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The standard interpretation of quantunt plivsics « QP ) and some recent generaliza-
tons of this theory rest on the adoption of a verificationist theory of truth and
meaning. while maost proposals for modifving and interpreting QP in u “realistic”
way attribute an ontological status to thearetical physical entities « ontological
realism ). Both terms of this dichotony are criticizable, and many quantum
paradoxes cun be attributed 1o it We discuss o uew viewpoint in this paper
(semantic realism. or briefly SR ). which applies both 1o classical physics « CP)
und to QP and is churacterized by the atiempt of giving up verificationism without
adopting ontological realism. As a first siep. we construct a formalized observ-
auve lunguage L endowed with a correspondence truth theory, Then, we staie a set
of axioms by means of L which hold both in CP and in QP. und construct o
Jurther lunguage Lowhich can express both testable and theoretical properties of
« given physical system. The concepts of meaning and estability do nor collupse
in Loand L. henee we can distinguish between semantic and pragmatic com-
patibility of physical propertics and define the concepts of testability and conjoint
testabiline of statements of Loand L. In this context a new meratheoretical prin-
ciple ¢ MGP) ix stated. which limits the validine: of empivical physical laws. By
applving SR ¢in particidar. MGP ) 10 QP one can interpret quaniunm logic us o
theory of estability in QP. show that QP is scmantically incomplere. and
invalidate the widespread claim that contextaliny is unavoidable in QP. Further-
maore. SR introduces some changes in the conventional interpretation of ideal
measurcements and Heisenberg's uncertainty principle,

{. INTRODUCTION

We propound a general scheme for physical theories in the present paper
semantic realism. or, briefly, SR) that produces, in particular, a new
nterpretation of quantum physics (QP). Our proposal has already been

Dipartimento di Fisica dell’Universita and INFN. Via Arnesano. 73100 Lecee, Ttaly.
1121

25 209-4 ABES-HDOTR 96 00-T121S00.530 0 1996 Pleanum Publislung Carporation



1122 Garola and Solombrino
partially discussed and applied by one of us in various papers'' ”"
here, we provide a unified and generalized treatment of it that allows
us to show that a SR approach to QP can solve a number of conceptual
problems and cope successfully with some old and more recent quantum
paradoxes.’

Our incipit above could have already annoyed the reader concerned
with the research on the foundations of QP. Indeed, the interpretations ol
this theory have multiplied beyond any reasonable limit in the last decades.
and one could look with suspect at the birth of a new interpretation. Thus.
we feel the need of justifying thoroughly our boldness, and we devote most
of this Introduction to this aim.

We retain that the proliferation of interpretations and approaches to
QP has a deep root: the unsolved problem of the epistemological concep-
tion that must support QP. Indeed. notwithstanding the efforts of the
fathers of QP and of a great number of following researchers, a universal
agreement on this subject has not yet been attained, and it is apparent thai
different epistemological conceptions lead to different interpretations ol
physical theories. If' one then wonders about the reasons of this lack ol
agreement, one can find them mainly in the aforesaid quantum paradoxes
(in particular, in the EPR-like paradoxes that appear in quantum physics
whenever the thought experiment invented in 1935 by Einstein, Podolsky.
and Rosen''” is analyzed), which show that there are predictions of the
theory that conflict with some intuitive conditions, as the requirement ol
locality of physical theories or the expectation that in every theory one can
talk about the properties of a physical system in a given state indepen-
dently of the observations that one intends to perform on the system. Ol
course, one can ignore this problem and give up all requirements that
conflict with his favorite interpretation of QP; but this procedure opens the
way to a number of serious philosophical problems on the nature itself oi
physics and science.

The contrasting interpretations of QP can be summarily grouped in
two classes. From one side. we find the attempts of providing a “realistic”
interpretation, or modification. of QP (for instance, by introducing hidden
variables), most of which attribute an ontological status to physical entities
that appear in the theory (as wave function. electron, quark, etc.), especially
whenever they can be represented by some intuitive model: we call thi

“The word “puradox™ is often used rather loosely in the literature. We denote by this tern:
here a result in the theory which is counterintuitive or. more rigorously. which contradicts
some epistemological requirements regarding the theory: a paradox must then be distin-
guished Irom an “untinomy.” which is an internal contradiction of the theory.'?!
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iendency ontological realism here. From the other side, we find the inter-
aretations of QP that refuse every kind of “metaphysical” assumptions {like
the Copenhagen, or standard, interpretation), most of which adopt more or
less explicitly a verificationist theory of truth and meaning:* this entails
that no meaning can be attributed to physical statements that cannot be
ested, even if they are syntactically correct, and that the truth value of a
tatement may change when changing the context in which the veritication
occurs. Now, the premises on which ontological realism is based are
cpistemologically untenable: indeed, this position underestimates the
‘undamental distinction between theoretical and observative terms in a
iheory, attributing “reality” to entities that are refined constructions of our
mind, which usually change with the evolution of research and are different
cven in different but empirically equivalent contexts.''™' On the other side,
verificationism collapses the pragmatic notion of epistemic accessibility
there, briefly, restability) with the semantic notion of truth. This collapse
;an be seen as harmless, or even desirable, from a physicists viewpoint. Yet,
it can be severely criticized,''” **' for example by noticing that the act of
verification tests the truth of the statement which is being verified, so that
the concept of truth is presupposed by the concept cf verification (it follows
ihat the metalinguistic concepts of truth and epistemic accessibility do not
coincide, but the latter presupposes the former). More important, the iden-
ufication of testability and truth constitutes the deep root of a number of
difficulties and paradoxes in QP. In particular, it engenders the problem of
nonobjectivity of quantum measurements.”*'' Furthermore, it may lead one
o ignore (or to deny explicitly) the basic difference between logical laws

“In some of his papers Bohr scems to accept explicitly a verilicationist position.**" ** Other
authors uccept verificationism together with some forms of actuality for the microobjects, as
Heisenberg.!'*" who asserts that a transition from the possible to the actual occurs during the
interaction of the physical object with the measuring device: the distinction  between
possibility and actuality is crucial in the modal interpretation forwarded by Van
Fraassen'™'. In any case. many authors consider “metaphysical™ the introduction of
theoretical terms denoting theoretical entities in the language of physics. This may lead to
radical consequences. as the reduction of microphysics to a theory of measurement, since
the physical propertics of a microscopical (hence theoretical) physical system are not
retained to be inherent to the object itsell. which should be ruled out when rigorously
speaking. but rather to the measurement process. Such a viewpoint limits in our opinion the
explanatory power and the fruitfulness ol physical theories. It is therefore important to note
that. according to some well-known analysis of scientific theories.*'™ ! theoretical terms
necessarily appear in the language of any physical theory which is not purely phenome-
nological and their introduction does not imply in principle any ontological engagement on
the “actual existence™ of the corresponding theoretical entities. so that it cannot be charged
with being “metaphysical.”
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{that should hold independently of a specific interpretation, rule our
inference processes, and provide « priori rationality criteria for physical
theories) and physical laws (the validity of which depends on the inter-
pretation); this occurs, for instance. in some quantum logical approaches
to QP.'** as witnessed by the paper itsell that started this kind of
approaches.'*'

Because of the above arguments, we retain that a way out of quantum
paradoxes cannot be found by means of elaborate physical models or
involved “physical” reasonings. at least as long as these are conceived
within the epistemological frameworks that we have just criticized. Thus.
one must decidedly aftford the task of working out a new epistemological
position. which can be applied to QP and allow him to escape the
dichotomy between ontological realism and verificationism. But this should
be done preserving some fundamental features of both these positions.
which one cannot give up without encountering serious difficulties. In par-
ticular, it is important to maintain the distinction between logical and
physical laws, which is inherent in the realistic approaches, but also to
preserve some operational features that characterize verificationism. We
offer SR in this paper as a general scheme attempting to fulfill all these
contrasting demands.

Basically (see Sec.2). SR consists in the construction of a formal
language L for physical theories which formalizes an observative language
of these (to be distinguished from the general language, the formalization
of which would be long and difficult and is not needed for our purposes.
see Remark 2.3). L is a first-order predicate calculus with monadic
predicates only. and the leaving of verificationism in favor of a more
“realistic™ viewpoint is realized by choosing a correspondence theory of
truth for L: to be precise. we endow L with a family of Tarskian interpreta-
tions.' and the labels of the family are interpreted on fluboratories, ie..
space-time domains in the actual world (these take the place of the possible
worlds that appear in standard Kripkean semantics). This implies that
all (atomic or complex) statements of L have. when interpreted, a truth
value. and that the logic of L is classical: hence. a SR approach to QP is

*We remind that the Tarskian theory of truth is modeled on an abstract set theory and is not
involved with ontological assumptions on the clements. or subsets, that appear in its models.
so that it can be considered onrologically neutral.>™ Intuitively. one can say that recognizing
that & sentence is true in a given semantic context does not require the acceptance of some
ontoelogically existing underlyving reality which is faithfully deseribed by the sentence itsell
On the other side. Tarski's theory is not semantically neutra
truth tand Talsity) which goes bevond veriliability tand falsiliability ). and it is obviously

LM ginee it ; oo .
. sinee 1t admits a notion ol

compatible with a realistic attitude. Thus. the choice of this theory of truth meets ous
demands above and justifies the name that we have chosen for our approach.
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:ssentially different from the approaches which assume that QP stands on
‘he adoption of a nonstandard logic,'*" as modern quantum logic (QL) or
historical Reichenbach’s' ™! three-valued logic. But a number of operational
requirements are maintained in SR: for instance, we assume that all
primitive predicates of L can be interpreted either on classes of physically
cquivalent preparations of a physical system (states), or on classes of
physically equivalent dichotomic registering devices (¢ffects), and that the
set of effects contains a subset of idealized effects (exact effects) which can
be identified with the set of all testable physical properties of the system. We
can thus classify as restable all atomic statements in L, in the sense that
their truth values either are known or can be tested, but not all complex
statements, since a test of the truth value of these is generally possible only
i all properties that appear in them are conjointly testable: the concepts of
testability and truth are thus distinguished in SR. Moreover, no ontological
status is attributed to the theoretical entities that appear in a physical
theory (which can be defined by means of suitable subsets of characterizing
properties''’).

As a consequence of the choice of a correspondence theory of
iruth, all testable properties of a physical object (1e.. an individual sample
of a given physical system obtained by means of an act of preparation
and possibly identified with it) can be attributed or not to the object
independently of the observations that one may decide to perform on the
system (we loosely say that a realism of properties 1s substituted to the
realism of entities that characterizes ontological realism). As a con-
sequence of our operational requirements, SR 1s a purely semantic
form of realism. since it is ontologically neutral: this means that it is
compatible with different philosophical positions (in particular, with
mstrumentalism or strict realism). hence with different ontologies, so that
we do not need to make a choice among these in order to work out our
general scheme.

It is apparent from our above description that the fundamental
assumptions of SR are not consistent with the standard interpretation of
QP, which is based. as we have seen. on the adoption of a verificationist
truth theory according to which a statement attributing two or more non-
compatible properties to a physical object is meaningless, hence has no
truth value. Therefore. the consistency of SR with the mathematical
apparatus and the observative content of QP (which we do not intend to
question at all) is not granted, and one must treat this point with care when
he attempts to provide a SR approach to QP. But an experienced reader
could now immediately classify an attempt of this kind as vain, quoting the
basic “no-go” Bell-Kochen—Specker (or Bell-KS'*” ') and Bell'*” *!
theorems. Indeed. these theorems ought to prove that QP necessarily is a
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contextual and nonlocal theory®: should this be true, it would entail that the
adoption of a verificationist (or, at least, contextual) truth theory is
unavoidable in QP, since it is imposed by results that are internal to the
theory rather than being an « priori choice, as in the canonical formulation
of QP. Thus, the adoption of a correspondence truth theory would be
inherently inconsistent with QP. and it would be impossible to adopt an
SR viewpoint in this theory.

The above objection is rather thwarting. Indeed, it is well known that
the contextuality of QP seems to introduce some mysterious conspiracy of
nature (in particular, with regard to marginal distributions of the values of
physical observables'”"). Furthermore, the occurrence of contextuality,
even in the case of compound quantum systems whose elements are far
apart {locality), sounds paradoxical and leaves in many physicists a feeling
of uneasiness, which is explicitly witnessed, for instance, by Sakurai.'**!

However, SR can cope successfully with this challenge. In order to
reach this goal the original version of SR.'" which applied to noncom-
pound physical systems only, must be suitably generalized and refined. The
basic ideas for this generalization have been sketched by one of us in a
series of disconnected papers.'®” We provide here the first integrated
discussion of this subject, also stating a number of new results that follow
from our present treatment.

The first idea (see Sec. 3) follows from noticing that it is arbitrary to
assume « priori that the partially ordered set of all testable properties is an
orthocomplemented lattice, as usual in CP and QP {we recall that the
poset of testable properties is represented by the lattice of orthogonal
projections in standard Hilbert space quantum theory, here brietly called
HSQT). Rather, one can assume that this poset can be suitably completed
so as to obtain a lattice, but at the possible expense of introducing theo-
retical properties that are not directly testable. This implies that a new
language L. must be introduced which contains predicates interpreted on
these properties (see Sec. 4). When considering the special cases of CP and
QP one finds that theoretical properties do not occur in CP, while they
appear in QP whenever compound physical systems are described, and we
identify them with the properties that are represented by one-dimensional

*Here coniextual means that the value of an observable belonging to a set of observables that
are measured on a physical systemy in a given state may depend on the choice of the set. so
that it cannot be thought of as prefixed: equivalently. there ure stutements attributing physi-
cal properties to a physical object which cannot be thought of as true or false independently
ol the choices of the observer. since their truth values depend on the set of measurements
that one decides (o perform. Nonlocal means that contextuality occurs even il properties are
measured that belong to different and spatially sepurated subsystems ol a given physical
system.
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yrojections associated to entangled states in HSQT (this unusual assump-
ion is physically justified in Remarks 3.2 and 3.3).

The second idea rests on a critical analysis of the concepts of com-
~atibility of physical properties (see Secs. 5 and 6) and of testability of
statements of L and L, (see Sec. 7). Indeed this analysis allows us to dis-
‘inguish between theoretical and empirical laws of a theory (see Sec. 8), and
‘o realize that, if one wants to be consistent with an operational viewpoint,
1 statement expressing an empirical physical law (which has in any case a
iruth value according to SR) cannot be asserted to be true (it could be
“alse) in physical contexts that the theory itself defines as not epistemically
iccessible. This remark is formalized by stating a new general principle
MGP principle) that limits the validity of empirical physical laws to the
set of laboratories in which the theory does not prohibit that one can get
mformation that confirms this validity.

By using the ideas sketched above in the special case of QP one can
mvalidate the proofs of the Bell-KS and Bell theorems.'® ™' This
mvalidation means that QP is not necessarily a contextual and nonlocal
theory, so that verificationism is not an obliged choice. We can thus
simultaneously conclude that SR is not inconsistent with QP and that it
allows one to avoid some crucial quantum paradoxes.

By adopting a SR approach to QP. one can find a number of inter-
esting results, For instance, one obtains that, contrary to a widespread
belief, the Bell inequalities do not provide a method for testing experimen-
tally whether QP or locality is valid. Indeed, a Bell inequality turns out to
be a theoretical formula that is not epistemically accessible. so that any
possible physical experiment actually tests something else (correlations
among properties of physical objects in accessible contexts), and obviously
vields the results predicted by QP."**' Moreover, the controversial role of
modern QL can be clearly specified. Indeed, QL can be obtained by using
the (theory dependent) pragmatic concept of testability in QP for selecting
suitable subsets of formulas of L, and restricting the logical order to this
subset'"*** (see also Remark 7.1). Thus, QL is not seen as a theory of
truth in competition with classical logic, but, rather, as a mathematical
structure that is embedded (in the sense of order) within L., and that
formalizes properties of the concept of testability in QP (note that the
nondistributive lattice of QL obviously is not a subalgebra of the Boolean
Lindenbaum-Tarski algebra of L.). Furthermore, QP proves to be an
incomplete theory in a well-defined technical sense (Sec. 9). Finally, some
new perspectives on the role of ideal filters in the quantum theory of
measurement and on Heisenberg’s uncertainty principle can be attained
(Secs. 10 and 11).

We would like to close this Introduction with some remarks.
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First, we note that the SR approach to QP can be considered
orthodox from various viewpoints. In particular, it admits HSQT as a
model and it embodies the standard minimal interpretation of QP.*!! In
addition, it shows that the canonical interpretation of states as “amounts
of information” (Sec. 5) is not trivial nor superficial, as maintained by some
authors'*”’ (our concept of information does not take into account the
single physicist’s contingent information, so that it does not introduce any
kind of “subjectivity” in physics). But if one wants to place the SR
approach to QP in the context of recent research on the foundations of
QP, the results quoted above show that he can collocate it among the
theories that retain that QP is incomplete. This has some important conse-
quences in the quantum theory of measurement according to SR (on which
we give some hints only in this paper). In particular, the objectification
problem.'*'’ which is typical of the approaches that generalize or modify
QP but maintain a verificationist theory of truth, like the theory of positive
operator valued measures. does not occur. However, the SR approach is
not a conventional hidden variables theory for QP, since truth values are
not bound in it by the constraints that are usually imposed on hidden
variables,' ="' but only by the weaker constraints established by MGP
{see Remark 8.2).

Second. we observe that the SR approach to QP differs from the
current attempts of getting rid of nonlocality by limiting the justified use of
counterfactual definiteness.'*™' since it does not restrict the set of valid
inferences in the language of QP for reasons depending on the laws of QP
itself, thus maintaining a distinction between logical and physical levels*"'
which avoids a number of conceptual and epistemological troubles.**”

Finally. we notice that we have provided only sample references on the
topics treated in this paper, the literature on the subject being so wide that
it 1s quite impossible to cover it within the limited space of an article’s
bibliography.

2. THE LANGUAGE L

As we have anticipated in the Introduction, we will take as a starting
point here the approach proposed by one of us in a previous paper,''’
which will be briefly mentioned as G.91 in the following. This approach
will be refined and modified here. We therefore dedicate this section to
present a formalized language L that constitutes our basic tool in the
following. Our treatment will be intuitive and informal; a more rigorous
treatment can be carried out following the methods adopted in the paper
quoted above. In particular, the symbols used in our formal languages will
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often be used also as metalinguistic variables running on the symbols them-
selves, which favors understandability at the expense of exactness.

The language L is a classical first-order predicate calculus extended by
means of a family of statistical quantifiers, it 1s endowed with a Tarskian
truth theory, and by means of it all statements regarding testable physical
properties of samples of a given physical system can be expressed (we use
the term physical svstem here as a synonym of phyvsical entity)."*"*"

The construction of L can be schematized as follows.

(1) Alphaber of L. The set X of individual variables; two disjoint
sets " and .# of monadic predicates. called (nouns of') states and (nouns
of ) effects. respectively: standard logical connectives =1, A, v. =, e«
and quantifiers 3, V2 a family {7}, o, of statisticul quantifiers {we intro-
duce here a simplified family for the sake of brevity): the auxiliary symbols
(.)and /.

(i) Formation rules. The set ¥ of all well-formed formulas (wffs) of
L is obtained by means of standard (recursive) formation rules, together
with the following rule regarding statistical quantifiers:

let veX A(x) B(x)e¥. re[0. 1], then (@ x)NA(x)/B{x))e¥V

(iii)  Semantics. The following sets and objects are introduced in L:
the set [ of laboratories; for every i€ I, the (finite) domain D, of i: for every
iel, the set 2,=14a,: X>— D} of the interpretations of the (individual)
variables; for every i€ I, g, € X, and x € X, the extension o,(~x) e D; of x; for
every iel and Se ./, the extension p(S)= D, of S: for every ie [ and Fe #
the extension p{(F)=D, of F: the set [ of all statisticallv relecant
laboratories. Then, a Tarskian truth theory, suitably extended in such a
way as to apply to statistical wifs, is assumed on L (see G.91). We do not
enter here in the details of this theory, and consider only the essentials of
it. Thus, let iel, let ¢,€X,, and let xe X, Sev, F. F|, F.,..F eZ.
Then the atomic wif' S(x) (respectively, F(x}) is said to be true in 7 iff
a{x)epdS) (respectively, g(x) € p( F)): the molecular wif —F(x) is said to
be true in J ifl g, (x)eD,\p,(F). the molecular wif F {x) A Fi(x) A -
A F (x) is said to be true in i iff ax)epdF ) npdF.)o - np(F,L).
Furthermore, for every finite set I" let n(1") denote the number of elements
in I. We say that the quantified statistical wifs {7z, x)(F(x)/S(x}) and (7 Xx)
((F(x) A Fo(x) A -+ A F (x))/S(x)) are true in 7/ ifl. respectively.
nip(FynpdSNH=r-n(pi(S) and nlp(Fnp(F)n - np(F)n
pi{SH =r-n(p(SH).

It follows from the above assumptions that the connectives 71, A, Vv,
—. < and the quantifiers 3, V are interpreted as not, and, or. if...then, iff
and exists, for every, respectively. as usual in classical logic; furthermore, a
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statistical quantifier in a wff of the form (m.x)}(A(x)/B(x)) 1s intuitively
interpreted as stating that the ratio between the number of elements that
make A(x) and B(x) true and the number of elements that make B(x) true
is r whenever the latter number is not zero. It also follows that, if an inter-
pretation o, of the variables is given in the laboratory i (we assume in the
following that o, i1s surjective, so that every x € X can be considered in 7 as
a noun of a physical object and every physical object in i has at least one
noun), every wif of L has a truth value in /.

{iv) Interpretation. States and effects are interpreted as equivalence
classes of the sets /T and # of all preparing devices and dichotomic regis-
tering devices associated to a given physical system ‘B3, respectively, as in
Ludwig."**' We do not specify for the moment the equivalence relations on
[T and # underlying this interpretation, but assume that the interpretations
of states and effects are bijective, ie., to every equivalence class of 77
(respectively, .#) corresponds one and only one state (respectively, effect).
Furthermore, every laboratory in [/ is interpreted as a space-time region in
the actual world. For every ie/, the set D, is interpreted as the set of all
individual samples of *P prepared in / (possibly at different times), or p/ysi-
cal objects, hence for every ¢, € X; and x € X, ¢(x) i1s a physical object in
D; (in principle, a physical object can be identified with the act of
preparing it in order to avoid any ontological commitment, but we do not
insist on this procedure here for the sake of simplicity); the extension p(S)
of the state S in 7/ is interpreted as the set of all physical objects that are
actually prepared in i by means of devices belonging to the equivalence
class S (this extension can be identified with the ensemble of physical
objects described by the state S according to the statistical interpretation of
QP"*"); the extension p{F) of the effect F is interpreted as the set of all
physical objects in i which would pass the test whenever tested with any
device belonging to the equivalence class F immediately alter their prepara-
tion (note that our definitions here guarantee that p(S) and p,(F) do not
depend on the choice of a specific instant in the time domain associated to
i: indeed, evolution in time is outside the scopes of the present paper).
Finally. [ is interpreted as the set of laboratories where a large number of
physical objects i1s produced for any desired state and/or effect (the time
interval associated to a given /e[ can extend in the future, so that there is
no finite limit for the number of physical objects that can be produced in
i in this case), and all preparations and registrations are performed with
the caution required by the physical theory that is adopted (we will refer
from now on to [ rather than to I: in particular, this will be made when
universally quantifying on laboratories, as in the expression “for every
laboratory ™).
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(v} Preorder relations. By referring to [, three preorder relations
can be defined on ¥, as follows.

(v.1} Logical preorder <:

for every A\, Ase W, A, cA, iff for every ief, A, is true for every

interpretation o; such that A, is true.

The preorder < canonically induces on ¥ a logical equivalence
relation =, as follows.

Forevery A|, A,e?, A=A, iff A, <A, and A, cA,.

Furthermore, < canonically induces a /logical partial order relation on
¥/=, which we still denote by <. The theory of truth adopted on L
implies that (¥/=, <) is a Boolean lattice (Lindenbaum-Tarski algebra
of L).

Finally. the preorder < also induces logical preorder and equivalence
relations on %, as follows.

Forevery F|, F.e #, F, c F, iff F (x) € F.(x) for some (equivalently,

all) xe X
(hence, F, c F, iff for every ie l, p,(F,) < pi(F.)).

Forevery F|, F.eZ, F,=F, it F,cF,and F,cF,.

(v.2)  Statisticul preorder /_:

for every A,. A,e¥. A LA, iff for every Se% and iel

(7, x)(A,/S(x)) true in / implies (7., X)(A,/S(x)) true in i, with r, <r,.

The preorder £ canonically induces on ¥ a statistical equivalence
relation =, as follows,

Forevery A\, A.e ¥, A, ~A,iff 4, LA, and A, LA .

Furthermore, £ canonically induces a statistical partial order relation
on ¥/~ which we still denote by ~.

Finally, the preorder / also induces statistical preorder and equiv-
alence relations on %, as follows.

Forevery F|, F.e #, F, LF,iff F (x)/ F.(x) for some (equivalently,

all) xe X
(hence, F,,F, iff for every iel and Se¥., n(p(S)npi(F N<
n(pi(SYnp(F)).

Forevery F|,F.e# F, ~F,iff F, LF,and F, . F,.

(v.3) Deterministic preorder <:

for every A, A, e W. A, <A, iff for every Se ./, (Vx)(S(x)— A,) is

true in every ie I whenever (Vx)(S(x)— A,) is true in every iefl

The preorder < canonically induces on ¥ a deterministic equivalence
relation x, as follows.

For every A|, A-e ¥, A, xA,iff A, <A, and A.<A,.

Furthermore, < canonically induces a deterministic partial order
relation on ¥/=x, which we still denote by <.



1132 Garola and Solombrino

Finally. the preorder < also induces dererministic preorder and
equivalence relations on #. as follows.

Forevery F\. F.e 7. F, <F.ifl F (x) < F.(x) for some (equivalently.

all) xe X
(hence F, <F. ifl for every Se ./, p(S)<pi(F,) in every ief whenever
pAS)S pdF ) in every iel).

Forevery F\. F.e#. F 2 F. i F,<F, and F.<F,.

The intuitive meaning of the logical, statistical. and deterministic
preorder and equivalence easily follows from the interpretations of connec-
tives and quantifiers provided above. Furthermore, we get:

for every A.A,eW. A cA, implies A, LA, implies A, <A,.
while the converse implications do not generally hold. Hence.

for every A;.A.e¥. A, =A, implies A, ~A, implies A, xA,.
but A; x A, doesnotimply A, >~ A..nor this implies A, = A,. Analogously.

for every F\.F.e #, F,cF, implies F, L F, implies F, <F..
but the converse implications do not generally hold. so that

for every F,.F.eZ. F, =F, implies F ~F, implies F, xF-.
but F, x F, does not imply F, = F,, nor this implies F, =F..

(vi}  Basic derived definitions.  For every F e 7, we define a certainly
ves domain /{F) and a certainly no domain (F), as follows:

Y(F)=1{Se Y |foreveryiel p(S) < piF))
SUF1={Se Y |loreveryiel p(S)np(F)=&!
Hence. the mappings -/ and ./ will be defined as follows:
S FeF — YIF) e V)
Y FeF — S(Fre.2(Y)

(it is noteworthy that we immediately obtain from the definition of the
order < on # that for every F,. F.oe#. F, <F, ifl %(F,)<Y%(F.):
hence. for every F\, F.e 7, F, x F, iff Y(F,)= Y(F:).

Furthermore, for every Se ' we define a certainly true domain 7, of
Sin .F and a certainiy fulse domain 7 of S in #, as lollows:

foreveryiel. p(S)< p(F))
Fi=1{Fe.# |forevery iel pilStnp(Fr=!
Remark 2.1, Whenever Se ¢ and the interpretation o, is such that

S(x) is true in the laboratory i, we briefly say in the following that the
physical object x is in the stute S in i, leaving implicit the reference to the
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mterpretation o; and adopting a terminology that is standard in physics (in
many cases the reference to / will also be understood). We note that the
(finite) set pi(S) of all physical objects in the state S in i is defined in such
a way that all its elements are known independently of any registration
procedure.

Remark 2.2, For every effect F. the extension p,(F) in the laboratory
i 1s unique, which implies that all registering devices in the equivalence
class on which F is intensionally interpreted must select the same physical
objects. Furthermore. the (finite) set p(F) is defined in such a way that one
does not know «a priori all its elements. and this knowledge can be attained
only by means of registration procedures that possibly destroy the set itself.
Finally. pi(.7) generally is a proper subset of the power set .#(D;), which
means that there are subsets of physical objects in i which are not exten-
sions of some F e # (hence, neither (p(#). <) nor the Boolean sublattice
{<p(F)>. <)ol (.2(D;) <)generated by p (.7 ) are generally isomorphic
to the Boolean lattice (#(D,), <)).

h

Remark 2.3, We anticipate that the language L can be considered a
sublanguage of the higher-order language L* that should be needed in
order to express formally all physical laws (L* must admit, in particular,
quantification on predicative variables,'”*' but we will not discuss it here.
since its construction would be long and difficult), and we briefly say that
L is an observative sublanguage of L*.'*' However, it must be noted that
not all statements in L are necessarily observative, as we will see in Sec. 8.

3. STATES AND EFFECTS

We introduce in this section some assumptions on states and effects
that characterize a class of physical theories that contains both CP and
QP. In other words. we introduce a general scheme for physical theories
that admits CP and QP (and, in particular, HSQT) as models. Our
assumptions generalize the conditions introduced in G.91, which will be
assumed here to refer to the case of noncompound systems only, while our
present generalization overcomes this restriction.

We begin with the following axioms (see G.91. conditions SB, PR, and
CE).

AX 1. (i) Let S,.S.ev . II. for every iefl and Fe .7, n(pi(S,)n
PUEN) -l p S =n(piS)npF))-n(pS))). then, S, =8S,.

(i) For every ief s, ,pi(S)=D, and for every S,.S.e¥.
S, #8S- implies p(S) )N piS)y=.
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AX 2. Forevery F|,F.eZ, F,=F.iff F,=F,iff F, ~F,.

AX 3. For every Fe 7, an F'€.# exists such that, for every ie/,
pilF')=D\pi(F).

Let us comment briefly on these axioms. AX | and AX 2 implicitly
define the equivalence classes of preparing and registering devices on which
states and effects are intensionally interpreted, respectively. It is then worth
noticing that our implicit definitions of states and effects here match the
explicit definitions provided in the Ludwig approach,'**' and that the set #
of registering devices introduced here can be considered a proper subset of
the broader set of the questions introduced in the Piron approach.'**' In
addition, AX 2 also implies that the relations = and ~ defined on .# are
partial orders, hence we get in particular, by setting # (x)={F(x)|Fe.Z|
and [.Z (x)]={[A(x)] - |A(x)e F (x)}, that ([F(x)]. =), (F(x), <),
(F. <) are order-isomorphic posets. Furthermore, AX 1(ii) implies that in
every laboratory / the set of all nonvoid extensions of states is a partition
on D;, which is consistent with our interpretation of states in Sec. 2 (in
every laboratory, different states are realized by different preparations.
which prepare different, nonintersecting sets of physical objects). Finally,
AX 3 states that every F € . # has a complement F' €.#, which allows us to
interpret F' as the class of dichotomic devices obtained by exchanging the
yes and no answers in every device of the class on which F is interpreted.

Now, let us refer to the definition of certainly true domain % of a
state S in .7 supplied at the end of Sec. 2, and for every ie [ and Se . let
us introduce the following set:

pi(S)= ﬂ pilF)
Fe 7y
Then. one obviously gets:
(i} for every Se. and i€/, pAS)EpAS),

(ii) for every Se.v” and Fe Z, if, for every ief, p,(S)< p,(F), then,
for every iel pilS) s pi(F).

Furthermore, one can define the subset ¥}, €. of pure states as follows:
Yp=14{Se Y |forevery S* € ¥, pi(S*) < p(S) in every i € [ implies S* =S}

Of course, ¥, will be identified with the set of pure states in the
standard approaches to CP and QP. By referring to the set of pure states.
we can introduce the following axiom (see G.91, condition SY).

AX 4. Foreveryiefand S,, S.e€ %,

n(/)i(sl)f\ﬁi(sg))'11(;);(53))In(Pi(Sg)f\ﬁi(s|))'ﬂ(,ﬂi(sl))
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By using the above definitions and axioms we can define a preclusivity
(nonreflexive and symmetric) relation 1L on %}, as follows:

for every S,.S,e %, S, ILS, iff for every iefl, p(S,)np(S.)=T

(equivalently, pi(S.) N p(S))=J).

The relation 1L defined above can be used in order to introduce a weak
orthocomplementation L on the power set .2(.Y,,) by setting:

L:He 2(4.)—H"=1{8e ¥, |forevery S*e H, S 1L S*}

Furthermore, | can be used in order to define a closure operation on
2(45), as follows:

L1:He2(4%)— (HY e P(¥)

We say that a subset He .2(.%.) is closed whenever H=H"". Then,
it follows from known general mathematical results (see G.91, Sec. 2.3) that
the set ¥ of all closed subsets of %, partially ordered by set inclusion <,
is a complete lattice (¥, =), with minimal element ¢¥ and maximal
element ¥, orthocomplemented by the restriction of L to & itself. There-
fore, we introduce the new symbols () and |J in order to denote meet and
join in (¥, <), respectively, in the following.

By using the above definitions and the mappings ., % introduced at
the end of Sec. 2, we can select a subset %, £.% that is basic both in CP
and in QP (see G.91, condition OE):

F.={FeZ|S(F)e L SK(F)=Y(F)

The subset .7, of .# will be called the set of (nouns of) exacr effects
and its elements will be interpreted as equivalence classes of idealized
dichotomic registering devices, which exactly test whether the value of a
given physical observable lies in a given Borel subset of the real line or,
briefly, which exactly test whether a given testable physical property holds.
Therefore, we assume that % can be bijectively mapped on the set of all
testable physical properties, and the two sets will be identified in the
following.

We can now state a further axiom (see G.91, condition EM).

AX 5. Forevery F\, F.eZ, Y(F )< %(F,) implies F, cF,.

It follows from AX 5 (see Sec.2(vi)) that F, <F, implies F, cF,;
hence, we get (see Sec. 2(v)):

for every F\,F-e.Z, F,<F,iff F, L F.ift F, cF,,

for every F,,F.e#, F, xF, iff F,~F, iff F,=F, iff F,=F,
(the last equivalence follows by using AX 2).
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Furthermore, the restriction of ¥ to .7 (still denoted by ./, by abuse
of language),

Y. FeF — Y (Fle ¥,

maps bijectively .7, onto /(.#.). and preserves the order. We assume that
“{.7.) has the following [urther property.

AX 6. The poset (/7). €)is dense in (¥, &)

(the word dense means here that every ae ¥ is the greatest lower bound
of at least one subset of (%) and the least upper bound of at least one
subset of £(.7.)).

It follows from AX 6 that . is a minimal embedding of # into a
complete lattice and that it coincides (up to lattice isomorphisms) with the
normal embedding of 7, into the complete lattice of all its closed ideals.**"!
Furthermore, let ae.¥. By setting a'=!be/(Z}|a<b), and a'=
fbe /(. Z.)|b<al. we also get (ibidem):

a= (} b= b

b= h=a-

Taking into account the lattice ( ¢, € ), the set .7, will be extended by
means of a set 7, of monadic predicates such that . n %, = ¢ and that
the mapping %, can be extended to .7, U ¥, so as to map bijectively this set
onto ¢ (by abuse of language. we still denote by ¢ the extended mapping
in the following). Thus. we are endowed with a new set of predicates
é.=7.u 7, which contains a subset 7, of predicates that are not inter-
preted as equivalence classes of idealized dichotomic registering devices.
We say that every predicate E €4, still denotes a physical property of a
given physical system, but this property is restable iff E € 7., while it is non-
testable (or theoretical) Ul E € &, (of course 7, can be void, as it occurs, for
mstance, in CP, see Remark 3.2).

The set &, can be canonically ordered by considering the bijective
mapping ¥ which maps &, onto the lattice (¥, <). The restriction to .#,
of the order induced on &, by % obviously coincides with the order <
{which however also coincides on .7, with <= and £ because of AX 5),
hence we denote this order by < in the following. Thus, (&,.. <) is a com-
plete orthocomplemented lattice {by abuse of language, we still denote by
1. N. and {J orthocomplementation, meet, and join, respectively, in
(4.. <)) which is such that .#, is dense in (., <), so that:

e

forevery Eedé..E= N F= U F.

) N B | S R |

e
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It is important to observe that, for every Fe Z,. F* =F' € #, because
of AX 3 and AX 5 (indeed, F' is such that ¥(F')=.%(F)=.%(F") and
AF ) =Y(F)=4%(F*"), hence F' € #, and F' =F", being .%, bijective).

Furthermore, it can be proved that there are mathematical properties
ras atomicity or orthomodularity) that, whenever assumed on (7, <),
so hold on (4., <)."** This suggests to introduce the following further
axiom on (¥, < ).

AX 7. The lattice (&, <) is atomic, and {{S}|Se %} is the set of
its atoms.

The atomicity of (¥, ) stated by Axiom 7 implies the atomicity of
(4., <), being ¢ bijective and order preserving. Moreover, we can
distinguish between first tvpe and second type pure states by introducing,
for every S e ¥,. the support Eq= %", "({S}) of S {obviously, Ey is an atom
of (&.. <) because of AX 7}, and by setting:

for every Se ¥, S is a first type state iff Eg €.7,. a second type state

i E;e ..

Finally. we state the following further axiom (which assures. in
particular, that for every first type state S, Eg is the smallest effect in .#
whose extension contains the extension of S in every laboratory).

AX 8. For every S€ %, S is a first type state iff an effect F e .#
exists such that, for every ief, p,(S)=p(Fq). and Fg=Es="({S}) in
this case.

We have thus concluded the presentation of our axioms on states and
effects. As we have already seen at the beginning of this section, they
generalize the axioms stated in G.91, where an extensive discussion was
made on the basis of the interpretation of L reported in Sec. 2. Therefore,
we will limit ourselves here to introducing a number of remarks aimed to
point out the main novelties in our generalized approach.

Remuark 3.1. The set of axioms in this section is not complete in
several senses. For instance, it does not allow us to distinguish between CP
and QP. Furthermore, it dispenses from mixed states from the very begin-
ning. (see in particular AX 4), while these could actually be recovered in
our framework {see G.91. conditions FI and MS, etc.), but at the expense
of unnecessary complication for our purposes in this paper. However, it is
important to observe that the poset of all positive trace one operators on
the Hilbert space of a physical system in HSQT is a model of (£, <).

We also notice that our set of axioms implies that (8., <) is a com-
plete, orthocomplemented, atomic lattice, which admits as a model the
lattice of all orthogonal projections on the Hilbert space of the system in
HSQT (hence we will use the symbols (), |J, L in what follows even in
order to denote meet, join, and orthocomplementation, respectively. in this

N25 26922
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lattice). Then, one may wonder on the links between (4., <) and the lattices
that appear in several known approaches to QP."** 4347 byt a detailed
discussion of this topic would be rather lengthy. Therefore. we limit our-
selves here to refer to G.91 and to some carlier papers.'* *'’ and to identify
(.. <) in the case of noncompound quantum systems (up to lattice
isomorphisms) with the Mackey"' lattice of questions, or with the
Jauch'*”" and Piron"*" lattice of propositions. Because of this identification.
we can also assume that (&, <) is distributive in classical physics (CP).
weakly modular. and satisfying the covering law in QP.

Finally, we stress that the elements of the set .7Z < &, of all exact effects
are interpreted on idealized dichotomic devices. In some cases (e.g.
observables with continuous spectra) it may be impossible in principle to
construct a device that realizes an exact effect. This can be intuitively
explained in terms of ¢fficiency of the devices'™': indeed. if a device must
be characterized by a continuous efficiency, it can never register exactly
whether the value of a given observable lies within a prefixed interval 4 of
the continuous part of the spectrum.

Remark 3.2, Let us consider the main novelty in this section. that is.
the mtroduction of the set ¥, of theoretical properties. It is apparent that.
whenever %/, is void. all pure states are first type states, and our axioms
immediately reduce to axioms already forwarded in G.91. Therefore, it
seems important to provide an intuitive physical justification for the intro-
duction of . in the general case. To this end let us observe that the
standard scheme for an clementary experiment on a physical system con-
sists in considering a physical object x in a state S (that is, prepared by
means of a device in the equivalence class denoted by S) in a laboratory
i and measuring whether x has a given property F . Usually. the choice of
F, prohibits in QP that another property F. be also measured if F, is not
compatible with F,. Furthermore. repeated measurements of this kind on
a set of identically prepared physical objects can be performed in order to
obtain statistical frequencies to be compared with predicted probabilities.

Whenever a set F\, F...., F, of compatible properties is considered. a
different kind of experiments can be conceived. Indeed, one can prepare
sets of physical objects in the state S and test the (perfect or statistical}
correlations existing among the properties F,, F.....F, by means of
repeated measurements (a particular case that interests us here is provided
by a physical system x composed of n subsystems. each property F; refer-
ring to a different subsystem x; of x}). Our point is that this kind ol
experiments actually tests a (second order. n-adic) property G of F,.
F..... F,. or correlation property. not a property of an individual sample x
of the given system. Expressing a correlation property either requires the
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snlargement of L by means of second-order predicates, or the use of quan-
:ified wifs of L:; in any case, it cannot be stated by means of an atomic
{atement of L (note that the attribution of a second-order property to a
physical object x would violate a syntactical rule in type theory). Now,
mly a correlation property can be used in HSQT in order to characterize
in entangled state S of a compound physical system. distinguishing it from
1 mixed state.'*”’ Hence, we cannot associate a testable physical property of
the first order (interpreted as an equivalence class of idealized dichotomic
Jlevices) to S. But S is associated to a (one-dimensional) projection in HSQT,
vhich represents the physical first order property Eg according to the
standard interpretation of QP. Our arguments then suggest that E; must be
considered a theoretical, not a testable property.

The above discussion provides a physical justification for the introduc-
tion of theoretical properties in our approach. Of course, one expects that
10 theoretical property appears in CP, or, equivalently, that 7, = &¥ in this
theory. even if compound physical systems are considered.

Remark 3.3, The impossibility of associating (first-order) testable
properties to second type states of a compound auantum physical system
which is made up of separare quantum subsystems has already been
recognized by Aerts'™™” (we observe that Aerts deduces it as a theorem
following from a set of axioms regarding questions, while it is assumed to
be a definition of second type states in our context). But Aerts concludes
that this proves the nonseparability of systems resulting from the composi-
tion of different quantum systems (which are described by tensor products
m HSQT). On the contrary, we explicitly admit, as we have seen in
Remark 3.2, that (i) second type states are associated to theoretical proper-
ties, hence to projections in HSQT that do not represent testable physical
properties, and that (ii) the correlations between properties of subsystems
of a given physical system (that occur even in CP) are second-order
properties that cannot be represented by projections in HSQT. This
prevents us'*” from accepting quantum nonseparability in the sense estab-
lished by the Bell theorem (according to which the correlations themselves
depend on what is observed. differently from classical correlations, which
are prefixed in a given state of the system and do not depend on the
observer).

It is interesting to note that our above point (i) has some further
relevant consequences. In particular, not all projections that are strictly
contained in a projection that appears in the spectral decomposition of a
Hermitian operator which represents a physical observable necessarily
correspond to physical apparatuses in the case of compound systems,
which implies that a complete observation can be impossible. In addition,
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if we still want to interpret states as equivalence classes of preparations, as
we have done in Sec. 2 and intend to maintain in the following for obvious
physical reasons, we must accept that a second type (pure) state S cannot
be produced by means of standard textbook procedures, that is, by per-
forming an ideal measurement of a suitable observable. Indeed, should this
procedure exist, the ideal measurement would characterize an equivalence
class Eg € % of devices that is the support of the state S, which contradicts
our assumption that S is a second type state.

referring to Remark 2.2, we note explicitly that, in every laboratory /el
the Boolean lattice ({p;(.#.)>. <) generated by all extensions in / of exact
effects (which obviously is a sublattice of (.2(D,), €)) is not necessarily
isomorphic to the lattice (7, <), even if < and < coincide on .7.; we
only expect that (#., <) can be canonically embedded into ({p(#.)>, <)
preserving the order. In particular. we have, for every iel and F.
F,.F.eZ,

Remark 3.4, Let us consider the case 7, = (¥, hence & . =.%. By

/)i(Fl)z Dl\(,l).(F))
/’i(Fl ﬂ F:)El)i(FHﬁ/’:(F:)-
pilF Ny UpdFaysp(F U Fa)

4. THE LANGUAGE L,

Making reference to Secs. 2 and 3. we now convene that the set &,
is used in order to construct a new language L.. To be precise, L, is
obtained by using the same symbols and rules introduced in Sec. 2 when
constructing L., with the exception of the set .#. which is substituted by
.= 7.0 7. The set of all wifs of L. will be denoted by ¥,.

It is apparent that our new language reduces to a sublanguage of L
whenever 7, = ¢J. On the contrary, L, is not a sublanguage of L whenever
7. # . In the latter case the problem arises of the truth values to be
attributed to the wifs of L. since the extensions of the theoretical proper-
ties in a laboratory i e cannot be interpreted operationally. Therefore, we
firstly agree that every predicate Ee Z has in every laboratory ie/l the
same extension attributed to it in the semantics of L. Furthermore, we
attribute to every E € 7. in every laboratory i e [, a conventional extension
p{E), which satisfies the following conditions:

(1) for every Se¥ and Ee%.. Se4(E) ifl. for every iel
/)g(S)E/);(E):



semantic Realism in Classical and Quantum Physics 1141

(i) for every iel and Ee%. U,., ... plFISp(E)c
ﬂr i Aol | pilF);
(iii) for every iefand E€%,., p(E*)=D,\p{E).

The above conditions can be justified as follows. First, . associates a
closed) subset of states to every E € &, which coincides with the certainly-
ves domain of E whenever E e %, so that condition (1) can be regarded as
i natural extension to theoretical properties of an attribute of testable
nroperties. Second, condition (ii) obviously follows from the expressions of
i< as meet or join of elements of % provided in Sec. 3. Third, condition (iii}
:xpresses the requirement that the interpretation of F* as the negation of
. which follows for every F € .Z from the identification of F' with F’ in
Sec. 3, can be extended to every Ee€é,.

We stress that conditions (i), (i1) and (iil) may be insufficient to deter-
mine uniquely the extension p(E) in a laboratory i/ of the theoretical
property E: it follows that p{E) is assigned with some degree of arbi-
trariness. However, the above procedures allow us to assign a conventional
:xtension to every predicate of L., hence a conventional truth value will be
attributed to every wit of L. by adopting a Tarskian truth theory, as we
have done in L.

The attribution of a truth value to every wif of L, allows us to intro-
duce a logical preorder relation < on ¥, a logical equivalence relation =
on ¥, alogical order < on ¥,/=, and a logical order < on é,. by means
of the same definitions adopted at the end of Sec. 2. with ¥, in place of ¥
and &, in place of .#. Similarly, we define a statistical preorder relation /.
on ¥, a statistical equivalence relation ~ on ¥,. a statistical order / on
¥ /~, and a statistical order £~ on §,. Finally, we define a deterministic
preorder relation < on ¥, a deterministic equivalence relation > on ¥,
a deterministic order < on ¥_/x, and a deterministic order < on &,.

The restrictions of the orders =, ., < defined on &, to # can be
identified with the orders denoted by the same symbols in Sec. 3, which
coincide because of Ax 5. When considering &., we obtain from AX 5,
AX 6, and condition (ii) that for every E,, E, €é&., 4(E,) = A(E,) implies
E, = E., so that we get:

for every E,.E-€é. . E, <E. Mt E, LE,Iiff E, cE-,
hence,

for every E|.E.€é., E, xE,iff E, ~E, iff E, =E, iff E, =E..

Finally, let us prove the following propositions.

P 4.1. Let E,. Es€é.. Then (E, ") E.0x) X E{(x) A Ea(x).

Proof. Let us show that (E, () E.Nx) <E;(x) A Ex(x). Indeed, let
Se v, and let the wif (Vx)(S(x)—- (E, ) E;)(x)) be true in every iel It
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follows that Se “(E, N E.) (if E, N E.e%.. use condition (i)). hence
Se #(E,) and Se ¥(E.). This implies that, for every iel, p(S)<s p(E,
and pi(S)< pi(E.) (if E, and/or E, belong to %,. use again condition (i)).
that is, pi(SY< p(E ) np E.). Because of the truth theory adopted in L.
this means that the wil (Vx)(S(x) = (E,(x) A E+(x))) is true in every i€ /.
which proves our statement.

The inequality E(x)} A Ex(x)<(E, ) E.)(x) can be proved by
reversing the above arguments. O

P 42 Let xeX. A{x). B(x)e .. E,. E,, €é,. and let A(x) = B(x),
A(x)x E (x). B(x)x Ey(x). Then, E,=E,,.

Proof. Since =z is an equivalence relation. it follows [rom our
assumptions that E . (x)x Ey(x) hence ‘A(E,)=%(Ey). which implies
E,=E,. sothat E,=E,. O

Remark 4.1, We have seen in Sec. 3 that all elements of &, are nouns
of physical properties, so that we briefly call them properties in this paper,
carefully distinguishing between restuble properties (the elements of .%,) and
theoretical properties (the elements of ). In addition. whenever E € &, and
the interpretation o; makes E(x) true in the laboratory 7, we say that g, is
such that the (testuble or theoretical} property E is true in i for the physical
object x, or, briefly, that x has the property E in i, leaving implicit the
reference to g,. Whenever E€é,. Se ./ and (n,x)(E(x)/S(x)) is true in a
laboratory i. we say that the physical ohjects in the state S have the property E
with frequency v in i. Whenever E;, E.....E, €4., Se ¥, and (7, x)((E (x) A
Eo(x) A --- A E(x))/S(x)) is true in a laboratory i, we say that the
physical objects in the state S have the properties E,, Es..,E. with
frequency roin I

5. SEMANTIC COMPATIBILITY (CONSISTENCY)

Let us note that states and effects appear as (first-order. monadic)
predicates in our approach, but there are relevant semantic differences
(both intensional and extensional) between these two kinds of predicates.
In particular (see AX 1 and AX 2 in Sec. 3). no physical object in a
laboratory i can belong to the extensions of two different states {let they be
pure states or not), while a physical object usually belongs to the extension
of a number of effects (which can be infinite). Hence, different states never
can be attributed to a given physical object. while the possibility that a pair
E,. E, of diflerent physical properties be conjointly attributed to a given
physical object depends on the physical theory .# that one is considering.
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There are, however. some important links between states and proper-
iics that follow from the axioms stated in Sec. 3 and from the conventions
m p, established in Sec. 4. More specifically, we have associated in Sec. 3
1support E € 4, to every S € ¥/, which is the physical property with minimal
oxtension in (&.. <) that is true. in every laboratory ie [, for every xe X
such that S(x) 1s true {the minimality follows from the coincidence of the
orders < and < on 4. and must not be confused with the property stated
Sy AX 8 m Sec. 3). Furthermore, the certainly true domain of S in &,

bs=1E€é.|Ex<E!

‘equivalently, &= | Eed,| for every ie . p(S)< p{E)} ). and the certainly
iulse domain of S in &,

ss=1E€ed |E' eéyl
(equivalently, 4! ={Eeé. JE<E!}, or &l =1Eeé| for every iel
pd{S)nplE)=f}) are the sets of all properties that are true or false,
respectively, in every laboratory ie [ for every physical object in the state
Se ¥, It is apparent that both Eg and & are natural choices in order to
characterize S. The characterization of any S e ./, by means of Eg translates
in our context the choice made by Piron,"** but it is important to note
explicitly that this does not mean that S can be identified with E; from a
semantic viewpoint, the extensions pi(S) and p,(Eg) in a laboratory i being
generally different (see Remark 5.1). The characterization of S by means of
& allows us to recover in our context the standard conception ol pure
states as maximal “amounts of information” in QP: this provides a new
interpretation of pure states. which adjoins to our previous interpretation
as equivalence classes of preparations in Sec. 2.

By using the above definitions. a (theory dependent) binary relation C
can be introduced on the set ¥, which defines the semantic compatibility,
or consistency, of states (elsewhere'™' C was simply called compuaribility
relation; the new name is needed in our present broadened framework). To
be precise. we put:

for every §,.S, € %, §,CS,ifl &5, nE =T =64 Nés,.

Then, intuitively, we can say that S; and S. are in the relation C iff
no contradiction occurs between the information embodied in S, and the
information embodied in S..

The relation C proves to be an accessibility relation (it is reflexive and
symmetric but not, generally, transitive). and the following statement holds
for every S,. S, e %'
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S, CS, iff for every iel, pUSHNptE)# I iff for every iel

pilS )N plEg)) # .

It is easy to see that S, CS. iff S, =S, in CP. Coming to QP. one can
prove that S, is consistent with S, iff the vectors [y, > and |/.) that repre-
sent S, and S., respectively. in HSQT, are not orthogonal. Hence, we get:

for every S,.S-e Y., S, CS- it {y, [¢f-> #0.

Let us turn now to &.. We have said above that. for every E,, E. €4,.
the physical theory .# that one is considering establishes whether E, and E,
can or cannot be conjointly true for to a given physical object. In the
former case one can say that E, and E. are consistent in .#. This suggests
to introduce a binary theory-dependent relation on &.. which we again
denote by C and call semantic compatibility, or consistency, by setting:

for every E,.E.eé. E,CE. iff an Jjef exists such that

PUE N pEy £ .

We have thus provided a purely semantic definition of consistency,
avoiding any (possibly misleading) resort to a model of .#. Furthermore,
let us recall from Secs. 3 and 4 that the symbol L denotes orthocom-
plementation in the lattice (4., <) and that, for every laboratory / and for
every Eeé.. p{E')=D,\p(E). Hence. for every physical theory which
satisfies our axtoms in Sec. 3. we get:

for every E,.E.€é.. E,C E, iff for every ie [. p{E,)n p(E.) = iff

for every iel, p(E,) = D,\p,(E.) iff for every iel, p{E,) S p(E+) iff

E <EJiff E;<E;.

This characterization of consistency intuitively fits with the interpreta-
tion of the mapping L as a negation in &,. More important. it allows us
to establish a link between the consistency relation on ¢, and the con-
sistency relation on &.. Indeed. we get, for every S,. S, e ¥.. E, €é,.
E.eé,.. that E; and E, are not consistent iff E, <E{., which implies
E, <E{,. hence Ei <E{: this last inequality holds ifl &, N &g # . or
equivalently ifft S, 'S, so that S,CS. implies E,CE.. Intuitively. this
means that, whenever the properties E, and E. belong to the certainly yes
domains of the states S, and S.., respectively. they are consistent whenever
S, and S, are consistent. In addition. the implications can be reversed
whenever E, =Eg and E,=Ej,. so that we get:

S, CS, il Eg CE,,.

the interpretation of which is immediate.

Remark 5.1. 1t can be proved in CP (see G.91) that, for every
laboratory i and pure state S, p,(E) contains all physical objects in pi(S)
and a suitable percentage of physical objects for every nonpure state which



semantic Realism in Classical and Quantum Physics 1145

idmits a decomposition in terms of pure states where S appears, but it does
not contain any physical object that belongs to the extension in / of a pure
-tate different from S. This means that a physical object x which is in the
pure state S* has the property Eg¢ iff $*=S. In QP, on the contrary, the
nhysical object x could have the property E even if it is in a pure state S*
Jifferent from S. Hence, when ignoring mixtures, pure states can be iden-
tified with their supports from a semantic viewpoint in CP, while they
cannot in QP; this prohibits any identification between states and physical
properties in QP. as we have already observed above (we retain that an
erroneous identification of this kind is the deep root of some old quantum
paradoxes in the literature'*®’).

Remark 5.2, For every laboratory i the following equation can be
proven to hold by inserting some further physical assumptions regarding
nonpure states (see in particular G.91, condition MS) in our present
context:

U pl(E\)=D|

Se /p

it follows that, for every laboratory i and for every physical object x,
at least one pure state S exists such that x has the property Eg in 7 this
cxhibits, in particular, the semantic basis on which an “ignorance inter-
pretation™ " of nonpure states can be embodied in our approach.

6. PRAGMATIC COMPATIBILITY

The standard notion of compatibility of observables has an out-
standing importance in QP. From a SR viewpoint, it is a pragmatic notion,
which must be distinguished from the notion of semantic compatibility, or
consistency. introduced in Sec. 5. Indeed, it can be translated in our present
context by saying that the (testable) properties F,, F. € Z are compatible
according to the standard notion iff one can establish whether they both
are true for a physical object x by means of a suitable measurement.

Of course, F, and F, are always compatible, according to the above
notion. in CP. while they can be noncompatible in QP. Let us briefly
resume the reasons of this difference between the two theories. In CP, one
can always establish whether both F, and F. are true by performing a
measurement that consists of the simultaneous measurements of F, and F,,
or, equivalently, of the measurements of F, and F, in sequence, provided
that the first measurement does not influence the second (which is always
possible, since it is assumed in CP that the disturbance. i.e., the change of
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state, induced by a measuring apparatus can be reduced below any prefixed
limit). On the contrary. one is obliged in QP to measure F, and F, in
sequence, and the disturbance induced by the measuring apparatuses
cannot be reduced at will. It follows that the results of the measurements
may depend on their order. since the second measurement applies to a
physical object that has been disturbed by the first measurement. If this
occurs, F, and F. are not compatible, for one cannot construct an
apparatus testing whether F, and F, are simultaneously true. If this does
not occur, ie. if in every physical situation (state) sequential ideal
measurements of F, and F. lead to results that are independent of the
order of the measurements, an (ideal) apparatus testing F, and F. in
sequence defines a testable property F. which is true for a given physical
object x iff F, and F. are simultaneously true for x. In the latter case F,
and F, are compatible (we shall see when discussing ideal measurements in
Sec. 9 that. whenever an ideal test of F on a physical object x yields a
positive answer, the properties F, and F, can be attributed to x both
before and after the measurement). This leads us to formalize the standard
notion of compatibility in our generalized framework as follows.

Let F,, F. e 7. We say that F, and F, are pragmatically computible.

or conjointly testuble, and write F| 7" F.. ifl a property Fe .7, exists

such that, for every laboratory ief. p{Fy=p,(F ) Api(F,).

Since the set (&.. <) is a lattice {Secs. 3 and 4), the following state-
ment can be easily proved which characterizes pragmatic compatibility.

Forevery F,.F, e #_, F,.# F.iff the meet F=F, N F. belongs to .#,

and, for every laboratory ie l. p(F)=p(F,)npi(F-).

The above statement implies. in particular, that, for every first type
state Se ¥, and F e #,. the support E; of S is pragmatically compatible
with F iff Fedg uéd. More important, it allows us to explore the links
between our definition of pragmatic compatibility and some current defini-
tions of compatibility in the literature. To this end, let us add the following
axiom to the axioms listed in Sec. 3.

AX 9. For every F,. F.e Z. F,.# F.ill F,.# F! il F{ # F, ifl
F! # FL.

AX 9 rests on the obvious physical remark that. for every Fe #Z | F
and F* can be tested by means of the same dichotomic device in every
laboratory i, since p,(F*)=D;\p,(F). as we have seen in Sec. 3. Moreover
it entails, because of the above characterization of pragmatic compatibility,
that, whenever F,.# F., p; is a lattice 1somorphism of the sublattice of
(8., <) generated by F, and F. onto the Boolean sublattice of (.#2(D;), <)
generated by pi(F,) and p(F.). Hence we conclude. in particular, that
every pair of pragmatically compatible properties generates a Boolean
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sublattice of (¢&,, < ). This result is relevant, since a relation of compatibility
13 introduced in (4., <) (to be precise, in a lattice isomorphic to (4., <),
see Sec. 3) in some approaches to QP by saying that the properties F,
I, €.7, are compatible iff they generate a Boolean sublattice of (4., < ).V
Finally. we note that our definition of pragmatic compatibility can be
seneralized as follows.
Let F,. F..... F, e Z. We say that F|, F..., F, are pragmaticully
compuatible, or conjointly testable, iff a property F € .7, exists such that,
for every laboratory ief. p{F)=p F ) opdFan - apdF,)
Resting on the above generalization, we add the following further
axiom to the axioms listed in Sec. 3.

AX 10. Let F, F,..,F,e#. Then, F,, F,..., F, are pragmatically
compatible whenever they are pairwise pragmatically compatible, that is,
F,.4 Fy for every j. ke {1.2...n}.

Stating AX 10 can be justified by observing that it holds both in QP
and in CP, which we want to be models for our general SR scheme.

Remark 6.1.  We recall that the properties F| and F, are assumed to
be compatible in HSQT ifl they are represented by commuting projections,
hence the relation of compatibility is defined on the whole 4. In our
general scheme, of which HSQT is a model (Sec. 3), we have preferred to
define pragmatic compatibility on the set .7, of testable properties only,
since the enlargement of our formal definition to &, would let .4 depend on
the (partially) arbitrary choice of the extensions, in every laboratory, of the
theoretical properties; furthermore, #° would have no direct operational
interpretation when referring to theoretical properties. Of course, this
discrepancy is connected with the refinements in the interpretation of
HSQT suggested by the general theory and underlined in Remark 3.2.

7. TESTABILITY AND CONJOINT TESTABILITY ON ¥,

Let us now shift from the set .% to the set ¥_ of all wils of L. Then.
the notions of testability and pragmatic compatibility (conjoint testability)
can be canonically extended to ¥.. as follows.

Let A e .. We say that A is restable whenever in every laboratory iel

the truth value of A for every interpretation o; can be determined by

means of suitable measurements.

By recalling our interpretation of L, in Sec. 4, we immediately pick out
the following basic sets of testable wils of L, (see G.91):
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(i) for every xe X, the set Z(x}={F(x)|Fe.Z};

(i) for every Se.¥, the set ¥} of all quantified wifs of the form
(m.X)(A(x)/S{x)), with A(x) a testable nonquantified (or open) wif of ¥,
(note that the wifs of ¥? are testable since, for every laboratory i, the
domain D; is finite).

Furthermore, we can prove the following criterion of testubility.

CT. Let A(x)e ¥, be an open wil, which contains the individual
variable x only. Then, A(x) is testable iff an atomic wff F (x) e .Z(x) exists
such that A(x)=F (x).

Indeed. let us note that, whenever A(x) is logically equivalent to
F,(x), the truth value of A(x) in every laboratory i for every interpretation
o, can be determined by means of a measurement of the truth value of
F.(x), hence A(x) is testable. Conversely, if A(x) is testable, it defines a
derived property of the physical object x that is testable, hence it is logically
equivalent to some testable property F, € 7., since we have assumed that
F. is the set of all testable properties of the physical system that we are
considering (Sec. 3).

It is apparent that CT can be used in order to single out further sets
of testable statements in ¥,. For instance, we get that, for every F e .#, the
molecular wif —1F(x) is testable; indeed, —1F(x) is equivalent to the atomic
statement F*(x), where F* e %, (see Sec. 2(iii) and Sec. 3).

Let us define now conjoint testubility in ¥, as tollows.

Let A,. A, e ¥.. Then, we say that A, and A, are conjointly testable

il A, and A, are testable and, for every ief and o, € ¥,. the truth

values of A, and A, can be determined conjointly by means of suitable

measurements.

By using this definition. we can prove the following proposition.

P 7.1. Let A/(x). A.(X),.... A (x) be open wils of ¥_, and let F,
F....F,eZ be such that A (x)=F(x), A.(x)=F{x).... A (x)=F,(x).
Then A \(x). As(X)...., A,(x) are pairwise conjointly testable iff F,. F..., F,
are pairwise pragmatically compatible, or ift the wif A(x)=A,(x)A
As(xyAn - AAUX)=F(x) A Fo(x) A - A F(x) s testable.

Proof. The first equivalence follows from the definition of conjoint
testability in ¥, from CT, and from our interpretation of the formal defini-
tion of pragmatic compatibility in Sec. 6. In order to prove the second
equivalence, let us consider the wit' A(x). Because of CT. A(x) is testable iff
it is logically equivalent to an atomic wif F\(x) of .Z(x). But we have seen
in Sec.2 that F({x) A F.x) A --- A F,(x). hence A(x), is true in a
laboratory i iff oi(x)ep(F)np,(F)n - np(F,). Therefore, A(x) is
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icstable iff a property F, €% exists such that for every laboratory i,
pAF O =p FyapdF)n - ap(F,). By using the generalized definition

of pragmatic compatibility on .%, introduced at the end of Sec. 6, we get

that A(x} is testable iff F,, F,.,..., F, are pragmatically compatible, hence iff
they are pairwise pragmatically compatible, because of AX 10. O

As a corollary of P 7. 1, we note that, because of the characterization
of pragmatic compatibility supplied in Sec. 6, the property F , that appears
in the above proof whenever A(x) is testable is given by F,=F, )
FsO---NF..

Remark 7.1, Tt is important in what follows to make an explicit
recognition of some properties of the basic set .Z(x) of testable wifs of L,
introduced above. Therefore, we note that the restriction of the pre-orders
c. L, and < to Z(x) are partial orders, which coincide because of our
assumptions on %, in Sec. 3 (see in particular AX 5). Of course, (.Z(x), <)
ts isomorphic to the poset (#,. <), which is dense in the lattice (&, <)
{Sec. 3). hence (.#(x), =) is dense in the lattice (5.(x), <), with &(x)=
'E(x)|Eeé.t. This latter lattice i1s isomorphic to the further lattice
([Ex)] o, =) with [E4x)] - ={[E(x)]= |E€é.}. In QP, both (4(x), <)
and ([&.x)] - . =) can be identified with standard QL, which proves that
quantum logics can be obtained by using the (theory dependent) pragmatic
concept of testability for selecting suitable subsets of wifs in L. as we have
anticipated in the Introduction (see also G.91, and Refs. 3 and 4). The non-
Boolean character of QL is then originated by the fact that ([8(x)] .., <}
is a subposet but not a sublattice of the Boolean lattice (¥./=, <) in QP
(while it is a sublattice of (¥,/=., <) in CP).

Let us denote the lattice operations in (S(x), < ) by the same symbols
that we have introduced in Sec. 3 in order to denote the corresponding
operations in {&,, < ). Because of the truth theory assumed in L. every wif
in £.(x) has a truth value in every laboratory i when x is interpreted. But
the connective () cannot be identified with the classical conjunction A ,
and |J cannot be identified with the disjunction v . In particular, ()} and
() are not true-functional in QP,""' which means that, for example, the
truth value of the join E (x} () E-(x)={(E, N E,)x) (where E,, E,€4,)
generally cannot be deduced from the truth values of E (x) and E.(x) only.
Furthermore, if we embed canonically &(x) m ¥, and regard 1, (), U as
connectives in ¥, defined on the subset &.(x) of ¥, we get, for every E.
E,. E. €4, (see Sec. 3, Remark 3.4. and Sec. 4. conditions (i), (i1}, and (iii)):

- E(x) = E*+(x),
E (x) N Exx)=(E, N E:)x) = E{(x) A Ea(x),
E (x} A Es(x)=(E, UE-Ux)=E (x) J Es(x)
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By using P 7.1 and its corollary. we see that, for every F,, F, e .#Z,
Fix) N Fax)=F,(x) A Fa(x) ifl F (x) A F,(x) is testable or. equivalently,
iff F, and F, are pragmatically compatible. Analogously, F,(x) | F:(x)=
F(x) v Fo{x) iff F, and F., are pragmatically compatible. Indeed. let
F,# F.. Then, F}.# FJ (Sec. 6), hence, for every iel, p(F! N F)=
PF A pF7y=DA\p(F ) D\pi(F.)=D\(p,(F,)upi(F.)). It lollows
that p((FI NF Y =p(F, UF.)=p(F)upi(F.). so that F/(x){
F.(x) 2 F (x) v Fi(x). Therefore, F,(x) [ Fa(x)=F(x) v F(x), as stated.
Conversely, one easily gets that this last equivalence implies F | .# F..

8. THE METATHEORETICAL GENERALIZED PRINCIPLE

We recall that, according to a standard epistemological conception
(received viewpoint''”), one must distinguish between theoretical and
empirical physical laws. Whenever the language of physics is suitably for-
malized by means of a general language L*, where second-order predicates,
predicative variables, and quantification on predicative variables occur (see
Remark 2.3), the theoretical laws are expressed by sentences of L* that
contain primitive or derived theoretical terms, are only partially interpreted
(hence cannot be directly tested), and have no truth value, or a conven-
tional truth value only. On the contrary, empirical laws can be expressed
by means of an observative part (not necessarily a sublanguage as we shall
see in the following) of L*, can be formally deduced from theoretical laws,
and have a truth value, since they are empirically interpreted.

Let us accept from now on the above viewpoint. One may then
wonder about the role played in L* by the formalized languages L and L.
introduced in Sects. 2 and 4. respectively. Let us firstly consider L. Then,
we see that all atomic wifs of L are constructed by means of predicates that
are nterpreted operationally, hence we say that they express observative
statements. But the complex wifs of L may be testable or not (Sect. 7), so
that we cannot say that all statements in L are observative. We. however,
classify L here as an observative sublanguage of L, as we have anticipated
in Remark 2.3, since it is generated as a sublanguage of L* by a set of first-
order testable wffs (to be precise, L should be classified as an observatively
minimal sublanguage of L*). Now, let us consider L. Then, we see that it
contains both observative and theoretical atomic wffs. Therefore. L, can
still be considered a sublanguage of L*, yet not observative in the sense
specified above.

It follows from our analysis on L and L, that both empirical and
theoretical laws can be expressed by means of the sublanguages L and L,
(though general theoretical laws require L*). We retain that the awareness
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ihat some physical laws expressed in L, are theoretical, not empirical, is
basic for explaining EPR-like paradoxes and, more generally, some diffi-
culties encountered in the quantum theory of compound physical systems.
Fherefore let us discuss this subject more deeply.

Let us firstly explore the form taken by those physical laws that can
he expressed by means of L. Bearing in mind our interpretation of L and
I.. in Sects. 2 and 4, respectively, and recalling that we have not introduced
time in our scheme since we do not intend to deal with evolution in time
in this paper. we can agree that a typical sample of physical law is a com-
pound sentence which establishes, whenever we consider all physical
objects such that a given sentence of L, is true, the percentage of objects
for which another sentence of L. is also true (more complex forms are not
excluded. but do not interest us here). A particular case of this kind of
physical law is formalized in L. by the wit:

V = (. x)(A(x)/S(x)),

with re[0, 1], Se.¥ and A(x) an open molecular wif of L, where only
predicates denoting physical properties occur.

Let us comment on this canonical form.

First, we note that, whenever r=1, one gets (see G91):

V =(7, x}(A(x)/S(x)) = (VXU S(x) = A(x)).

which provides a sample of deterministic law (which can obviously occur
even in QP).

Second, we note that many wifs usually exist in ¥ that are logically
equivalent to V. In particular, whenever a wif B(x)e ¥, exists such that
B(x)=A(x), we get V=(nx}B(x)/S(x}). Because of the definition of
statistical equivalence =~ in Sec. 2(v), we get V= (r,x)}(B(x)/S(x)} also if
B(x) satisfies the condition B(x) =~ A(x), which is weaker than B{x) = A(x).
In addition, whenever r=1 and B(x) satisfies the condition B{x) =~ A(x),
which is weaker than B(x) =~ A(x), we get, because of the definition of
deterministic equivalence in Sec. 2(v}, V = (Vx)(S(x) — B(x)).

Let us now introduce the basic distinction between empirical and
theoretical laws.

We say that V expresses an empirical physical law whenever A(x) is
testable in the sense specified in Sec. 7, that is. because of CT, whenever a
testable property F, e.Z exists such that A(x)=F,(x). In this case
V= (7, x)(F,(x)/S(x)), and the truth value ol V can be determined empiri-
cally in every laboratory i e [ by means of any registering device in the class
denoted by F,: an empirical physical law can be directly tested.



1152 Garola and Solombrino

We say that V expresses a theoretical physical law whenever A(x) is
not testable, that is, whenever no F € .7, exists such that A(x) = F(x). Now.
it is apparent that the truth value of such a law in a laboratory i, though
defined in our approach, cannot be directly tested. Furthermore, the truth
value of A(x) is partially conventional, because of the conventions intro-
duced for logical connectives and/or because of the possible presence in
A(x) of theoretical predicates, the extensions of which have a certain degree
of arbitrariness (see Sec. 4). Therefore, we must attribute to V a role which
is basically different from the role attributed to empirical physical laws.
Following a standard epistemological viewpoint,''> ' we agree to consider
V as a formal expression, which is acceptable as a theoretical physical law
(independently of its partially conventional truth value) if every empirical
physical law that can be deduced from it (and from suitable premises) by
means of standard procedures in classical logic turns out to be true when
directly tested in a laboratory ie /.

The deduction of empirical physical laws from a theoretical law V can
be rather complicate. In some cases it can be made easier by substituting
A(x) (which is nontestable. since V is theoretical) with a suitable wil B(x)
which is logically, or statistically, or deterministically equivalent to A(x).
For instance, let A(x) ~ F(x). with Fe.# . Then. we immediately obtain
from V (which cannot be directly tested) the empirical physical law
(m,x}(F(x}/S8(x)). Analogously, let r=1 and A(x)xF(x). with Fe.Z.
Then, we immediately obtain from V the empirical physical law (V¥x)
(S(x)— F(x)).

We must now discuss a crucial problem in our approach, that is, the
problem of the truth mode that is to be attributed to empirical laws
deduced from theoretical laws of the kind considered above. Indeed. one of
us has attributed to empirical laws a truth mode in G.91 which makes
explicit the classical epistemological viewpoint that is universally adopted
when dealing with this kind of laws, i.e.. has assumed that an empirical law
must be true in every laboratory i [ (metatheoretical classical principle, or
briefly. MCP). But our point here is that this perspective does not take into
due account the existence of physical theories, as QP, where a nontrivial
relation of pragmatic compatibility is defined on the set of physical proper-
ties. Let us consider the problems that occur in this case.

We start from the obvious remark that the statement of testable physi-
cal predictions is one of the relevant aims of any physical theory. In order
to obtain these predictions physicists usually adopt rather complex
inference procedures, the basic step of which can be schematized as follows.
An empirical physical law of the form (7z,.x){A(x}/S(X)), possibly deduced
from the general theoretical apparatus of the theory, is introduced, together
with a boundary condition S(x} and a set { A, A..... A,} of testable wifs of
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i . or premises. Then, a testable physical prediction A, , , is deduced which
:dds to the set of premises for a further step of the same type. The wifs
\;»As... A, can be considered predictions following from previous
nference steps, or measurement results, or simply assumptions (we note
hat an elementary testable physical prediction regarding a physical object
. 1s expressed in L, by a testable atomic wif F(x) which attributes a
cstable property F € # to x, while an elementary testable statistical predic-
ion is expressed by a statistical wif (z x}F(x)/S(x)), where Se.¥" and
Ye F).

Whenever a nontrivial relation of pragmatic compatibility is defined
m %, the premises A, A,..., A, could be chosen so that they are not con-
ointly testable. A physical situation of this kind is not epistemically
iccessible, in the sense that one cannot empirically test whether it occurs,
ind no prediction can be verified. Therefore, it is inconsistent with an
perational philosophy to assert that an empirical law is true in a
aboratory where such a situation occurs, hence that it can be used in order
o obtain further physical predictions. Thus, it seems appropriate to look
or a generalization of MCP which reduces to MCP whenever a physical
theory (as CP) is considered in which the relation of pragmatic com-
patibility is trivial but yields a new and subtler characterization of the truth
node of empirical physical laws whenever a nontrivial relation of
pragmatic compatibility occurs.

A generalization of this kind has been proposed by one of the authors
m some previous papers'® ”' and has been called metatheoretical generalized
nrinciple (MGP). We express it here as follows.

MGP. Let Ve ¥, express a theoretical physical law, let xe X, Se &,
A(x)e ., let A(x) be testable, and let the wif V, =(m x)(A(x}/S(x))
express an empirical physical law deduced from V. Then, V, can be
asserted to be true in every laboratory ief where a set of conjointly
testable premises is assumed.

Let us comment briefly on MGP. It is apparent that this new principle
does not modify any empirical quantum prediction, but it establishes a
kind of restricted availability of empirical physical laws, since it implies
that an empirical law that can be formally deduced from a theoretical law
V cannot be asserted to be true in a given laboratory i el if one assumes
in i premises that are not conjointly testable (indeed. V could be true as
well as false in /). This restricted availability may seem disconcerting, since
the classical viewpoint is deeply rooted in our usual way of thinking, but
it does not contradict a minimal realistic viewpoint (realism of properties in
the Introduction), and it is based on full acceptance of the operational
philosophy of QP together with a correspondence truth theory for L.: it

N23 2693
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only prohibits applying that form of ontological realism according to which
all theoretical entities in our theories are “real” (ie., must correspond to
natural entities which actually exist), to a theory endowed with a nontrivial
relation of pragmatic compatibility. One can say that MGP limits the
physicist’s “presumption of omniscience,” and opens the way to a more
flexible conception of physical theories.

It is obvious that MGP satisfies our above condition of reducing to
MCP whenever it is applied to a theory, as CP, in which all properties arc
pragmatically compatible. But the (usually implicit) adoption of MCP in
place of MGP in QP can be viewed at as the deep root of many quantum
paradoxes.**!

Before closing this section. we briefly study some particular cases.
which help to grasp the deep meaning of MGP.

(1) Let Ve, express a theoretical physical law, and let V, =

v

(VXHS(x) = F(x)), V.= (Vx)(S(x) = Fofx)),... V,=(Vx)(S(x)—>F(x)).

with F,. F,...F, .7, be empirical physical laws that can be deduced
from V. Let iel and let us choose in i a subset [V, V...V, | o
1V V... V,}. Then. MGP does not allow us to assert that V, | V... V

are true in i except whenever F, . F . _.F; are pragmatically compatible.
Indeed. let the physical object x be in the state S in /. By choosing in 7 a
set of premises (that can be void) and deducing V; . V,,. ...V, from V in
sequence. we see that in every step the deduction of an empirical law, say
V.. yields a premise F;(x) that must be adjoined to the set of premises
in the further step. This increase can transform a set of pragmatically
compatible premises into a set of premises that are not pragmatically com-
patible, which prohibits one to deduce any further empirical law in
1V, V..V, | asa true wit'in /.

Let us apply this result in a special case. Let V={(Vx){S(x)—
(Fy\NFN N FO)) =(VX)(S(x) = E(x)) be a theoretical physical law
inQP, with E=F NF.N---NF,ev and F,.F,....F, € #. Because of
proposition P 4.1 (the generalization of which to the case of 7 > 3 testable
physical properties is obvious). we get:

V=(Vx)S(x) > F(x) A Fax) A -0 A F(x))

(we also note that E is unique, in the sense that V=(Vx)}(S(x)— E (x))
implies E, =E because of proposition P 4.2). Then. the above empirical
laws V. V..., V, can be deduced from V. Let ie [, let us choose in i the
empty set of premises and a subset {V, . V...V, { of {V,, V...V, | and
let us consider the wifs U = (Vx}S(x)— A(x)) and W =(Vx){S(x)— B(x)).
with  A(x)=(F, NF.N---NF_)(x) and B(x)=F(x) A Fyx) A -
A F, (x). Then U and W express physical laws that can be formally
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Jdeduced from V. Furthermore, A(x)< B(x) (Remark 7.1) and A(x) > B(x)
P 4.1), so that U= W. Three possibilities occur, which we will consider
separately.

First, F,,F,...F, are pairwise pragmatically compatible, hence
pragmatically compatible (AX 10). Then, MGP implies that V, . V...V,
are true in i. Furthermore, the wils A(x) and B(x) are testable and logically
cquivalent (Remark 7.1), and U and W are empirical physical laws that are
rue in J.

Second. F,.F, ... F, are not pragmatically compatible and F;
FoN---NF,€#. In this case MGP does not imply directly that
all Vi V...V, are true in i. However, let us note that A(x) is testable

while B(x) is not testable (P 7.1), so that A(x) and B(x) are not logically
2quivalent, and U and W are an empirical and a theoretical physical law,
respectively. Then, MGP entails that U is true in /. Since U= W, we can
assert that also W is true in /. which implies that V,, V...V, are true
in i

Third. F; ., F,..... F; are not pragmatically compatible, and F; (}---
Fo () -~ N F,, €%. The wifs A(x) and B(x) are not testable, nor they are
logically equivalent, and U and W are theoretical physical laws. In this
case MGP does not assure that all V,, V...V, are true in i, nor that U
or W are true in /.

(11) The case studied above can be generalized as follows. Let us con-
sider the theoretical physical law V =(Vx)(S(x)— E(x)) in QP. with Ee 7.
Since, for every Ee 7., E={)., ;... F (Sec. 3). we obtain:

VE(VX)(S(X)—»( N F>(x)>‘
Fe ie bl

Let us assume that proposition P 4.1 can be extended to the meet in
the expression of E. Hence. we get:

VE(VX)(S(X)—» A\ F(x)>.
y

e Ao l-

If a laboratory ief is given, MGP can be applied, and the arguments
offered in case (i) can be easily generalized. In particular, let % be a finite
subset of {Fe 7 |E <F}. Whenever for every F|, F.e¥. F, % F,, MGP
implies that the empirical physical law

U =(Vx) <S(X)—> A F(x)>

Iz 4
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is true in 7. But MGP does not guarantees in general, the truth of U if the
pragmatic compatibility of all F €% is not assured.

Remark 8.1, Bearing in mind our arguments in Remark 3.3, we can
say that a theoretical law of the form V = (7, x){ A(x)/S(x}) translates in our
language L., which is a first-order predicate calculus extended by means of
statistical quantifiers, a theoretical law that should otherwise be expressed
by means of higher-order predicates and variables and. possibly, modal
probability operators'**' of the general language L* The language L, is
obviously simpler than L* but the main reason for introducing it is the
need for explaining the success of HSQT from one side, and to avoid EPR-
like paradoxes from the other side.

Remark 8.2, We have already observed at the end of the Introduc-
tion that SR is not a conventional hidden variables theory. Our statement
of MGP in this section allows us to make our argument more perspicuous.
Indeed, it has been pointed out by Kochen and Specker'™' that hidden
variables can be invented for every physical theory .4 if the requirements
imposed on their values are sufficiently weak. Thus, the actual problem
with hidden variables consists in defining the restrictions that the theory
4., assumed to be a hidden variables theory for .#,. must satisfy. The
constraints proposed by Kochen and Specker'™' seem quite reasonable;
this notwithstanding, when .4, is identified with QP, they lead to the well-
known *“no-go™ Bell and Bell-KS theorems'=” which show that no non-
contextual hidden variables theory is possible for QP. This engenders a
number of epistemological difficulties which suggests looking deeper into
the matter. Thus, one sees that Kochen and Specker’s constraints follow
from accepting implicitly the general principle MCP, since they formalize
the requirement that .4, preserve the unrestricted validity of the relations
among observables established in .#, (which express theoretical physical
laws). If one adopts a SR position. he is then induced to introduce weaker
constraints for .7, that is. the constraints following from the general prin-
ciple MGP that substitutes MCP: in particular, .% could entail empirical
physical laws different from those of .4, in physical situations that are not
accessible according to ..

The above general arguments explain why the aforesaid “no-go”
theorems fail to be true in the specific case of the SR approach to
QP ** and open the way to noncontextual hidden variables theories for
QP. It must, however, be noted that SR, being a general scheme, cannot
constitute in itself a detailed hidden variables model for QP (hence, in par-
ticular, SR cannot provide a model that gives a “physical explanation” of
the possible falsity of the physical laws of QP in a laboratory where
premises are assumed that are not conjointly testable according to QP,
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cven if it does not prohibit that such a model exist). Rather one could
nterpret each property in the SR approach as a hidden variable, taking
values 0 and 1. and consider SR as a general, nonconventional (in the sense
ihat it does not assume MCP) hidden variables frame for every physical
theory.

9. SEMANTIC INCOMPLETENESS OF QP

The distinction between truth and testability that has been introduced
m our approach allows us to distinguish between t-completeness and
s-completeness of a physical theory .# with respect to the general language
L* by means of which the theory is stated (Remark 2.3). To be precise. a
theory will be said to be t-complete (respectively, s-complete) with respect
(o L* iff the laws of the theory, together with suitable sets of specific
issumptions, allow one to predict the truth values of all testable (respec-
tvely all) interpreted wifs of L*.**" Of course, s-completeness implies
t-completeness, but the converse is not generally true.

The distinction between t-completeness and s-completeness can also be
introduced with reference to a sublanguage of L* (note that a theory is
-complete iff it is s-complete when restricting to L: this follows from the
fact that all atomic wifs of L are testable and from the adoption of a
Tarskian true-functional truth theory in L). In particular, by using the
interpretation of pure states as maximal amounts of information discussed
in Sec. 5, we conclude that, whenever a theory .7 is t-complete with respect
to L., the knowledge that a statement of the form S(x), with Se ¥, is true
in a laboratory i must allow us to deduce the truth value in i of all
(testable) statements of the form F(x), with xe X and F € #_, by using the
laws of .# (an interpretation o; of the individual variables being implied).
Then, one can easily prove. adapting procedures worked out elsewhere'”’
1o our present generalized context, that QP is not t-complete, hence it is
not s-complete with respect to L, (while CP proves to be complete in both
senses).

The above assertion might appear a rather complicated way of
restating an obvious consequence of QP; indeed, it essentially means that
the knowledge that a physical object is in the state S does not necessarily
allow us to know, for any given F € #., whether x has the testable property
F. But there is an important novelty in our present perspective: indeed, we
assign a truth value to every (atomic or molecular) interpreted statement
of L., independently of the epistemic accessibility of the truth value itself
in QP (this assignment generalizes in our context the “realistic” assump-
tions introduced by Wigner in his 1970 proof of a Bell inequality'*'- **'). On
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the contrary. a statement attributing a testable physical property F. to a
physical object x whenever a testable property F . not pragmatically com-
patible with F.. has been measured on x, or a molecular statement where
the meet of nonconjointly testable statements appears. would be considered
meaningless, hence having no truth value, by physicists adopting a verifica-
tionist theory of truth. Thus. we can classify QP as semantically incom-
plete. while the orthodox viewpoint considers QP complete, since no
meaningless statement is allowed in the language of physics.

The incompleteness of QP and the differences between our interpreta-
tion and the orthodox one can be better understood by introducing, for
every physical object x and laboratory 7, the sets .#! and #! of all true
testable properties and of all false properties of x in 7, respectively (an inter-
pretation o, being implied). Indeed. let us firstly note that the pair
V7, FL L is a partition of % because of our semantic model for L
Then, for every pure state S, let us recall the definitions of &, and & intro-
duced in Sect. 5, and let us put F=4& N A, Fi=E6¢ n.Z,. It [ollows
that . (respectively. .# ! ) is the broadest set of testable properties that one
can predict to be true (respectively, false) for any physical object x in a
laboratory /. by using physical laws and the assumption that x is in the
state S in i. Then. trivially, # < .7 and 7 <.# and it can be proved
that A, =7 and Zi=7#" in CP. and that # c.F| and 7{ c 7!,
in QP.

The strict inclusions formally express the t-incompleteness of QP with
respect to L.. and have some important consequences. First. they imply
that a change of state of a physical object does not necessarily modify its
testable physical properties in QP (while it does in CP). though it modifies
the set of testable properties that can be predicted to be true (this occurs, for
instance, whenever an ideal quantum measurement is made, as we shall see in
Sec. 10): thus. we explain some features of Bohr's “relational conception of
quantum states™ " in our context, though our viewpoint is different from
Bohr’s. Second. they imply that different objects in the same state S can be
thought of as endowed with different properties (the difference can be detected
by means of {urther measurements). though the properties in .%; { respectively.
# ¢ ) must be true (respectively, false) for them all: even this feature is unac-
ceptable for physicists adopting a verificationist theory of meaning.

o

10. IDEAL MEASUREMENTS

Let us consider an ideal quantum measurement of an observable A
which yields the result a; on a physical object x in a pure state S in a
laboratory /i, and assume that this result is not certainly true in the state
S. Then the property
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E =the observable A takes value a; on x

is testable, but it does not belong to & and is ascertained to be true for the
shysical object x by the measuring apparatus, which acts at this stage as
an (exact) registering device. By referring to the definition of .7 in Sec. 9.
we can say that the measurement shows that Ee # !, which could not
have been predicted before the measurement because of the incompleteness
o QP. It must be stressed that E is recognized to be true for x at the
mstant of the measurement, and this recognition has nothing to do with
the properties of x after the measurement or, more generally, with the
rransformation of the state of x during the measurement process. If the
measuring apparatus is an ideal filter, the state after the measurement can
he obtained from S by means of the projection postulate, and the apparatus
acts at this stage as a preparing device (we do not want to cope here with
the widely debated problem of the role and logical status of the projection
postulate in QP2 *¥'). Then the state alter a measurement of this kind is
2 first type pure state S;, endowed with a support Eg . and the property E
is true for x even after the measurement. Furthermore it can be easily
shown that S, is consistent with S in the sense specified in Sec. 5, 1.e.. SCS;,
50 that no inconsistency occurs between the information in S and in S;: this
means in particular, that all properties in & U &g might be conjointly true
for the physical object x both before and after the measurement, though the
incompleteness of the theory makes it impossible to know in QP whether
such a situation occurs. More generally, we can say that the sets .# | and
7' might remain unchanged during this kind of measurement process
ceven if the state of x changes. If a change occurs in # and .Z . it can be
tested by means of further measurements and it is intuitively ascribed to
the interaction of the physical object with the measuring apparatus, but
possible changes are limited by the requirement that the property E is true
for x even after the measurement (E is such that, lor every laboratory i,
p(Eg) < piE): furthermore. whenever A has a discrete, nondegenerate
spectrum, E is an atom of (4., <) and coincides with Eg ). In conclusion,
the physical object x belongs to pi(S)n p(E) before the measurement, to
PUSHApEY=p(S;) after the measurement. and this displacement
corresponds to a change in our knowledge on x, not necessarily to a
change of the physical properties that are true for x.

Remark 10.1. Let S, be the state of x after a measurement of A
which yields the result a,. with a, #a,: then, S C'S, because of the results
reported above, but S,¢'S, (indeed. S; and S, are represented by
orthogonal vectors in HSQT). This can occur since C 1s not transitive in
QP. so that SCS, and SCS, do not imply $;CS,. and it can be
intuitively interpreted by observing that the information that the
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observable A takes the value a; on x is not consistent with the information
that A takes value a, on x. This obviously agrees with the fact that S, S,
ifl Eg € Eg, because of our arguments in Sec. 5.

A difterent case occurs if we consider two (pure, first kind, ideal)
quantum measurements of two noncommuting observables A and B (with
discrete, nondegenerate spectra) that can be (not conjointly) performed on
a given physical object x in a pure state S. Indeed, let a. b be possible out-
comes of the measurements of A, B respectively., and let S, S, be the
corresponding eigenstates. Then. the information in S, can be consistent
with the information in S,, and this occurs whenever S, and S, are
represented by nonorthogonal vectors in HSQT. This can be intuitively
explained by saying that different questions (measurements) that cannot be
answered conjointly could, this notwithstanding, admit answers that can be
consistently referred to the same physical object, and obviously agrees with
the fact that S, C'S,, iff E; C E, . again because of our arguments in Sec. 5.
However, this intuitive explanation is typical of our approach. Indeed, in
the orthodox interpretation of QP, where a verificationist viewpoint is
adopted. it would be considered meaningless to ask whether Eg, and Eg,
are consistent.

Remark 10.2. It Is interesting to consider another kind of measure-
ment which can occur both in CP and in QP. Let a physical object be in
a nonpure state T that is a mixture of pure states S,,S,..., and let a
measurement be performed which refines the information in T, so that after
the measurement x is in the pure state S,, which appears in the decomposi-
tion of T. One of us has proved elsewhere'”’ that, for every m, TCS,,. In
addition whenever S,, and S, appear in the decomposition of T and m #n,
Sm€ S, in CP (while S,,CS, in QP whenever S, and S, are represented
by nonorthogonal vectors in HSQT). It follows in particular that this
measurement mimics in the classical case an ideal quantum measurement.
However, there is a relevant conceptual difference between the two cases
since we have now, for every m, &; < & (both in CP and in QP), so that
we can say that the measurement provides a refinement of the information,
while the strict inclusion &5 =& is wrong in the ideal quantum measure-
ment considered above. This explains why we cannot think of a measure-
ment performed on a physical object in a mixed state in CP as a faithful
model for a quantum measurement on a physical object in a pure state.

11. CONCLUDING REMARKS

The theoretical framework constructed in the previous sections allows
us to introduce some general remarks that help one to avoid a number of
difficulties when dealing with QP.
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First, we observe that the concepts of preparation and registering
device, which are basic in our approach (Sec. 2}, can be connected with the
notions of prediction and retrodiction, respectively. Indeed, a preparation n
individuates a state, say S, and if n is performed in a laboratory / so that
a physical object x is produced, we can say that the statement S(x) is true
in i immediately after the preparation, say at time t. Then, S(x) can be
taken as an assumption in order to deduce, by using physical laws
(Sec. 10), that some properties are true for x in 7 at t (prediction; if evolu-
tion in time is taken into account, one can obviously extend this kind of
prediction to any time subsequent to t). A registering device individuates
an effect, or better, if suitably chosen, a testable property Fe #Z,, and it
allows us to say that the statement F(x) is true in / immediately before the
measurement (Sec. 10) if it is applied to x in 7 and yields answer yes. Thus
r provides an information that regards the physical object entering the
registering device, no matter what its properties may be after the measure-
ment (retrodiction; note that this interpretation is unacceptable according
to the standard approach to QP, since this would consider the statement
F(x) meaningful, and true, only after the measurement).

Second, we observe that the above remark suggests that a new (theory
dependent) binary relation can be introduced on 4., as follows.

Let E,. E, €&,. We say that E, and E, are conjointly predictable and
write E, 2 E,, iff a state Se.¥, exists such that E, and E, belong to
sUés.

The intuitive interpretation of the relation .# is immediate if we refer
to the interpretations of &5 and & in Sec. 5. Furthermore, it is apparent
that, from a verificationist viewpoint, two testable physical properties F,
and F, cannot be conjointly predictable if they are not pragmatically com-
patible (for, properties that cannot be conjointly tested cannot be retained
to be conjointly true for a given physical object, hence they cannot be con-
jointly attributed to it). But in our general framework the relations of
pragmatic compatibility (conjoint testability) and conjoint predictability
are disentangled (indeed, the former is defined on % in terms of testability,
the latter is defined on &, in terms of truth), and some relationships
between them can be deduced by using the definitions and results in Sec. 6.
In particular, for every F,. F, e #, F, # F, implies F, 2 F.. and for every
first kind pure state S and Fe #., F.# Eg iff F# Eg. Of course, further
connections between .#” and 2 in a specific theory .# can be deduced from
the analysis of the measurement process according to .# (for instance, .
and .# obviously coincide in CP).

Third, we note that it is not impossible in our context to attribute
simultaneously two properties F,, F, € Z, that are not pragmatically com-
patible nor conjointly predictable to a given physical object. Indeed, let us
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consider a laboratory / and a physical object x that is prepared in / in such
a way that the sentence S(x), with Se.¢, is true in / at the instant t: if one
can predict that F (x) is true at t because of some physical laws and a
measurement of F. that yields the yes answer is made on x at t, then F,
and F, can be simultaneously attributed to x at t (note that an analogous
remark has been made by Cattaneo and Nistico'™' with reference to QP,
but, seemingly, in the framework of the standard von Neumann approach;
yet, we retamn that the arguments by these authors rest on giving up
implicitly the strict verificationist attitude that characterizes the standard
interpretation of QP). One can loosely say that the noncompatibility of
properties refers to retrodictions (measurements) or to predictions
(preparations), not to a combination of these procedures.

The above remarks suggest that, as has already been noticed by other
authors,'™’ Heisenberg’s uncertainty principle in QP can be interpreted as
regarding either position and momentum measurements or position and
momentum predictions; intuitively, these different interpretations rest on
different arguments, since the former follows from our reasonings on
pragmatic compatibility at the beginning of Sec. 6, the latter from con-
sidering the probability distributions of momentum and position in any
possible state.

Finally, we notice that the ideal filters considered in Sec. 10
simultaneously play the role of preparations and registering devices in QP.
But our above remarks show that these roles must be carefully dis-
tinguished in our approach. Indeed, let us consider two ideal filters that are
apt to test whether the testable properties F, and F, are true for a given
physical object, and let F, be not pragmatically compatible with F,. Then,
F, and F, can neither be tested nor predicted conjointly in QP, but the
ideal filter testing F, can be used as a preparation of a physical object x
with property F, in a laboratory 7 for an ideal filter testing F, on x: this
latter filter then works as a registering device. and if 1t yields answer yes,
F, and F. are conjointly true for x in / at the instant t immediately follow-
ing the measurement of F, and preceding the measurement of F..

REFERENCES

1. C. Garola., “Classical foundations of quantum logic.™ fur. J. Theor. Phys. 300 1 (1991

20 C Guarola, “Semantic incompleteness of quantum physics.”™ fur. J. Theor. Phys. 310 809
(1992).

3 CoGarola. "Quantum logies seen as quantum testability theories.™ fur. J. Theor, Pliys. 31
1639 (1992).

4. Co Garola. “Truth versus testability in quantum logic™ Erkennmis 37, 197 (1992).

5. € Garola, “Semantic incompleteness of quantum physics and EPR-like paradoxes.”™ fur.
J. Theor, Phys, 32, 1863 (1993),



semantic Realism in Classical and Quantum Physics 1163

13
14,

19.
20.
- P Bush. PP J. Lathi. and P. Mittelstacdt. The Quantum Theory of Measurement {Springer.

28

29.

I5.
16.
17.
I8,

. C. Garola. “Reconciling local realism and quantum physics: a critique to Bell.”™ Theor.

Mar. Fiz. 99, 285 (1994).

. C Garola, “Criticizing Bell: Local realism and quantum physics reconciled.”™ fur. J. Theor.

Phys. 34, 269 (1995).

- Garola, “Questioning nonlocality: an operational critique to Bell's theorem.™ in The

Fowndarions of Quantim Mcechanics. Historical Analvsis and Open Questions. C. Garola
and A, Rossi, eds. (Kluwer Academic, Dordrecht. 1995), p. 273,

. CoGarola, “Pragmatic versus semantic contextuality in quantum physics.™ fnt. J. Theor.

Phrs, 34. 1383 (1995),

. AL Einstein. B, Podolsky. and N. Rosen. “Can quantum mechanical description of reality

be considered complete?.”™ Phys. Rev. 47, 777 (1935),

. N. Bohr, ltomic Physics and Human Knowledge (Wiley, New York, 1938),
. N. Bohr. Essavs 1938 1962 on Atomic Physics and Human Knowledge (Wiley, New York.

1963).

W. Heisenberg. The Physical Principles of Quantum Theory (Dover, New York, 1930).
B. €. Van Fraassen. "A modal interpretation of quantum mechanics™ in Currens Isswes in
Quentiann Logic, E. G, Beltramewt and B, C. Vun Fraassen. eds. (Plenum, New York.
19811,

R. B. Braithwaite, Scientific Explunation (Cambridge University Press. Cambridge. [953).
C. C. Hempel, AAspects of Scientific Explanation (Free Press, New York, 1965).

B. Russell. An Inquiry into Meaning and Truth (Allen & Unwin. London. 1940).

R. Carnap. “Truth and confirmavon.™ in Readings in Philosophical Analyvsis. H. Feigl and
W Sellars. eds. (Appleton-Century-Crolts, New York, 1949).

R. Carnap. Philosophical Foundutions of Physics (Basic Books. New York 1966).

K. R. Popper. Conjectures and Refutations (Routledge & Kegan Paul. London. 1969).

Berlin, 1991}

-G BirkloMand ). von Neumann, “The logic of quantum mechanics.”™ Aan. Math. 37. 823

(1936)

. AL Tarski. "The semantic conception of truth and the foundations of semantics.” in

Semantics and the Philosophy of Languuge. L. Linsky. ed. (University of lllinois Press.
Urbana. 1952).

. C.Dalla Pozza and C. Garola. “A pragmatic interpretation of intuitionistic propositional

logic.™ Erkennmis 43, 81 (1995).

. ML Jummer, The Philosophy of Quanium Mechanics tWiley, New York. 1974).
. H. Reichenbach. Phifosophic Foundations of Quantunt Mechanics (University ol California

Press. Los Angeles, 1963).

~ LS Bell. ~On the problem of hidden variables in quantum mechamies.” Rer. Mod. Phys.

38, 447 (1966).

S. Kochen and E. P. Specker. “The problem ol hidden variables in quantum mechanics.™
Jo Math, Mech. 17,39 (1967).

N. D. Mcermin. “Hidden variables and the (wo theorems of John Bell™ Rer. Mod. Phys.
65. 803 (1993).

. JoS. Bell, ~On the Einstein Podolsky Rosen paradox.” Physics L1935 (1964).
. E. P. Wigner. “On hidden variables and quantum mechanical probabilities.”™ Am. J. Phys.

38, 1005 (1970).

. F. Selleri. “History ol the Einstein: Podolsky Rosen paradox.”™ i Quanium Mechanics

Versus Local Realism. V.o Selleri, ed. (Plenum. New York, 1988). p. 1,

- Do M. Greenberger. M. AL Hore, AL Shimony. and A, Zelinger, ~Bell's theorem without

incqualities.” Amr. J. Phys. 88, 1131 (19901,



1164 Garola and Solombrino

34.

38.

39.

40.

41

42.

43,
44,

46.

47.

48.

49.

R. K. Clifton, M. L. G. Redhead. and J. M. Butterfield, “Generalization ol the
Greenberger- Horne: Zeilinger algebraic proof of nonlocality,” Found. Phys. 21, 149
(1991).

. 1. 1. Sakurai, Modern Quatum Mechanics (Benjamin, Reading, Massachusetts, 1983).
. C. Gurola and L. Solombrino, “Semantic realism versus EPR-like paradoxes: the Furry,

Bohm-Aharonov, and Bell paradoxes.” Found. Phys. 26, 1329 (1996).

. B. D'Espagnat. Conceptual Foundations of Quantimn Mechanics (Benjamin, Reading,

Massachusetts, 1976).

W. M. De Muynck. W. De Baere. and H. Martens. “Interpretation of quantum
mechanics, joint measurements  of incompatible observables. and counterfactual
definiteness.” Found. Phys 24. 1589 (1994).

H. P. Stapp. “Comments on ‘Interpretation of quantum mechanics, joint measurement of
incompatible observables and counterfactual deliniteness’.” Found. Phys. 24. 1665 (1993).
D. Aerts, “Description of many physical entities without the paradoxes encountered in
quantum mechanics.” Found. Phys. 12, 1131 (1982).

D. Foulis, C. Piron. C. Randall. “Realism. operationalism and guantum mechanics.”
Found. Phys. 13. 813 (1983).

G. Ludwig, Foundations of Quantum Mechanics 1 (Springer. New York. 1983).

C. Piron, Foundations of Quantum Physics (Benjamin, Reading, Massachusetts. 1976).
C. Garola, "Embedding of posets into lattices in quantum logic.” Jar. J. Theor. Phys. 24.
423 (1985).

. K. Bugajska and S. Bugajski. “The lattice structure of quantum logics.” Ann. Inst. Henri

Poincaré XIX, 333 (1973).

G. M. Muackey. The Mathematical Foundations of Quantum  Mechanics { Benjamin.
New York, 1963).

1. M. Jauch, Foundations of Quuanium  Mechanics  (Addison Wesley, Reading,
Massachusetts. 1968).

C. Garola “Propositions and orthocomplementation in quantum logic.” Jnr. J. Theor.
Phys. 19, 369 (1980).

C. Garola and L. Solombrino, “Yes-no experiments and ordered structures in quantum
physics.” Nuove Cimenro T77B, 87 (1983).

. G. Cattaneo, C. Dalla Pozza. C. Garola, and G. Nistico, “On the logical foundations of

the Jauch- Piron approach to quantum physics.” /. J. Theor. Phys. 27, 1313 (1988).

. G. Cattaneo, C. Gurola. and C. Nistico, “Preparation-eflects versus question-prepuration

structures,” J. Phys. Ess. 2. 197 (1989).

. D. Dieks, "Quantum mechanics without the projection postulate and its realistic inter-

pretation,” Found. Phys. 19, 1397 (1989).

. K. Gottfried. “Does quantum mechanics carry the seeds of its awn destruction?.™ Pl

Worlds 4 (10). 34 (1991).

. J. Bub. “Quantum mechanics without the projection postulate,” Found. Phys. 22, 737

(1992).

. G. Cauaneo and G. Nistico, “Interpretative remarks in quantum mechanics.” in The

Foundations of Quantum Mechanics. Historical Analvsis and Open Questions. C. Garola
and A. Rossi. eds. (Kluwer Academic, Dordrecht. 1995), p. 127.



