
Computing 57, 149-162 (1996) ~ 1 , ~

�9 Springer-Verlag 1996
Printed in Austria

Interval Extensions of Non-Smooth Functions for Global
Optimization and Nonl inear Systems Solvers*

R. Baker Kearfott, Lafayette

Received March 29, 1995

Abstract-- Zusammenfassung

Interval Extensions of Non-Smooth Functions for Global Optimization and Nonlinear Systems
Solvers. Most interval branch and bound methods for nonlinear algebraic systems have to date been
based on implicit underlying assumptions of continuity of derivatives. In particular, much of the
theory of interval Newton methods is based on this assumption. However, derivative continuity is not
necessary to obtain effective bounds on the range of such functions. Furthermore, if the first
derivatives just have jump discontinuities, then interval extensions can be obtained that are
appropriate for interval Newton methods. Thus, problems such as minimax or ll-approximations can
be solved simply, formulated as unconstrained nonlinear optimization problems. In this paper,
interval extensions and computation rules are given for the unary operation [x[, the binary operation
max{x, y} and a more general "jump" function X(S, x, y). These functions are incorporated into an
automatic differentiation and code list interpretation environment. Experimental results are given
for nonlinear systems involving max and [o [and for minimax and ll-optimization problems.

AMS Subject Classifications: 65K05, 90C30, 65H10, 62C20, 90C32

Key words: Interval extensions, global optimization, nonsmooth optimization, nonlinear systems of
equations, minimax approximation, 11 approximation.

Einschlieflnngen nicht-glatter Funktionen fiir Codes zur glohalen Optimierung und zur L6sung
nichtlinearer Systeme. Die meisten gebr~iuehlichen Intervallmethoden fiir nicht-lineare algebraische
Systeme beruhen auf Annahmen fiber die Stetigkeit der Ableitungen, ebenso groBe Teile der
Theorie der Intervall-Newton-Verfahren. Ffir effiziente EinschlieBtmgen des Wertebereichs ist
jedoch die Stetigkeit der Ableitungen nicht notwendig, im Fall yon Spriingen der ersten Ableitungen
k6nnen sogar fiir Intervall-Newton-Verfafiren geeignete EinschlieBungen gewormen werden.
Formuliert als unrestringierte nichtlineare Optimierungsprobleme k/innen demnach minimax- oder
/1-Approximationen leicht behandelt werden. In der vorliegenden Arbeit geben wit IntervaU-
Auswertungen und Rechenregeln fiir die Funktionen [xl, max{x,y} und eine allgemeine
Sprungfunktion X(S,x,y) an. Diese Funktionen sind in eine Umgebung zur automatischen
Differentiation und Codelisten-Interpretation eingearbeitet. Ergebnisse werden vorgestellt •r
nichtlineare Systeme mit max und Io I und fiir minimax- tmd ll-Optimierungsaufgaben.

1. Introduction

Branch and bound methods coupled with traditional software for finding approx-
imate solutions, interval extensions of functions and derivatives, and coupled
with interval Newton methods to accelerate the search, can form practical
algorithms for rigorously finding all roots of nonlinear systems or for global

* This work was supported in part by National Science Foundation grant CCR-9203730.

150 R. Baker Kearfott

optimization. For introductions to such techniques, see [4], [6], or [21], while for
test results for such algorithms, see [6] or [12], [26], and others. For an advanced
introduction to the underlying techniques, see [7], while for classic introductions
to interval computations, see [1] or [19].

Traditionally, such methods have been implemented with subroutine packages
for interval extensions, ad-hoc packages, or special commercial languages, such
as the "SC" family or the "XSC" family developed at Karlsruhe ([2], [5], [18],
etc.). Recent work, such as described in [4, Ch. 5], combines automatic differen-
tiation for gradient computation to obtain Jacobi or Hessian matrices for the
interval Newton Methods. The author's most recent work has used his
FORTRAN-77 package INTLIB [17], combined with the Fortran 90 package
described in [13] for operator overloading and automatic differentiation and
slope arithmetic.

Many important problems, such as minimax, l 1 approximation, more general
problems involving absolute values, or problems in which the function is defined
piecewise, such as splines, are non-smooth. Special codes, such as [25], or
general but slow codes that do not use interval Newton methods, as [10], have
been developed for non-smooth objective functions. However, except for the X
function of [13], interval extensions of functions such as max and no [have not
been prominent in interval packages. 1

Furthermore, the theory of interval Newton methods, such as [20, Theorem
5.2.12, p. 185] usually assumes that the function components are continuously
differentiable. The basic principle is that of a slope enclosure matrix A c Nn•
for the function F:R ~ --+ R n, over X and centered at J~:

For every X ~ X, there exists an A ~ A such that

F (X) = F (X) + A (X - X) . (1)

If there is then an X ~ X with F(X)= O, we must have X = X - A 1F()2) for
some A ~ A, whence all roots of F in X must lie in the image X - [A]rF()~),
where [A]tF(J~) is the result of some interval Newton method; see [20]. A
condition that the derivatives of F be continuous seems natural, due to the
similarity of Eq. (1) to the mean value theorem.

Nonetheless, rigorous and effective A can be obtained when the derivatives of
the components of F have jump discontinuities, such as when F contains terms
involving [o L or max. Interval Newton iteration can be effective in these cases,
especially if extended interval arithmetic is allowed. In such cases, the computa-
tions can often sharply locate critical points corresponding to non-differentia-
bility.

i The function l o [is often defined to be that floating point value termed the magnitude.

Global Optimization and Nonlinear Systems Solvers 151

In Section 2, formulas for relatively sharp interval extensions for I o I, max and
our function X are given. Furthermore, formulas appropriate for symbolic
differentiation of these functions, as well as for automatic differentiation (for
Lipschitz matrices, cf. [20, p. 174]) and automatic slope computation appear. It is
not hard to show that these formulas lead to matrices that obey the Lipschitz
condition in the case of derivatives, or condition (1) in the case of slopes. Use of
these formulas allows consideration of non-smooth approximation problems, etc.
in the same manner as smooth problems, without special algorithms or con-
straints.

An example is worked in Section 3. Additional test examples are explained in
Section 4, while numerical results appear in Section 5.

2. Formulas for Interval Extensions

These formulas fall into the following groups:

1. Rules for
2. Rules for
3. Rules for
4. Rules for
5. Rules for

operation
6. Rules for

floating-point evaluation of the operation;
floating-point evaluation of the derivative of the operation.
interval extensions of the operation;
symbolic differentiation of the operation;
interval evaluation of the derivative of the operation, assuming the
represents a continuous function, such as the absolute value;
interval evaluation of the derivative of the operation, assuming the

operation does not represent a continuous function, such as a function
defined by separate formulas in separate intervals, with unmatching values at
the break point;

7. Rules for interval evaluation of slopes, assuming the operation represents a
continuous function; and

8. Rules for interval evaluation of slopes, assuming the operation does not
represent a continuous function.

Here, each of these rules is presented for each of the functions X, 1o [and max.

2.1. Formulas forxp = X(X~,Xq,X,.)

The function xp =X(x, ,Xq,X,.) was first mentioned in [13] as a device to
program branches when generating code lists with operator overloading. Though
not standard, as]o I or max is, it is more general, and is used in the differentia-
tion formulas for 1o land max.

Formula 1. Floating-point evaluation

X (X s , X q , X r) =
Xq if x s < 0;

x,. otherwise.

152 R. Baker Kearfott

Formula 2. Floating-point evaluation of the derivative

69X(Xs'Xq 'xr) = { ~
OXq

if x s < 0;

otherwise.

OX(X"xq'xr)jx~ = 101 if x~ < 0;

otherwise.

Formula 3. Interval evaluation

X(Xs,Xq,Xr) =
Xq if x, < 0;

xr i f x x > 0;

X q U X r otherwise.

F o r m u l a 4. Symbolic differentiation

Xt(Xs,Xq,Xr) =X(Xs,Xl,Xtr)

F o r m u l a 5. Interval evaluation of 03X/•Xq, OX/OXr and JX/JX~ when X is
continuous in x~, i.e. when Xq =x r whenever x, = 0 (appropriate for a backward
automatic differentiation process).

69X(Xs,Xq,Xr)
Oxq

1

= 0

[0,1]

if x~ < 0;

if x s > 0;

otherwise.

,~X(x,,Xq,X,.) I 0 i fx , <0 ;
= / 1 if x~ > O;

Ox,. [0, 1] otherwise.

c~X(Xs,Xq,Xr)
= 0

c)X s

F o r m u l a 6. Interval evaluation of OX/C~Xq, c)X/OX ,. and OX/ OX s when X is
possibly discontinuous in x s i.e. when Xq =x,. whenever x s = 0 (appropriate for a
backward automatic differentiation process). The formulas are the same as
Formula 5 except."

= (- % ~) i f O ~ x , OXq

OX(Xs,Xq,Xr)
= (- ~ , ~) ifO~x,

r r

Global Optimization and Nonlinear Systems Solvers 153

Formula 7. Interval evaluation of the slope S(X, X, X) when X is continuous in x s
(appropriate for a forward automatic differentiation process).

'S(Xq,X,X) if x,__O~, < 0;

S(X(X~, Xq, x,.),X,X) = S(x,.,X,X) if x ,U~, > 0;

S(Xq,X,X) US(Xr,X,X) otherwise.

Formula 8. Interval evaluation of the slope S(X, X, J() when X is discontinuous in
x s (appropriate for a forward automatic differentiation process). The formula is
the same as Formula 7 when 0 ~ x,~f~ s. When 0 ~ XsU~s, the following is used.

s(x (x , (x) , x~(x) , x, .(x)), x ,~) =

1
- x~(X))S(xX x), x, Yr

- xq(X))S(Xs(X),X,X))

{i I ~ , 0 o I,.J j ~) ,o~ (Xr(X) --xq(X))S(Xs(X),X,X)

I---IS(Xq(X), X, ~I~) t,..) S(Xr(X),X, X)

if x,(X) > 0

if x,(X) < 0

if 0 ~ xs(X) .

Formula 8 is explained in [15, Section 4] and [16]. Formula 8 is useful in
optimization with interval Newton methods to enclose critical points, since the
gradient of functions containing max and [o [contains x-expressions that are
discontinuous in x,.

2.2. Formulas for Xp = I xq [

If x ~ R, then I x l = x(x,-x, x), However, X (X , - x , x) overestimates the range
of l o]over the interval x, so it is advantageous to consider]o] as a separate
operation, with the following computation formulas.

Formula 9. Floating-point evaluation of the derivative (we!l-known; nothing special
is done at the break point)

dlxq[[- 1 if xq < O;

dxq 1 otherwise.

154 R. Baker Kearfott

Formula 10. Interval evaluation

[0,max{ j,l l}]
[xl= [min{~l, 121}, max{~l, 121}]

i f0 ~x ;

otherwise.

Formula 11. Symbolic differentiation

[Xq] t = X (X q , - 1, 1)X'q

Formula 12. Interval evaluation of dlxl/dx (appropriate for a backward auto-
matic differentiation process).

- 1 if xq < 0;
dfxq] = 1 ifXq > 0;

dxq [- 1, 1] otherwise.

Formula 13. Interval evaluation of the slope S([xql, X,X) (appropriate for a
forward automatic differentiation process).

S (Ix q]), X, ~','~) =

s (d) ([X q l , X q , f [q) S (X q , X , X)

if Xq UXq < 0;

otherwise,

where

s(d~(IXl, X,i) = h(x) Uh(2) with

[xl-
h (x) =

[- 1 , 1]

for x ~ ;

otherwise.

The third branch of Formula 13 is an application of a generalization of [24,
Theorem 3.4]; see [15].

2.3. Formulas for xp = maX{X q, X r }

For real values Xq and xr, maX{Xq, x~} = X(x,. -xq , Xq, xr), but X(x r - Xq,Xq,X r)
overestimates the range of max for interval values xq and x~. Formulas appropri-
ate for max follow.

Global Optimization and Nonlinear Systems Solvers 155

Formula 14. Floating-point evaluation of the derivative (weU-known)

OmaX{Xq'Xr} = { ~ ifXq>Xr;

OX q otherwise.

OmaX{Xq,Xr} = [0 i fXq>Xr;

OXr ~ 1 otherwise.

Formula 15. Interval evaluation

maX{Xq,Xr} = [max{x_q,x.}, maX(2q,fr} l

Formula 16. Symbolic differentiation
! max'(Xq, x~) = X(X,.-xq, Xq, x;)

Formula 17. Interval evaluation of Omax/ OX q and Omax/ Ox r (appropriate for a
backward automatic differentiation process).

3maX{Xq ,x,.}

OXq

~ ifXq >Xr;

ifXq < Xr;

[0, 1] otherwise.

cgmaX{ X q , Xr}

OX r

01 if Xq > x r;
ifXq < xr;

[0,1] otherwise.

Formula 18. Interval evaluation of the slope S(maX{Xq, Xr} , X, X) (appropriate for
a forward automatic differentiation process).

S(maX{Xq,Xr},X,X)= S(x,., X, ~[)

if xq~xq > Xr UXr;

if xq U___~q < xrU_ ~r;

otherwise.

3. An Example

Consider

f (x) =Ix 2 - x] - 2x + 2 = 0. (2)

This function has both a root and a cusp at x = 1, with a left derivative of - 3
and a right derivative of - 1 at x = 1. If 1 e x, then a slope enclosure is given by

156 R. Baker Kearfott

Table 1. Iterates (rounded out) and interval widths (rounded)
example of Eq. (2)

of the interval Newton method, for the

0
1
2

3
4
5
6

x i width ratios

[0.6999,1.1001]
[0.9966,1.1001]
[0.9966,1.0293]
[0.9996,1.0079]
[0.9999,1.0022]
[0.9999,1.0007]
[0.9999,1.0001]

4.0 • 10 -1
1.0 • 10 l
9 . 6 • 2
8.3 X 10 -3
2.3 X 10 -3
8.0 • 10 -4
2.0 • 10 -4

.25

.96

.09

.28

.35

.25

S(f,x, x) = [- 1, 1](x + x - 1) - 2. We will proceed with an interval Newton
method

f~ ~ x i - f (x i) / S (f , x i , x i)

Xi+ 1 ~ Xi f') X,

with x i equal to the midpoint of xi, and x 0 = [0.7,1.1].

From Formula 13 and other formulas for slopes, an initial slope enclosure is
computed to be

S(f , [0.7, 1.11 , .9) = [- 1,0.7][0.6,1] - 2 = [- 3, - 1.31,

so i = 0.9 o.29 c [0.996,1.1231], and x I = q[0.996,1.1]. Subsequent iterates [- ~ , : 1.31 --

are given in Table 1. Note that on iteration 3, existence was proven, since
IK 3 C [.9996,1.0079] is strictly in the interior of x 2 ~ [.996, 1.0293]. The width
tolerance of 10 -a was achieved after 9 iterations. The third column of Table 1
gives approximate widths of the x i, and the fourth column gives ratios of
successive widths of the xi. Thus, the convergence appears to be linear; in fact,
there appears to be a different convergence rate for the left end point than for
the right end point. (Note: if monotonicity of the intermediate expression x 2 - x
were taken into account, so exact ranges for it were computed, then an exact
inclusion for S(f, [0.7, 1.1], .9) could be computed, and existence could be proven
on the first iteration.)

4. Test Problems and Testing Environment

We wish to test the efficacy of these operations when used to represent objective
functions in global optimization and nonlinear algebraic systems. The nonlinear
systems problems are somewhat easier, since only first-order derivatives are
required, and the sharper formulas 5 and 7 may be used instead of 6 and 8 when
computing the iteration matrix (derivative or slope) for the interval Newton
methods 2.

2 Because symbolic differentiation of 1o] or max gives evaluations of X that are discontinuous across
the branch.

Global Optimization and Nonlinear Systems Solvers 157

4.1. The Testing Software and Environment

The Fortran 90 environment of [13] with the interval arithmetic package of [17]
is used. The global optimization problems were tested essentially with the code
of [14], while the problems involving nonlinear systems of equations were tested
with the code of [12]; minor modifications had been made to these codes
subsequent to the experiments in [12] and [14]. In both the optimization and
nonlinear equations codes, an approximate solution was computed (if possible)
first 3. If an approximate optimum or solution was found, a box was constructed
around it, and the algorithm attempted to verify existence and uniqueness (of a
critical point or root) within this constructed box with e-inflation [24].

In all of the test problems, a code list (ordered list of operations to evaluate the
function) was first produced, within the environment of [13]. The code list was
then differentiated symbolically to obtain a code list for both the objective and
gradient. This derivative code list was then used in the actual optimization or
nonlinear equations routines to obtain objective and gradient values, and to
obtain slope matrix values when interval Newton methods were employed.

The experiments were run on a Sparc 20 with version 2.1 of the NAG Fortran 90
compiler; the debugging option, along with the lowest level of optimization, was
set. Timings are given in Standard Time Units (STU's), in the context explained
in [12].

4.2. Test Problems for Global Optimization

The first three problems, relatively simple, are used as an initial test of the
ideas. Linear problems, they are based on fitting a line y = ax + b to the data set

{(x i, yy)} = { (0 ,1) , (1 ,4) , (2, 5), (3,8)} (3)

in the 12, l I and l~ sense, respectively, as follows.

12. /a-approximation of the simple data set (3), for comparison purposes.
The function is programmed within the system [13] as follows, where
the objective function value is PHI(l) , where (X(I), Y(I)) is the I-th
data point from (3) and where F(X) = aX + b, where a and b are the
independent variables.

SUM= 0

DO I=l, NDATA

R=Y(I) F(X(I))

SUM= SUM+ R* * 2

END DO

PHI (1)=SUM

3 With LANCELOT for the optimization code and with MINPACK 1 for the nonlinear equations code.

158

11.

linfty.

R. Baker Kearfott

/l-approximation of the simple data set (3). As in the previous example,
the central part of the Fortran 90 code for defining this function is

SUM= 0

DO I=l, NDATA

SUM=SUM+ABS(Y(I) F(T(I)))

END DO

PHI (1) = SUM

/z-approximation of the simple data set (3). The central part of the
Fortran 90 code for it is

VAL = 0

DO I=l, NDATA

R=ABS (Y(I) --F(T(1)))

VAL=MAX (R, VAL)

END DO

PHI (1)=VAL

The above three functions were also defined in an alternate way, using the X
function exclusively. However, preliminary numerical experiments reflected the
fact that this resulted in overestimates for values and derivatives.

The final two objective functions are Problem 1 and Problem 2 in [27]. Here
they will be denoted by zangl and zang2.

All of these problems are two-dimensional. The starting boxes were [- 10, 10] •
[- 10, 10] in each case.

4.3. Test Problems for Nonlinear Systems

We devised two small problems to illustrate the behavior of the software,
including the interval Newton algorithms, on such systems, and to facilitate
checking correctness of the coding. In the first problem, the roots do not occur
at points of non-differentiability, while the roots do occur at such points in the
second problem.

nle-1. This one-dimensional problem is given by

f(x) = Ix 2 + 5xl + x + 1 = 0.

Its roots are at x = - 2 - ~ - ~ [- 4.237, - 4.236] and x = - 3 - f8-
[-5 .829, -5.828].

nle-2. This two-dimensional problem is defined by (f~, f2) = (0, 0), where

f l (X) = max{sin(x 1 +x2) , cos(x1 +x2)}

- min{sin(x I +x2) , cos(x1 +x2)}

f 2 (x) = I x l l - fx21,

Global Optimization and Nonlinear Systems Solvers 159

and where min{A, B} was coded as - m a x { - A , - B } . It has 13 solutions
in [- 10, 10], given by x 1 = x 2 = ~r/8 + k ~ r / 2 , k = - 6 , - 5 , 0 , 5 , 6 .

5. Experimental Results

Here, we report the CPU time in standard time units (STU), the total number of
boxes processed (NBOX) (not including those constructed during e-inflation),
the number of objective function or residual evaluations (NFUN), the number of
interval Newton matrix evaluations (NMAT) 4, and, in the case of optimization,
the number of gradient evaluations (NGRAD). A minimum box size tolerance
(explained in [12] and [14]) of 10 -6 was used in each case. As explained in [12],
the CPU times do not reflect the minimum possible with this kind of method,
since the programming environment was not meant to be optimally fast. How-
ever, they should be meaningful in relative terms; also, the tbtal number of
boxes NBOX correlates highly with the total amount of work. Floating point
evaluations for the approximate optimizer or root-finder are not represented;
such additional statistics are available upon request from the author.

Performance results appear in Table 2. In each case in the optimization code,
the exhaustive search was successful, and the final list consisted of a single box
containing the unique global optimizer. The exhaustive search also completed
for both of the nonlinear equations examples. In the case of nle-1, the final list
consisted of exactly two intervals, each of which was verified to contain a unique
root. In the case of nle-2, the final list consisted of 13 boxes, each containing
precisely one of the 13 roots of the function within the region; however,
uniqueness was verified in none of the boxes.

The performance on zangl is roughly comparable to that of the heuristic,
non-interval algorithm of [27], while more effort was required for zang2. We
note, however, that inclusion of non-differentiabilities is conceptually simple in
this algorithm, does not require choices of parameters or smoothing functions,
and leads to rigorous, exhaustive search.

Since the formulas presented here are meant to be applied as an integral part of
computer codes that have been designed originally for smooth problems, a main
advantage is their ease of use. That is, the formulas unify and simplify the
treatment of a variety of problems. However, there is a question of how much
efficiency, if any, use of the formulas offers over computer codes for verified
computations that do not use derivative information. To illustrate the difference
approximately, two variants of the optimization code and one variant of the
nonlinear equations code were run. In the variant of the nonlinear equations

4 Slope matrices for the Hessian matrix, in the case of optimization, and slope matrices for the
Jacobi matrix, in the case of nonlinear systems.

160 R. Baker Kearfott

Table 2. Performance data for non-differentiable problems

Problem

12
11
Iinfty
zangl
zang2
nlel
nle2

STU

0.9
56.4
68.9
34.8

6005.3

0.0
11.0

NBOX

5
180
185
62

6399
2

268

NFUN

24
911
9t4
325

36742

21
927

NMAT

2
164
162
64

7447

I 29
l 552

NGRAD

8
508
509
191

21293

code, the interval Newton method was not applied to the current box 5, so
derivatives or slope information was not used to reduce the size of boxes. The
first variant of the optimization code was similar: an interval Newton method
(and hence slope matrices) was not used on the gradient system. In the second
variant, not only was an interval Newton method not used, but gradients were
not used to determine if a box could not contain critical points. (That is, the
"mid-point test" was not used).

The results for these algorithm variants appear in Table 3. There, the sub-
columns labeled IN denote the variant with the interval Newton methods, those
labelled NT denote the variant with the monotonicity test, but no interval
Newton method, and those labelled NONE represent the basic algorithm without
the monotonicity test. It is seen that first and second order information are
useful in reducing the total number of boxes in the nonlinear equation prob-
lems, but the second order information (corresponding to slopes across discon-
tinuities) only appears to be effective for zang2. The CPU times are slightly
more difficult to interpret, since, within the current implementation in the
environment of [13], all intermediate quantities necessary for evaluation of
gradients are computed whenever an objective function value is computed.
However, the STU values provide roughly the same conclusions as NBOX.

Second-order information was used in all variants in the e-inflation process
around approximate roots. This is not reflected in the tables. However, the
process was effective, since all roots or critical points except those for nle2 could
be verified.

Experimental studies of a derivative-free optimization code appear in [3, 8-10],
while tests of methods that involve derivatives appear in [3, 9, 11, 22, 23].
Comparisons with and without the monotonicity test appear in [3]. Further work
is necessary to completely compare all techniques in these works with computer
codes that incorporate extensions of non-smooth functions and their derivatives.

5I.e. steps 1-4 of Algorithm 6 in [12] were not done.

Global Optimization and Nonlinear Systems Solvers

Table 3. Performance measures with and without derivatives

161

Problem STU NBOX

IN MT None IN MT None

12
11
linfty
zangl
zang2

0.9
56.4
68.9
34.8

6005.3

26.4
41.5
52.8
24.6

21748.8

58.0
47.4
66.6
24.1

21778.6

5
180
185
62

6399

152
180
185
66

8403

nlel 0.7 1.8 2 24
hie2 65.5 83.1 268 867

256
194
208
66

8403

6. Conc lus ion

Expl ic i t f o r m u l a s fo r in t e rva l ex t ens ions o f func t ions and de r iva t ives c o m m o n l y

o c c u r r i n g in n o n - s m o o t h o p t i m i z a t i o n p r o b l e m s h a v e b e e n p r e s e n t e d . W i t h

t h e s e ex tens ions , n o n - s m o o t h p r o b l e m s m a y be so lved wi th t he s a m e a lgo r i t hms

as s m o o t h p r o b l e m s , thus g rea t ly s impl i fy ing t h e process .

References

[1] Alefeld, G., Herzberger, J.: Introduction to interval computations. New York: Academic Press
1983.

[2] Bleher, J. H., Rump, S. M., Kulischl U., Metzger, M., Ullrich, C., Walter, W.: FORTRAN-SC - -
A study of a Fortran extension for engineering scientific computation with access to ACRITH.
Computing 39, 93-110 (1987).

[3] Csendes, T.: Test results of interval methods for global optimization. In: Computer arithmetic,
scientific computing, and mathematical modelling (Kaucher, E., Markov, S. M., Mayer, G., eds.),
pp. 417-424. Basel: J. C. Baltzer AG 1992.

[4] Hammer, R., Hocks, M., Kulisch, U., Ratz, D. Numerical toolbox for verified computing I. New
York: Springer 1993.

[5] Hammer, R., Neaga, M., Ratz, D.: PASCAL-XSC, New concepts for scientific computation and
numerical data processing. In: Scientific computing with automatic result verification (Adams,
E., Kulisch, V., eds.), pp. 15-44. New York: Academic Press 1993.

[6] Hansen, E. R. Global optimization using interval analysis. New York: M. Dekker 1992.
[7] Herzberger, J., ed.: Topics in validated computations. Studies in Computational Mathematics.

Amsterdam: Elsevier 1994.
[8] Jansson, C.: A global optimization method using interval arithmetic. In: Computer arithmetic

and enclosure methods (Atanassova, L., Herzberger, J., eds.), pp. 259-268. Amsterdam: North-
Holland 1992.

[9] Jansson, C.: On self-validating methods for optimization problems. In: Topics in validated
computations (Herzberger, J., ed.), pp. 381-439. Amsterdam: North-Holland 1994.

[10] Jansson, C., Kniippel, O.: A global minimization method: The multi-dimensional case. Technical
Report 92.1, Informationstechnik, Technische Uni. Hamburg-Harburg 1992.

[11] Jansson, C., Knfippel, O.: Numerical results for a self-validating global optimization method.
Technical Report 94.1, Technical University Hamburg-Harburg, February 1994.

[12] Kearfott, R. B.: Empirical evaluation of innovations in interval branch and bound algorithms
for nonlinear algebraic systems, 1994. SIAM J. Sci. Comput, to appear.

[13] Kearfott, R. B.: A Fortran 90 environment for research and prototyping of enclosure algorithms
for nonlinear equations and global optimization. ACM Trans. Math. Software 21, 63-78 (1995).

[14] Kearfott, R. B.: Test results for an interval branch and bound algorithm for equality-constrained
optimization. In: State of the art in global optimization: computational methods and applications
(Floudas, C., Pardalos, P. M., eds.), pp. 181-200. Dordecht: Kluwer 1995.

162 OCR. Baker Kearfott: Global Optimization and Nonlinear Systems Solvers

[15] Kearfott, R. B.: Treating non-smooth functions as smooth functions in global optimization and
nonlinear systems solvers. In: Scientific computing and validated numerics (Alefeld, G.,
Frommer, A., eds.). Berlin: Akademie Verlag, to appear.

[16] Kearfott, R. B.: Rigorous branch and bound methods. Dordrecht: Kluwer, to appear
[17] Kearfott, R. B., Dawande, M., Du, K.-S., Hu, C.-Y.: Algorithm 737: INTLIB, a portable

FORTRAN 77 interval standard function library. ACM Trans. Math. Software 20, 447-459
(1994).

[18] Lawo, C.: C-XSC - - a programming environment for verified scientific computing and numerical
data processing. In: Scientific computing with automatic result verification (Adams, E., Kulisch,
V., eds.), pp. 71-86. New York: Academic Press 1993.

[19] Moore, R. E.: Methods and applications of interval analysis. Philadelphia: SIAM 1979.
[20] Neumaier, A.: Interval methods for systems of equations. Cambridge: Cambridge University

Press 1990.
[21] Ratschek, H., Rokne, J.: New computer methods for global optimization. New York: Wiley

1988.
[22] Ratz, D. Automatische Ergebnisverifikation bei globalen Optimierungsproblemen. PhD thesis,

Universitfit Karlsruhe 1992.
[23] Ratz, D.: An inclusion algorithm for global optimization in a portable PASCAL-XSC

implementation. In: Computer arithmetic and enclosure methods (Atanassova, L., Herzberger,
J., eds.), pp. 329-338. Amsterdam: North-Holland 1992.

[24] Rump, S. M. Verification methods for dense and sparse systems of equations. In: Topics in
validated computations (Herzberger, J., ed.), pp. 63-135. Amsterdam: Elsevier 1994.

Dr. R. Baker Kearfott
Department of Mathematics
The University of Southwestern Louisiana
Lafayette, LA 70540-1010
U.S.A.

