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Abstract--  Zusammenfassung 

Interval Extensions of Non-Smooth Functions for Global Optimization and Nonlinear Systems 
Solvers. Most interval branch and bound methods for nonlinear algebraic systems have to date been 
based on implicit underlying assumptions of continuity of derivatives. In particular, much of the 
theory of interval Newton methods is based on this assumption. However, derivative continuity is not 
necessary to obtain effective bounds on the range of such functions. Furthermore, if the first 
derivatives just have jump discontinuities, then interval extensions can be obtained that are 
appropriate for interval Newton methods. Thus, problems such as minimax or ll-approximations can 
be solved simply, formulated as unconstrained nonlinear optimization problems. In this paper, 
interval extensions and computation rules are given for the unary operation [x[, the binary operation 
max{x, y} and a more general "jump" function X(S, x, y). These functions are incorporated into an 
automatic differentiation and code list interpretation environment. Experimental results are given 
for nonlinear systems involving max and [o [ and for minimax and ll-optimization problems. 

AMS Subject Classifications: 65K05, 90C30, 65H10, 62C20, 90C32 

Key words: Interval extensions, global optimization, nonsmooth optimization, nonlinear systems of 
equations, minimax approximation, 11 approximation. 

Einschlieflnngen nicht-glatter Funktionen fiir Codes zur glohalen Optimierung und zur L6sung 
nichtlinearer Systeme. Die meisten gebr~iuehlichen Intervallmethoden fiir nicht-lineare algebraische 
Systeme beruhen auf Annahmen fiber die Stetigkeit der Ableitungen, ebenso groBe Teile der 
Theorie der Intervall-Newton-Verfahren. Ffir effiziente EinschlieBtmgen des Wertebereichs ist 
jedoch die Stetigkeit der Ableitungen nicht notwendig, im Fall yon Spriingen der ersten Ableitungen 
k6nnen sogar fiir Intervall-Newton-Verfafiren geeignete EinschlieBungen gewormen werden. 
Formuliert als unrestringierte nichtlineare Optimierungsprobleme k/innen demnach minimax- oder 
/1-Approximationen leicht behandelt werden. In der vorliegenden Arbeit geben wit IntervaU- 
Auswertungen und Rechenregeln fiir die Funktionen [xl, max{x,y} und eine allgemeine 
Sprungfunktion X(S,x,y) an. Diese Funktionen sind in eine Umgebung zur automatischen 
Differentiation und Codelisten-Interpretation eingearbeitet. Ergebnisse werden vorgestellt •r 
nichtlineare Systeme mit max und Io I und fiir minimax- tmd ll-Optimierungsaufgaben. 

1. Introduction 

Branch and bound methods coupled with traditional software for finding approx- 
imate solutions, interval extensions of functions and derivatives, and coupled 
with interval Newton methods to accelerate the search, can form practical 
algorithms for rigorously finding all roots of nonlinear systems or for global 

* This work was supported in part by National Science Foundation grant CCR-9203730. 
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optimization. For introductions to such techniques, see [4], [6], or [21], while for 
test results for such algorithms, see [6] or [12], [26], and others. For an advanced 
introduction to the underlying techniques, see [7], while for classic introductions 
to interval computations, see [1] or [19]. 

Traditionally, such methods have been implemented with subroutine packages 
for interval extensions, ad-hoc packages, or special commercial languages, such 
as the "SC" family or the "XSC" family developed at Karlsruhe ([2], [5], [18], 
etc.). Recent work, such as described in [4, Ch. 5], combines automatic differen- 
tiation for gradient computation to obtain Jacobi or Hessian matrices for the 
interval Newton Methods. The author's most recent work has used his 
FORTRAN-77 package INTLIB [17], combined with the Fortran 90 package 
described in [13] for operator overloading and automatic differentiation and 
slope arithmetic. 

Many important problems, such as minimax, l 1 approximation, more general 
problems involving absolute values, or problems in which the function is defined 
piecewise, such as splines, are non-smooth. Special codes, such as [25], or 
general but slow codes that do not use interval Newton methods, as [10], have 
been developed for non-smooth objective functions. However, except for the X 
function of [13], interval extensions of functions such as max and no [ have not 
been prominent in interval packages. 1 

Furthermore, the theory of interval Newton methods, such as [20, Theorem 
5.2.12, p. 185] usually assumes that the function components are continuously 
differentiable. The basic principle is that of a slope enclosure matrix A c Nn• 
for the function F:R ~ --+ R n, over X and centered at J~: 

For every X ~ X, there exists an A ~ A such that 

F ( X )  = F ( X )  + A ( X - X ) .  (1) 

If there is then an X ~  X with F(X)=  O, we must have X = X - A  1F()2) for 
some A ~ A, whence all roots of F in X must lie in the image X -  [A]rF()~), 
where [A]tF(J~) is the result of some interval Newton method; see [20]. A 
condition that the derivatives of F be continuous seems natural, due to the 
similarity of Eq. (1) to the mean value theorem. 

Nonetheless, rigorous and effective A can be obtained when the derivatives of 
the components of F have jump discontinuities, such as when F contains terms 
involving [o L or max. Interval Newton iteration can be effective in these cases, 
especially if extended interval arithmetic is allowed. In such cases, the computa- 
tions can often sharply locate critical points corresponding to non-differentia- 
bility. 

i The function l o [ is often defined to be that floating point value termed the magnitude. 
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In Section 2, formulas for relatively sharp interval extensions for I o I, max and 
our function X are given. Furthermore, formulas appropriate for symbolic 
differentiation of these functions, as well as for automatic differentiation (for 
Lipschitz matrices, cf. [20, p. 174]) and automatic slope computation appear. It is 
not hard to show that these formulas lead to matrices that obey the Lipschitz 
condition in the case of derivatives, or condition (1) in the case of slopes. Use of 
these formulas allows consideration of non-smooth approximation problems, etc. 
in the same manner as smooth problems, without special algorithms or con- 
straints. 

An example is worked in Section 3. Additional test examples are explained in 
Section 4, while numerical results appear in Section 5. 

2. Formulas for Interval Extensions 

These formulas fall into the following groups: 

1. Rules for 
2. Rules for 
3. Rules for 
4. Rules for 
5. Rules for 

operation 
6. Rules for 

floating-point evaluation of the operation; 
floating-point evaluation of the derivative of the operation. 
interval extensions of the operation; 
symbolic differentiation of the operation; 
interval evaluation of the derivative of the operation, assuming the 
represents a continuous function, such as the absolute value; 
interval evaluation of the derivative of the operation, assuming the 

operation does not represent a continuous function, such as a function 
defined by separate formulas in separate intervals, with unmatching values at 
the break point; 

7. Rules for interval evaluation of slopes, assuming the operation represents a 
continuous function; and 

8. Rules for interval evaluation of slopes, assuming the operation does not 
represent a continuous function. 

Here, each of these rules is presented for each of the functions X, 1o [ and max. 

2.1. Formulas forxp = X(X~,Xq,X,.) 

The function xp =X(x, ,Xq,X,.)  was first mentioned in [13] as a device to 
program branches when generating code lists with operator overloading. Though 
not standard, as ]o I or max is, it is more general, and is used in the differentia- 
tion formulas for 1o land max. 

Formula 1. Floating-point evaluation 

X ( X s , X q , X r )  = 
Xq if x s < 0; 

x,. otherwise. 
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Formula 2. Floating-point evaluation of the derivative 

69X(Xs'Xq 'xr) = { ~ 
OXq 

if x s < 0; 

otherwise. 

OX(X"xq'xr)jx~ = 101 if x~ < 0; 

otherwise. 

Formula 3. Interval evaluation 

X(Xs,Xq,Xr) = 
Xq if x, < 0; 

xr i f x x >  0; 

X q U X  r otherwise. 

F o r m u l a  4. Symbolic differentiation 

Xt(Xs,Xq,Xr) =X(Xs,Xl,Xtr) 

F o r m u l a  5. Interval evaluation of 03X/•Xq, OX/OXr and JX/JX~ when X is 
continuous in x~, i.e. when Xq =x r whenever x, = 0 (appropriate for a backward 
automatic differentiation process). 

69X(Xs,Xq,Xr) 
Oxq 

1 

= 0 

[0,1] 

if x~ < 0; 

if x s > 0; 

otherwise. 

,~X(x,,Xq,X,.) I 0 i fx ,  <0 ;  
= / 1 if x~ > O; 

Ox,. [0, 1] otherwise. 

c~X(Xs,Xq,Xr) 
= 0  

c)X s 

F o r m u l a  6. Interval evaluation of OX/C~Xq, c)X/OX ,. and OX/ OX s when X is 
possibly discontinuous in x s i.e. when Xq =x,. whenever x s = 0 (appropriate for a 
backward automatic differentiation process). The formulas are the same as 
Formula 5 except." 

= ( - % ~ )  i f O ~ x ,  OXq 

OX(Xs,Xq,Xr) 
= ( - ~ , ~ )  ifO~x, 

r r 
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Formula 7. Interval evaluation of  the slope S( X, X, X) when X is continuous in x s 
(appropriate for a forward automatic differentiation process). 

'S(Xq,X,X) if x,__O~, < 0; 

S( X(X~, Xq, x,.),X,X) = S(x,.,X,X) if x ,U~,  > 0; 

S(Xq,X,X) US(Xr,X,X ) otherwise. 

Formula 8. Interval evaluation of  the slope S( X, X, J() when X is discontinuous in 
x s (appropriate for a forward automatic differentiation process). The formula is 
the same as Formula 7 when 0 ~ x,~f~ s. When 0 ~ XsU~s, the following is used. 

s( x ( x , ( x ) ,  x~(x) ,  x, .(x)),  x ,~)  = 

1 
- x~(X))S(xX x), x, Yr 

- xq(X))S(Xs(X),X,X)) 

{i I ~ , 0 o  I,.J j ~ )  ,o~ (Xr(X) --xq(X))S(Xs(X),X,X) 

I---IS( Xq( X), X, ~I~) t,..) S( Xr( X),X, X) 

if x,(X) > 0 

if x,(X) < 0 

if 0 ~ xs(X ) . 

Formula 8 is explained in [15, Section 4] and [16]. Formula 8 is useful in 
optimization with interval Newton methods to enclose critical points, since the 
gradient of functions containing max and [o [ contains x-expressions that are 
discontinuous in x,. 

2.2. Formulas for Xp = I xq [ 

If x ~ R, then I x l  = x(x,-x,  x), However, X ( X , - x , x )  overestimates the range 
of l o ]over  the interval x, so it is advantageous to consider ]o ] as a separate 
operation, with the following computation formulas. 

Formula 9. Floating-point evaluation of  the derivative (we!l-known; nothing special 
is done at the break point) 

dlxq[ [ - 1 if xq < O; 

dxq 1 otherwise. 
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Formula 10. Interval evaluation 

[0,max{ j,l l}] 
[xl= [min{~l, 121}, max{~l, 121}] 

i f0  ~x ;  

otherwise. 

Formula 11. Symbolic differentiation 

[Xq] t = X ( X q ,  - 1, 1)X'q 

Formula 12. Interval evaluation of dlxl/dx (appropriate for a backward auto- 
matic differentiation process). 

- 1 if xq < 0; 
dfxq] = 1 ifXq > 0; 

dxq [ - 1, 1] otherwise. 

Formula 13. Interval evaluation of the slope S([xql, X,X) (appropriate for a 
forward automatic differentiation process). 

S (Ix q ]), X, ~','~) = 

s ( d ) ( [ X q l , X q , f [ q ) S ( X q , X , X )  

if Xq UXq < 0; 

otherwise, 

where 

s(d~(IXl, X,i) = h(x) Uh(2) with 

[xl- 
h ( x )  = 

[ - 1 , 1 ]  

for x ~ ;  

otherwise. 

The third branch of Formula 13 is an application of a generalization of [24, 
Theorem 3.4]; see [15]. 

2.3. Formulas for xp = maX{X q, X r } 

For real values Xq and xr, maX{Xq, x~} = X(x,. -xq ,  Xq, xr), but X(x r - Xq,Xq,X r) 
overestimates the range of max for interval values xq and x~. Formulas appropri- 
ate for max follow. 
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Formula 14. Floating-point evaluation of the derivative (weU-known) 

OmaX{Xq'Xr} = { ~  ifXq>Xr; 

OX q otherwise. 

OmaX{Xq,Xr} = [0  i fXq>Xr;  

OXr ~ 1 otherwise. 

Formula 15. Interval evaluation 

maX{Xq,Xr} = [max{x_q,x.}, maX(2q,fr} l 

Formula 16. Symbolic differentiation 
! max'(Xq, x~) = X( X,.-xq, Xq, x; ) 

Formula 17. Interval evaluation of Omax/ OX q and Omax/ Ox r (appropriate for a 
backward automatic differentiation process). 

3maX{Xq ,x,.} 

OXq 

~ ifXq >Xr; 

ifXq < Xr; 

[0, 1] otherwise. 

cgmaX{ X q , Xr} 

OX r 

01 if Xq > x r; 
ifXq < xr; 

[0,1] otherwise. 

Formula 18. Interval evaluation of the slope S(maX{Xq, Xr} , X, X) (appropriate for 
a forward automatic differentiation process). 

S(maX{Xq,Xr},X,X)= S(x,., X, ~[) 

if xq~xq > Xr UXr; 

if xq U___~q < xrU_ ~r; 

otherwise. 

3. An Example 

Consider 

f ( x )  =Ix  2 - x ] -  2x + 2 = 0. (2) 

This function has both a root and a cusp at x = 1, with a left derivative of - 3  
and a right derivative of - 1 at x = 1. If 1 e x, then a slope enclosure is given by 
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Table 1. Iterates (rounded out) and interval widths (rounded) 
example of Eq. (2) 

of  the interval Newton method,  for the 

0 
1 
2 

3 
4 
5 
6 

x i width ratios 

[0.6999,1.1001] 
[0.9966,1.1001] 
[0.9966,1.0293] 
[0.9996,1.0079] 
[0.9999,1.0022] 
[0.9999,1.0007] 
[0.9999,1.0001] 

4.0 • 10 -1 
1.0 • 10 l 
9 . 6 •  2 
8.3 X 10 -3 
2.3 X 10 -3 
8.0 • 10 -4 
2.0 • 10 -4 

.25 

.96 

.09 

.28 

.35 

.25 

S(f,x,  x) = [ -  1, 1](x + x -  1) - 2. We will proceed with an interval Newton 
method 

f~ ~ x i - f (  x i )  / S (  f , x i , x i )  

Xi+ 1 ~ Xi f') X, 

with x i equal to the midpoint of xi, and x 0 = [0.7,1.1]. 

From Formula 13 and other formulas for slopes, an initial slope enclosure is 
computed to be 

S( f ,  [0.7, 1.11 , .9) = [ - 1,0.7][0.6,1] - 2 = [ - 3, - 1.31, 

so i = 0.9 o.29 c [0.996,1.1231], and x I = q[0.996,1.1]. Subsequent iterates [ - ~ , :  1.31 --  

are given in Table 1. Note that on iteration 3, existence was proven, since 
IK 3 C [.9996,1.0079] is strictly in the interior of x 2 ~ [.996, 1.0293]. The width 
tolerance of 10 -a was achieved after 9 iterations. The third column of Table 1 
gives approximate widths of the x i, and the fourth column gives ratios of 
successive widths of the xi. Thus, the convergence appears to be linear; in fact, 
there appears to be a different convergence rate for the left end point than for 
the right end point. (Note: if monotonicity of the intermediate expression x 2 - x 
were taken into account, so exact ranges for it were computed, then an exact 
inclusion for S(f,  [0.7, 1.1], .9) could be computed, and existence could be proven 
on the first iteration.) 

4. Test Problems and Testing Environment 

We wish to test the efficacy of these operations when used to represent objective 
functions in global optimization and nonlinear algebraic systems. The nonlinear 
systems problems are somewhat easier, since only first-order derivatives are 
required, and the sharper formulas 5 and 7 may be used instead of 6 and 8 when 
computing the iteration matrix (derivative or slope) for the interval Newton 
methods 2. 

2 Because symbolic differentiation of 1o ] or max gives evaluations of X that are discontinuous across 
the branch. 
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4.1. The Testing Software and Environment 

The Fortran 90 environment of [13] with the interval arithmetic package of [17] 
is used. The global optimization problems were tested essentially with the code 
of [14], while the problems involving nonlinear systems of equations were tested 
with the code of [12]; minor modifications had been made to these codes 
subsequent to the experiments in [12] and [14]. In both the optimization and 
nonlinear equations codes, an approximate solution was computed (if possible) 
first 3. If an approximate optimum or solution was found, a box was constructed 
around it, and the algorithm attempted to verify existence and uniqueness (of a 
critical point or root) within this constructed box with e-inflation [24]. 

In all of the test problems, a code list (ordered list of operations to evaluate the 
function) was first produced, within the environment of [13]. The code list was 
then differentiated symbolically to obtain a code list for both the objective and 
gradient. This derivative code list was then used in the actual optimization or 
nonlinear equations routines to obtain objective and gradient values, and to 
obtain slope matrix values when interval Newton methods were employed. 

The experiments were run on a Sparc 20 with version 2.1 of the NAG Fortran 90 
compiler; the debugging option, along with the lowest level of optimization, was 
set. Timings are given in Standard Time Units (STU's), in the context explained 
in [12]. 

4.2. Test Problems for Global Optimization 

The first three problems, relatively simple, are used as an initial test of the 
ideas. Linear problems, they are based on fitting a line y = ax + b to the data set 

{(x i, yy)} = { (0 ,1) ,  (1 ,4) ,  (2, 5), (3,8)} (3) 

in the 12, l I and l~ sense, respectively, as follows. 

12. /a-approximation of the simple data set (3), for comparison purposes. 
The function is programmed within the system [13] as follows, where 
the objective function value is PHI(l) ,  where (X(I), Y(I)) is the I-th 
data point from (3) and where F(X) = aX + b, where a and b are the 
independent variables. 

SUM= 0 

DO I=l, NDATA 

R=Y(I) F(X(I)) 

SUM= SUM+ R* * 2 

END DO 

PHI (1)=SUM 

3 With LANCELOT for the optimization code and with MINPACK 1 for the nonlinear equations code. 
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/l-approximation of the simple data set (3). As in the previous example, 
the central part of the Fortran 90 code for defining this function is 

SUM= 0 

DO I=l, NDATA 

SUM=SUM+ABS(Y(I) F(T(I))) 

END DO 

PHI ( 1 ) = SUM 

/z-approximation of the simple data set (3). The central part of the 
Fortran 90 code for it is 

VAL = 0 

DO I=l, NDATA 

R=ABS (Y(I) --F(T(1) ) ) 

VAL=MAX (R, VAL) 

END DO 

PHI (1)=VAL 

The above three functions were also defined in an alternate way, using the X 
function exclusively. However, preliminary numerical experiments reflected the 
fact that this resulted in overestimates for values and derivatives. 

The final two objective functions are Problem 1 and Problem 2 in [27]. Here 
they will be denoted by zangl and zang2. 

All of these problems are two-dimensional. The starting boxes were [ -  10, 10] • 
[ -  10, 10] in each case. 

4.3. Test Problems for Nonlinear Systems 

We devised two small problems to illustrate the behavior of the software, 
including the interval Newton algorithms, on such systems, and to facilitate 
checking correctness of the coding. In the first problem, the roots do not occur 
at points of non-differentiability, while the roots do occur at such points in the 
second problem. 

nle-1. This one-dimensional problem is given by 

f(x) = Ix 2 + 5xl + x  + 1 = 0. 

Its roots are at x = - 2 - ~ -  ~ [ -  4.237, - 4.236] and x = - 3 - f8- 
[ -5 .829,  -5.828]. 

nle-2. This two-dimensional problem is defined by (f~, f2) = (0, 0), where 

f l (X)  = max{sin(x 1 +x2) ,  cos(x1 +x2)} 

- min{sin(x I +x2) ,  cos(x1 +x2)} 

f 2 ( x )  = I x l l -  fx21, 
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and where min{A, B} was coded as - m a x { - A , - B } .  It has 13 solutions 
in [ -  10, 10], given by x 1 = x 2 = ~r/8 + k ~ r / 2 ,  k = - 6 ,  - 5 . . . .  , 0 . . . .  , 5 ,  6 .  

5. Experimental Results 

Here,  we report the CPU time in standard time units (STU), the total number of 
boxes processed (NBOX) (not including those constructed during e-inflation), 
the number of objective function or residual evaluations (NFUN), the number of 
interval Newton matrix evaluations (NMAT) 4, and, in the case of optimization, 
the number of gradient evaluations (NGRAD). A minimum box size tolerance 
(explained in [12] and [14]) of 10 -6 was used in each case. As explained in [12], 
the CPU times do not reflect the minimum possible with this kind of method, 
since the programming environment was not meant to be optimally fast. How- 
ever, they should be meaningful in relative terms; also, the tbtal number of 
boxes NBOX correlates highly with the total amount of work. Floating point 
evaluations for the approximate optimizer or root-finder are not represented; 
such additional statistics are available upon request from the author. 

Performance results appear in Table 2. In each case in the optimization code, 
the exhaustive search was successful, and the final list consisted of a single box 
containing the unique global optimizer. The exhaustive search also completed 
for both of the nonlinear equations examples. In the case of nle-1, the final list 
consisted of exactly two intervals, each of which was verified to contain a unique 
root. In the case of nle-2, the final list consisted of 13 boxes, each containing 
precisely one of the 13 roots of the function within the region; however, 
uniqueness was verified in none of the boxes. 

The performance on zangl is roughly comparable to that of the heuristic, 
non-interval algorithm of [27], while more effort was required for zang2. We 
note, however, that inclusion of non-differentiabilities is conceptually simple in 
this algorithm, does not require choices of parameters or smoothing functions, 
and leads to rigorous, exhaustive search. 

Since the formulas presented here are meant to be applied as an integral part of 
computer codes that have been designed originally for smooth problems, a main 
advantage is their ease of use. That is, the formulas unify and simplify the 
treatment of a variety of problems. However, there is a question of how much 
efficiency, if any, use of the formulas offers over computer codes for verified 
computations that do not use derivative information. To illustrate the difference 
approximately, two variants of the optimization code and one variant of the 
nonlinear equations code were run. In the variant of the nonlinear equations 

4 Slope matrices for the Hessian matrix, in the case of optimization, and slope matrices for the 
Jacobi matrix, in the case of nonlinear systems. 
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Table 2. Performance data for non-differentiable problems 

Problem 

12 
11 
Iinfty 
zangl 
zang2 
nlel 
nle2 

STU 

0.9 
56.4 
68.9 
34.8 

6005.3 

0.0 
11.0 

NBOX 

5 
180 
185 
62 

6399 
2 

268 

NFUN 

24 
911 
9t4 
325 

36742 

21 
927 

NMAT 

2 
164 
162 
64 

7447 

I 29 
l 552 

NGRAD 

8 
508 
509 
191 

21293 

code, the interval Newton method was not applied to the current box 5, so 
derivatives or slope information was not used to reduce the size of boxes. The 
first variant of the optimization code was similar: an interval Newton method 
(and hence slope matrices) was not used on the gradient system. In the second 
variant, not only was an interval Newton method not used, but gradients were 
not used to determine if a box could not contain critical points. (That is, the 
"mid-point test" was not used). 

The results for these algorithm variants appear in Table 3. There, the sub- 
columns labeled IN denote the variant with the interval Newton methods, those 
labelled NT denote the variant with the monotonicity test, but no interval 
Newton method, and those labelled NONE represent the basic algorithm without 
the monotonicity test. It is seen that first and second order information are 
useful in reducing the total number  of boxes in the nonlinear equation prob- 
lems, but the second order information (corresponding to slopes across discon- 
tinuities) only appears to be effective for zang2. The CPU times are slightly 
more difficult to interpret, since, within the current implementation in the 
environment of [13], all intermediate quantities necessary for evaluation of 
gradients are computed whenever an objective function value is computed. 
However, the STU values provide roughly the same conclusions as NBOX. 

Second-order information was used in all variants in the e-inflation process 
around approximate roots. This is not reflected in the tables. However, the 
process was effective, since all roots or critical points except those for nle2 could 
be verified. 

Experimental studies of a derivative-free optimization code appear  in [3, 8-10], 
while tests of methods that involve derivatives appear in [3, 9, 11, 22, 23]. 
Comparisons with and without the monotonicity test appear  in [3]. Further work 
is necessary to completely compare all techniques in these works with computer  
codes that incorporate extensions of non-smooth functions and their derivatives. 

5I.e. steps 1-4 of Algorithm 6 in [12] were not done. 
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Table 3. Performance measures with and without derivatives 

161 

Problem STU NBOX 

IN MT None IN MT None 

12 
11 
linfty 
zangl 
zang2 

0.9 
56.4 
68.9 
34.8 

6005.3 

26.4 
41.5 
52.8 
24.6 

21748.8 

58.0 
47.4 
66.6 
24.1 

21778.6 

5 
180 
185 
62 

6399 

152 
180 
185 
66 

8403 

nlel 0.7 1.8 2 24 
hie2 65.5 83.1 268 867 

256 
194 
208 
66 

8403 

6. Conc lus ion  

Expl ic i t  f o r m u l a s  fo r  in t e rva l  ex t ens ions  o f  func t ions  and  de r iva t ives  c o m m o n l y  

o c c u r r i n g  in n o n - s m o o t h  o p t i m i z a t i o n  p r o b l e m s  h a v e  b e e n  p r e s e n t e d .  W i t h  

t h e s e  ex tens ions ,  n o n - s m o o t h  p r o b l e m s  m a y  be  so lved  wi th  t he  s a m e  a lgo r i t hms  

as s m o o t h  p r o b l e m s ,  thus  g rea t ly  s impl i fy ing  t h e  process .  
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