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]. I N T R O D U C T I O N  

We propound st general scheme for physical theories in the present paper 
,vemantic reali.vm, or, briefly, SR) that produces, in particular, a new 
nterpretation of quantum physics (QP}. Our proposal has already been 
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partially discussed and applied by one of us in various papers ~l '~' 
here, we provide a unified and generalized treatment of it that allows 
us to show that a SR app,'oach to QP can solve a number of conceptual 
problems and cope successfully with some old and more recent quantum 
paradoxes.2 

Our incipit above could have already annoyed the reader concerned 
with the research on the foundations of QP. Indeed, the interpretations ol 
this theory have multiplied beyond any reasonable limit in the last decades, 
and one could look with suspect at the birth of a new interpretation. Thus. 
we feel the need of justifying thoroughly our boldness, and we devote mos~ 
of this Introduction to this aim. 

We retain that the proliferation of interpretations and approaches to 
QP has a deep root: the unsolved problem of the epistemological concep- 
tion that must support QP. Indeed, notwithstanding the efforts of the 
fathers of QP and of a great number of following researchers, a universal 
agreement on this subject has not yet been attained, and it is apparent thai 
different epistemological conceptions lead to different interpretations ol 
physical theories. If one then wonders about the reasons of this lack ol 
agreement, one can find them mainly in the aforesaid quantum paradoxes 
(in particular, in the EPR-like paradoxes that appear in quantum physics 
whenever the thought experiment invented in 1935 by Einstein, Podolsky. 
and Rosen ct"~ is analyzed}, which show that there are predictions of the 
theory that conflict with some intuitive conditions, as the requirement ol 
locality of physical theories or the expectation that in every theory one can 
talk about the properties of a physical system in a given state indepen- 
dently of the observations that one intends to perform on the system. Ol 
course, one can ignore this problem and give up all requirements thai 
conflict with his favorite interpretation of QP: but this procedure opens the 
way to a number of serious philosophical ploblems on the nature itself ol 
physics and science. 

The contrasting interpretations of QP can be sunmaarily grouped ii~ 
two classes. From one side, we find the attempts of providing a "realistic" 
interpretation, or modification, of QP (for instance, by introducing hiddela 
variables), most of which attribute an ontological status to physical entitie~ 
that appear in the theory (as wal:e./imction, electro,, quark, etc.), especialb 
whenever they can be represented by some intuitive model: we call thb 

-" The word " 'paradox" is often LisCd rather loosely hI the literature. Wc tlCnote by this tern 
hcl'c :.1 rr in the I.hctlry which is counter intu i t ive or. more r igorously, which contradict+ 
some cpistumological rcquh'cnlCnts regarding the theory: a paradox mu+',t then bc disthl 
guishcd Ii"om an "'anthlonly. +" which is an intct'nal contradict ion of  tIle theory. I : '  
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~endency ontological realism here. From the other side, we find the inter- 
.)retations of QP  that refuse every kind of"metaphysical" assumptions (like 
~he Copenhagen, or stamktr~L interpretation), most of which adopt more or 
~ess explicitly a verificationist theory of truth and meaning: ' this entails 
~hat no meaning can be attributed to physical statements that cannot be 
ested, even if they are syntactically correct, and that the truth value of a 
,tatement may change when changing the context in which the verification 
occurs. Now, the premises on which ontological realism is based are 
epistemologically untenable: indeed, this position underestimates the 
(undamental distinction between theoretical and obsert:ative terms in a 
theory, attributing "'reality" to entities that are refined constructions of our 
hind, which usually change with the evolution of research and are different 
:yen in different but empirically equivalent contexts/~5' On the other side, 
,,erificationism collapses the pragmatic notion of epistemic accessibility 
, here, briefly, testability) with the semantic notion of truth. This collapse 
-an be seen as harmless, or even desirable, fi'om a physicists viewpoint. Yet, 
it can be severely criticized, '~7 -~"' for example by noticing that the act of 
verification tests the truth of the statement which is being verified, so that 
~he concept of truth is presupposed by the concept ef verification (it follows 
chat the metalinguistic concepts of truth and epistemic accessibility do not 
:oincide, but the latter presupposes the former). More important, the iden- 
tification of testability and truth constitutes the deep root of a number of 
,Jifficulties and paradoxes in QP. In particular, it engenders the problem of 
J~onobjectiviO' of quantum measurements/2~' Furthermore, it may lead one 
~o ignore (or to deny explicitly) the basic difference between logical laws 

In some of  his papers P, ohr seems to accept expl ici t ly a veril]cationist posit ionJ ~L ~-'' Other 
audlors  accept vefil]cafionism togcdlcr with some I\~rms of acluallLy Ibr the microobjects, as 
i_teisenberg,~ i~, who asserts d]at a transition from the possible to the actual occurs dul'hlg the 
interaction of tile physical object widl tile measuring device: tile distinction between 
possibility and actuality is crucial in file modal imerpretat ion forwarded by Van 
Fraassen 'H'. In any case. many authors consider "metaphysical"  die introduct ion o f  
theoretical terms denoting theoretical entities in the langtlaOe of physics. This may lead to 
radical consequences, as tile reduction of microphysics to a flleory of nleaStlremenL since 
the physical properties of a microscopical (hence theoretical) physical system are not 
retained to be inherent to tile ot, zject itself which should be ruled out when rigorously 
speaking, but radler to tile nleaSLn'enlent process. Such a viewpoint limits in our opinion the 
explanatory power and the fruitltflness of physical theories, h is therefore important  to note 
that. according to some well-known analysis of scientific theories, 'L~ ~" theoretical terms 
necessarily appear  m the language of any physical theory which is not purely phenome- 
nological and their introduction does not imply in principle any ontological engagement on 
the "'actual existence" of the corresponding theoretical entities, so that it cannot be charged 
with being "'metaphysical." 
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(that should hold independently of a specific interpretation, rule our 
inference processes, and provide a priori rationali ty criteria 1"o1" physical 
theories) and physical laws (the validity of which depends on the inter- 
pretat ionL this occurs, for instance, in some quantum logical approaches 
to Qp,,.~.4~ as witnessed by the paper itself that started this kind of 
approaches. '  22 ,  

Because of the above arguments, we retam that a way out of quantum 
paradoxes cannot be found by means of elaborate physical models or 
invoh, ed "'physical" reasonings, at least as long as these are conceived 
within the epistemological frameworks that we have just criticized. Thus. 
one must decidedly aflbrd the task of working out a new epistemological 
position, which can be applied to QP and allow him to escape the 
dichotomy between ontological realism and verificationism. But this should 
be done preserving some fundamental features of both these positions. 
which one cannot give up without encountering serious difficulties. In par- 
ticular, it is important  to maintain the distinction between logical and 
physical laws, which is inherent in the realistic approaches,  but also to 
preserve some operat ional  features that characterize verificationism. We 
offer SR in this paper as a general scheme attempting to fulfill all these 
contrast ing demands. 

Basically (see Sec. 2), SR consists in the const, 'uction of a formal 
language L lbr physical theories which tbrmalizes an observatire language 
of these (to be distinguished fl'om the genera / language ,  the formalization 
of which would be long and difficult and is not needed for our purposes. 
see Remark 2.3). L is a first-order predicate calculus with monadic 
predicates only, and the leaving of verificationism in favor of a more 
"'realistic" viewpoint is realized by choosing a correspondence theory of 
truth for L: to be precise, we endow L with a family of Tarskian interpreta- 
tions, a and the labels of the lhmily are interpreted on lahoramrie.v, i.e., 
space-time domains in the actual world (these take the place of the po.vsiblc 
u'orld.v that appear  in s tandard Kripkean semantics). This implies that 
all (atomic or complex} statements of L have, when interpreted, a truth 
value, and that the logic of L is classical: hence, a SR approach to QP is 

\u162 l 'el l l i l ld thi l l  the T~ll'skJan theol",  o f  l r t l th  is 111odclcd o11 ~111 abMI-ilct sol. theory  i l l ld Js nol 
i11\ o] ' ,cd w i th  OlltOlogJc:.lJ [I:~SLII11pI.ion~ iii1 the c]r162 tll" subF.cts, th;.It appear  i11 iI.s i l lodcl>. 
so th;.it it cun hc considel 'cd ollll~/l(~ic'lll(V I1CLII.I'a]. q2~ IntuJtJxdv. t/llC ~.'~111 s;.l',.' II1;.IL I'CC(/~IlJTJlI.~ 
Lh[l[ ~1 SCI1L~I1L'~ is LIILIC iI1 ;.l .~J\~311 SClllHIIIJL" C(tlII.CXI. dt)OS I10[ I'CqtlJl'c the LICCCpI.LInL'L' o f  SOillC 
ontoh~gical ly  cxit, t ing under ly ing remit,, ~h ich  is la i th fu l l v  described h', the ~,cnlencc itscll 
()11 111r o ther  side. T;.lrskJ's theory  is ilt1[ .~t'ltllllllJ(cl](l" llCtl[i-:.ll, q2"h SJllCC ]1 UdlllJ[s (i iIO[io11 ill 
t ru th land  lalsJtyl ~hJch goes, beyond ~er i l ]abi l i  D (and Ihls i l ' iabi l i tyL and it is ob', iousl~ 
COnlf, atJblc ~ i t h  a rcul ist ic at t i tude. Thus. [l~c choice ~1 this theory  o f  t ruth iI1CL.'ls i]tl l 
LlcI11~lllds ublt'~c ul ld .jtlslJl]cs the I1:1111c tl l[It v,e hn',c cl loscn It t l  our  appr,.'~ach. 
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:ssentially difl'erent from tile approaches which assume that QP stands on 
he  adoption o1" a nonstandard logic, '-'~' as modern quantum logic (QL) or 
listolical Reichenbach's' >" three-valued logic. But a number of operational 
~equirements are maintained in SR: for instance, we assume that all 
primitive predicates of L can be interpreted either on classes of physically 
equiwllent preparations of a physical system (,vtales), or oll classes of 
i~hysically equivalent dichotomic registering devices (~://~,ct,r), and that the 
,et of effects contains a subset of idealized effects (exact e[/~,c/s) which can 
i~e identified with the set of all te.s'tahle ph.rxicall~ropertie.s" of the system. We 
,~'an thus classify as te.s'tal#e all atomic statements in L, in the sense that 
lheir truth values either are known or can be tested, but not all complex 
qtatements, since a test of the truth value of these is generally possible only 
H" all properties that appear in them are conjointly testable: the concepts of 
/estability and truth are thus distinguished in SR. Moreover, no ontological 
~tatus is attributed to the theoretical entities that appear in a physical 
llleory (which can be defined by means of suitable subsets of characterizing 
properties 'l~ I. 

As a consequence of the choice of a correspondence theory of 
Lruth, all testable properties of a physical ol~ject (i.e., an individual sample 
,H'a given physical system obtained by means of an act of preparation 
:rod possibly identified with it) can be attributed or not to the object 
independently of the observations that one may decide to perlbrm on the 
,ystem (we loosely say that a reali.svn qlproperties is substituted to the 
~'t'~#i.~'nl o l  enlilic.s' that characterizes ontological realism). As a con- 
~equence of our operational requirements, SR is a purely semantic 
!brm of realism, since it is ontolo~icall.r neutral: this means that it is 
compatible with different philosophical positions (in particular, with 
instrumentalism or strict realism }, hence with dilTerent ontologies, so that 
we do not need to make a choice among these in order to work out our 
general scheme. 

It is apparent from our above description that the fundamental 
assumptions of SR are not consistent with the standard interpretation of 
QP, which is based, as we have seen, on the adoption of a verificationist 
truth theory according to which a statement attributing two or more non- 
compatible properties to s| physical object is meaningless, hence has no 
truth wdue. Therefore, the consistency of SR with the mathematical 
apparatus and the observative content of QP (which we do not intend to 
question at all) is not granted, and one must treat this point with care when 
he attempts to provide a SR approach to QP. But an experienced reader 
could now immediately classify an attempt of this kind as vain, quoting the 
basic "'no-go" Bell Kochen Specker {or Bell-KS ':7 > ' )  and Bell ' >  ~4. 
theorems. Indeed, these theorems ought to prove that QP necessarily is a 
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contextual and nonlocal theoryS: should this be true, it would entail that the 
adoption of a verificationist (or, at least, contextual) truth theory is 
unavoidable in QP, since it is imposed by results that are internal to the 
theory rather than being an a priori choice, as in the canonical formulation 
of QP. Thus, the adoption of a correspondence truth theory would be 
inherently inconsistent with QP, and it would be impossible to adopt an 
SR viewpoint in this theory. 

The above objection is rather thwarting. Indeed, it is well known that 
the contextuality of QP seems to introduce some mysterious conspiracy of 
nature (in particular, with regard to marginal distributions of the values of 
physical observables'>)'). Furthermore, the occurrence of contextuality, 
even in the case of compound quantum systems whose elements are far 
apart (locality), sounds paradoxical and leaves in many physicists a feeling 
of uneasiness, which is explicitly witnessed, for instance, by SakuraiJ 3s' 

However, SR can cope successfully with this challenge. In order to 
reach this goal the original version of SR, ~ which applied to noncom- 
pound physical systems only, must be suitably generalized and refined. The 
basic ideas for this generalization have been sketched by one of us in a 
series of disconnected papers/~' '~ We provide here the first integrated 
discussion of this subject, also stating a number of new results that follow 
from our present treatment. 

The first idea (see Sec. 3) follows fl'om noticing that it is arbitrary to 
assulne a priori that the partially ordered set of all testable properties is an 
orthocomplemented lattice, as usual in CP and QP {we recall that the 
poset of testable properties is represented by the lattice of orthogonal 
projections in standard Hilbert space quantum theory, here briefly called 
HSQT). Rather, one can assume that this poset can be suitably completed 
so as to obtain a lattice, but at the possible expense of introducing theo- 
retical properties that are not directly testable. This implies that a new 
language L~ must be introduced which contains predicates interpreted on 
these properties (see Sec. 4). When considering the special cases of CP and 
QP one finds that theoretical properties do not occur in CP, while they 
appear in QP whenever compound physical systems are described, and we 
identify them with the properties that are represented by one-dimensional 

�9 Her,: conle.vlmd means fl int tile value of  an observable belonging to a set of  observables that 
are measured on a physical system in a given state may depend on the choice of  the set. so 
that it cannot be thought o f  as prelixed: equivalently, there arc statements attr ibut ing physi- 
cal properties to a physical object which cannot be thought of  as true or Ihlse independently 
of  the choices o1' the observer, since their truth values depend on the set or measurements 
that one decides to perform. Non/.ca/means that contcxtuality occurs even if properties arc 
measured that behmg to difli?rent and spatially separated subsystems of a given physical 
sys[enl. 
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wojections associated to entangled states in HSQT (this unusual assump- 
ion is physically justified in Remarks 3.2 and 3.3). 

The second idea rests o11 a critical analysis of the concepts of com- 
patibility of physical properties (see Secs. 5 and 61 and of testability of 
;tatements of L and L~. (see Sec. 7). Indeed this analysis allows us to dis- 
:inguish between theoretical and empirical laws of a theory (see Sec. 8), and 
'o realize that, if one wants to be consistent with an operational viewpoint, 

statement expressing an empirical physical law (which has in any case a 
wuth value according to SR) cannot be asserted to be true (it could be 
:alse) in physical contexts that the theory itself defines as not epistemically 
kccessible. This remark is formalized by stating a new general principle 
MGP principle) that limits the validity of empirical physical laws to the 

~et of laboratories in which the theory does not prohibit that one can get 
information that confirms this validity. 

By using the ideas sketched above in the special case of QP one can 
invalidate the proofs of the Bell-KS and Bell theoremsJ ~' s. 3~,~ This 
invalidation means that QP is not necessarily a contextual and nonlocal 
,.heory, so that verificationism is not an obliged choice. We can thus 
~imultaneously conclude that SR is not inconsiste~lt with QP and that it 
allows one to avoid some crucial quantum paradoxes. 

By adopting a SR approach to QP, one can find a number of inter- 
,:sting results. For instance, one obtains that, contrary to a widespread 
beliel; the Bell inequalities do not provide a method for testing experimen- 
tally whether QP or locality is valid. Indeed, a Bell inequality turns out to 
be a theoretical formula that is not epistemically accessible, so that any 
possible physical experiment actually tests something else (correlations 
among properties of physical objects in accessible contexts), and obviously 
yields the results predicted by QP.~)~" Moreover, the controversial role of 
modern QL can be clearly specified. Indeed, QL can be obtained by using 
the (theory dependent) pragmatic concept of testability in QP for selecting 
suitable subsets of formulas of L~., and restricting the logical order to this 
subset cL34' (see also Remark 7.11. Thus, QL is not seen as a theory of 
truth in competition with classical logic, but, rather, as a mathematical 
structure that is embedded (in the sense of order) within L~., and that 
lormalizes properties of the concept of testability in QP  (note that the 
nondistributive lattice of QL obviously is not a subalgebra of the Boolean 
Lindenbaum-Tarski algebra of L,.). Furthermore, QP proves to be an 
incomplete theory in a well-defined technical sense (Sec. 9). Finally, some 
new perspectives on the role of ideal filters in the quantum theory of 
measurement and on Heisenberg's uncertainty principle can be attained 
(Secs. 10 and 11). 

We would like to close this Introduction with some remarks. 
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First, we note that the SR approach to QP can be considered 
or thodox fi'om various viewpoints. In particular,  it admits HSQT as a 
model and it embodies the s tandard minimal &terpretation of Qp.~_'l. In 
addition, it shows that the canonical interpretat ion of states as "amounts  
of inlbrmation" (Sec. 5) is not trivial nor superficial, as maintained by some 
authors '~v' (our concept of information does not take into account the 
single physicist 's contingent information, so that it does not introduce any 
kind of "subjectivity" in physics l. But if one wants to place the SR 
approach to QP in the context of recent research on the foundations o1" 
QP, the results quoted above show that he can collocate it among the 
theories that retain that QP is incomplete. This has some important  conse- 
quences in the quantum theory of measurement according to SR (on which 
we give some hints only in this paper). In particular,  the objectf/i'cation 
problem,'- '~' which is typical of the approaches that generalize o2" modify 
QP but maintain a verificationist theory of truth, like the theory of positive 
opera tor  valued measures, does not occur. However, the SR approach is 
not a conventional hidden variables theory for QP, since truth values are 
not bound in it by the constraints that are usually imposed on hidden 
variables, ~-~'s2'~' but only by the weaker constraints established by M G P  
(see Remark 8.2). 

Second, we observe that the SR approach to Q P  differs from the 
current at tempts of getting rid of nonlocali ty by limiting the justified use of 
counterfactual definiteness, (3'~' since it does not restrict the set of valid 
inferences in the language of Q P  for reasons depending on the laws of QP 
itsell, thus maintaining a distinction between logical and physical levels '4' 
which avoids a number  of conceptual and epistemological troubles. '3'~ 

Finally, we notice that we have provided only sample references on the 
topics treated in this paper, the literature on the subject being so wide that 
it is quite impossible to cover it within the limited space of an article's 
bibliography. 

2. THE L A N G U A G E  L 

As we have anticipated in the Introduction,  we will take as a starting 
point here the approach proposed by one of us in a previous paper, ~ '  
which will be briefly mentioned as G.91 in the lbllowing. This approach 
will be refined and modified here. We therefore dedicate this section to 
present a formalized language L that constitutes our basic tool in the 
following. Our  treatment will be intuitive and informal; a more rigorous 
treatment can be carried out following the methods adopted in the paper 
quoted above. In particular,  the symbols used ill our  lbrmal languages will 
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often be used also as metalinguistic variables running on the symbols them- 
selves, which favors understandabil i ty at the expense of exactness. 

The language L is a classical first-order predicate calculus extended by 
means of a family of statistical quant(/~ers, it is endowed with a Tarskian 
truth theory, and by means of it all statements regarding testable physical 
properties of samples of a given physical system can be expressed (we use 
the term physical  ,U'stem here as a synonym of physical  entit)').'4" a m~ 

The construction of L can be schematized as follows. 

(i) Alphabet q f  L. The set X of individual variables: two disjoint 
sets .'/' and .:7 of monadic predicates, called ( , o u , s  oJ) states and ( ,ouns 
o.[1 </]bcrs., respectively: s tandard logical connectives ~ ,  A ,  V,  --+, *--,, 
and quantifiers 3, V: a family [ n,.] ,~ I,,. ~ I of .s'tatistical quant([}ers (we intro- 
duce here a simplified family lbr the sake of brevity); the auxiliary symbols 
( , )  and /. 

(iil Formation rules. The set 7 ~ of all well-formed formulas (wffs) of 
L is obtained by means of s tandard (recursive) formation rules, together 
with the following rule regarding statistical quantifiers: 

let .veX,  A(x), B(.v)e ~P, r e [ 0 ,  1]; then ~Tr,..v)(A(xj/B(.vl}e ~t ~ 

(iii} Semantics.  The following sets and objects are introduced in L: 
the set I of laboratories; for every i e I, the (finite) domain D, of i: lbr every 
i e I ,  the set X , =  {a~: X,--+ D~} of the interpretations of the (individual) 
variables; for every i �9 L a~ �9 X~ and x �9 X, the e.v te ,s io ,  o-dx) �9  D~ of x; lbr 
every i �9 I and S �9 .'/', the extension Pd S ) c_ D, of S: for every i �9 I and F � 9  .N 
the extension p~(F)_cD, of F: the set [ of all statisticalh' tel �9 
laboratories.  Then, a Tarskian truth theory, suitably extended in such a 
way as to apply to statistical wffs, is assumed on L (see G.91 ). We do not 
enter here in the details of tiffs theory, and consider only the essentials of 
it. Thus, let i � 9  let a , � 9  and let .veX,  S e . ' / ' ,  F, F~, F2 ..... F , , � 9 1 6 2  v. 
Then the atomic wff S(x) (respectively, F(x)) is said to be true in i iff 
ai(.v) � 9  (respectively, ai( .v) �9 F)): the molecular wff -nF(x)  is said to 
be true in i iff a , ( x ) e D i \ p i ( F l :  the molecular wff F d x )  /x F2(xl A . . .  
/x F,,(x) is said to be true in i ill" a d x l e p d F t l c ~ p i ( F 2 ) ~  . . .  npi (F , , ) .  

Furthermore,  for every l]nite set F let n (F )  denote the number of elements 
in F. We say that the quantified statistical wffs (n, .x)(F(x)/S(x)) and (rr~x) 
((F~(x}/x F2(x) /x . . .  /x F,(x)}/S(xl)  are true in i ill" respectively, 
n ( p i ( F ) ~ p i ( S ) ) = r . n ( p i ( S I )  and n ( p i ( F l l m p i ( F 2 ) m  . . .  m p i ( F , , ) ~  
pdSl} = r- n(pi(S)). 

It follows from the above assumptions that the connectives --7, /x, v ,  
--+, ~ and the quantifiers 3, 'v' are interpreted as ,or,  aml, or, (ll. .then, iJ] 
and exis'ts, Jar ecerv, respectively, as usual in classical logic; furthermore, a 
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statistical quantifier in a wff of the lbrm (rr,.x)(A(x)/B(x}) is intuitively 
interpreted as stating that the ratio between the number of elements that 
make A(xt and B(x) true and the number of elements that make B(x) true 
is r whenever the latter number  is not zero. It also follows that, if an inter- 
pretat ion a, of the variables is given in the labora tory  i (we assume in the 
following that a~ is surjective, so that every x e X can be considered in i as 
a noun of a physical object and every physical object in i has at least one 
nounl,  every wff of L has a truth value in i. 

(iv) hlterpretation. States and effects are interpreted as equivalence 
classes of the sets H and .8 of all prepar#lg devices and dichotomic regis- 
tering decices associated to a given physical system '.13, respectively, as in 
Ludwig. q42~ We do not specify for the moment  the equivalence relations on 
H and .'A' underlying this interpretation, but assume that the interpretat ions 
of states and effects are bijective, i.e., to every equivalence class of H 
(respectively, .8) corresponds one and only one state (respectively, effect). 
Furthermore,  every labora tory  in I is interpreted as a space-time region in 
the actual world. For  every ie I, the set D~ is interpreted as the set of all 
individual samples of '13 prepared in i (possibly at different times), or physi- 
cal objects, hence Ibr every a, ~ Z~ and x ~ X, ai(x) is a physical object in 
D~ (in principle, a physical object can be identifed with the act of 
preparing it in order to avoid any ontological commitment,  but we do not 
insist on this procedure here for the sake of simplicity ): the extension p~(S) 
of the state S in i is interpreted as the set of all physical objects that are 
actually prepared in i by means of devices belonging to the equivalence 
class S (this extension can be identified with the ensemble of physical 
objects described by the state S according to the statistical interpretat ion of 
Qpq)7b); the extension p~(F) of the effect F is interpreted as the set of all 
physical objects in i which would pass the test whenever tested with any 
device belonging to the equivalence class F immediately alter their prepara-  
tion (note that our definitions here guarantee that p,(S) and p~(F) do not 
depend on the choice of a specific instant in the time domain associated to 
i: indeed, evolution in time is outside the scopes of the present paper}. 
Finally, [ is interpreted as the set of laboratories  where a large number  of 
physical objects is produced for any desired state and/or  effect (the time 
interval associated to a given i~  I can extend in the future, so that there is 
no finite limit for the number  of physical objects that can be produced in 
i in this case), and all preparat ions and registrations are performed with 
the caution required by the physical theory that is adopted (we will refer 
fi'om now on to [ rather than to I:  in particular,  this will be made when 
universally quantifying on laboratories,  as in the expression "lbr every 
laboratory  i" ). 
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(v) Preorder relations. By referring to I, three preorder relations 
can be defined on tp. as follows. 

(v.l) Logical preorder c "  
for every A~, A,  6 t/t, A~ c A,  iff for every i 6 [ ,  A~ is true for every 
interpretat ion a~ such that A t is true. 
The preorder c canonically induces on ~u a logical equivalence 

relation - ,  as follows. 
Fox every Ai ,  A2 ~ h u, Ai = A .  i f fAt  c A  2 and A 2 c A l .  
Furthermore,  c canonically induces a logical partial  order relation on 

ty/=, which we still denote by c .  The theory of truth adopted on L 
implies that (~u /= ,  c )  is a Boolean lattice (Lindenbaum-Tarsk i  algebra 
of L). 

Finally. the preorder  c also induces logical preorder and equivalence 
relations on .T. as follows. 

For  every F~, F2 ~ .T, Fi c F 2 iff F d x )  c Fz(x) for some (equivalently, 
alll  x ~ X  

(hence, F I c F  2 i f f lbr  every i~[. pi(F,)~pi(F2)).  
For  every F i ,  F2 ~.~-, Fi - F2 iff F~ c F~ and F2 c F~. 

(v.2) Statistical preorder  Z_: 
lbr every A~, A ,~cP ,  AIZ_A 2 ill" for every S ~ : / '  and i ~ L  
( ~ , x j ( A i / S ( x ) }  true in i implies (zc~,x)(Az/S(x)) true in i, with r I ~ r2. 
The preorder  /__ canonically induces on ~ a slalistical equivalence 

relation "-, as follows. 
F o r e v e r y  Ai ,  A 2 a ~ ,  AI *'-A, ill`A I L.A 2 and A2/__A t. 
Furthermore,  /__ canonically induces a statistical partial  order relation 

on t/ t / , ,  which we still denote by /__. 
Finally, the preorder /__ also induces statistical preorder  and equiv- 

alence relations on .~, as follows. 
For  every F I , F ,  ~ .~-, Fj L_F, iff F~(xlL_Fz(x) fox" some (equivalently, 
all) x ~ X  

(hence, FIL.  F 2 if]" for every i~[  and S E : / ' ,  n(pi(S)~pi(Fi))<. 
n(pi(S) ~ pi(F=)). 

Fox" every F , ,  F 2 ~.3 ~, F, --- F~ iff FI / F 2  and F 2 / F , .  

(v.3) Deterministic preorder  < :  
for every AI,  A,  ~ gJ, A~ < A ,  iff lbr every Se.'/', (Vx)(S(x)--+ A2) is 
true in every i e [  whenever (Vx)(S(x)--+ A~) is true in every i ~ s  
The preorder  < canonically induces on t/, a deterministic equivalence 

relation ~ ,  as lbllows. 
F o r e v e r y  A~,A_,e tP ,  A~ ~ A ,  i f f A t < A ,  a n d A ~ < A ~ .  
Furthermore,  < canonically induces a deterministic partial  order 

relation on ~Y/~, which we still denote by < .  
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Final ly .  the p reorde r  < also induces determinis t ic  preorde r  and 
equivalence relat ions on .~.  as lbllows. 

F o r  every F" I , F ,  E .5 ,~, F i < F ,  iff F~( x ) < F2(x ) for some ( equivalent ly ,  
all) x e X  

(hence F ~ < F ,  iff for every S e . ' / ,  /~ i (S )~_ /~ i (Fe) in  every i e l  whenever  
p i ( S ) _ ~ p d F i )  in every i e [ ) .  

F o r  every F~, F ~ e . r  F~ ~ F ~ i f f F ~ < F ~ a n d  F ~ < F t .  
The intuit ive mean ing  of the logical,  stat ist ical ,  and determinis t ic  

p reorde r  and equivalence easily follows fx'om the in te rpre ta t ions  of  connec-  
tives and quant if iers  p rov ided  above.  Fu r the rmore ,  we get: 

lbr  every A I, A ,  e et/. A t c A ~  implies A~ / A 2  implies A~ < A , .  

while the converse impl ica t ions  do not  general ly  hold. Hence, 
lbr  every A ~ , A � 9 1 4 9  A~---A~ implies A~ -~A,  implies A~ ~ A ~ ,  

but  A~ ~ A,  does not  imply A, -- A~, nor  this implies A~ = Ae. Analogous ly ,  
for every F t , F ~ � 9  F~ c F ,  implies F ~ Z _ F ,  implies F~ < F 2, 

but  the converse impl ica t ions  do not  general ly  hold,  so that  
tbr  every  F I , F , e . 7 .  F I - F ,  impl ies  F I - -F ' ,  imp l ies  F I z F 2, 

but  F~ ~ F ,  does no t  i m p l y  F~ -- F 2, no r  this impl ies  F~ - F , .  

(vi)  Basic  derired dq/)nilioHs. For  every F e .T, we define a certaiM.r 
yes  ch~main '4'( F ) and a certainly  no dom~dH "4:(F), as follows: 

.'/,'(F) = [ S e .'/' I lbr  every i e L / ~,(S) c_ l~d F I~j 

�9 '4:(F) = ~ S e .'/ [ lbr every i e 1, Pi(S) m Pi( F I = ~ } 

Hence, the mapp ings  -'4' and .'4' will be defined as lollows: 

�9 '4': F 'e  .~- ---+ .'/,'(F) �9 . r  

�9 <4:: F e .~  >-+ .'/,4 F)  e . ' : ( . ' / ' )  

(it is no tewor thy  that  we immedia te ly  obta in  from the defini t ion of the 
order  < on .~- that  lor every F~, F 2 e . r  7, F ) < F  2 iff . !4 '(F~)c.%'(F2);  
hence, for every F t ,  F2 e .p7, F ~ z F e iff .'/(( F ~ ) = .'4'( F : ) ). 

Fur the rmore ,  Ibr every S e .'/' we deline a certainh'  true domain  .~.s of 
S in .T and a c'ertttin/l'../itl.ve ~h)main - : ' s  of S in .if, as lbllows: 

. ~ =  F e . r  7 [ lb l ' every  i e  I. p i (S)_~pi (F)~  

. ~ ' s =  F e . ~ l t b r e v e r y i e L l ) d S i m p d F ) = ~ l  

R e m a r k  2.1. Whenever  S e  : /  and the in te lp re ta t ion  a, is such that  
S(x) is true in the l abo ra to ry  i, we briefly say in the lb l lowing that  t/w 
physic~d old/eel .\ is i ,  the s tale  S in i. leaving implicit  the reference to the 
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interpretation a, and adopting a terminology that is s tandard in physics (in 
many cases the reference to i will also be understood l. We note that the 
Ifinite) set pdS)  of all physical objects in the state S in i is defined in such 
a way that all its elements are known independently of any registration 
")locedure. 

Remark 2.2. For every effect F, the extension P,{ F) in the laboratory 
is unique, which implies that all registering devices in the equivalence 

class on which F is intensionally interpreted must select the same physical 
objects. Furtherlnore.  the (finite) set Pd F) is delined in such a way that one 
does not know a priori all its elements, and this knowledge can be attained 
only by means of registration procedures that possibly destroy the set itself. 
Finally, p,{.~-) generally is a proper  subset of the power set .',a(D,), which 
means that there are subsets of physical objects in i which are not exten- 
sions of some F �9 .~ (hence, neither (p,( .~) ,  c )  nor the Boolean sublattice 
{ < P d . ~ l  > ,  - I of( .~{ D~ }, _c ) generated by p,(-~r } are generally isomorphic 
to the Boolean lattice (.#(D~), _ell. 

Remark 2.3. We anticipate that the language L can be considered a 
sublanguage of the higher-order language L* thz, t should be needed in 
order to express formally all physical laws (L* must admit,  in particular,  
quantification on predicative var iables , ' :  4 ' b u t  we will not discuss it here, 
since its construction would be long and dill]cult), and we briefly say that 
L is an ohserralire sublanguage of L*. '5' However, it must be noted that 
not all statements in k are necessarily obserwttive, as we will see in Sec. 8. 

3. STATES A N D  EFFECTS 

We introduce in this section some assumptions on states and effects 
that characterize a class of physical theories that contains both CP and 
QP. In other words, we introduce a general scheme for physical theories 
that admits CP and QP (and, in particular,  HSQT} as models, Our  
assumptions generalize the condit ions introduced in G.91, which will be 
assumed here to refer to the case of noncompound systems only, while our 
p,esent generalization overcomes this restriction. 

We begin with the lbllowing axioms (see G.91, condit ions SB, PR, and 
CE). 

AX 1. (it Let S ~ , S , e . ' / ' .  If, for every i e[and  Fe .Y 7, n(pi (SKl~ 
p,(FI).n(p,(S2)l=n(pi(Szi~pi(F)).n(pi(Stl}, then, S I = S , .  

(iil For  every ie[, Us~ . ~ P i ( S i = D i ,  and for every S,,  $2 ~-'/ ', 
S~ ~ S ,  implies pdS~lc~pi(S2)=O. 
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AX 2. F o r e v e r y F ~ , F , ~ . ~ , F l = F ,  i f f F ~ - F ~ i f f F l ' - - F : .  

AX 3. For  every F ~.,~, an F ' ~ . ~  exists such that, for every i~ [, 
pi (F ' )  = D i \ p i ( F ) .  

Let us comment brielly on these axioms. AX 1 and AX 2 implicitly 
define the equivalence classes of preparing and registering devices on which 
states and effects are intensionally interpreted, respectively. It is then worth 
noticing that our implicit definitions of states and effects here match the 
explicit definitions provided in the Ludwig approach,  '42~ and that the set .# 
of registering devices introduced here can be considered a proper  subset of 
the broader  set of the questions introduced in the Piron approach.  '43~ In 
addition, AX 2 also implies that the relations a and /__ defined on .7  are 
part ial  orders, hence we get in particular,  by setting .~  (x) = { F(x) I F s .7  } 
and [ . ~ ( x ) ]  = { [ A ( x ) ] ~  IA(x)e.~V(x)}, that ( [ . 7 ( x ) ] ,  c ) ,  ( .~(x) ,  e l ,  
( .~,  c ) are order- isomorphic posets. Furthermore,  AX l(ii) implies that in 
every labora tory  i the set of all nonvoid extensions of states is a part i t ion 
on D~, which is consistent with our interpretat ion of states in Sec. 2 (in 
every laboratory,  different states are realized by different preparat ions,  
which prepare different, nonintersecting sets of physical objects). Finally, 
AX 3 states that every F e . 7  has a complement  F'  e .7,  which allows us to 
interpret F'  as the class of dichotomic devices obtained by exchanging the 
yes and no answers in every device of the class on which F is interpreted. 

Now, let us refer to the definition of certainly true domain . ~  of a 
state S in .~7 supplied at the end of Sec. 2, and for every i e [ and S ~ .'/' let 
us introduce the following set: 

f i i (S)= ("} p d F )  

Then, one obviously gets: 

(i) for every S ~ . ' f  and i~[, pi(S)c_/Si(S); 
(ii) for every Se. ' / '  and FE.7 ,  if, for every i~ l ,  pi(S)_cpi(F) ,  then, 

for every i~[ , /~(S)  _opt(F). 

Furthermore,  one can define the subset -~/i, --- .'/' of  pure states as follows: 

.% = { S ~ .'/" [ for every S* e .5,", p i( S * ) _c/~ d S ) in every i e [ implies S * = S } 

Of course, ,'~, will be identified with the set of pure states in the 
s tandard approaches to CP and QP. By referring to the set of pure states. 
we can introduce the following axiom (see G.91, condit ion SY). 

AX 4. For  e v e r y i e i a n d  S, ,  S 2 e . % ,  

n(pi(Sl ) m/~i(S_~) )" n(pi(S:))  = n(pi(S2) ~ fii(S, ))-n( pi( Si )) 
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By using the above definitions and axioms we can define a prechtsieiO' 
(nonreflexive and symmetric) relation 21_ on .%, as follows: 

for every SI ,S2 e.~, ,  Si JLS~ iff tbr every i e / ,  p i ( S i ) n / 3 i ( S 2 ) = ~  
(equivalently, pi(S2)~/~i( S I ) =  ~ ) .  
The relation 21_ defined above can be used in order to introduce a weak 

orthocomplementation 3- on the power set -~(.(/i,) by setting: 

3-: H e .~(.~/~,) ~ H l = {Se .c/~,] for every S* e H, S 21. S*} 

Furthermore, 3_ can be used in order to define a closure operation on 
-r as follows: 

•  H e ;#(.'/;,) ~ ( H i )  l ~ P(.'/~,) 

We say that a subset H e : P ( , % )  is closed whenever H = H  z ; .  Then, 
it follows from known general mathematical results (see G.91, Sec. 2.3) that 
the set if) of all closed subsets of/r partially ordered by set inclusion _ ,  
is a complete lattice ( ~ ,  ~_), with minimal element ~ and maximal 
element .%, orthocomplemented by the restriction of 3_ to ~ff~ itself. There- 
lore, we introduce the new symbols N and U in order to denote meet and 
join in ( ~ ,  ~_ ), respectively, in the following. 

By using the above definitions and the mappings ,'~, /4'- introduced at 
the etad of Sec. 2, we can select a subset .~. ~ . T  that is basic both in CP 
and in QP  (see G.91, condition OE): 

.,~ = { V e .T I,~;(F) e ~ ,  .'4:( F ) = ,'/';t ( F ) } 

The subset .~ of .,~ wi l l  be called the set of (nouns of) exact effects 
and its elements wi l l  be interpreted as equivalence classes of Mealized 
dichotomic registering devices, which exactly test whether the value of a 
given physical observable lies in a given Borel subset of the real line or, 
briefly, which exactly test whether a given testable physical property holds. 
Therelbre, we assume that .~. can be bijectively mapped on the set of all 
testable physical properties, and the two sets wil l  be identified in the 
Ibllowing. 

We can now state a further axiom (see G.91, condition EM).  

AX 5. For every Fi,  F :  e..~, ,'/~(Ft)___.<4'(F2)implies Fi o F 2 .  

It follows fi'om AX 5 (see Sec. 2(vi)) that F ~ < F ,  implies F~ o F 2 ;  
hence, we get (see Sec. 2(v)): 

Ibr every F i , F_~ e,~., F I < F,  ill" Fi k. F~ ill" F, c Fe, 
for every F ~ , F , e . . ~ ,  F ~ F ,  ill` F , ' - - F ,  iff F ~ = F ,  iff F~=F~ 

(the last equivalence follows by using AX 2). 
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Furthermore,  the restriction of .'/~' to -~. (still denoted by .'/,% by abuse 
of language ), 

�9 '4': F ~ . ~  ,-+ .'t~'(F ) ~ Y:. 

maps bijectively ..~ onto .'t~'(.~), and preserves the order. We assume that 
.'4'(..~) has the following further property. 

AX 6. The poset {.'4'(.~.), - ) is dense in (if ' ,  c ) 

(the word dense means here that every a e if '  is the greatest lower bound 
of at least one subset of .'/~'(.~) and the least upper bound of at least one 
subset of .'/1'(.~ )). 

It follows from AX 6 that .'/,' is a minimal embedding of ..~. into a 
complete lattice and that it coincides (up to lattice isomorphisms} with the 
m, 'mal  emhedding of .~  into the complete lattice of all its closed ideals. 'a4, 
Furthermore,  let a ~ J ' .  By setting aT = [ b e .'t,'(.~.) I a < b }, and al  = 
I b e .'/,'(.~)1 b < a }, we also get (ibidem): 

a = N b = U b .  
b ~ a "  b ~ a '  

Taking into account the lattice ( 2 ' ,  c ), the set .~  will be extended by 
means of a set 9". of monadic predicates such that .~  c~ (/~. = G~ and that 
the mapping .'/; can be extended to .~. u V~. so as to map bijectively this set 
onto J '  (by abuse of language, we still denote by .'/; the extended mapping 
in the lbllowingl. Thus, we a,'e endowed with a new set of predicates 
?;,~. = . .~  u ~.  which contains a subset ~z of predicates that are not inter- 
preted as equivalence classes of idealized dichotomic registering devices. 
We say that every predicate E ~ x;,.. still denotes a physical property of a 
given physical system, but this property is testahh, ill" E ~ .~ ,  while it is non- 
testable (or theoretical ) ill" E ~ ~.~ ( of course V~. can be void, as it occurs, for 
instance, in CP, see Remark 3.2}. 

The set : ,  can be canonically ordered by considering the bijective 
mapping .'/; which maps :~. onto the lattice (5/', _c.i. The restriction to .~  
of the order induced on :~. by .'/; obviously coincides with the order  < 
{which however also coincides on .~. with c and /__ because of AX 5), 
hence we denote this order by < in the following. Thus, ( : , ,  < ) is a com- 
plete orthoconaplemented lattice (by abuse of language, we still denote by 
A_, ~.  and U or thocomplementat ion,  meet, and join, respectively, in 
( : , ,  < 1), which is such that .~. is dense in (:~., < ), so that: 

for every E e : ~ . , E =  ~ F =  U F. 
I ' c  / c , I  -: I I ' -  ~ -c . l " -  I 
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It is important  to observe that, lbr every F e . ~ ,  F 1 =  F'  e . ~  because 
,~f AX 3 and AX 5 (indeed, F' is such that , '4'(F')=.(/,:(F)=.'/, '(F L) and 
4:(F') = .(/~'(F) = .(/(( F t ), hence F'  s . ~  and F'  = F 1, being :/: bijective). 

Furthermore,  it can be proved that there are mathematical  properties 
,as atomicity or or thomodular i ty)  that, whenever assumed on ( .~ ,  c ), 
t lso hold on (d,,  < ).c45, This suggests to introduce the lbllowing further 
~txiom on (~:,  c 1. 

AX 7. The lattice (~:,  c )  is atomic, and { {S}ISe:/~,} is the set of 
its atoms. 

The atomicity of (.~', c_) stated by Axiom 7 implies the atomicity of 
c c~ c, < ) ,  being :/[ bijective and order preserving. Moreover,  we can 
distinguish between f irst  07~e and secomt type pure states by introducing, 
Ib, every S e .'/;,, the .vupport E s = .'/', ~( { S } ) of S (obviously, E s is an atom 
of (d., < )  because of AX 7), and by setting: 

for every S e .'/i,, S is a first type state iff Es e .~ , ,  a second type state 
iff E~ e %.. 
Finally, we state the following further axiom (which assures, in 

particular, that [br every first type state S. Es is the smallest effect in .or 
whose extension contains the extension of S m every laboratory).  

AX 8. For  every Se. ' / ( , ,  S is a first type state iff an effect Fs  e.C- 
exists such that, lbr every i E l, /).(S) = t),( Fs 1, and Fs = Es = .'/', ~( { S } ) in 
this case. 

We have thus conch|ded the presentation of our axioms on states and 
effects. As we have ah'eady seen at the beginning of this section, they 
generalize the axioms stated in G.91, where an extensive discussion was 
made on the basis of the interpretat ion of L reported in Sec. 2. Therefore, 
we will limit ourselves here to introducing a number of remarks aimed to 
point out the main novelties in our generalized approach. 

Remark 3.1. The set of axioms in this section is not complete in 
several senses. For  instance, it does not allow us to distinguish between CP 
and QP. Furthermore,  it dispenses from mixed states from the very begin- 
ning, (see in part icular  AX 41, while these could actually be recovered in 
our fralnework (see G.91, condit ions FI  and MS, etc.), but at the expense 
of unnecessary complication lbr our purposes in this paper. However, it is 
important  to observe that the poset of all positive trace one operators  on 
the Hilbert  space of a physical system in HSQT is a model of (d,  < ). 

We also notice that ot, r set of axioms implies that (d.,  < )  is a con> 
plete, or thocomplemented,  atomic lattice, which admits as a model the 
lattice of all or thogonal  projections on the Hilbert space of the system in 
HSQT (hence we will use the symbols (-/, 0 ,  _1_ in what follows even in 
order to denote meet, join, and orthocomplelnentat ion,  respectively, in this 

~,25 2(~ tl.2 
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lattice). Then, one may wonder on the links between (,*,;., < ) and the lattices 
that appear  in several known approaches to Qp,,4e. 4~. 4~,.47, but a detailed 
discussion of this topic would be rather lengthy. Therefore, we limit our- 
selves here to refer to G.91 and to some earlier papers. 'a'~ 5" and to identil) 
(~., < )  in the case of noncompound quantun-i systems (up to lattice 
isomorphisms) with the Mackey ~4'' lattice of questions, or with the 
Jauch '4:' and Piton '4~ lattice of propositions.  Because of this identification. 
we can also assume that (e';., < )  is distributive in classical physics (CP}. 
weakly modular,  and satisl'ying the covering law in QP. 

Fmally, we stress that the elements of the set .(.  % x;, of all exact elt"ects 
are interpreted on idealized dichotomic devices. In some cases (e.g.. 
observables with continuous spectra) it may be impossible in l~riHciple to 
construct a device that realizes an exact effect. This can be intuitively 
explained in terms of q[liciency of the devices'a"': indeed, if a device must 
be characterized by a continuous efl]ciency, it can never register exactly 
whether the value 0[" a given observable lies within a prefixed interval /J of 
the continuous part of the spectrum. 

Rcmork 3.2. Let us consider the main novelty in this section, that is. 
the introduction of the set ~.(. of theoretical properties. It is apparent  that. 
whenever 9[. is void, all pure states are first type states, and our axioms 
ilnmediately reduce to axioms already forwarded in G.91. Therefore, it 
seems important  to provide an intuitive physical justification for the intro- 
duction of %. in the general case. To this end let us observe that the 
s landard scheme for an elementary experiment on a physical system con- 
sists in considering a physical object x in a state S (that is, prepared by 
means of a device in the equivalence class denoted by S) in a laboratory 
i and measuring whether x has a given property Ft .  Usually. the choice of 
F, prohibits in QP that another  property F_, be also measured if F ,  is not 
compatible  with F~. Furthermore.  repeated measurements of this kind on 
a set of identically prepa,'ed physical objects can be pertbrmed in order to 
obtain statistical l]'equencies to be compared with predicted probabilities. 

Whenever a set F~, F, ..... F ,  of compatible  properties is considered, a 
different kind of experiments can be conceived. Indeed, one can prepare 
sets of physical objects in the state S and test the (perfect or statisticall 
correlations existing among the properties F~, F ...... F,, by means ol 
repeated measurements (a part icula ,  case that interests us here is provided 
by, a physical system x composed of n subsystems, each property F~ tel'er- 
ring to a different subsystem x, of x}. Our  point is that this kind ol 
experiments actually tests a (second order, n-adic) property G of F~. 
F ...... F,,. o ,  cor~'elatioH l~rolYerty, not a property of an individual sample x 
of the given system. Expressing a correlation property either requires the 
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:nlargement of L by means of second-order predicates, or the use of quan- 
~it]ed wffs of L; m any case, it cannot be stated by means of an atomic 
,tatement of L {note that the at tr ibution of a second-order property to a 
i~hysical object x would violate a syntactical rule in type theory}. Now, 
rely a correlation property can be used in HSQT in order to characterize 
m entangled state S of a compound physical system, distinguishing it fi'om 

mixed state.' ~7, Hence, we cannot associate a testable physical property of 
Lhe first order (interpreted as an equivalence class of idealized dichotomic 
levices) to S. But S is associated to a (one-dimensional)  projection in HSQT, 
xhich represents the physical first order property Es according to the 
, tandard interpretat ion of QP. Our  arguments then suggest that Es must be 
:onsidered a theoretical, not a testable property. 

The above discussion provides st physical justification for the introduc- 
tion of theoretical properties in our approach.  Of course, one expects that 
~ao theoretical property appears in CP, or, equivalently, that 9.  = ~ in this 
(heory, even if compound physical systems are considered. 

Remark 3.3. The impossibility of associating (first-order) testable 
properties to second type states of a compound quantunl physical system 
which is made up of .v~Tarate quantunl subsystems has already been 
~ecognized by Aerts '4''' (we observe that Aerts deduces it as a theorem 
lbllowing from a set of axioms regarding questions, while it is assumed to 
I~e a definition of second type states in ou," context). But Aerts concludes 
that this proves the nonseparabil i ty of systems resulting fl'om the composi- 
tion of different quantum systems {which are described by tensor products 
in HSQTI.  On the contrary,  we explicitly admit,  as we have seen in 
Remark 3.2, that (i) second type states are associated to theoretical proper- 
ties, hence to projections m HSQT that do not represent testable physical 
properties, and that (ii} the correlations between properties of subsystems 
of a given physical system (that occur even in CP) are second-order 
properties that cannot be represented by projections in HSQT. This 
prevents us' ' ' '  fi'om accepting quantum nonseparabil i ty in the sense estab- 
lished by the Bell theorem (according to which the correlations themselves 
depend on what is observed, differently from classical correlations, which 
a,e prelixed in a given state of the system and do not depend on the 
observer). 

It is interesting to note that our above point (i) has some further 
relevant consequences. In particular,  not all projections that are strictly 
contained in a projection that appears in the spectral decomposit ion of a 
Hermitian opera tor  which represents a physical observable necessarily 
correspond to physical apparatuses in the case of compound systems, 
which implies that a complete observation can be impossible. In addition, 
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if we still want to interpret states as equivalence classes of preparat ions,  as 
we have done in Sec. 2 and intend to maintain in the following for obvious 
physical reasons, we must accept that a second type (pure) state S cannot 
be produced by means of s tandard textbook procedures, that is, by per- 
forming an ideal measurement of a suitable observable. Indeed, should this 
procedure exist, the ideal measurement would characterize an equivalence 
class Es e -~ of devices that is the support  of the state S, which contradicts 
our assumption that S is a second type state. 

Remark 3.4. Let us consider the case 9 ' ~ = ~ ,  hence :~.=.~..  By 
refe,-ring to Remark 2.2, we note explicitly that, in every laboratory  ie[ .  
the Boolean lattice {(p~( .~) ) ,  _c) generated by all extensions in i of exact 
effects (which obviously is a sublattice of (.'P(D,), ___ ) ) i s  not necessarily 
isomorphic to the lattice (.~., < ) ,  even if < and c coincide on .~.; we 
only expect that (.~., < )  can be canonically embedded into ( (p , ( .~ ) ) ,  c_ ), 
preserving the order. In particular, we have, for every i e i  and F, 

Pi( F t ) = D i \ (  P i ( F ) ) ,  

PdFi ~F:)-cPi(F,)rnpi(Fe). 

p i (F i )<o  p i (F ._)c_p i (F  , I.J Fe). 

4. THE L A N G U A G E  L,. 

Making refexence to Secs. 2 and 3, we now convene that the set 6,. 
is used in order to construct a new language L~.. To be precise, L~. is 
obtained by using the same symbols and rules introduced in Sec. 2 when 
constructing L, with the exception of the set ,~,  which is substituted by 
:~. = .~  v0 9".. The set of all wits of L,. will be denoted by 7/,. 

It is apparent  that our new language reduces to a sublanguage of L 
whenever 9"~ = ~ .  On the contrary,  L, is not a sublanguage of L whenever 
9"r : ~ .  In the latter case the problem arises of the truth values to be 
at tr ibuted to the wits of L,., since the extensions of the theoretical proper- 
ties in a labora tory  i e  [ cannot be interpreted operationally.  Therefore, we 
firstly agree that every predicate E e.~.  has in every labora tory  i e i  the 
same extension attr ibuted to it in the semantics of L. Furthermore,  we 
attr ibute to every E e ~4, in every laboratory  i e  [, a conventional extension 
p,( E 1, which satisfies the following conditions: 

{i) for every S e . ' / '  and E e % ,  Se. '4 ' (E) ifl', for every i e l ,  
pdSI  ___ p~( E 1: 
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(ii) lbr every i s [  and Ee&~,  UI-~:~.,-<,:Pi(F)-~pi(E)m- 
(]).. ?,. v. l. Pi(F); 

(iii) for every i e [ a n d  E e ( 4 ,  p,(E ~ ) = D i \ p i ( E ) .  

The above conditions can be jus t i fed  as lbllows. First, .'/( associates a 
closed ) subset of states to every E e gL., which coincides with the certainly- 

J T  �9 .es domain of E whenever E e .#~, so that condition (i) can be regarded as 
natural  extension to theoretical properties of an attribute of testable 

,~roperties. Second, condition (ii) obviously lbllows from the expressions of 
I:{ as meet or join of elements of .To provided in Sec. 3. Third, condition (iii) 
:xpresses the requirement that the interpretation of F ~ as the negation of 
F, which lbllows for every F e . ~  from the identification of F L with F' in 
";ec. 3, can be extended to every E e :,.. 

We stress that condit ions (i), (ii) and (iii) may be insufficient to deter- 
~nine uniquely the extension p.(E) in a laboratory  i of the theoretical 
property E: it follows that pi(E) is assigned with some degree of arbi- 
trariness. However, the above procedures allow us to assign a conventional 
:xtension to every predicate of L,., hence a conventional truth value will be 
~ttributed to every wff of L,. by adopt ing a Tarskian truth theory, as we 
~ave done in L. 

The at t r ibut ion of a truth value to every wff of L~. allows us to intro- 
duce a logical preorder  relation c on t / J  a logical equivalence relation -= 
~m ~,., a logical order ~ on ~L. /=,  and a logical order c on d~., by means 
~f the same definitions adopted at the end of Sec. 2, with ~r in place of 
and d~ in place o f .T .  Similarly, we define a statistical preorder relation / 
on 5u~, a statistical equivalence relation -'- on t / J  a statistical order / on 
7/r and a statistical order /_ on s Finally, we define a deterministic 
preorder relation < on ~ . ,  a deterministic equiwdence relation ~ on ~ . ,  
c~ deterministic order < on ~ / ~ ,  and a deterministic order < on ?~.. 

The restrictions of the orders c ,  / ,  < defined on ~ to ,v can .&. be 
identilied with the orders denoted by the same symbols in Sec. 3, which 
coincide because of Ax 5. When considering d~, we obtain fiom AX 5, 
AX 6, and condit ion (ii) that for every E~, E_, e ~., :/I'(E~)_~ :/~(E_~) implies 
E t ~ E_,, so that we get: 

for every El ,  E2 ~:~, El < E~ ill" El / E ,  iff E~ ~ E z, 
hence, 

l b r eve ry  E t , E 2 ~ , ,  E~ ~ E ~ i f f E ~  " - E z i f f E ~ - E ~ i f f E l = E ~ .  
Finally, let us prove the following propositions.  

P4 .1 .  Let EI,  E , ~ : ~ . . T h e n ( E ~ ( " ) E z ) ( x ) ~ E I ( x ) A E _ 4 x ) .  

Proo/i Let us show that (E~ 0 E 2 ) ( x ) < E d x ) A  E_4x). Indeed, let 
S~:/ ' ,  and let the wff (Vx)(S(x)--* (E~ ("1E,)(x)) be true in every iE / .  It 
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follows that Sm.'/,'(E, ("1 E: t  (if E~ A E2 ~ % -  use condit ion (i}). hence 
Se.' / , '(E,) and S~.~/~'(E2). This implies that. lbr every i~[ ,  pi(S}~_p,(E,I  
and pi{SI-~pi(E2} (if E~ and/or E 2 belong to 5~., use again condit ion (it}. 
that is. p~( S } c_ i),( E ~ I c~ P,( E21- Because of the truth theory adopted in L,.. 
this means that the wfl" ( V x ) ( S ( x ) ~ ( E ~ ( x )  A Ez(X}}) is true in every i e ] .  
which proves our statement. 

Tile inequality E i ( x I A E e ( x ) < ( E I ( ' } E 2 I ( x }  can be proved by 
reversing the above arguments. [] 

P 4.2. Let x ~ X ,  A(xJ, B ( x ) ~  ~P<., E.x, Eu ~ < , ,  and let A ( x ) ~ B ( x ) ,  
A(xi -- E x(xl. B(x} -- Eu(xL Then, E,~ = Eu. 

Proof  Since ~ is an equivalence relation, it lbllows from our 
assumptions that E x(x) -- E~(x } hence .'4'(E \ ) = .%'(Eu). which implies 
E \ = E u ,  so that E ~ = E u .  [] 

Remark 4.1. We have seen ill Sec. 3 that all elenlents of d<. are nouns 
of physical properties, so that we brietly call them properties in this paper, 
carelidly distinguishing between testable properties (the elements of ..~.) and 
theoretical properties (the elenlents of (/<.}. In addition, whenever E e {<. and 
the interpretation a, makes E(x) true in tile labora tory  i, we say that a, i.s 
such that the (testable or theoretical} propert.v E is true hi i Jar the ph)'sical 
o lwct  x, or, briefly, that x has the prr E ill i, leaving implicit the 
reference to a~. Whenever E e l . ,  S e . ' / '  and (~z,.x)(E(x)/S{xj) is true in a 
laboratory i, we say that the physical ol~jectx in the state S hare the propert.r E 
with.lJ'equency r hz i. Whenever E~, E z ..... E,  e ~., S e .'/, and {rc~x)(( E ~(x)/x 
Ee(x} /x . . .  /x E, ,(xl)iS(xl)  is true ill a labora tory  i, we say that the 
ph)'sical ohjects ht the state S have the properties E~, E z ..... E,  with 
./Jequenc)' r ht i. 

5. S E M A N T I C  C O M P A T I B I L I T Y  ( C O N S I S T E N C Y )  

Let us note that states and effects appear  as {first-order. monadic) 
predicates ill our approach,  but there are relevant semantic differences 
(both imensional and extensional} between these two kinds of predicates. 
Ill part icular  {see AX 1 and AX 2 in Sec. 31. no physical object in a 
labo,-atory i can belong to the extensions of two different states ( let they be 
pure states or not), while a physical object usually belongs to the extension 
of a number of effects (which can be infinitel. Hence. different states never 
call be at tr ibuted to a given physical object, while the possibility that a pair 
E~. E~ of difl'erent physical properties be conjointly at t r ibuted to a given 
physical object depends on the physical theory .,r that one is considering. 
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There are, however, some impor tan t  links between states and proper-  
;its that [bllow fiom tile axioms stated in Sec. 3 and  from the convent ions  
,n p~ established in Sec. 4. More specifically, we have associated in Sec. 3 
suppor t  Es e '~L. to every S e .%, which is the physical proper ty  with min imal  

,:xtension ira (~L-, <1 that is true, in every labora tory  i e l, tbr every x e X 
,uch that S(x) is true (the minimal i ty  lbllows from tile coincidence of the 
,,rders c and < on ,~. and must  not  be conlilsed with the proper ty  stated 
:~y AX 8 in Sec. 3 I. Fur thermore ,  the certainly true domain of S ira ,~,. 

e~s= { E e,~.lE~ < El 

, equivalently,  ~s = ~ E e ~,. I lbr every i e [, Pi(S) _~ Pi( E )} ), and tile certainly 
/alse domai, of S ira ~. 

4 ' ~ = I E e ~ . [ E ' e e ~ s '  ,. 

lequivalently,  ~ = . { E e g ~ . I E < E  1} or e ; * =  s ,  ' s  {Ee,';,.I for every ie[ ,  
/ ~ , ( S ) ~ p i ( E ) =  (25}) are the sets of all properties that are true or false, 
respectively, in every labora tory  / e [ for every physical object in the state 
S e.'/i,. It is apparen t  that  both Es and  e~ s are na tura l  choices in order to 
characterize S. The character izat ion of any S e "ti, by means  of E s translates 
in our  context the choice made by Piron,  'as' but  it is impor tan t  to note  
explicitly that this does not  mean  that S can be identified with Es from a 
semantic viewpoint,  the extensions p,(S) and P,(Es) m a labora tory  i being 
generally difl'erent (see Remark 5.1). The character izat ion of S by means  of 
/;s allows us to recover in our  context  the s tandard  concept ion of pure 
states as maximal  " 'amounts  of informat ion"  in QP:  this provides a new 
interpreta t ion of pure states, which adjoins to ottr previous in terpre ta t ion 
as equivalence classes of prepara t ions  in Sec. 2. 

By using the above definitions, a ( theory dependent)  b inary  relat ion C 
can be in t roduced on the set .% which defines the senumtic compatibility, 
or coHsistenc)', of states (elsewhere '-~ C was simply called compatibilil)' 
relation: the new name  is needed in our  present b roadened  framework ). To 
be precise, we put: 

, 1 t~  1. for every S t . S_, e .'/p, Si C S, ilt" ~s, c~ e~ s: = ~ = 's ,  c~ ~se- 

Then,  intuitively, we can say that  S~ and  $2 are in the relation C ill" 
no cont radic t ion  occurs between the informat ion  embodied  in S~ and  the 
informat ion  embodied  in S, .  

The relat ion C proves to be an accessibility relation (it is reflexive and 
symmetric  but  not,  generally, t ransi t ive ), and the following s tatement  holds 
for every S I, Se E .~/~,:'-~' 
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S~CS~ ill" for every i e L  p i ( S ~ ) n p i ( E s ) 4 = ~  ill" for every ie[.  
Pi( 82 ) m 1.~i( Es, ) :~ ~ .  
It is easy to see that S~ CS~ iffSt = S ,  in CP. Coming to QP. one can 

prove that S, is consistent with S, ill" the vectors 14/t) and I i/Je) that repre- 
sent S~ and S~, respectively, in HSQT. are not orthogonal. Hence, we get: 

lbr every S,, S_~ e.'/,>,. S, CS_, iff (~b~ I~be) 4=0, 
Let us turn now to 6,.. We have said above that. lbr every E t, E~ e d~.. 

the physical theory ..r that one is considering establishes whether E) and E, 
can or cannot be conjointly true for to a given physical object. In the 
lbrmer case one can say that E~ and E e are consistent in .J. This suggests 
to introduce a binary theory-dependent relation on ~.. which we again 
denote by C and call semantic compatihilily, or consistency, by setting: 

for every E~. Ez e,~,.. E~ C E, iff an ie  [ exists such that 
p i (Ei )mpi(E e} 4 = ~ .  
We have thus provided a purely semantic definition of consistency, 

avoiding any (possibly misleading) resort to a model of .r Furthermore. 
let us recall from Secs. 3 and 4 that the symbol L denotes orthocom- 
plementation in the lattice (~,., < ) and that, lbr every laboratory i and for 
every Eec~., p,(E L I =  D,\p~(E). Hence, lbr every physical theory which 
satisfies our axioms in Sec. 3. we get: 

for every E,.  E_, e4~.. E , C E ~  ifffor every ie[,  pi(E,}nl)i(E2J=(Zj iff 
lbr every i e L p,( E t ) _c D~ \p~( E 2 ) ill" lot" every i e L p~{ E, ) ~_ p,( E~ ) iff 
E , < E ,  ~ iff E, < E( .  
This characterization of consistency intuitively fits with the interpreta- 

tion of the mapping J_ as a negation in d,.. More important, it allows us 
to establish a link between the consistency relation on .% and the con- 
sistency relation on ~.. Indeed, we get, lbr every S I , $2 ~.'/~,. El eds,. 
Eze~s : ,  that E~ and E~ a,'e not consistent ill" E ~ < E + ,  which implies 
E I < E  L hence E s , < E ~ ,  this last inequality holds ifl'6s, m4 . s* ,#~ ,  or 

N2 ~ . 2 

equivalently iff S t C S ,  so that S~CSz implies E t C E , .  Intuitively. this 
means that, whenever the properties E t and E z belong to the certainly yes 
domains of the states S~ and S~, respectively, they are consistent whenever 
S~ and S, are consistent. In addition, the implications can be reversed 
whenever E~= Es, and E~ = Es,. so that we get: 

S I C S ,  ill" Es, C E s  . 

the interpretation of which is immediate. 

Remark 5.1. It can be proved in CP (see G.91) that, lbr every 
laboratory i and pure state S, p~(Es) contains all physical objects in p~(S) 
and a suitable percentage of physical objects for every nonpure state which 
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Ldmits a decomposit ion ira terms of pure states where S appears,  but it does 
aot contain any physical object that belongs to the extension in i of a pure 
,tate different from S. This means that a physical object x which is ira the 
pure state S* has the property Es ill" S* = S. In QP, on the contrary,  the 
physical object x could have the proper ty  Es even if it is in a pure state S* 
different from S. Hence, when ignoring mixtures, pure states can be iden- 
tiffed with their supports  fi'om a semantic viewpoint in CP, while they 
cannot in QP: this prohibits any identification between states and physical 
properties in QP, as we have already observed above (we retain that an 
erroneous identification of this kind is the deep root of some old quantum 
pa,adoxes in the l i terature '> ' ) .  

Remark 5.2. For every laboratory  i the following equation can be 
proven to hold by inserting some further physical assumptions regarding 
nonpure states (see in part icular  G.91, condit ion MS) in our present 
context: 

U Pi(Es) = Di �9 
F,  ~ ' , ' p  

It follows that, lbr every labora tory  i and lbr every physical object x, 
at least one pure state S exists such that x has the property Es in i: this 
exhibits, in particular,  the semantic basis on which an "ignorance inter- 
pretation"'  H, of nonpure states can be embodied in our approach. 

6. PRAGMATIC COMPATIBILITY 

The s tandard notion of compatibi l i ty  of observables has an out- 
standing irnportance in QP. From a SR viewpoint, it is a pragmatic notion, 
which must be distinguished from the notion of semantic compatibili ty,  or 
consistency, introduced in Sec. 5. Indeed, it can be translated in our present 
context by saying that the (testable) properties F h, Fz �9 are compatible 
according to the s tandard notion iff one can establish whether they both 
are true for a physical object x by means of a suitable measurement. 

Of course, F I and F ,  are always compatible,  according to the above 
notion, in CP, while they can be noncompatible  in QP. Let us brielly 
resume the reasons of this difference between the two theories. In CP, one 
can always establish whether both F~ and F ,  are true by performing a 
measurement that consists of the simultaneous measurements of F~ and F2, 
or, equivalently, of the measurenaents of F~ and F~ in sequence, provided 
that the first measurement does not influence the second (which is always 
possible, since it is assumed in CP that the disturbance, i.e., the change of 
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state, induced by a measuring apparatus  can be reduced below any prefixed 
limit). On the contrary,  one is obliged in QP to measure F~ and F~ in 
sequence, and the disturbance induced by the measuring apparatuses 
cannot be reduced at will. It follows that the results of the measurements 
may depend on their order, since the second measurement applies to a 
physical object that has been disturbed by the first nleasulement.  If this 
occurs, F~ and F ,  are not compatible,  for one cannot construct an 
appara tus  testing whether F~ and F ,  are simtfltaneously true. If this does 
not occur, i.e. if in every physical situation (state) sequential ideal 
measurements of F t and F ,  lead to results that are independent of the 
order of the measurements, an (ideall  appara tus  testing F, and F~ in 
sequence defines a testable property F, which is true lor a given physical 
object x iff F~ and F2 are simultaneously true for x. In the latter case F~ 
and F~ are compatible  (we shall see when discussing ideal naeasurements in 
Sec. 9 that, whenever an ideal test of F on a physical object x yields a 
positive answer, the properties F~ and F~ can be at tr ibuted to x both 
belbre and after the measurement 1. This leads us to formalize the standard 
notion of compatibi l i ty  in our generalized f ,amework as follows. 

Let F I , F 2 e.~~. We say that F I and F 2 are  pragmatical ly  compatible. 
or conjointly testable, and write F~.;// F, ,  iff a property F ~ . ~  exists 
such that, for every labora tory  i e L Pi(F) = Pi( F~ ) ~ Pi( F2 ). 
Since the set (,~., < l  is a lattice (Secs. 3 and 41, the following state- 

merit can be easily proved which characterizes pragmatic  compatibili ty.  
For  every F , ,  F 2 E.~,-., F t .1 /  F ,  iffthe meet F =  F~ 0 Fz belongs to .~. 
and, for every laboratory  i ~ [,-Pd F I = Pd F~ ) ~ Pi( F2 ). 
The above statement implies, in particular,  that, lbr every lirst type 

state S e . %  and F e . ~ ,  the support  Es o r S  is pragmatical ly compatible  
s More important ,  it allows us to explore the links with F i f f F e d  s w  , s .  

between our definition of pragmatic  compatibi l i ty  and some current defini- 
tions of compatibi l i ty  in the literature. To this end, let us add the Ibllowing 
axiom to the axioms listed in Sec. 3. 

AX 9. For  every Fr ,  F2 e-~.,  F , . / /  F ,  iff F~.;'; ~ F2 ifr F ~ . / /  F ,  iff 
F i' .;r F~.  

AX 9 rests on the obvious physical remark that, Ibr every F ~.~.,  F 
and F • can be tested by means of the same dichotomic device in every 
labora tory  i, since Pd F~)  = D~\pdF) ,  as we have seen in Sec. 3. Moreover 
it entails, because of the above characterization of pragmatic  compatibili ty,  
that, whenever F . . ~  F2, 12, is a lattice isomorphisna of the sublattice of 
(d~., < } generated by F~ and F ,  onto the Boolean sublattice of (.r _m) 
generated by p i ( F  I ) and  p d F : ) .  Hence we conclude, in particular,  that 
every pair of pragmatical ly compatible  properties generates a Boolean 
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,ublattice of (,~., < ). This result is relevant, since a relation of compatibility 
~s introduced in (~., < ) (to be precise, in a lattice isomorphic to (,~, < ), 
~ee Sec. 3) in some approaches to QP by saying that the properties FI,  
F_, e .~ are compatible if[" they generate a Boolean sublattice of (~ ,  < ).~43, 

Finally, we note that our definition of pragmatic compatibility can be 
generalized as follows. 

Let FI,  F_, ..... F,, e.G.. We say that FI,  F_, ..... F,, are pragma t i ca l l y  

compat ib le ,  or conjoh~tly testable,  ilT a property F e . ~  exists such that, 
for every laboratory i e L  p i ( F ) = p d F i ) ~ p d F , _ ) ~  . . .  ~pdF, , ) .  
Resting on the above generalization, we add the following further 

axiom to the axioms listed in Sec. 3. 

AX 10. Let F~, F2 ..... F,, e . ~ .  Then, F~, Fe ..... F,, are pragmatically 
compatible whenever they are pairwise pragmatically compatible, that is, 
F i .y  Fk for every j, k e [ 1, 2 ..... n}. 

Stating AX 10 can be justified by observing that it holds both in QP 
and in CP, which we want to be models for our general SR scheme. 

R e m a r k  6.1. We recall that the properties F, and F, are assumed to 
be compatible in HSQT ifl" they are represented by commuting projections, 
hence the relation of compatibility is defined on the whole ,~. In our 
general scheme, of which HSQT is a model (Sec. 3), we have preferred to 
define pragmatic compatibility on the set .~. of testable properties only, 
since the enlargement of our formal definition to e~ would let . ~  depend on 
the (partially) arbitrary choice of the extensions, in every laboratory, of the 
theoretical properties; furthermore, ..g would have no direct operational 
interpretation when referring to theoretical properties. Of course, this 
discrepancy is connected with the refinements in the interpretation of 
HSQT suggested by the general theory and underlined in Remark 3.2. 

7. T E S T A B I L I T Y  A N D  C O N J O I N T  T E S T A B I L I T Y  O N  W,. 

Let us now shift from the set .~. to the set ~P~ of all wffs of L~.. Then, 
the notions of testability and pragmatic compatibility (conjoint testability) 
can be canonically extended to tp~., as lbllows. 

Let A e ~P~. We say that A is tes table  whenever in every laboratory i E [ 
the truth value of A for every interpretation a~ can be determined by 
means of suitable lneasurements. 
By recalling our interpretation of L,. in Sec. 4, we immediately pick out 

the following basic sets of testable wits of L~. (see G.91 ): 
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(i) lbr every x e X, the set .~(x)  = { F(x)[ F �9 .~. } ; 

(ii) lbr every S~.~/', the set ~ps of all quantified wffs of the Ibrm 
(Trrx)(A(xJ/S(xJ), with A(x) a testable nonquantified (or open) wff of ~P~ 
(note that the wfl's of eps are testable since, lbr every labora tory  i, the 
domain D~ is finite). 

Furthermore,  we call prove the following criterion a/'  testabilit)'. 

CT. Let A ( x ) � 9  ~ be an open wfl; which contains the individual 
variable x only. Then, A(x) is testable iff an atomic wff F x ( x ) e . g . ( x )  exists 
such that A ( x ) - F x ( x ) .  

Indeed, let us note that, whenever A(x) is logically equivalent to 
F.x(x), the truth value of A(x) in every labora tory  i for every interpretat ion 
a~ can be determined by means of a measurement of the truth value of 
F,x(x), hence A(x) is testable. Conversely, if A(x) is testable, it defines a 
derit'ed property of the physical object x that is testable, hence it is logically 
equivalent to some testable property F..\ ~.~.,  since we have assumed that 
.~. is the set of all testable properties of the physical system that we are 
considering (Sec. 3 ). 

It is apparent  that CT can be used in order  to single out further sets 
of testable statements in tp.. For  instance, we get that, lbr every F �9 .~ ,  the 
molect, lar wff ~ F ( x J  is testable: indeed, ~ F ( x )  is equivalent to the atomic 
statement FX(x), where F ~ ~ . ~  (see Sec. 2(iii) and Sec. 3). 

Let us define now col(joint testability in t / s  as follows. 
Let A~, A2 �9 ~ . .  Then, we say that A~ and A~_ are colzjohTtly testable 
iff A~ and A,  are testable and, for every i e [  and a~ �9  the truth 
values of A~ and A~ can be determined conjointly by means of suitable 
measurements. 
By using this definition, we can prove the following proposit ion.  

P 7.1. Let A~(x), A_~(x) ..... An(x) be open wffs of ~ . ,  and let F~, 
F2 ..... F.  � 9  be such that A~(x) - Ft(x),  A_~(x) - F~(x) ..... A,,(x)-= F,,(x). 
Then A~(x), A_,(x) ..... An(x) are pairwise conjointly testable iff F~, F= ..... F,, 
are pairwise pragmatically compatible,  or ifl" the wff A ( x ) = A ~ ( x ) A  
A=(x) A .. .  A A , , ( x )=F~(x l  A F_~(x) A .. .  A F,,(x) is testable. 

Proo/~ The first equivalence follows from the definition of conjoint 
testability in ~/~., from CT, and from our interpretat ion of the formal defini- 
tion of pragmatic compatibi l i ty  in Sec. 6. In order  to prove the second 
equivalence, let us consider the wff A(x). Because of CT, A(xl  is testable iff 
it is logically equivalent to an atomic wff FA(x) of . ( . (x) .  But we have seen 
in Sec. 2 that F~(x)A F_~(x)A . . .  A F,,(xl, hence A(x), is true in a 
laboratory  i ifl" a i l x ) e p i ( F i ) c ~ p i ( F : ) r  . . .  r Therefore, A(x) is 
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~cstable iff a property F \  ~ . ~  exists such that tbr every laboratory i, 
/hi FA) = Pd F~ ) ~ Pd F2) n -.- c~ Pd F,, I. By using the generalized definition 
,q" pragmatic compatibility on .~ introduced at the end of Sec. 6, we get 
that A(x) is testable iff F~, F 2 ..... F,, are pragmatically compatible, hence iff 
they are pairwise pragmatically compatible, because of AX 10. [] 

As a corollary of P 7. 1, we note that, because of the characterization 
of pragmatic compatibility supplied in Sec. 6, the property Fx that appears 
m the above proof whenever A(x) is testable is given by FA=F~ n 

V:N---N v.. 
Remark 7.1. It is important in what tbllows to make an explicit 

recognition of some properties of the basic set .,~(x) of testable wiTs of L~. 
introduced above. Therelbre, we note that the restriction of the pre-orders 
c ,  /__, and < to .(.(x) are partial orders, which coincide because of our 
assumptions on .~ in Sec. 3 (see in particuhu AX 5}. Of course, (.~(x), c ) 
is isomorphic to the poset (.,~, < ), which is dense in the lattice (d~,, < )  
tSec. 3), hence (.~(x), c ) is dense in the lattice (d~.(x), c ), with d~(x)= 
' . E ( x ) [ E ~ . } .  This latter lattice is isomorphic to the lhrther lattice 
([ :~.(x)]_,  c ), with [ :~ (x) ]_  = { [E(x) ]_  ]E~,~.}. In QP, both (d~(x), c )  
and ([:~.(x)] =, c ) can be identified with standard QL, which proves that 
quantum logics can be obtained by using the (theory dependent) pl'agmatic 
concept of testability for selecting suitable subsets of wffs in L~., as we have 
anticipated in the Ilatroduction (see also G.91, and Refs. 3 and 4). The non- 
Boolean character of QL is then originated by the fact that ([,~.(x)] _,  c ) 
is a subposet but not a sublattice of the Boolean lattice ( ~ / - ,  ~ ) in QP 
(while it is a sublattice o f ( ~ I ' , / - ,  c ) in CP). 

Let us denote the lattice operations in (,~(x), c ) by the same symbols 
that we have introduced in Sec. 3 in order to denote the corresponding 
operations in (d~, < ). Because of the truth theory assumed in L~., every wff 
in : . (x) has a truth value in every laboratory i when x is interpreted. But 
the connective n cannot be identified with the classical conjunction A,  
and U cannot be identil]ed with the disjunction v .  In particular, n and 
U are not true-functional in Qp,4 ,  which means that, for example, the 
truth value of the join Edx)  n E2(x) - (E~ n E2)(x) (where E~, E2 ed~.) 
generally cannot be deduced fi'om the truth values of E~(x) and E2(x) only. 
Furthermore, if we embed canonically de(x) in ~ .  and regard _L, N, U as 
connectives in '/'~. defined on the subset d~.(x) of 'P~, we get, for every E, 
E~, E2 ~:~. (see Sec. 3, Remark 3.4. and Sec. 4. conditions (i), (ii), and (iii)): 

--qE(x) - E~(x ), 

E,(x) N E 2 ( x ) - ( E ,  N E2)(x)c  El(x) A E2(x), 

Edx) /x  E 2 ( x ) c ( E I  U E2) (x ) -  El(x) U E2(x), 
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By using P 7.1 and its corollary, we see that, for every F~, F2 ~.~'-., 
F~(x) ~ F_,(x)- Fl(x) t, F qx) iff F~(x) /x F_dx) is testable or. equiwdently. 
iff F, and F~ are pragmatically compatible. Analogously. F~(x) (..) F 2 ( x ) -  
F~(x) v F_,(x) ill" Ft and F,  are pragmatically compatible. Indeed. let 
FI.Y/" F_~. Then, F~.a 'r F~ (Sec. 6), hence, for every ie[,  pi(Fi L (") F + ) =  
p,(Fi ~ ) ~ p ~ ( F ~ ) =  D~\p~(F, )~  D,\p~(F 2) = D~\(p~(F,) vop,{Fz)). It follows 
that p~((F~ 0F})S)=P~(F,( ,_}F~_)=p~(F~)vopdF2),  so that F , (x){ j  
F2 (x )c  Fl(x) v F_qx). Therefore, Fl(x) [..) F2(x)--- Fl(x) v Fz(x), as stated. 
Conversely, one easily gets that this last equivalence implies F~.:r F_,. 

8. T H E  M E T A T H E O R E T I C A L  G E N E R A L I Z E D  P R I N C I P L E  

We recall that, according to a standard epistemological conception 
(receired t'iewpo#Tt'~'~), one must distinguish between tlworetical and 
empirical physical laws. Whenever the language of physics is suitably for- 
malized by means of a general language L*, where second-order predicates, 
predicative variables, and quantification on predicative variables occur(see 
Remark 2.31, the theoretical laws are expressed by sentences of L* that 
contain primitive or derived theoretical terms, are only partially interpreted 
(hence cannot be directly tested), and have no truth value, or a conven- 
tional truth value only. On the contrary, empirical laws can be expressed 
by means of an observative part (not necessarily a sublanguage as we shall 
see in the following) of L*, can be formally deduced fiom theoretical laws, 
and have a truth value, since they are empirically interpreted. 

Let us accept fi'om now on the above viewpoint. One may then 
wonder about the role played in L* by the formalized languages L and L~ 
introduced in Sects. 2 and 4, respectively. Let us firstly consider L. Then, 
we see that all atomic wfl's of L are constructed by means of predicates that 
are interpreted operationally, hence we say that they express observative 
statements. But the complex wffs of L may be testable or not (Sect. 7), so 
that we cannot say that all statements in L are observative. We, however, 
classify L here as an observative sublanguage of L, as we have anticipated 
in Remark 2.3, since it is generated as a sublanguage of L* by a set of first- 
order testable wits (to be precise, L should be classified as an obser2"atit,eO' 
mhlhmd sublanguage of L*). Now, let us consider L~,. Then, we see that it 
contains both observative and theoretical atomic wffs. Therelbre, L~, can 
still be considered a sublanguage of L*, yet not observative in the sense 
specified above. 

It follows fi'om our analysis on L and L~, that both empirical and 
theoretical laws can be expressed by means of the sublanguages L and L~, 
(though general theoretical laws require L* ). We retain that the awareness 
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ihat some physical laws expressed in k~ are theoretical, not empirical, is 
i~asic tbr explaining EPR-like paradoxes and, more generally, some dilt]- 
culties encountered ill the quantum theory of compound physical systems. 
Fherelbre let us discuss this subject more deeply. 

Let us firstly explore the tbrm taken by those physical laws that can 
he expressed by means of L~.. Bearing in mind our interpretat ion of L and 
I_, in Sects. 2 and 4, respectively, and recalling that we have not introduced 
time ill our scheme since we do not intend to deal with evolution ill time 
in this paper, we can agree that a typical sample of physical law is a com- 
pound sentence which establishes, whenever we consider all physical 
objects such that a given sentence of L~. is true, the percentage of objects 
Ior which another sentence of L~, is also true (more complex forms are not 
excluded, but do not interest us heret. A part icular  case of this kind of 
physical law is formalized in L~, by the wff." 

V = (Tr,.x)(A(x)/S{ x)), 

with r e [ 0 ,  1], Se. ' / '  and A(x) an open molecular wff of L~ 
predicates denoting physical properties occur. 

Let us comment on this canonical form 
First, we note that, whenever r =  1, one gets (see G.91 ): 

where only 

V = (Tz, x)(A(x)/S(x)) - (Vx)(S{x) -+ A(x)). 

which provides a sample of deterministic law (which can obviously occur 
even in QP). 

Second, we note that many wits usually exist in ~ ,  that are logically 
equivalent to V. Ill particular,  whenever a wff B(x)e  ~/J~ exists such that 
B ( x ) = A ( x ) ,  we get V-{zr . .x)(B(xl /S(x)) .  Because of the definition of 
statistical equivalence "-- ill Sec. 2(v ), we get V - (Jr r x)( B( x )/S( x ) ) also if 
B(x) satisfies the condit ion B ( x ) =  A(x), which is weaker than B ( x ) -  A(x). 
In addition, whenever r =  1 and B(x) satisfies the condit ion B ( x ) v A ( x ) ,  
which is weaker than B{x)"-- A(x), we get, because of the definition of 
deterministic equivalence ill Sec. 2(v), V - (Vx)(S(x)--+ B(x)). 

Let us now introduce the basic distinction between empirical and 
theoretical laws. 

We say that V expresses an empirical physical law whenever A(x) is 
testable in the sense specified in Sec. 7, that is, because of CT, whenever a 
testable property F : x e . ~  exists such that A ( x ) = F x ( x ) .  In this case 
V = (zt. x)( F,x{ x )/S(x )), and the truth value of V call be determined empiri- 
cally ill every labora tory  i e [ by means of any registering device ill the class 
denoted by F,x: an empirical physical law can be directh' tested. 
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We say that V expresses a theoretical physical law whenever A(xl is 
not testable, that is, whenever no Fe .~ .  exists such that A ( x ) -  F(xl. Now, 
it is apparent that the truth value of such a law in a laboratory i, though 
defined in our approach, cannot be directly tested. Furthermore, the truth 
value of A(xl is partially conventional, because of the conventions intro- 
duced fbr logical connectives and/or because of the possible presence in 
A(x) of" theoretical predicates, the extensions of which have a certain degree 
of arbitrariness (see Sec. 4). Thel'elbre, we must attribute to V a role which 
is basically different from the role attributed to empirical physical laws. 
Following a standard epistemological viewpoint, ~ ~ ~'~ we agree to consider 
V as a formal expression, which is acceptable as a theoretical physical law 
(independently of its partially conventional truth value) if every empirical 
physical law that can be deduced from it (and from suitable premises) by 
means of standard procedures in classical logic turns out to be true when 
directly tested in a laboratory i ~ [. 

The deduction of empirical physical laws from a theoretical law V can 
be rather complicate. In some cases it can be made easier by substituting 
A(x) (which is nontestable, since V is theoretical) with a suitable wfl" B(xl 
which is logically, or statistically, or deterministically equivalent to A(x). 
For instance, let A(xl- ' -F(x) ,  with F e-G.. Then, we immediately obtain 
fi'om V (which cannot be directly tested) the empirical physical law 
(g..x)(F(x)/S(x)). Analogously, let . '=1  and A(x )~F(x ) ,  with Fe .~ . .  
Then, we immediately obtain from V the empirical physical law (Vx) 
(S(x) ~ F(x)). 

We must now discuss a crucial problem in our approach, that is, the 
problem of the truth mode that is to be attributed to empirical laws 
deduced fi'om theoretical laws of the kind considered above. Indeed, one of 
us has attributed to empirical laws a truth mode in G.91 which makes 
explicit the classical epistemological viewpoint that is universally adopted 
when dealing with this kind of laws, i.e., has assumed that an empirical law 
must be true in every laboratory i ~ [ (metatheoretical classical prhtciple, or 
briefly, MCP). But our point here is that this perspective does not take into 
due account the existence of physical theories, as QP, where a nontrivial 
relation of pragmatic compatibility is defined on the set of physical proper- 
ties. Let us consider the problems that occur in this case. 

We start from the obvious remark that the statement of testable physi- 
cal predictions is one of the relevant aims of any physical theory. In order 
to obtain these predictions physicists usually adopt rather complex 
inference procedures, the basic step of which can be schematized as follows. 
An empirical physical law of the form (~,.x)(A(xl/S(x)), possibly deduced 
from the general theoretical apparatus of the theory, is introduced, together 
with a boumlary c'omlitio, S(xl and a set { A~, A2 ..... A,  } of testable wffs of 
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~ or premises. Then, a testable physical prediction A,~ ~ ~ is deduced which 
~dds to the set of premises for a further step of the same type. The wffs 
~ , A 2  ..... A,, can be considered predictions following fi'om previous 
nference steps, or measurement results, or simply assumptions (we note 
hat an elementary testable physical prediction regarding a physical object 
: is expressed in L~. by a testable atomic wff F(x) which attributes a 
cstable proper ty  F e .~  to x, while an elementary testable statistical predic- 
ion is expressed by a statistical wff (grx)(F(xj /S(x)) ,  where Se.'F and 

~"e .~).  
Whenever a nontrivial relation of pragmatic  compatibi l i ty  is defined 

,n .~ ,  the premises A~, A_~ ..... A,, could be chosen so that they are not con- 
ointly testable. A physical situation of this kind is not epistemically 
~ccessible, in the sense that one cannot empirically test whether it occurs, 
md no prediction can be verified. Therefore, it is inconsistent with an 
~perational phi losophy to assert that an empirical law is true in a 
abora tory  where such a situation occurs, hence that it can be used in order 
o obtain further physical predictions. Thus, it seems appropr ia te  to look 
Or a generalization of MCP which reduces to MCP whenever a physical 
~heory (as CP) is considered in which the relation of pragmatic  com- 
patibility is trivial but yields a new and subtler characterization of the truth 
node  of empirical physical laws whenever a nontrivial relation of 
?ragmatic compatibi l i ty  occurs. 

A generalization of this kind has been proposed by one of the authors 
m some previous papers '"  '~ and has been called metatheoretical generalized 
t~rinciple (MGP) .  We express it here as follows. 

MGP.  Let V ~ ~ express a theoretical physical law, let x e X, S s .~f, 
~.(x)~7 ' . ,  let A(x) be testable, and let the wff V ,x=(n .x ) (A(x) /S(x) )  
express an empirical physical law deduced from V. Then, VA can be 
asserted to be true in every laboratory  i e i  where a set of conjointly 
testable premises is assumed. 

Let us comment briefly on MGP.  It is apparent  that this new principle 
does not modify any empirical quantum prediction, but it establishes a 
kind of restricted availability of empirical physical laws, since it implies 
that an empirical law that can be formally deduced fi'om a theoretical law 
V cannot be asserted to be true in a given laboratory  i~  [ if one assumes 
in i premises that are not conjointly testable (indeed, V could be true as 
well as false in i). This restricted availability may seem disconcerting, since 
the classical viewpoint is deeply rooted in our usual way of thinking, but 
it does not contradict  a minimal realistic viewpoint (realism of properties in 
the Introduction),  and it is based on l\tll acceptance of the operat ional  
philosophy of Q P  together with a correspondence truth theory for L~.: it 

",25 2~ ~)-3 
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only prohibits applying that form of ontological realism according to which 
all theoretical entities in our theories are "'real" (i.e., must correspond tv 
natural entities which actually exist), to a theory endowed with a nontrivial 
relation of pragmatic  compatibili ty.  One can say that M G P  limits the 
physicist 's "'presumption of omniscience," and opens the way to a more 
flexible conception of physical theories. 

It is obvious that M G P  satislies our above condit ion of reducing t(, 
MCP whenever it is applied to a theory, as CP, in which all properties arc 
pragmatically compatible. But the (usually implicit l adopt ion of MCP in 
place of M G P  in QP can be viewed at as the deep root of many qt, antum 
paradoxes)  ~ J 

Before closing this section, we briefly study some part icular  cases. 
which help to grasp the deep meaning of MGP.  

(i) Let V e ~r express a theoretical physical law, and let V~ = 
(Vx)(S(x) ~ F,(x)) ,  V2 = (Vx)(S(x) ~ F2(x)) ..... V,, = (Vx)(S(x) ~ F,,(x)). 
with F~. F2 ..... F,, ~.~., be empirical physical laws that can be deduced 
from V. Let l e t  and let us choose in i a subset IV,,, V,: ..... V,,,,} ol 
I V , .  V2 ..... V,,]. Then. M G P  does not allow us to assert that V,,, V,. ..... V,. 
are trve in i. except whenever F , ,  F,: . . . .  F~,,, are pragmatical ly compatible. 
Indeed, let the physical object x be in the state S in i. By choosing in i a 
set of premises (that can be void) arm deducing V , ,  Vi2 ..... V,,,, from V in 
sequence, we see that in every step the deduction of an empirical law, say 
V~, yields a premise F , (x )  that must be adjoined to the set of premises 
in the furtlae," step. This increase can transform a set of pragmatically 
compatible  premises into a set of premises that are not pragmatical ly com- 
patible, which prohibits one to deduce any further empirical law in 
[Vi~, Vi: ..... V ' .... ~tS a true wff in i. 

Let us apply this result in a special case. Let V = ( g x j ( S ( x ) ~  
(F,  ("1Fe ~ . '  ~ F , , l (x ) )=(gx l (S(x) - -+  E(x)) be a theoretical physical la~ 
in QP, with E . . . .  F~ 0 F 2 0  0 F , , e ~ . a n d  F , . F  2 ..... F,,E.~.."z- Becauseof  
proposi t ion P 4.1 (the generalization of which to the case of n ~> 3 testable 
physical properties is obvious), we get: 

v = ( g x ) ( S ( x ) - ~  F , ( x ) A  Fe(xl  A . . .  A F,dx))  

(we also note that E is unique, in the sense that V = ( V x ) ( S ( x ) - ~ E l ( x ) )  
implies E~ = E  because of proposi t ion P 4.2), Then. the above empirical 
laws V I. V z ..... V .  can be deduced fi'om V. Let i e L  let us choose in i the 
empty set of premises and a subset [ Vi,. Vi: ..... Vim } of  [V  I, V 2 ..... V,,}, and 
let us consider the wffs U = (Vx)( S( x ) ---, A( x )) and W = (Vx)( S( x ) ~ B(x )). 
wi th A ( x ) = ( F i ,  ~ Fi. (-'1... ~ Fi,,,)(xl and B ( x ) =  Fi,(x) /x Fi:(x) /,, ... 
A F<,(x). Then U and W express physical laws that can be formall3 
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deduced from V. Fur the rmore ,  A ( x l c  B ( x ) ( R e m a r k  7.1) and A ( x ) ~  B(x) 
, P 4.1 ), so that  U- - -W.  Three  possibil i t ies occur,  which we will consider  
,eparately.  

First ,  F,~, F~, ..... F,,,,, are pairwise p ragmat ica l ly  compat ib le ,  hence 
pragmat ica l ly  compa t ib l e  (AX 10). Then,  M G P  implies that  V~,, V,_, ..... V<,  

:ire true in i. Fu r the rmore ,  the wits A(x) and B(x) are tes table  and logically 
equivalent  (Rem ark  7.1 ), and U and W are empir ical  physical  laws that  are 
true in i. 

Second.  F,, .  F~ ..... F,,,,, are not  p ragmat ica l ly  compa t ib le  and F~, ("1 
V~ (-'l"" ("1 F~,,, e .~ . .  In this case M G P  does not  imply direct ly  that  
all Vt,. V~_. ..... V~,,, are true in i. However .  let us note that  A(x) is tes table  
while B(x) is not  tes table  (P  7.1 ), so that  A(x} and B(x) are not  logically 
equivalent ,  and  U and W are an empir ical  and a theoret ical  physical  law, 
~espectively. Then,  M G P  entai ls  that  U is true in i. Since U -  W, we can 
~tssert that  also W is true in i, which implies that  VL,, V~: ..... V,,,, are true 
in i. 

Third.  F~,, F,~: ..... F~,,, are not  p ragmat ica l ly  compat ib le ,  and F,,, 0 " "  
t-',. 0 ""  (') Fi,,, e C/~.. The  wffs A(x) and B(x) are not  testable,  nor  they are 
logically equivalent ,  and U and W are theoret ical  physical  laws. In this 
case M G P  does  not  assure that  all VL,, V~. ..... V~,,, are true in i, nor  that  U 
or W are t rue m i. 

(ii) The case s tudied above  can be general ized as follows. Let us con- 
sider the theoret ical  physical  law V = (Vx)(S(x)--+ E(x)} in QP.  with E e ~'~.. 
Since, for every E ~ 9 . ,  E = N,.~ i~.~. ~ F (Sec. 3). we obta in:  

c , I  < i- 

Let us assume that  p ropos i t ion  P 4.1 can be extended to the meet in 
the express ion of F. Hence.  we get: 

V =- (Vx) (S(x)--, /~ F(x)). 
I "  ,~ i c ,  I "  - I -  

If a l abo ra to ry  i e  [ is given, M G P  can be appl ied,  and the a rguments  
offered in case (i) call be easily generalized.  In par t ic tdar ,  let ':~' be a finite 
subset of I F e . . ~ I E  < F,}. Whenever  for every F , ,  F, ,  e~.q, F , , . #  F': ,  M G P  
implies that  the empir ica l  physical  law 

u=lvx,(s,x,  A FI,,) 
I : ,~  6 



1156 Garola and Solombrino 

is true in i. But MGP does not guarantees in general, the truth of U if the 
pragmatic compatibility of all F ~ .T is not assured. 

Remark 4'.1. Bearing in mind our arguments in Remark 3.3, we can 
say that a theoretical law of the form V = (zrrx)(A(x)/S(x)) translates in our 
language L~., which is a first-order predicate calculus extended by means of 
statistical quantifiers, a theoretical law that should otherwise be expressed 
by means of higher-order predicates and variables and, possibly, modal 
probability operators ~ ' '  of the general language L*. The language L~. is 
obviously simpler than L* but the main reason for introducing it is the 
need for explaining the success of HSQT from one side, and to avoid EPR- 
like paradoxes fiom the other side. 

Remark &2. We have already observed at the end of the Introduc- 
tion that SR is not a conventional hidden variables theory. Our statement 
of MGP in this section allows us to make our argument more perspicuous. 
Indeed, it has been pointed out by Kochen and Speckef -''~' that hidden 
wlriables can be invented lbr every physical theory ..r if the requirements 
imposed on their values are sufficiently weak. Thus, the actual problem 
with hidden variables consists in defining the restrictions that the theory 
.~, assumed to be a hidden variables theory for--r must satisfy. The 
constraints proposed by Kochen and Specker q-'s~ seem quite reasonable; 
this notwithstanding, when ..r is identified with QP, they lead to the well- 
known "no-go" Bell and Bell KS theorenas ~z'~ which show that no non- 
contextual hidden variables theory is possible for QP. This engenders a 
number of epistemological difficulties which suggests looking deeper into 
the matter. Thus, one sees that Kochen and Specker's constraints lbllow 
fi'ona accepting implicitly the general principle MCP, since they lbrmalize 
the requirement that .~ preserve the unrestricted validity of the relations 
among observables established in .,r (which express theoretical physical 
laws). If one adopts a SR position, he is then induced to introduce weaker 
constraints lbr ,~, that is. the constraints lbllowing from the general prin- 
ciple MGP that substitutes MCP: in particular, .~r could entail empirical 
physical laws different fiom those of .,r in physical situations that are not 
accessible according to .Yi- 

The above general arguments explain why the aforesaid "'no-go" 
theorems lhil to be true in the specific case of the SR approach to 
Qp, c, ,~. 3~,, and open the way to noncontextual hidden variables theories lbr 
QP. It must, however, be noted that SR, being a general scheme, cannot 
constitute in itself a detailed hidden variables model for QP (hence, in par- 
ticular. SR cannot provide a model that gives a "physical explanation" of 
the possible falsity of the physical laws of QP in a laboratory where 
premises are assumed that are not conjointly testable according to QP, 
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,:ven if it does not prohibit that such a model exist). Rather one could 
,nterpret each property in the SR approach as a hidden variable, taking 
,alues 0 and 1, and consider SR as a general, nonconventional (in the sense 
Ll~at it does not assume MCPI  hidden variables frame for every physical 
theory. 

9. S E M A N T I C  I N C O M P L E T E N E S S  OF  QP  

The distinction between truth and testability that has been introduced 
in our approach allows us to distinguish between t-completeness and 
~-completeness of a physical theory . /  with respect to the general language 
L* by means of which the theory is stated (Remark 2.3). To be precise, a 
theory will be said to be t-complete (respectively, s-complete) with respect 
to L* iff the laws of the theory, together with suitable sets of specific 
:~ssumptions, allow one to predict the truth values of all testable (respec- 
tively all) interpreted wffs of L*. < 4 '  Of course, s-completeness implies 
t-completeness, but the converse is not generally true. 

The distinction between t-completeness and s-completeness can also be 
introduced with reference to a sublanguage of L* (note that a theory is 
t-complete iff it is s-complete when restricting to L: this follows from the 
titct that all atomic wfl's of L are testable and from the adoption of a 
Tarskian true-functional truth theory in L). In particular, by using the 
interpretation of pure states as maximal amounts of inlbrmation discussed 
in Sec. 5, we conclude that, whenever a theory . /  is t-complete with respect 
to L~, the knowledge that a statement of the form S(x), with S E.~I,, is true 
in a laboratory i must allow us to deduce the truth value in i of all 
I testable) statements of the form F(x), with x ~ X and F e.~,, by using the 
laws of . /  (an interpretation a~ of the individual variables being implied). 
Then, one can easily prove, adapting procedures worked out elsewhere'-" 
to our present generalized context, that QP is not t-complete, hence it is 
not s-complete with respect to L~. (while CP proves to be complete in both 
sen ses ). 

The above assertion might appear a rather complicated way of 
restating an obvious consequence of QP; indeed, it essentially means that 
the knowledge that a physical object is in the state S does not necessarily 
allow us to know, for any given F ~ .f., whether x has the testable property 
F. But there is an important novelty in our present perspective: indeed, we 
assign a truth value to every (atomic or molecular) interpreted statement 
of L,,, independently of the epistemic accessibility of the truth value itself 
in QP  (this assignment generalizes in our context the "realistic" assump- 
tions introduced by Wigner in his 1970 proof of a Bell inequality TM 3~,~). On 
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the contrary, a statement attributing a testable physical property F, to a 
physical object x whenever a testable property F~, not p,'agmatically com- 
patible with F,,  has been measured on x, or a molecular statement where 
the meet of nonconjointly testable statements appears, would be considered 
meaningless, hence having no truth value, by physicists adopting a verifica- 
tionist theory of truth. Thus, we can classify QP as semantically incoln- 
plete, while the orthodox viewpoint considers QP  complete, since no 
meaningless statement is allowed in the language of physics. 

The incompleteness of QP and the differences between our interpreta- 
tion and the orthodox one can be better understood by introducing, for 
every physical object x and laboratory i, the sets .r , and .-gl~, of all true 
testable properties and of all false properties of x in i, respectively (an inter- 
pretation ~. being implied}. Indeed, let us firstly note that the pair 
~:-il, , : I , }  is a partition of .~ because of ou," semantic model for L~.. 
Then, lbr every pure state S, let us recall the delinitions of :s  and d ~ intro- 
duced in Sect�9 5, and let us put -,<s=dsc~.~,,.Y'~ = : ~  ~ . ~ .  It lbllows 
that , ~  (respectively, W �9 s ) is the broadest set of testable properties that one 
can predict to be true (respectively, false) tbr any physical object x in a 
laboratory i, by using physical laws and the assumption that x is in the 
state S in i. Then, trivially, & _c .NI ~, and .N~ _.~vl~, and it can be proved 
that .~=s =.-r and .crux =.71~, in CP. and that .,g,; c .~-: ,  and .~-~ c . ~ l ,  
in QP. 

The strict inclusions Ibrmally express the t-incompleteness of QP with 
respect to L~.. and have some impo,'tant consequences. First, they imply 
that a change of state of a physical object does not necessarily modify its 
testable physical properties in QP (while it does in CP), though it modifies 
the set of testable properties that can be predicted to be true (this occurs, for 
instance, whenever an ideal quantuln measurement is made, as we shall see in 
Sec. 10): thus, we explain some features of Bohr's "relational conception of 
quantum states '''-~5' in our context, though our viewpoint is different from 
Bohr's. Second, they imply that dift~rent objects in the same state S can be 
thought of as endowed with different properties (the difference can be detected 
by ,neans of further measurements), though the properties in .~  (respectively, 
�9 s ) must be true (respectively, false) lbr them all: even this feature is unac- 
ceptable tbr physicists adopting a velificationist theory of meaning. 

10. I D E A L  M E A S U R E M E N T S  

Let us consider an ideal quantum measuren~ent of an observable A 
which yields the result a i on a physical object x in a pure state S in a 
laboratory i, and assume that this result is not certainly true in the state 
S. Then the property 
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E =  the observable A takes value a i oil x 

~s testable, but it does not belong to ks and is ascertained to be true for the 
qlysical  object x by the measuring apparatus,  which acts at this stage as 
m (exact) registering device. By referring to the definition of .~iw, in Sec. 9, 
,re can say that the measurement shows that E e.,gi~,, which could not 
have been predicted before the measurement because of the incompleteness 
ff  QP. It must be stressed that E is recognized to be true for x at the 
instant of the measurement,  and this recognition has nothing to do with 
the properties of x after the measurement or, more generally, with the 
,ransformation of the state of x during the measurement process. If the 
measuring appara tus  is an Meal./ilter, the state after the measurement can 
!~e obtained from S by means of the projection postulate, and the apparatus  
~cts at this stage its a preparing device (we do not want to cope here with 
the widely debated problem of the role and logical status of the projection 
postulate in Qp,s2 ~a,). Then the state after a measurenaent of this kind is 
:t first type pure state S i, endowed with a support  Es,, and the property E 
Js true for x even after the measurement. Fur thermore it can be easily 
dlown that S, is consistent with S in the sense specified in Sec. 5, i.e., S C S i, 
~o that no inconsistency occurs between the information in S and in S,: this 
means in particular,  that all properties in d's w,~s, might be conjointly true 
Ibr the physical object x both befo,'e and after the measurement, though the 
incompleteness of the theo,y makes it impossible to know in QP whether 
such a situation occurs. More generally, we can say that the sets .~,~ and 
~,71~ might remain unchanged during this kind of measurement process 
even if the state of x changes. If a change occurs in # i ' ,  and # I~ ,  it can be 
tested by means of further measurements and it is intuitively ascribed to 
the interaction of the physical object with the measuring apparatus,  but 
possible changes are limited by the requirement that the property E is true 
for x even alter the measurement (E is such that, for every laboratory  i, 
l~,(Es,)c_pdE): furthermore, whenever A has a discrete, nondegenerate 
spectrt, m, E is an atom of ({~., < )  and coincides with Es,). In conclusion, 
the physical object x belongs to /~,(S) c~ lq(E ) before the measurement, to 
p,(Si)~I) ,(EI=t),(S i) after the measurement,  and this displacement 
corresponds to ix change in our knowledge on x, not necessarily to a 
change of the physical properties that are true for x. 

Remark 10.1. Let Sk be the state of x after a measurement of A 
which yields the result ak, with ak :# ai: then, S C Sk because of the results 
reported above, bt, t SiCrSk (indeed, S, and Sk are represented by 
orthogonal  vectors in HSQT).  This can occur since C is not transitive in 
QP, so that S C S  i and S CSk do not imply S i C S  k, and it can be 
intuitively interpreted by observing that the inlbrmation that the 
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observable A takes the value aj on x is not consistent with the information 
that A takes value ak on x. This obviously agrees with the fact that S.i g' Sk 
ill" Es, ~ Es~ because of our arguments in Sec. 5. 

A different case occurs if we consider two (pure, first kind, ideal) 
quantum measurements of two noncommuting observables A and B (with 
discrete, nondegenerate spectra) that can be (not conjointly) performed on 
a given physical object x in a pure state S. Indeed. let a, b be possible out- 
comes of the measurements of A, B respectively, and let S , .  Sb be the 
corresponding eigenstates. Then. the information in S, can be consistent 
with the information in Sh, and this occurs whenever S,, and Sh are 
represented by nonor thogonal  vectors in HSQT. This can be intuitively 
explained by saying that different questions (measurements)  that cannot be 
answered conjointly could, this notwithstanding,  admit  answers that can be 
consistently referred to the same physical object, and obviously agrees with 
the lhct that S, C Sh ill" Es~, C Es~, again because of our arguments in Sec. 5, 
However. this intuitive explanation is typical of our approach.  Indeed, in 
the or thodox interpretat ion of QP, where a verificationist viewpoint is 
adopted, it would be considered meaningless to ask whether Es: ' and Es, ' 
are consistent. 

Remark  10.2. It is interesting to consider another  kind of measure- 
ment which can occur both in CP and in QP. Let a physical object be in 
a nonpure state T that is a mixture of pure states S~, $2 ..... and let a 
measurement be performed which refines the information in T, so that alter 
the measurement x is in the pure state S,,, which appears in the decomposi-  
tion of T. One of us has proved elsewhere '-~ that, for every m, T C S,,,. In 
addit ion whenever S,, and S, appear  in the decomposi t ion of T and m 4= n, 
S,,,g'S,, in CP (while S , ,CS, ,  in QP whenever S,,, and S,, are represented 
by nonor thogonal  vectors in HSQT).  It follows in part icular  that this 
measurement mimics in the classical case an ideal quantum measurement.  
However. there is a relevant conceptual difference between the two cases 
since we have now, for every m, d s c d ,  s,,, (both in CP and in QP),  so that 
we can say that the measurement provides a refinement of the information, 
while the strict inclusion ~s c ds, is wrong m the ideal quantum measure- 
ment considered above. This explains why we cannot think of a measure- 
ment perlbrmed on a physical object in a mixed state in CP as a faithful 
model Ibr a quantum measurement on a physical object in a pure state. 

I1. C O N C L U D I N G  R E M A R K S  

The theoretical framework constructed in the previous sections allows 
us to introduce some general remarks that help one to avoid a number of 
ditl]culties when dealing with QP. 
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First, we observe that the concepts of preparation and registering 
device, which are basic in our approach (Sec. 2), can be connected with the 
~lotions of prediction and retrodiction, respectively. Indeed, a preparation 
individuates a state, say S, and if rc is performed in a laboratory i so that 
a physical object x is produced, we can say that the statement S(x) is true 
in i immediately alter the preparation, say at time t. Then, S(x) can be 
taken as an assumption in order to deduce, by using physical laws 
(Sec. 10), that some properties are true for x in i at t (prediction; if evolu- 
tion in time is taken into account, one can obviously extend this kind of 
prediction to any time subsequent to t). A registering device individuates 
an effect, or better, if suitably chosen, a testable property F ~ . ~ ,  and it 
allows us to say that the statement F(x) is true in i immediately before the 
measurement (Sec. 10) if it is applied to x in i and yields answer yes. Thus 
r provides an information that regards the physical object entering the 
registering device, no matter what its properties may be alter the measure- 
ment (retrodiction; note that this interpretation is unacceptable according 
to the standard approach to QP, since this would consider the statement 
F(x) meaningful, and true, only alter the measurement). 

Second, we observe that the above remark suggests that a new (theory 
dependent) binary relation can be introduced on d~, as lbllows. 

Let E~, E2 e ~ .  We say that E~ and E~ are conjointh, predictable and 
write E t / / E 2 ,  iff a state S~:/ ; ,  exists such that E~ and E2 belong to 
d s w ~ .  

The intuitive interpretation of the relation .r is immediate if we refer 
to the interpretations of Js and d~ in Sec. 5. Furthermore, it is apparent 
that, from a verificationist viewpoint, two testable physical properties F~ 
and F,  cannot be conjointly predictable if they are not pragmatically com- 
patible (for, properties that cannot be conjointly tested cannot be retained 
to be conjointly true for a given physical object, hence they cannot be con- 
jointly attributed to it). But in our general framework the relations of 
pragmatic compatibility (conjoint testability) and conjoint predictability 
are disentangled (indeed, the lbrmer is defined on ~ in terms of testability, 
the latter is defined on d~. in terms of truth), and some relationships 
between them can be deduced by using the definitions and results in Sec. 6. 
In particular, for every Ft,  F2 ~ .~,  F~ ,,// F2 implies Ft .~ F, ,  and for every 
first kind pure state S and F e . ~ ,  F~r  Es iff F :PEs .  Of course, further 
connections between ~ '  and .~ in a specific theory , / c a n  be deduced from 
the analysis of the measurement process according to , /  (for instance, ~ 
and .# obviously coincide in CP). 

Third, we note that it is not impossible in our context to attribute 
simultaneously two properties F~, F_~ e , ~  that are not pragmatically com- 
patible nor conjointly predictable to a given physical object. Indeed, let us 
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consider a laboratory  i and a physical object x that is prepared in i in such 
a way that the sentence S(x), with S ~ . ' / ' .  is true in i at the instant t: if one 
can predict that F~(x) is true at t because of some physical laws and a 
measurement of F~ that yields the yes answer is made on x at t, then F~ 
and F~ can be simultaneously at tr ibuted to x at t (note that an analogous 
remark has been made by Cat taneo and Nistic6 ~ '  with reference to QP, 
but, seemingly, in the fi 'amework of the s tandard yon Neumann approach:  
yet, we retain that the arguments by these authors rest on giving up 
implicitly the strict verificationist at t i tude that characterizes the s tandard 
interpretat ion of QP). One can loosely say that the noncompatibi l i ty  of 
properties refers to retrodictions (measurements)  or to predictions 
(preparat ions) ,  not to a combinat ion of these procedures. 

The above remarks suggest that, as has already been noticed by other 
authors, ~3'~' Heisenberg's uncertainty principle in Q P  can be interpreted as 
regarding either position and momentum measurements or position and 
momentum predictions; intuitively, these different interpretations rest on 
different arguments, since the former follows from our reasonings on 
pragmatic  compatibi l i ty  at the beginning of Sec. 6, the latter from con- 
sidering the probabil i ty  distr ibutions of monlentunl and position in any 
possible state. 

Finally, we notice that the ideal filters considered in Sec. 10 
simultaneously play the role of preparat ions and registering devices in QP. 
But our above remarks show that these roles must be carefully dis- 
tinguished in our approach. Indeed, let us consider two ideal filters that are 
apt to test whether the testable properties F~ and F~ are true for a given 
physical object, and let F~ be not pragmatical ly compatible  with F~. Then, 
F~ and F~ can neither be tested nor predicted conjointly in QP, but the 
ideal filter testing F~ can be used as a preparat ion of a physical object x 
with property F~ in a laboratory  i for an ideal filter testing F ,  on x: this 
latter filter then works as a registering device, and if it yields answer yes, 
F~ and F ,  are conjointly true for x in i at the instant t immediately follow- 
ing the measurement of F~ and preceding the nleasurement of F , .  
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