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Muitifractai  Model ing and Spatial Statistics ~ 

Qiuming Cheng z and Frederik P. Agterberg 3 

In general, the multifractal model provides more infi~rmation about measurements on s'patial ot~iects 
than a fractal model. It also results in mathematical equations f~r  the covariance ~unction and 
semivariogram in spatial statistics which are determined primaril.v hv the second-order mass e.~- 
ponent. However. these equations can be apprr by po,a'er-law relations which are  compa- 
rable direct(~' to equations based on fractal modeling. The multifractal approach is used to describe 
the underlying spatial stracture o f  De Wijs 's e.rample o f  zim" values from a sphalerite-bearing quartz 
vein near Pulacayo, Bolivia. It is shown that these data are mult(fractat instead of./)-actal, and that 
the second-order mass exponent (= O. 9 79 + O. Ol I for  the example) can be used in spatial statistical 
ana(vsis. 

KEY WORDS:  autocorrelation, fractals, mass exponents, multifractal spectrum, semivariogram, 
spatial covariance. 

INTRODUCTION 

The concept of multifractals has been developed and applied recently in physics 
and chemistry where this approach was shown to be useful for the study of the 
spatial distribution of physical and chemical quantities with geometrical support 
consisting of a set of points or spatial objects which may itself be fractal (Feder, 
1988). In general, fractal sets can be measured by determining their presence 
or absence in collections of cells created by the partitioning of k-dimensional 
space R ~ (k = 1, 2, or 3). For multifractals, the amount of random variable is 
measured in the collections of cells. 

Multifractals are spatially intertwined fractals with a continuous spectrum 
of fractal dimensions (cf. Stanley and Meakin, 1988; Evertsz and Mandelbrot, 
1992; Agterberg, 1994). From the multifractal model various fractal models can 
be derived which may have different fractal dimensions including the box-count- 
ing, information, and correlation or cluster dimensions (Hentschel and Procac- 
cia, 1983; Feder, 1988). In general, different fractal sets defined on complex 
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geometrical patterns with the property of self-similarity can be interrelated by 
means of multifractal theory. 

In this paper, new results will be presented for the relationship between 
muhifractal models and spatial statistics, consisting of autocorrelation, covari- 
ance, and semivariogram functions in spatial statistics. The usefulness of the 
new approach will be demonstrated by application to De Wijs 's  example of zinc 
values from a sphalerite-quartz vein near Pulacayo in Bolivia. This dataset was 
used previously to illustrate other, related geostatistical models (De Wijs, 1951; 
Matheron, 1962; Agterberg, 1994). 

THE M U L T I F R A C T A L  M O D E L  

Suppose ~($4) represents the measure of a set S in a segment A of R k. For 
the applications in this paper, k = 1. A line segment of length L can be parti- 
tioned into N(~) cells (intervals) of equal size e; let p.~(e) denote the measure on 
S for the ith cell of size e in (0, L] with i = 1, 2 . . . . .  N(e). The partition 
function (Evertsz and Mandelbrot, 1992) is defined as 

xq(e) = Z ~ ( ~ )  (1) 
i = l  

If the measure #i(e) satisfies the muhifractal model, the partition function of 
Equation (1) has a power-law relation with cell size e for any order q with - o o  
< q < oo, or 

Xq(~) 0: T(q~ (2) 

where 0: represents proportionality, and v(q) is the mass exponent of order q. 
Normally, only integer numbers are used for q but this is not required. From 
Equation (2), the singularity exponent co(q) and multifractal spectrum f(c~) = 
f{c~(q)} can be obtained successively by 

edq)  = dT(q) f ( o : )  = qe~(q) -- r(q)  (3) 
dq 

The function f(c~) can be interpreted as the negative of the Legendre transform 
of T(q) (Evertsz and Mandelbrot, 1992). Each point along the curve for the 
spectrum f (c0  represents the ffactal dimension of a subset of S with approxi- 
mately the same singularity exponent (~. The maximum valuefmax{~(0)}, which 
is reached for q = O, corresponds to the box-counting fractal dimension. For a 
one-dimensional set,fm~x{o~(O)} < 1. The valuef{c~(l)} for q = I is theentropy 
dimension; f{c~(2)} follows from c~(2) and r(2). The spatial correlation of con- 
tinuous random variables and the clustering in point patterns are determined 
primarily by the second-order mass exponent 7"(2). 
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Several multifractal spectra in physics and chemistry have the property 
fmi,{a(oo)} = fmin{C~(--OO)} = 0, although this is not a requirement. It may not 
be possible to establish this with certainty because r(q) increasingly is deter- 
mined only by the largest and smallest values of #i(e) as q tends to oo and - o o ,  
respectively. Iffmi,{a(oo)} = 0, the largest values of #i(E) may satisfy a Pareto 
frequency distribution even when the lognormal distribution provides a first 
approximation for most other values (Mandelbrot and Evertsz, 1991 ; Agterberg, 
Cheng, and Wright, 1993; Cheng, Agterberg, and Ballantyne, 1994). 

Multifractal theory was developed originally in the context of physics and 
chemistry. Recently, Evertsz and Mandelbrot (1992) have pointed out the anal- 
ogy of Equation (1) with moment generating functions in statistical theory. 
Chemoff's theorem for large deviations (Billingsley, 1986, p. 147; Cs6rg6 and 
R6v6sz, 1981, p. 99) can be used to derive Equation (3). 

Spatial random variables can have multifractal properties for any q with 
- o o  _< q < oo. A weaker assumption is that the multifractal model is valid 
only for q = 1 and 2. This assumption of second-order multifractality is suffi- 
cient to derive exact and approximate expressions for the covariance, autocor- 
relation, and semivariogram functions of continuous random variables in spatial 
statistics. 

SPATIAL C O R R E L A T I O N  O F  R A N D O M  VARIABLES IN R '  

Suppose that Xi (e )  = e - l g . i ( ~ ) ,  with i -- 1 . . . . .  N(~), is a stationary 
random variable of order 2 on the interval (0, L]. Thus Xi (c )  is a concentration 
value derived by dividing the measure /.ti(~) by its linear cell size ~. Its mean 
E{Xi(e) } = ~ is assumed to be independent of e, and the covariance for lag h 
satisfies coy (It) = E { [ X i ( 6 )  - ~][Xi+h(e) - ~]. In De Wijs 's  example (see 
later), Xi(~)  is represented by zinc assay values for 118 channel samples obtained 
at 2.00-m intervals along a drift in the Pulacayo sphalerite-quartz vein. In order 
to study the frequency distribution and spatial characteristics of X,(e), a series 
of samples can be collected. For simplification we assume that these samples 
are located regularly within (0, L] in that adjoining samples have equal size. 
Consequently, the interval (0, L] is subdivided into N(e )  = L/~ cells, each of 
size E. The average value ~(ke)  of a larger cell with size k6 can be expressed 
as  

1 )k 
xi(~) (4) 

wi th j  = I . . . . .  N k, whereN(e)/k - 1 < N k <- N(e)/k is the total number of 

cells of size he. 
Variance (02), covariance (coy), auto-correlation (p), and semivariogram 
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(7) of the random variable Xi(e) can be estimated using 

l N(e) 

02(0 = -  ~ [X~(~)- U~)] 2 (5) 
N(E) i=,  

N(e) - h 
1 

coy (h) = ah(O -- - -  ~ [X/(~) - /j(e)][Xi+h(O -- /~(O] (6) 
N(e) - h i= ,  

coy (h) 
O h ( e ) -  a2(e) (7) 

N((:) - h 
1 

~,,(~) - ~ [Xi(O - X ~ + h ( c ) ]  2 (8)  
2IN(e) - h] i=l  

where ~(e) represents the average value of X~(O in (0, L] with i = 1 . . . . .  
N(E), and h is lag. Suppose, as before, that the measure /~j(e) either has the 
multifractal property and satisfies Equations (1) to (3), or that its first- and 
second-order moments have fractal properties so that Equation (2) holds true 
for q = 1 and q - 2 if modeling is restricted to the spatial statistics of Equations 
(5) to (8). Setting q = 1 in Equations (1) and (2) gives for the first moment 

= N(e) j=  t L j= I p:i(e) = Cle'll) = ~ (9) 

where ct = ~ is constant, because the total quantity ( =  ~L) must be preserved 
implying r ( l )  = 0 (principle of  conservation of total mass). Setting q = 2 in 
Equations (1) and (2), gives the noncentered second-order moment  ~2(e) with 

~2(e) = N(e) j = ,  [XJ(e)]2 = e--{ j=, [/zJ(e)]2 = c2cr(2) - - I  (10) 

where c 2 is another constant. From Equations (9) and (10), it follows that 

o2(~) = C~ T~2~-I _ ~2 (11) 

Consequently, 

a2(ke) = ~r 2 ~ Xi(e) = c2(ke)T(2j-z _ ~2 (12) 
i = ( j - l ) k + l  

Combining Equation (12) with the following equality (e.g., see Bartlett, 1966, 
p. 284) 

x, (o  - ~ -  l + 2 Z 1 - p.,.(E) (13) t7 2 
i = ]  s = l  
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it is derived that 

k - I  

k2[c2(kE)r(2)-I-~ 2] = a 2 ( e ) [ k  + 2 s~] ( k =  - s)ps(E)]  (14) 

and, by elementary methods,  

C2 E re2) - 1 
Ok(e) -- 202( 0 [(k + 1) r(2)+l - 2k r(2)+l + (k - 1) ~2)+11 ~2 o2(E ) (15) 

For  small e or if ~ < <  a(E), the last term in Equation (15) can be neglected, 
and 

i )~r 2k ~2)+1 + (k 1) ~12~+l] &(e)  = Oh = 3 [ ( k  + 1 - 

Similarly,  

t - _ 2k~:~+ I l)rl21 + I ~2 COVk(E) = 3C~E Tr I[(k + 1) ~2~+1 + (k - ] - 

and 

(16) 

(17) 

% ( 0  = c2e~z ' - I [1  - �89 {(k + 1) T(2~+' - 2k "~2~+' + (k - 1)T~2~+'}] (18) 

The semivariogram has sill 3'=(E) = c2E T~2~-l which depends on the value of  
cell size E. As cell size decreases to zero, the sill increases infinitely. The 
covariance also depends on cell size but the autocorrelation function is relatively 
independent of  it. Replacement  of  the second-order  difference in Equation (16) 
by the second derivative yields 

Oh(e) = �89 {re2) + l } r ( 2 ) k  ~c2~-' (19) 

Likewise,  Equations (17) and (18) can be approximated by 

covk (e) = �89 c2 e TI2~ - ~ { re2) + 1 } re2) k ~z, - ,  _ ~ 2 (20) 

and 

yk(e) = C~e ~'2~-*[1 -- 4 {re2) + l ) } r (2 )k  " ' 2 ' - ' ]  

Hence, provided that re2) is only slightly less than 1, 

o r  

(21) 

%(e)  = -c2E ~2~-1 log [�89 {(k + 1) r(21+l - 2k T~2~+' + (k - 1)T~2~+1}] 

(22) 

%(e)  = --C2ET~21-1 log [�89 {re2) + 1} r(2)k T~2~- l] (23) 
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This last expression shows that the semivariogram may be approximately linear 
in log k. 

Anyone of the functions Equations (15) to (23) can be used for modeling 
a one-dimensional series of  measurements. If  the underlying spatial structure is 
multifractal, the best results are obtained by Equations (15), (17), and (18). The 
relatively simple power-law relations of Equations (19) to (21) then provide less 
satisfactory results unless the series is long. On the other hand, Equation (23) 
can give good results, even for series consisting of relatively few measurements 
(see later). 

COMPARISON TO OTHER MODELS 

The purpose of this section is to review briefly several earlier power-law 
type equations for spatial statistical analysis which are not identical to but closely 
resemble those derived in the previous section. A geostatistical (De Wijsian) 
model resulting in a semivariogram similar to Equation (23) was introduced 
originally by Matheron (1962). The equations for spatial statistics derived in the 
previous section also can be approximately by empirical equations proposed by 
Fairfield-Smith (1938) and Yaglom (1966). Of these authors, Fairfield-Smith 
used an equation similar to Equation (11) (see later). Before the development 
of multifractal theory, Yaglom (1966) introduced a model with power-law type 
second-order mass exponent similar to Equation (10). From this he derived 
expressions similar to Equations (11) and (20). Mandelbrot (1983), Mandelbrot 
and Van Ness (1968), Taqqu (1988), and Rose (1983; 1992) used fractal mod- 
eling to derive equations for spatial statistics as will be discussed briefly in the 
next three subsections. 

Mandelbrot's Fractional Brownian Motion Model 

Suppose that ~i represents a random variable with zero mean for length of 
step (labeled i) of a particle engaged in fractional Brownian motion, moving 
forward or backward along an axis (cf. Fcder, 1988, p. 166). Afterj  successive 
steps r~ i, the position ~-j of this particle is 

J 

= ~ r/i (24) 
i = l  

with semivariogram 

I "> ~_ E [ ~  - ~+~1- o~ /~2, (25) 

where H is the Hurst exponent with 0 _< H _< 1; H = 1/2 corresponds to the 
special situation of Brownian motion with independent increments. As discussed 
by Mandelbrot (1983), ~j can be interpreted as the elevation at a point labeled 
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j along a sampling line across a fractal landscape with fractal dimension 3 - 
H. The fractal dimension D for any profile across the landscape equals D = 2 
- -  H .  

As shown originally by Mandelbrot and Van Ness (1968), the autocorre- 
lation Pk between the elevations ~ and ~ + k of two points on a fractal landscape 
satisfies an expression similar to Equation (16) with r(2) + 1 = 2H. Conse- 
quently, Equation (25) is equivalent to 

1 E [ ~  - ~+k]  2 = E rti = c2er~21-1kr~2l+l (26) 
i = j + l  

as follows from Equation (10), and H = 1/2{r(2) + 1}. Fractional Brownian 
motion is persistent if 1/2 < H _< 1 or 0 < r(2) _< 1, and antipersistent if 0 
_ H < 1/2 or - 1  _< r(2) < 0. The limiting situations r(2) = 1 and r(2) = 
- 1  result in Ok(e) = constant, k = 1, 2 . . . . .  

Taqqu's  Model 

A power-law type of variance 

o2(Xk) cx k 2" (27) 

for self-similar processes X k with stationary increments satisfying Equation (16) 
was proposed by Taqqu (1988). From Equation (12), after multiplication by k 2, 
it follows that 

If ( = 0, this would become similar to Equation (27). In practical applications, 
the condition ~ = 0 could be fomed to be satisfied approximately by subtracting 
an estimate of the mean from the observed values. However,  Equations (10) 
and (11) then would become identical. This, in turn, would imply that the 
multifractal model would not be valid for q = 2. 

Rose's Model 

In general, the autocorrelation of average values of adjoining cells of  size 
k~ satisfies 

2o2[X(2ke) ] 
p t ( k e ) -  o2[X(ke) ] 1 (29) 

In combination with Equation (12) this yields 

c2(ke)T~2~- t 
log [{1 + pl(ke)}/2] = [1 -- 2 T~2~-'] 42 (30) 
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An empirical variance-size relation 

a2[X(k~) ] = k -%2[X(~) ] (31) 

where b is a constant was proposed originally by Fairfield-Smith (1938). Setting 
b = 1 - r(2), Equation (31) follows from Equation (16) if ~ = 0. Keeping 
> 0, Rose (1983, 1992) derived Equation (31) as well as Equation (16) from 
a postulate on similarity of autocorrelation which can be expressed as 

Pl(~l) = Pl(e~) (32) 

where et and e2 are any two different small segments, for example, e~ = e and 
~2 = ke. However, according to Equation (30) pl(ke)  depends on k. It also would 
follow from Equation (32) that 

pdke) = 2 T~2~ - 1 (33) 

I f  ~ > 0, Equation (33) is approximately equal to Equat ion (30) only i f  r(2) is 
close to I. 

It may be concluded that Rose's model is likely to give results which are 
similar to tbose produced by the multifractal model. However, there will be 
differences which can become large depending on the magnitude of 1 - r(2). 
Most of the differences in results of spatial analysis between the multifractal 
model and the other models based on fractal modeling discussed in this section 
are related to the fact that the last term of Equation (17) satisfies ~2 = 0 for 
the other models. 

EXAMPLE: APPLICATION TO DE WIJS 'S  ZINC VALUES 

De Wijs (1951) studied assay values from the Pulacayo sphalerite-quartz 
vein in Bolivia. These data will be used for example in the remainder of this 
paper. Along a drift 118 channel samples had been collected at 2.00 meter 
intervals (see Fig. 1A). The massive sulphide vein was on average about 0.50- 
m wide but all samples were cut over the anticipated stoping width of 1.30 m. 
These channel samples provide unbiased estimates of the zinc concentration in 

2-m-long blocks measured along the vein in the direction of the vein. It is noted, 
however, that these average zinc values for 2-m-long blocks would have a 
frequency distribution that is narrower than the one for the channel samples 
shown in Figure IB (cf. Agterberg, 1994). 

The Multifractal Spectrum of the Zinc Values 

A measure #i(e) = cXi(~), i = 1 . . . . .  118, was defined as in Equation 
(4) with Xi(e) representing the concentration of zinc per unit length. Cell sizes 
ranging from 2 m to 30 m (total length is 234 m) were used. Some results of 
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Figure 1. A, Zinc concentration values in 2-m segments 
(data from De Wijs, 1951); B, Histogram of zinc values. 

estimating the partition function with q ranging from - 3 4  to 34 are shown in 
Figure 2A using log-log paper. For each value of q a straightline was fitted by 
linear regression of log X(e) on log e (ordinary least squares). The slopes, ~'(q), 
of all fitted straightlines with q = - 3 5 ,  - 3 4  . . . . .  - 1 ,  0, 1 . . . .  50 are shown 
in Figure 2B. These results include ~'(0) = - 0 . 9 7 6  + 0.011 where the uncer- 
tainty is expressed using the standard deviation (+  s). According to Equation 
(3) the box-counting dimension is estimated to be 0.976 + 0.011. It is noted 
that the slope for q = 1 is approximately equal to zero as expected (principle 
of conservation of total mass). Figure 3 shows the best-fitting line for q = 2 
which passes nearly exactly through the data points. Its slope being ~-(2) = 
0.979 + 0.019 provides an estimate of the second-order mass exponent and will 
be used extensively in the next section. 

Successive estimates of ~-(q) were connected by straightline segments (Fig. 
2B) which, together, form an approximately differentiable curve. Values of the 
singularity a (see Fig. 2C) were estimated by applying the central difference 
technique to successive sets of  three values of ~-(q). The multifractal spectrum 
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Figure 2. Results of multifractal analysis applied to zinc concentration val- 
ues in Figure 1. A, Log-log plot for relationship between Xq(~) and e; 
straightlines obtained by method of least squares (LS). B, Estimates of r(q) 
include slopes of straightlines in A. C, Singularity ~ estimated from B by 
central difference method, and D, multifractal spectrumf(~) .  Smallest cell 
size c = 1/100 corresponds to 2 m; logarithmic scales have base 10. 
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Figure 3. Log-log plot for relationship between X2(e) 
and e. 
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f ( a )  (Fig. 2D) was derived from the values shown in Figure 2B and 2C by 
Equation (3). 

The results of  Figure 2 show that the zinc concentration values are multi- 
fractal instead of fractal. A fractal model would have resulted in a single straight- 
line in Figure 2B, a horizontal line in Figure 2C, and a vertial spike in Figure 
2D, respectively. The straightlines in Figure 2A would have had interrelated 
slopes r(q)/(q - 1) = r ( p ) / ( p  - 1) for any pair of values of q 4: p in a simple 
fractal model, for example, r(12) = - r  - 10 when q = 12 and p = - 1 0 .  
Linear regression for these values gave the estimates ~-(12) = 9.8709 _+ 0.2192 
and ~ ( - 1 0 )  = - 1 4 . 1 2 4 3  + 0.4267. The absolute value of the difference of 
these slopes is 4.2534 +_ 0.4797 which is different significantly from 0. This 
clearly shows that the underlying model is multifractal instead of fractal. 

Relation to Binomial  Multiplicative Cascade Model 

The so-called binomial multiplicative cascade model in ~ is the simplest 
multifractal self-similar model in existence. It has been discussed by several 
authors including Feder (1988) and Evertsz and Mandelbrot (1992). It is intro- 
duced here for the following two reasons: (a) it help us to understand the nature 
of multifractal models and how they can be constructed, and (b) it provides a 
possible explanation for the results shown in Figure 2. 

A stochastic version of the binomial model is as follows (Meneveau and 
Sreenivasan, 1987; Agterberg, 1994). At the first stage (k = 1) in a process 
consisting of k stages, the interval (0, L] with measure ~L is subdivided into 
two equal intervals: (a) (0, L/2] with measure (1 + B)~L, and (b) (L/2~ L] with 
(1 - B)~L, where B is a random variable with pr(B = d) = pr(B = - d )  = 
1/2 (d > 0). At stage 2 these two intervals are halved again with new measures 
for the halves defined in the same way as at stage 1. The process is repeated at 
stages k = 3, 4 . . . .  At stage k the ith subinterval with value X,(e) has size e 
= L/2 ~, and E{Xi(e)  } : ~. The frequency distribution of Xi(e) is logbinomial,  
tending to become lognormal in the center as e ~ 0 and, depending on the 

direction of ordering, Pareto in both tails. 
Defining a new constant m = (1 + d)/2,  it can be shown (Evertsz and 

Mandelbrot,  1992, p. 941) that, as k ~ r 

r(q) = - l o g  2 [m q + (1 - m) q] (34) 

with corresponding expressions for ~(q) and f ( ~ )  immediately following from 
Equation (3). The resulting multifractal spectrum has its maximum at the point 

where f(c~) = 1 for a = c~(0). It resembles a parabola in the center but is 
truncated at the bottom because f ( u )  >_ 0. The smallest and largest values of 
t~ are O~mi n = - log2  m and am.x = - l o g 2  (1 - m), respectively. 

The binomial model would predict exact symmetry for the curve of Figure 
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2D and this condition obviously is not satisfied in practice. There are two reasons 
why the binomial model could be valid because of bias in the pattern of  Figure 
2D: (a) although, individually, they are unbiased, the original zinc assay values 
have a variability that overestimates the (unknown) true variability of the larger 
2-m-long blocks they represent, and (b) the method used to arrive at the mul- 
tifractal spectrum of Figure 2D is subject to (unknown) propagation of sampling 
errors, especially those related to the differentiation of r(q). These difficulties 
can be resolved partially by arguing as follows. 

The estimate ~'(2) = 0.979 + 0.019 derived in Figure 3 probably is rela- 
tively good as suggested by its relatively small standard deviation. Its substi- 
tution into Equation (34) gives - log2 {rh 2 + (1 - rh) 2} = 0.979, from which 
it follows that rh = 0.560 with ~m,, = 0.84. This is in agreement with the 
smallest values of ~ suggested by the curves in Figures 2C and 2D. In the next 
section it will be seen that ~'(2) = 0.979 + 0.019 also gives good results for 
spatial statistics. 

The increase in variability resulting from channel sampling (see before), is 
likely to have resulted in increased absolute values of the slopes in Figures 2A 
and 2B, including ?(2) = 0.979. Propagation of this bias would lead to a true 
value of ~mm greater than 0.84. On the other hand, the straightlines used to 
estimate r(q) for negative values of q (e.g.,  q = - 10) show a relatively good 
fit in Figure 2A. Because of Equation (3) this would imply that the right tail of 
the curve in Figure 2D provides a good estimate. It can be shown that this, in 
turn, would indicate that the true value of ~mi, is less than 0.84 under the 
binomial assumption. Because of  these sources of  uncertainty, it can be con- 
cluded only that the spatial structure underlying Figure 1 probably is multifractal 
with properties equal or close to those of  the binomial multiplicative cascade 
model. 

The preceding estimate of rh = 0.56, which was based on ~-(2) = 0.979, 
results in d = 0.120. If the underlying model would be binomial with this 
parameter, halving any sufficiently long interval within the vein would give half- 
intervals with the property that the half-interval with the greater density has 
density of zinc values approximately (1 + d =)  1.12 • greater than before the 
subdivision. This is equivalent to stating that, for two adjoining samples, the 
value of the sample with the greater zinc concentration is approximately 1.27 
times as large as the value of the other sample. These rules are only approxi- 
mately valid (cf. De Wijs, 1951). 

Autocorrelation and Semivariogram Functions 

Covariance, autocorrelation, and semivariogram values for successive lags 
were estimated from the data by Equations (6) to (8) with the unit of  lag set 
equal to 2 m. The estimate ~-(2) = 0.979 resulting from Figure 3 was used as 



Multifractal Modeling and Spatial Statistics 13 

a coefficient for compar i son  with fitted curves  sat isfying Equat ions  (15), (17), 

and (18). The o ther  coefficients in these equat ions  were es t imated by ordinary 

least squares.  For  k < 13, this gave 

~(k) = 4 .37[ (k  + l)  Tq79 - 2k t979 -F (k - -  1) 1979] - -  8.00 

~'(k) = 277 .65[ (k  + l)  1979 - 2k 1979 "t- (k - l )  1979] - 5 .8087 

~(k) = 391.49 - 180.38[(k  + 1) 1979 - 2k 1979 -f- (k - 1)19791 (35) 

This result is shown graphical ly in Figure 4 for the covar iance  function,  using 

ar i thmetic  as well as logar i thmic scales. Similar  results for the semivar iogram 

are shown in Figure 5 after  increasing the m a x i m u m  lag. The  curve displayed 

in different ways in Figure 5A and 5B satisfies Equat ion (18) with "7-(2) = 0.979.  

The other  coefficients in this equat ion  were es t imated by least squares.  Figure 

5C shows results for the logar i thmic semivar iogram model  of  Equat ion (23) with 

~(k) = 36.9 + 22.31 log (k) (36) 
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Figure 4. Estimated covariance values and fitted 
curves satisfying Equation (17) for zinc concentration 
values (distance k _< 13). A, solid line obtained by 
linear regression after setting ~'(2) = 0.979. B, Log- 
log plot of A. Zinc values measured as percentages 
(see Fig. 1). Unit of lag is 2 m; logarithms base 10. 
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Figure 5. Estimates of semivariogram 7~. A, Solid 
line satisfying Equation (18) obtained by linear 
regression after setting ~-(2) = 0.979. B, Log-log 
plot of A. C, Logarithmic model of Equation (23). 
Units along axes as in Figure 4. 

where both coefficients were obtained by ordinary least squares. The result 
shown in Figure 5C is comparable to results of models previously applied by 
Matheron (1962, p. 180) and Agterberg (1994, p. 226). It may be concluded 
that the equations resulting from the multifractal model with ~-(2) = 0.979 also 
can be used for modeling the spatial covariance and semivariogram function in 
this example. 

CONCLUDING REMARKS 

In general, the multifractal model provides more information about mea- 
surements on spatial objects than ordinary fractal models. The mass exponent 
function r(q) is useful for characterizing the underlying structure of the mea- 
surements with - r ( 0 )  corresponding to the largest fractal dimension (= box- 
counting dimension of the support) and r(2) determing the spatial covariance of 
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cont inuous  random variables.  The  most  useful second-order  funct ions  including 

Equat ions  (15), (17), and (18) are non l inear  but can be  fitted to data by l inear  

least squares if  a good es t imate  o f  r (2)  is avai lable.  Mult i fractal  model ing  also 

can be applied to spatial point  processes  (Cheng and Agterberg ,  1995). 

The  approach was il lustrated by an example  (De Wi j s ' s  zinc values) ,  show- 

ing (a) validity of  the mult ifractal  model  in the si tuation,  and (b) usefulness  of  

the newly derived second-order  funct ions  for model ing  spatial variabil i ty.  In 

this case-history study, the box-count ing  d imens ion  ( ~  1) of  the support  is 

approximately  Eucl idian.  The  es t imated first-order mass  exponent  7-(1) is close 

to zero as expected.  
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