finally, we define the nonlinearity y (3 )  as in (3.4) by 

~/~t(3)(6) (x) = - 3(2@)(x)Ib(x)12 + @)(x)62(x) + 6(x)16(x)l 2) 

- e2i~'/"(3@)(x)f2(x) + 63(x)). (3.16) 

With this notation, 6 is given by the expression 

6t = i der --4- gF~ 3' 3) + ~A#s(3)(0t)), 
0 

which by (3.14) can be rewritten as 

t 

~'= ~ o  o 

By the bounds we have established on S ~3), and on S(3)d~, we see that the main 
lemma applies for sufficiently small T > 0. The corresponding bounds for (2.3) are: 

F _<_ const min (zt 1/2, ~/2t3/4), 

G = 0 ,  

IlVoll =0, 

M, N __< const t. 

These constants depend only on the first four derivatives of @). Hence fit exists for 
0 <  t <  T. Applying the Remark 2.2, the assertion of Theorem 1.1 follows. 

Appendix A 

In this section, we prove Lemma 3.1. However, since our method is more general, 
we present a general bound on solutions of semilinear differential equations, which 
need not be parabolic. The idea is that the nonlinearity bounds those terms which 
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are not damped by the positivity of the "kinetic" energy. We consider equations of 
the form 

Otu , = - Pu t - u t f  (lu tl 2) , (4.1) 

where P is an elliptic differential operator, or, more generally associated to a 
symbol 

P(x, 4) = a~ 2k + R(x, ~), (4.2) 

where a > 0 and where R is a polynomial of degree < 2k in r with sufficiently 
smooth coefficients which are bounded together with their derivatives. 

We also assume that f ( o ) ~ m  as 0 ~ m  and f ' (o)>O. This last condition is 
somewhat too restrictive but makes the estimates easier. We denote by P the 
operator P = P(x, - idA. The method we use generalizes immediately to operators 
in several variables, when a is a definite form. 

To make the notation less awkward, we pretend in all estimates that the 
quantities are real, thus we write u 2 instead of ]u] 2. The necessary adaptations to the 
complex, or general vector-valued case are obvious. 

Theorem 4.1. Assume ][Uo 11 o0 < c~ and I10xUo I] ~ < ~ .  Under the above assumptions 
on P and f the solutions of  (4.1) are bounded in L ~ There is a 
C =  C(L{Uo]l ~, L{OxuolL o~)< az such that 

Itu, lJ | <= C(lluo II o0, II~uoll |  

Remark. By the standard regularity theorems, there is, for every p, a T >  O, and a 
C>O, such that IlO~u, ll oo < C for all t6(O, T), and for P<=Po. We may thus assume 
that the initial data are in (gP~ for any Po < c~ we wish. 

Proof. Our strategy will be to prove the result first in Sobolev spaces and then 
derive the theorem from the Sobolev estimate. We give ourselves a weight function 
h 6 cg2k, h 2 6 L 2, h > 0 which satisfies 

IlO~h/hlloo<H, for p =  l, ..., 2k. (4.3) 

We shall do bounds in L2(h2dx) and denote 

(u, V)h = ~ dxh2(x)a(x)v(x) , 

and 
(u, v)= S dxa(x)v(x). 

Remark. The class of functions h which we really use is 

h(x) = (1 + ao(x - a l )Z) - l ,  (4.4) 

with ao > 0 fixed, and al arbitrary. Then the bounds (4.3) hold with H independent 
of al. 

Let Q(x, ~) be of the form 

Q(x, 4) = b{ z" + S(x, ~), (4.5) 

where b > 0 and where S is a polynomial of degree < 2n in r with sufficiently 
smooth coefficients which are bounded together with their derivatives. We denote 
by Q the operator Q ( x , -  iOx). 
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Lemma 4.2. There is a constant G = G(b, S, H) such that 

(u, Qu)h >= - G(u, U)h . 

Proof. We have 

(u, QU)h = (h2u, Qu) = (uh, Quh) -4- (uh, [h, Q l h -  1. uh), 

where [ . , . ]  denotes the commutator.  Note now that [h,3~]h -1 is a sum of 
differential operators of degree less than p, 

/ ~Jk h "x 
[h, ~ ] h -  1 = ~2 cjl ..... #~ l~ /vx "'/~p-zjk 

...... j~ k = l \  h ] - x  " 
l <-s <- p 

Therefore, we find 
2n 

[h, Q]h -~ = ~, Sj(x, - i~x), 
j = l  

where the S t are polynomials of degree at most 2 n - j  in the second argument, 
whose coefficients are bounded when h is of the form of (4.4). By our assumptions, 
we find that 

2n 

O_o(X, r Q(x, ~) + E Six, ~) 
j = l  

is a symbol of order 2n and it satisfies 

Qo(X, r >_- - K 

for some K = K(b, S, I4). Therefore, we have 

(uh 2, Qu) = (uh, Qo(x, - k3x)uh) >= - G(uh, uh) 

for some G = G(b, S, H), by [3, Theorem 18.1.14-15]. This completes the proof of 
Lemma 4.2. 

We consider next an initial condition Uo e L ~ and establish a bound on (ut, ut)h. 

Proposition 4.3. There is a constant C1 = CI (a ,R ,H ,  Iluol]oo) such that 

I dx hZ(x)u2(x)<= C 1 . 

Proof. Consider 

O,(u,, u,)h = (u,, ,~,u,)~ 

= -- (ut, Put)h-- (ut, utf(u2))h. 

By the lemma, this quantity is bounded by 

�89 ut) h <= G(u,, ut) h -  (u,, utf(u2t ))h. 

Define now U such that f ( U )  >_ G + 1. Then 

l t ~ t ( u , u ) h ~ G S h 2 u 2 -  ~ h2u2(G-t-1) 
u2>_U 

<-G I h 2 u 2 -  I hZu2 
u2<U u2>U 

< ( G + I )  I h2t/2--~h2u2. 
u2<__U 
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Thus, �89 U)h ~ ( G  + 1 ) U - ( u ,  u)h. From this differential inequality it follows at 
once that 

(ut, Ut)h < max(2(G + 1) U, (Uo, u0)h) �9 

We next bound 

~ot,,. , U')h = -- (U', Pu')h -- (u', f (u2)u')a 

-- 2(UU', f'(u2)uu')h . 

Note that the terms containing f are non-positive. Assume for simplicity that 
P(x,  ~) in (4.2) only depends on ~. Fix any A ~ R. Then the identity 

(u', ( P -  A)u')h = (u, Qu)h, (4.6) 

holds when 

Q ( x , r 1 6 2 1 6 2  

Remark.  When P is of the general form of (4.2), one can still find a Q such that (4.6) 
holds. The definition of Q is more complicated, but the terms of highest order 
remain the same in all cases. 

We now apply Lemma 4.2 with Q as above and get 

(u, QU)h > -- C(u, U)h. 

Therefore the identity (4.6) implies 

(u', Pu') h -  A(u', u')h = (u, Qu) > - C(u, U)h . 

It follows that 

< C  ' ' �89 U')h ~ -- (U', PU')h = (U, U)h - -  A(u ,  u )h. 

We have already seen that (ut, Ut)h is bounded, and hence it follows that (u't, u~) is 
bounded as well. 

We now have shown that (ut, ut)h and (u't, u~)h are bounded in t. From this the 
proof of the theorem is completed as follows. We have 

h2(x)uZ(x) = i dy(uZh2)'(Y) 
- - o 0  

= 2 dyuu'h 2 + 2 dyu 2 h 2 

h' 
< 2(u, u)],/2(u ', u')~ 1/2 + 2(u, u)h ~- | < ~ .  

Thus, we find 

]u(x)] < K h ( x ) -  1, 

but since K is independent of h among the h of (4.4), we find, using al =x ,  

lu(x)t < K .  
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Proof  of  Lemma 3.1. To simplify the notation, consider 

8tu = 432u + 3 u -  3ulu[ 2 = 4a2u + f(u) ,  

and denote by u (k) the k tb derivative of u. Let 

qSk(t)---- sup sup II~u, ll~. 
O < t < T  O < p < k  

We are going to show that if ~bk(0 ) < ~ ,  then ~gk(t ) < ~ for all t > 0. In fact, one can 
even gain one derivative with a slight divergence near t = 0; but we do not need 
these better bounds in this paper. 

It is well known from local existence and regularity theorems that there is a 
T =  T(q~k(0)) > 0 such that q~k(T) < ~ .  So all we have to show is qSk(t) < ~ for t >  T. 
This will follow from the regularizing properties of the heat kernel. Indeed, if we 
denote by Gt the heat kernel corresponding to the operator ~tu = 402u, then we 
have 

il G G  I1~ _-< c 0 ( t -  ~/2), 
where the L ~ norm is in the space variable. For  t > T, the evolution equation leads 
to r 

u~k) = ( G G ~ )  * u~_-~)  + I * (k - 1) ds(d~Gz_~) f ( u t -  r+~). 
o 

Here, * denotes convolution. In terms of the bounds, we get 

T 

0 

where Rk-  ~ is a polynomial in ~bt, with l < k. F rom the bound on d~G, we obtain a 
recursion relation of the form 

4~k(t) < const - ~/2 + I dss-  ~/2 G -  ~(~)k- tit)), 
o 

for some polynomial F k _ ~. Since we have already shown ~bo(t ) < oe for all t > 0, the 
result follows for all k by induction. 

5. Appendix B, Proof of Lemma 3.2 

To simplify the notation, we consider instead of L (2) the operator 

a~_ iea3  2 4 - e  ax- 

We consider the kernel G of the corresponding semigroup. It is defined by 

o0 

Gt(x) = S dkdkXe-t(k2 + i,k3 + ~2k4). 
- oo  

One has the following bound. 

Proposition 5.1. For all t > 0 and all r >_ 0 one has 

II ~Gr  PI1 < const min(t- ' /2, (ezt) -,/4). 

Remark. Clearly, this implies Lemma 3.2. 

(5.1) 
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Proof. We shall call (a) and (b) the two alternatives in (5.1). It is useful to consider 
the rescaled function 

g~(Y)= ~ dkeikre -k2-i~l~3-~Ek', 
- - 0 0  

so that Gt(x)= t-1/2g~(x/tl/2) with z=et -~ /2 .  This will allow us to treat the case 
'/7 ---,x 0 .  

Lemma 5.2. For all ~, fl > 0 there is a constant C,, ~ such that for  all z, 0 < z < 1, one 
has 

Proof. This follows by direct calculation. We have 

(1 + yZ~)O~g~(y) = ~ dkeikr(1 + ( - iOk) 2~) (ik)t~e - k2 -i~k3 -~2k4 
- - o 0  

= ~ dkeikrp~.p(k)e -k2-i~k3-~2k4 (5.2) 
- - o 0  

Here, P~,a is a polynomial whose coefficients are uniformly bounded for z ~ [0,1]. 
The assertion follows. 

Taking ~=1 in Lemma 5.2 and integrating over y, the bound (a) of 
Proposition 5.1 follows for z = s t -  1/2 < 1. 

We introduce a second rescaling: g~(y)=z-1/2h(z-t /2y) .  

Lemma 5.3. For all c~, fl > 0 there is a constant C~,# such that for  all z, z >= 1, one has 

[1(i + z2~)O~h~(z)ll ~ < c~,  ~, 

Proof. We can rewrite h~ as 

h~(z)= ~ dqeiq~e -~q~-i~a~-r 
- o o  

where now ~/= z-x/2 =e-~/2tl/4. Since z_>_ 1 implies ~/_< 1, the proof now follows 
the same steps as in the case of Lemma 5.2. 

If we re-express the results obtained so far in terms of G, we see that 

Gt(y)--- O- lh~(O - ly) ,  

with O=et/2t  ~/4, so that Lemma5.3 implies the bound (b) for e t -~ /2>t .  In 
particular, when r = 0 then (a) and (b) together imply 

[[G~[]~ ~cons t ,  uniformly in t > 0 .  

We now prove the bounds of Proposition 5.1 for r_>_ 1. The result will follow 
essentially from scaling. We consider the case ,  = 1, only. Then the polynomial P~,p 
is of the form 

(ik) ~ + f l ( f l -  1) (ik) ~- 2 + 2ifl(ik)~- 1(2 k + 3izk2 + 4zZk3) 

- (ik)g(2 + 6izk + 12z2k 2 ) -  (ik)r + 3izk 2 + 4z2k3) 2 . (5.3) 
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Note now that, for all n, m>0 ,  

lke[me-k2] 2 <~ Cm, 

[z~k4ln e -  ~2k4 < C, .  

We see that for f l_  1 all the terms in (5.3) can be bounded by expressions of the 
form constlk2]mlz2kal" with non-negative m, n. Therefore 

IP1, a(k)e-tk2 + i~k3 + ~2k,~/21 < C(fl) , 

uniformly in k and z. Using the remaining part of the exponential to bound the 
integration, we see that 

I1(1 + y2)t~g~(y)II o0 < const Cp, 

for all f l> 1. This proves part (a) of Proposit ion 5.1. A similar calculation for h 
leads to the polynomial 

(iq) ~ + f l ( f l -  1) (iq) ~- 2 + 2ifl(iq)B- 1(2r/2 q + 3iqq~ + 4q3) 

- (iq)P(2q 2 + 6iqq + 12q 2) - (iq)O(2rl2q + 3i~lq 2 + 4q3) 2 . (5.4) 

The desired bound follows now as before by observing that 

Irl2qZ]me -n2~2/z < Cm, 

Iq~1%-q0/2 < C~, 

and checking that all terms in (5.4) can be bounded by terms with non-negative m 
and n. The proof  of Proposition 5.1 can now be completed easily. 
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