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Symmetr ic  Periodic Noncol l is ion Solutions 
for N - B o d y - T y p e  Problems 

Zhang Shiqing & Zhou Qing 

Abstract. Using the calculus of variations in the large, especially computing the category of 
the symmetric configuration space of symmetric N-body-type problems, we prove the existence 
of infinitely many symmetric noncollision periodic solutions about the symmetric and nonau- 
tonomous N-body-type problems under the assumptions that the symmetric potentials satisfy 
the strong force condition of Gordon. 

§1. I n t r o d u c t i o n  

Calculus of variations in the large was used to study periodic solutions for N-body-type 

problems in the last few years. In this paper, we will consider a class of solutions of the 

following system of ordinary differential equations 

m i ~ ( t ) + v ~ , V ( t ,  x l ( t ) , . . . ,xN(t))=O, x~(t) E n  k, i = I , - - - , N ,  (1) 

where m~ > 0 for all i, and V satisfies the following conditions: 

(vl) v(t, xl,...,~N)= ½ ~ v,j(t,~,-xj), 
O<i#j<N 

(v2) v~ e C 2 ( R  x (R  ~ - {0});R), for all 1 < i # j  < N, 
(V3) Vij(t,~) --* - c ~  uniformly on t as I~] -'* 0, for all 1 < i C j  < N, 

(V4) V(t, z l , . . . ,XN) <_ O, for all t e R, ( Z l , " - , x g )  e (R k - {0}) N and 

(V5) the strong force condition (see [7]) holds for V~j, i.e., there exist a function U e 

CI(R k - {0},R) and a neighborhood N of 0 in R k such that 

-v, j( t ,~)  > I v  u(~)l 2, vt,~ • N -  {0}. 

We will say that  a function X(t) = (xl(t), . . .  ,xg(t)) • C2(R, (Rk) N) is a T-periodic 

noncoUision solution of (1) if X(t) is a T periodic solution of (1) and xi(t) ¢ zj(t) for all 

i ¢ j, and t • R. 
The following symmetric assumption is motivated by the Keplero N-body  problem and 

the symmetry introduced by Bessi and Coti Zelati in [1]. 
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(V6) there exists an element g of finite order s in SO(k)  which has no fixed point other 

than the origin (i.e., 1 is not an eigenvalue of g), such that  

v(t ,  ~ , . . . ,  ~N) = v ( t  + T/s, g ~ , . . . ,  g~N). 

Note that  the hypothesis that  g E SO(k)  has no fixed point other than the origin will 
force k to be an even integer. 

If the potential V satisfies (V1)-(V6), and X( t )  is a T-periodic noncollision solution of 

(1) and satisfies X ( t  + T / s )  = (xl  (t + T / s ) ,  . . . , xN( t  + T / s )  ) = (gxl (t), - . . , gxN(t)  ) = gX( t ) ,  
we will say that  X( t )  is a g-symmetric T-periodic noncollision solution. Throughout  this 
paper we will always assume that  the potential V satisfies (V1)-(V6), and a g-symmetric 
T-periodic noncollision solution will be simply called a (g, T) noncoltlsion solution. 

The main result in this paper is the following theorem. 
T h e o r e m  1.2. Suppose that V satisfies (V1)-(V6) and T is any positive real number. The 
system of ordinary differential equations (1) has infinitely many (g, T)  noncollision solutions. 

Let k be an even integer. Then g -~ - i d  E SO(k )  and it has no fixed point other than 
the origin. The above theorem gives an affirmative answer to half of the question proposed 
by Coti Zelati in [2] (in the case where k is even). 

This paper is organized in three sections. §2 contains some basic facts about the func- 
tionaJ corresponding to the system of ordinary differential equations (1), in §3 we will discuss 
the category of the g-symmetric free loop space, and the proof of our main result will be 
given in §4. 

§2. T h e  F u n c t i o n a l  f 

Let g E SO(k)  be an element of finite order s and have no fixed point other than the 
origin. We introduce spaces 

Z~ = {(~1, . - . ,  ~N)lx~ e H I ( R / T Z ;  nk) ,  xi( t  + T / s )  = g(xi( t)) ,Vt ,  i}, 

/ ky  = {(xl," "", XN)lX~ e H I ( R / T Z ;  n~) ,  x ,( t  + T / s )  = g(xi( t)) ,  Vt, i 

and xi(t)  ~: xj( t) ,  Vt, i ~ j} .  

where H 1 ( R I T Z ;  R ~) is the metric completion of smooth T-periodic function for the norm (/: )= I1:~11~ = I~ ( t ) l  2 + I,~(t)I2dt , and the functional f :  af + R 

/o /o S(.~l,..., ~N) = ~ ~ I~,(t)l~dt - v(t ,  x~(t),. . . ,  ~N(t))dt. 
i = l  

Clearly, E y  is a closed subspace of H I ( R / T Z ;  (Rk)N),  so it is a Hilbert space, a n d / k f  
is an open subset of E y .  

Using a standard argument (see for instance [3]), it is easy to prove the following lemma. 
L e m m a  2.1. Suppose ( V1)-( V6) hold. Then the critical points of f in A N are (g, T)  
noncollision solutions of (1). 
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L e m m a  2.2. Suppose g E SO(k )  is an element of finite order s and it has no fixed point 

/: other than the origin. Then X ( t ) d t  = 0 for  all X ( t )  = ( x t ( t ) , . . .  , x N ( t ) )  e EaN. 

Proof. Since 1 is not an eigenvalue of g, id + g + . . .  + g,-1 = 0. So we have 

/: X(t )d t  = ~ X( t )d t  = g~X(t)dt = O. 
l----O JIT/s  JO 1=0 

By Wirtinger's inequality we know that  there is a constant C > 0 such that  HX(t)IIH1 ~ 
CllX(t)llL~ for all X ( t )  • Ea N. 
Coronary  2.a. For any real ~umber K ,  the set FK = ( X  • A ~ I I ( X )  <_ K }  is precompact 
in both C o topology and weak topology of E N.  

Proof. By (V4), II£(t)llL~ _< 2 ( m i n i { m i } ) - l f ( X ) ,  so the set FK is bounded in H 1. Then 
applying the Sobolev embedding theorem and Alaoglu's theorem, we complete the proof. 

This corollary also implies that  f is coercive. 
The closed subset F~  = E ~ -  A f  of E N will be called the collision set, and a standard 

argument can be applied to show that  the strong force assumption (Vb) implies that  f ( X )  -4 
oo when X approaches the collision set F~.  More precisely, we have the following lemma. 
L e m m a  2.4. Let  {X "} be a sequence i n / k ~  and X n --+ X • F N in both C O topblogy and 

weak topology of EaN. Then f ( Z  ~) -~ oo. 
Proof. Let the limit X = ( X l , . " ,  XN) • F~,  which means that  there exist a to • [0, T] and 
an io # Jo such that  xio(to) = xjo(to ). By the hypothesis, X~o~t ) - X~o(t ) --* xlo(t) - xjo(t ) 
uniformly and then X~o(tO) - X~o(tO) --+ O. In the case where Xio(t) - Xjo(t ) - 0, then 
~ojo(t,x~o(t ) - x~o(t)) --+ - o o  uniformly by (V3), and so does Y; hence f ( X  n) --+ oo. 

Now we assume that  rlo (t) - Xjo (t) ~ 0. Suppose x~ o (~-) - Xjo (T) ~ 0, say ~" > to. Then 

U(x~o (~') - x ~. (~')) - V(xi~o (to) - X~o (to)) = ~ d 3o --~U(Xio (t) - x']o (t) )dt 

= vU(x'~o(t ) - X~o(t ) ) ( ,o( t )  - !~2o(t))dt 

(f <- I v  U(X~o(t) - Xyo(t))l ~dt II:i:,'~ ( t )  - ~"o ( t ) l l z :  • 

"Yl ,  2 B y  ( W ) ,  U(:~I'o (',-) - ~?o (',-)) - U(Xi'o ( to)  - X?o ( to) )  --, oo, and I1:~o (*)  - :,:~o ( t )  llL is b o n d e d  
since X n converges weakly in H I. It follows that  

By (Vb) again, 

f ( x  ~) 

f , ~ l  v v ( % ( t )  - ~?0(t))?dt ~ oo. 

N ~ r I~'(t)l 2d*-  [ r  

= J o  

f >_ - V(t ,~'~(t) , . . . ,X~r(t))dt  

f >- I V u(x?o(t) - x•(t))12dt ---, ~ .  
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This completes the proof of the lemma. 

L e m m a  2.5. The functional f satisfies the Palais-Smale condition on ~ N ,  i.e., any se- 
quence X n • A ~  satisfying f ( X  ~) --+ A and f ' ( Z  ~) --* 0 is precompact in H 1 . 
Proof. Let {X '~} be a Palais-Smale sequence in A N. Corollary 2.3 says tha t  X '~ has a 

convergent subsequence, still called X '~, which converges to an element X • E N weakly 

in H 1 and strongly in C °. By Lemma  2.4, X • A N. The rest of the proof  is to show 

tha t  Z '~ converges to Z strongly, and it suffices to show that  lira tlX~IIH1 = IIXIIH1. We 

know tha t  lim I[X~I[L 2 = IIXllL2 since x n --+ X uniformly, so we only need to prove that  

lira 112 IIL: = 11211L  
Since X '~ converges to X strongly in C °, then ~7~, V(t,  X~) (x i  - x'~) converges to zero 

uniformly, f ' ( X  ~) --* 0 in H -1 and xi - x~ is bounded in H 1. Then we have 

m~ll&~ll~2 - rni l im "'~ 2 /o T I[xi IlL= = lira m i ~ ( $ 1  - ~'~)dt 

{ ; } = l i r a  ( f ~ ( X ' ~ ) , x i - x ' ~ } +  V ~ , V ( t , X = ) ( z ~ - x ? ) d t  = 0 .  

Therefore, lim I]~HL2 = IIJ:illL2 for all i, and hence lim ll2'~[IL , = II2IIL2. 

§3. T h e  C a t e g o r y  o f  F r e e  L o o p  S p a c e s  

In this section, we will discuss the category- of a class of free loop spaces. Our  topological 
setting is as follows. Let M be a manifold and g • HOMEO0(M)  be an element of finite 

order s where HOMEO0(M)  consists of all homeomorphisms of M which are isotopic to 

idM. The g-symmetric  free loop space of M is 

Ag(M)  = {w 6 C ° ( R / T Z ;  M)[w(t + T / s )  = g(w(t)),Vt}. 

We will s tudy the category of Ag(M). 
Let p, q 6 M be any two points. The  pa th  space ~P'q(M) is defined as follows: 

~P'q(M) = {w • C°([0, 1]; M)[w(0) = p, w(1) = q}. 

I f  p ---- q, ~P'P(M) will usually be denoted by ~P(M)  and called a loop space. 
L e m m a  3.1. Let M be a connected manifold. Then ~P'q(M) is homeomorphic to f~P"q'(M) 

for any four points p, q, p' and q' E M. 
Proof. Since M is connected, it is homogeneous, namely, for any two points p, p '  E M,  we 

can find an isotopy Fu : M --~ M with compact  support  such tha t  Fo = idM and FI(p) = p'. 
Let F~ and F~ be two such isotopies tha t  Fo = Fg = idM and F1 (p) = p ' ,  F~ (q) = q'. 

For any co 6 ~P'q(M), define H(w) 6 ~P"q'(M) as follows: 

H :  ~P,q(M) --~ CtP',q' (M) 

Clearly this H is continuous and its inverse is H-l(w'(t)) = F~-Jt(F';1(w'(t))). So H is a 
homeomorphism. 
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This is a classical result due to Serre [4] that  the real cohomology of ~2P(M) has non- 

trivial cup products of arbi trary high length provided M is an admissible manifold (i.e., a 
simply connected manifold with finitely generated real cohomology H*(M) and for some 
i > O, Hi(M) ¢ 0). 

Now we rewrite Ag(M) as {w • C°([0, T/s]; M)[w(T/s) = g(w(O))}. Define ~r: Ag(M) -~ 
M by 7r(w) -- w(0). For any p • M,~r-l(p) = ~P'g(P)(M). By Lemma 3.1, we know that  all 
these spaces are homeomorphic, so we have a fiberation 

~2P,g(P)(M) '7 Ag(M) ~ M. 

The following theorem is due to Fadell and Husseini (see [5]). 

T h e o r e m  3.2. Let F i .  E ~+ B be a fiberation which admits of a section ~ : B --~ E. Then 
for any subset Q c F, 

catFQ <_ catEQ. 

In particular, catF ~ catE. 
T h e o r e m  3.3. Using the notation above, we have, for any subset Q c ~P(M), 

cat~(M)Q <_ CatAg(M)Q. 

In particular, if M is admissible, then catA 9 (M) = oo. 
Proof. We will show that  the fiberation 

f~p,a(p)(M ) i ,  Ag(M) =, M, 

admits of a section cr : M --~ Ag(M). If it can be done, applying Theorem 3.2 to the 
fiberation, we get the result required. 

To show that  the fiberation ~P'g(P)(M) i~ Ag(M) => M admits of a section, we note 
that g • HOMEO0(M) and pick an isotopy h : [0, 1] --~ HOMEO0(M) such that  h0 = idM 
and hi = g. Then ((r(p))(t) = ht(p) is a section. We complete the proof of the theorem. 

We are interested in the N- th  configuration space of R ~. 

FN(R k) = {(xl , - - - ,xN)lx~ • R~,xi ~ xi,Vi y~ j}.  

If k > 2, N > 1, FN(R ~) is admissible (see [5]). Each element g • SO(k) gives a diffeo- 
morphism of R k, which sends distinct points to distinct points. Therefore SO(k) extends 
to an action on the configuration spaces. The space A N we introduced in §2 is the space 
of g-symmetric Hi- loops  in FN(Rk), and it has the same homotopy type as the space 
Ag(FN(R~)). Applying Theorem 3.3 to this case, we have 
C o r o l l a r y  3.4. / f k  > 2, N > 1 and g • SO(k) is an element of finite order s, then A N 
has an infinite category. 
R e m a r k .  In the case k --- 2, N > 1, the fundamental  group of the configuration space 
FN(R 2) is the braid group BN-1. The connected components in the g-symmetric free loop 
space are in one-to-one correspondence with the conjugacy classes in some extension of BN-1 
by a finite cyclic group, which is an infinite set. So CatAg(FN(R2)) = oo. 
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§4. The  Main  Resul t  

The following is the abs t rac t  critical point theorem which we will use in the proof of our 

main result, and a proof of this theorem can be found in [6]. 

T h e o r e m  4.1.  Let A be an open subset in a Banach space and f a functional on A ,  such 
that 

1. CatA = oo, 

2. For any sequence {qn} C/% and q~ ~ q e OA, we will have f(qn) --~ oo, 
3. For any g • R,  Catzx({q • A I f ( q  ) < g } )  < 0% and 

4. There exists a A0 • R such that the Palais-Smale condition holds on the set {q • 

Alf(q)  > A0}- 
Then f possesses an unbounded sequence of critical values. 

Our main theorem is the following 

T h e o r e m  4.2. Suppose that V satisfies (V1)-(V6) and T is any positive real number. 

Then the system of ordinary differential equations (1) has infinitely many (g, T )  noncoUision 
solutions. 

To prove this theorem, we need one more lemma. 

L e m a n a  4.3. For any constant g >_ O, the set OK = { Z  • A N] [[z~'i[L2 ~ K }  is of finite 

category in A N ,  i.e., CatA~(DK)  < ~ .  

Proof. DK+I is a neighborhood of DK in AN; so to prove the lemma, it suffices to find 

a homotopy H : DK × I -+ A N for all K ,  such that  Ho is the inclusion and HI(DK)  is 
precompact  in A N. 

Obviously the function p ( X )  = min [x~(t) - xj(t)[ has a positive low bound p on DK. 

Pick a 5 • (0, T)  such tha t  x / ~ K  < p and define a function 

{5 -1,  if t • [ 0 , 5 ] ;  
~o(T) : 0, otherwise. 

Now we can define the homotopy 

H ( X ,  ~) = (1 - ~ ) X  + ~ X  • ~,  V X  • D K ,  ~ • I,  

(/; /; ) where the convolution X * ~o = x l ( t  - s)~o(s)ds,. . . ,  xN( t  -- s)~o(s)ds . Clearly 

H0 is an inclusion and H1 (DK) is paracompact  since H1 is a convolution opera tor  and it is 
compact.  We only need to prove tha t  H ( D K  × I)  C A N. Supposing this is not the case, 

then there is a uo • (0 ,1 ] ,X E D g , i o  # Jo and ' t0  • [0,T], such tha t  (1 -uo)(X~o(t0 ) - 

Xjo(t0)) + uo((x~ o - Zjo ) * ~o)(to) = 0. I t  follows tha t  

((X~o - ~#o) * ~)(to) = (~o I - 1)(~o(t0) - ~#o(t0)), 

then 

I(X,o(to)  - ~ o ( t o ) )  - ( (~ ,o  - ~ jo )  * ~ ) ( t o ) l  = u o l l ~ o ( t o )  - ~ j o ( t o ) l  > p.  
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On the o ther  hand,  for any X E D K ,  i ~ j and  t E [0, T], we have 

I ( ~ i ( t )  - x ~ ( t ) )  - ( ( ~ ,  - ~ j )  • ~ ) ( t ) l  

6 P 

< 6-1 J0 [ ( z ~ ( t )  - x ~ ( t ) )  - ( z ~ ( t  - s )  - x j ( t  - s ) ) l d s  

< s u p  I ( z , ( t )  - x j ( t ) )  - ( x , ( t  - s )  - x j ( t  - s ) ) l  
0<s<~ 

This is a contradict ion.  

Proof  o f  Theorem 4.P. Now Lemrnas 2.4, 2.5, 4.3 and Corol lary  3.4 say t h a t  the  functional 

f : Lift --~ R satisfies all condit ions i a  Theo rem 4.1, and then  Theorem 4.1 and L e m m a  2.1 

imply tha t  the equat ions (1) has infinitely m a n y  (g, T)  noncollision solutions. 
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