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Symmetric Periodic Noncollision Solutions
for N-Body-Type Problems

Zhang Shiqing & Zhou Qing

Abstract. Using the calculus of variations in the large, especially computing the category of
the symmetric configuration space of symmetric N-body-type problems, we prove the existence
of infinitely many symmetric noncollision periodic solutions about the symmetric and nonau-
tonomous N-body-type problems under the assumptions that the symmetric potentials satisfy
the strong force condition of Gordon.

§1. Introduction

Calculus of variations in the large was used to study periodic solutions for N-body-type
problems in the last few years. In this paper, we will consider a class of solutions of the
following system of ordinary differential equations

m; Z; () + Ve, V&, 21(t), -, 2n(t)) =0, z;(t) e R*, i=1,---,N, (1)

where m; > 0 for all 7, and V satisfies the following conditions:

(V1) V(t, o1, on) =5 . Vis(t, 2 —25),

0<i#I <N

(V2) Vi; € CHR x (R* — {0});R), forall 1 <i# j < N,

(V3) V;;(t,£) — —oo uniformly on t as || — 0, forall 1 <i#j <N,

(V4) V(t,z1,--,2n) <0, forallt € R, (z1,--,2zn) € (RF — {0}) and

(V5) the strong force condition (see [7]) holds for Vj;, i.e., there exist a function U €
C*(RF — {0}, R) and a neighborhood N of 0 in R* such that

{;g% U(€) = —oo,
“V(,6) 2 | VU, ViEeN {0},

We will say that a function X(t) = (z1(t),---,zn(t)) € C*(R, (RF)V) is a T-periodic
noncollision solution of (1) if X(¢) is a T periodic solution of (1) and =;(t) # x;(t) for all
i# j,and t € R.

The following symmetric assumption is motivated by the Keplero N-body problem and
the symmetry introduced by Bessi and Coti Zelati in [1].
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(V6) there exists an element g of finite order s in SO(k) which has no fixed point other
than the origin (i.e., 1 is not an eigenvalue of g), such that

V(t,xl,"',ﬁN) =V(t+T/s’gml)""gzN)'

Note that the hypothesis that ¢ € SO(k) has no fixed point other than the origin will
force k to be an even integer.

If the potential V satisfies (V1)-(V6), and X () is a T-periodic noncollision solution of
(1) and satisfies X (t+7T/s) = (z1(t+T/3),---,an(t+T/s)) = (gz1(t),-- -, gzn(2)) = g X (8),
we will say that X (t) is a g-symmetric T-periodic noncollision solution. Throughout this
paper we will always assume that the potential V satisfies (V1)-(V6), and a g-symmetric
T-periodic noncollision solution will be simply called a (g,7") noncollision solution.

The main result in this paper is the following theorem.

Theorem 1.2. Suppose that V satisfies (V1)—(V6) and T is any positive real number. The
system of ordinary differential equations (1) has infinitely many (g, T) noncollision solutions.

Let k be an even integer. Then g = —id € SO(k) and it has no fixed point other than
the origin. The above theorem gives an affirmative answer to half of the question proposed
by Coti Zelati in [2] (in the case where k is even).

This paper is organized in three sections. §2 contains some basic facts about the func-
tional corresponding to the system of ordinary differential equations (1), in §3 we will discuss
the category of the g-symmetric free loop space, and the proof of our main result will be
given in §4.

§2. The Functional f

Let g € SO(k) be an element of finite order s and have no fixed point other than the
origin. We introduce spaces

EN = {(z1, --,zn)|x; € HY(R/TZ; R¥),zi(t + T/s) = g(zi(t)), Vt, 1},
A;V = {(z1, -, zN)|z: € HYR/TZ; RF),z:(t + T/s) = g(z:(t)),Vt,i

and z;(t) # z;(t), Vt,i#j}.
where H'(R/TZ; RF) is the metric completion of smooth T-periodic function for the norm

r 1/2
x| g = (/ lz ()2 + |m'(t)12dt) , and the functional f : AY — R
0

N T T
far o =3 2 [P~ [ Ven@), o on)
t=1 0 0

Clearly, EY is a closed subspace of H!(R/T Z; (R*)™), so it is a Hilbert space, and AY
is an open subset of EY.

Using a standard argument (see for instance {3]), it is easy to prove the following lemma.
Lemma 2.1. Suppose (V1)—(V6) hold. Then the critical points of f in Aév are (g,T)
noncollision solutions of (1).
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Lemma 2.2. Suppose g € SO(k) is an element of finite order s and it has no fized point
T
other than the origin. Then / X(t)dt =0 for all X(t) = (z1(2),---,zn(t)) € EY.
0
Proof. Since 1 is not an eigenvalue of g,id + g+ --- + g*~! = 0. So we have

-1

(+1)T/s T/s s—1
/ X(t)dt = Z/ X(t)dt = /0 D> g X(t)dt =
=0

By Wirtinger’s inequality we know that there is a constant C' > 0 such that || X (¢)||z: <
Cl|IX (t)|| 2 for all X(t) € EY.

Corollary 2.3. For any real number K, the set Fx = {X € AN|f(X) < K} is precompact
in both C° topology and weak topology of EN

Proof. By (V4), |X(t)|lzz < 2(min;{m;})~ e F(X), so the set Fg is bounded in H*. Then
applying the Sobolev embedding theorem and Alaoglu’s theorem, we complete the proof.

This corollary also implies that f is coercive.

The closed subset I‘g’ = E;V - A;v of E;V will be called the collision set, and a standard
argument can be applied to show that the strong force assumption (V5) implies that f(X) —
oo when X approaches the collision set I‘_f]v . More precisely, we have the following lemma.
Lemma 2.4. Let {X™} be a sequence in AY and X™ — X € TY in both C° topology and
weak topology of EY. Then f(X™) — oo.

Proof. Let the limit X = (z1,---,zn) € '}, which means that there exist a to € [0,7] and
an ip # jo such that z;,(to) = zj,(to)- By the hypothesis, 7, (t) — 27 (1) — i, (t) — 2o (t)
umformly and then z7 (o) — =% (to) — 0. In the case where x4, (t) z;,(t) = 0, then
Vioio (£, 23, () — 27, (t)) — —o0 umformly by (V3), and so does V; hence f(X™) — .
Now we assume that z;,(t) — z;,(2) # 0. Suppose (1) — z;,(T) # 0, say 7 > to. Then

U(af,(7) — 23, (7)) = U (e (to) — 23, (t0)) = / SU((2) - 23, (1)at
/ QU2 (2) — 22 (O)(E0 () — 47 (£))dt

1/2
<([1oveno-sere) 1o -k

By (V5), U(zf, (1) — 2% (7)) — U(af (to) — =7, (to)) — oo, and ||z7, (t) — 27, (t)|| 12 is bounded
since X™ converges wea.kly in H'. It follows tha.t

[ |V U2 () — 2 (8)[2dt — oo.

By (V5) again,

N T T
sy =35 [ Erera- [ v, - sk

-
2 - V(ta m?(t)9 Tt 1$?V(t))dt
to

|9 Ul t) - 3, () Pdt — oo.

2o
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This completes the proof of the lemma.
Lemma 2.5. The functional f satisfies the Palais-Smale condition on Aév )
quence X™ € AL satisfying f(X™) — X and f'(X™) — 0 is precompact in H*.
Proof. Let {X"} be a Palais-Smale sequence in A_f]V . Corollary 2.3 says that X™ has a
convergent subsequence, still called X™, which converges to an element X € E;V weakly
in H! and strongly in C°. By Lemma 2.4, X € Aflv . The rest of the proof is to show
that X™ converges to X strongly, and it suffices to show that Lim || X™||z: = || X||z:. We
know that lim || X®|[zz = || X||r2 since X™ — X uniformly, so we only need to prove that
liza [ X7| 2 = X2

Since X™ converges to X strongly in C°, then .,V (¢, X™)(z; — ) converges to zero
uniformly, f/(X™) — 0 in H~! and z; — z7 is bounded in H'. Then we have

t.e., any se-

T
mi||Eil|3. — milim ||£7]]3. = hm/ miz?(&; — 22)dt
0
T
= lim {(f;‘. (X™), z; — ) +/ Ve, VI, X™)(z; — a:?)dt} =0.
0

Therefore, lim |7z = ||2:]|z> for all 4, and hence lim || X™| 2 = || X|| 2
§3. The Category of Free Loop Spaces

In this section, we will discuss the category: of a class of free loop spaces. Our topological
setting is as follows. Let M be a manifold and ¢ € HOMEQO(M) be an element of finite
order s where HOMEOg(M) consists of all homeomorphisms of M which are isotopic to
idpr. The g-symmetric free loop space of M is

Dy(M) = {w e CO(R/TZ; M)|w(t +T/s) = g(w(t)),Vt}.

We will study the category of Ag(M).
Let p,qg € M be any two points. The path space ”9(M) is defined as follows:

QPI(M) = {w € C°([0, 1]; M)|w(0) = p,w(1) = g}-

If p = ¢, 0PP(M) will usually be denoted by (M) and called a loop space.

Lemma 3.1. Let M be a connected manifold. Then QP9(M) is homeomorphic to 7 (M)

for any four points p,q,p’ and ¢ € M.

Proof. Since M is connected, it is homogeneous, namely, for any two points p,p’ € M, we

can find an isotopy F, : M — M with compact support such that Fy = idys and Fy(p) = p'.
Let F, and F be two such isotopies that F = F§ = idps and Fy(p) = p', Fi(q) = ¢'.

For any w € QP9(M), define H(w) € QP4 (M) as follows:

H:Qr(M) — QP9 (M)
w(t) +— F{(Fi-t(w(t))).

Clearly this H is continuous and its inverse is H~'(w/(t)) = FyL(F';7 (w'(t))). So H is a
homeomorphism.



Zhang Shiqing et al. Symmetric Periodic Nonclooision Solutions 41

This is a classical result due to Serrel! that the real cohomology of QP(M) has non-
trivial cup products of arbitrary high length provided M is an admissible manifold (ie., a
simply connected manifold with finitely generated real cohomology H*(M) and for some
i>0,H{(M) #0).

Now we rewrite A,(M) as {w € C°([0,T/s|; M)|w(T/s) = g(w(0))}. Define 7 : Ag(M) —
M by 7(w) = w(0). For any p € M, 7~ 1(p) = QP9 (M). By Lemma 3.1, we know that all
these spaces are homeomorphic, so we have a fiberation

QP9®) (M) 25 A (M) = M.

The following theorem is due to Fadell and Husseini (see [5]).
Theorem 3.2. Let F -5 E 5 B bea fiberation which admits of a section o : B — E. Then
for any subset Q C F,
catp@ < catgQ.

In particular, catF < catE.
Theorem 3.3. Using the notation above, we have, for any subset Q C QP(M),

cator(m)Q < caty,(a)Q-

In particular, if M is admissible, then catAg(M) = oo.
Proof. We will show that the fiberation

QPI@) (M) = Ay (M) 2 M,

admits of a section ¢ : M — A (M). If it can be done, applying Theorem 3.2 to the
fiberation, we get the result required.

To show that the fiberation QP9()(M) = Ag(M) 5 M admits of a section, we note
that g € HOMEOg(M) and pick an isotopy A : [0,1] — HOMEOqg(M) such that hg = idpr
and h; = g. Then (o(p))(t) = h:(p) is a section. We complete the proof of the theorem.

We are interested in the N-th configuration space of R*.

Fn(RF) = {(z1,---,zn)|z:i € R*,z; # z;,Yi # j}.

If £k > 2,N > 1, Fy(R*) is admissible (see [5]). Each element g € SO(k) gives a diffeo-
morphism of R¥, which sends distinct points to distinct points. Therefore SO(k) extends
to an action on the configuration spaces. The space Ag’ we introduced in §2 is the space
of g-symmetric H'-loops in Fy(R*), and it has the same homotopy type as the space
Ag(Fn(R¥)). Applying Theorem 3.3 to this case, we have

Corollary 3.4. If k > 2,N > 1 and g € SO(k) is an element of finite order s, then Ag’
has an infinite category.

Remark. In the case £ = 2, N > 1, the fundamental group of the configuration space
Fn(R?) is the braid group By—_1. The connected components in the g-symmetric free loop
space are in one-to-one correspondence with the conjugacy classes in some extension of By_1
by a finite cyclic group, which is an infinite set. So CatAy(Fy(R?)) = oo.
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§4. The Main Result

The following is the abstract critical point theorem which we will use in the proof of our
main result, and a proof of this theorem can be found in [6].
Theorem 4.1. Let A be an open subset in a Banach space and f a functional on A, such
that

1. CatA = oo,

2. For any sequence {g,} C A and g, — q € A, we will have f(g,) — oo,

3. For any K € R, Cata({q € A|f(g) £ K}) < 0, and

4. There ezists a A\g € R such that the Palais-Smale condition holds on the set {q €
Alf(g) > Ao}

Then f possesses an unbounded sequence of critical values.

Our main theorem is the following
Theorem 4.2. Suppose that V satisfies (V1)~(V6) and T is any positive real number.
Then the system of ordinary differential equations (1) has infinitely many (g,T’) noncollision
solutions.

To prove this theorem, we need one more lemma.,
Lemma 4.3. For any constant K > 0, the set Dx = {X € Ag’] I X\lzz < K} is of finite
category in Aﬁ’, i.e., Catpy (Dg) < oo.
Proof. D41 is a neighborhood of Dk in A;V ; so to prove the lemma, it suffices to find
a homotopy H : D x I — Aév for all K, such that Hy is the inclusion and H;{Dg) is
precompact in Ag’ .

Obviously the function p(X) = tlﬁll;; |zi(t) — z;(t)] has a positive low bound p on Dg.

Pick a 6§ € (0,T) such that v26K < p and define a function

5§71, ifte|o,6;
0, otherwise.

o(T) = {
Now we can define the homotopy

HX,u)=0-wX+uX+*p, VXEDg, uel,

T T
where the convolution X * ¢ = / z1(t — s)cp(s)ds,---,/ zn(t — 8)p(s)ds | . Clearly
0 0

Hp is an inclusion and H,(Dg) is paracompact since H; is a convolution operator and it is
compact. We only need to prove that H(Dg x I) C Ag’ . Supposing this is not the case,
then there is a ug € (0,1],X € Dk, i # jo and'tg € [0,T], such that (1 — ug)(z;,(to) —
zjo(t0)) + uo((ziy — zj,) * ©)(to) = 0. It follows that

(i~ 2j0) * @) (to) = (ug " — 1)(wi, (t0) — 3o (t0)),

then
(214 (o) — T (20)) — ((Tio — T5o) * ) (t0)| = ug |y (a) — T56 (t0)| = p-
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On the other hand, for any X € Dg,i # j and t € [0, T], we have

[(:(2) — 2;(2)) — ((@: — 25) * P)(D)|

&
<5 /0 ((&:(t) = 25(8) — (24(t = ) — (¢t — 5))]ds
< sup [(@:(8) — 2,(0)) ~ (e = 5) = (¢ — 5)
< VBllé: - 511z < VBl + lE5]122) < VABIX Iz <.

This is a contradiction.

Proof of Theorem 4.2. Now Lemmas 2.4, 2.5, 4.3 and Corollary 3.4 say that the functional
f: A;V — R satisfies all conditions in Theorem 4.1, and then Theorem 4.1 and Lemma 2.1
imply that the equations (1) has infinitely many (g,T) noncollision solutions.

References

[1] Bessi, U. and Coti Zelati, V., Symmetries and noncollision closed orbits for planar N-body type problems,
Nonlinear Analysis, 16(1991), 587-598.

[2] Coti Zelati, V., The periodic solutions of N-body-type problems, Ann. Inst. H. Poincaré Analyse non
Linéaire, 7(1990), 477-492.

[3] Ambrosetti, A. and Coti Zelati, V., Pertubation of Hamiltonian systems with Keplerian potentials,
Math. Z., 201(1989), 227-242.

[4] Serre, J. P., Homologic singulier des espaces fibres, Ann. Math., 54(1951), 425-505.

[5] Fadell, E. and Husseini, S., A note on the category of free loop space, Proc. Amer. Math. Soc.,
102(1989), 527--536.

[6] Majer, P., Ljusternik-Schnirelmann theory with local Palais-Smale conditions and singular dynamical
systems, Ann. Inst. H. Poincaré Analyse non Linéaire, 8(1991), 459-476.

[7] Gordon, W. B., Conservative dynamical system involving strong forces, Trans. Amer. Math. Soc.,
204(1975), 113-135.

Zhang Shiqing
Department of Applied Mathematics
Chongqing University
Chonggqing, 630044
China
Zhou Qing
Department of Mathematics
East China Normal University
Shanghai, 200062
China



