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In mineral exploration, resource assessment, or natural hazard as- 

sessment, many layers of geoscience maps such as Iithology, struc- 

ture, geophysics, geochemistry, hydrology, slope stability, mineral de- 

posits, and preprocessed remotely sensed data can be used as evidence 

to delineate potential areas for further investigation. Today's PC-based 

data base management systems, statistical packages, spreadsheets, 

image processing systems, and geographical information systems pro- 

vide almost unlimited capabilities of manipulating data. Generally such 

manipulations make a strategic separation of  spatial and nonspatial 

attributes, which are conveniently linked in relational data bases. The 

first step in integration procedures usually consists of studying the 

individual characteristics of map features and interrelationships, and 

then representing them in numerical form (statistics) for finding the 

areas of high potential (or impact). 

Data representation Is a transformation of our experience of the 

real world into a computational domain. As such, i t  must comply with 

models and rules to provide us with useful Information. Quantitative 

representation of spatially distributed map patterns or phenomena 

plays a pivotal role in integration because it also determines the types 

of combination rules applied to them. 

Three representation methods--probabUity measures, Dempster- 

Shafer belief functions, and membership functions in fuzzy sets--and 

their corresponding estimation procedures are presented here w i t h  

analyses of the implications and of the assumptions that are required 

in each approach to thematic mapping. Difficulties associated w i th  

the construction of probability measures, belief functions, and mem- 

bership functions are also discussed; alternative procedures to over- 

come these difficulties are proposed. These proposed techniques are 

illustrated by using a simple, artificially constructed data set. 
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Introduction 
In the earth sciences, spatially distributed data are rep- 

resented as maps to convey how geographic location, 

shape, size, distribution, topology, and association of fea- 

tures and processes interrelate to make a comprehensible 

landscape. Whereas some maps mainly reflect the char- 

acteristics of the earth's surface, for example, geomor- 

phology and land use, other maps contain information 

about deeper layers of the earth's crust, for example, 

bedrock geology, Bouguer gravity, and aeromagnetic 

anomaly. 
Maps also represent observations and interpretations 

of nature--including human interference with nature-- 

and are constructed by specialists who associate different 

levels of confidence, accuracy, and extensibility to ob- 

servations and to interpretations (Brodaric, 1992). Con- 

structing thematic maps involves a delicate decision pro- 

cess whereby selected features are combined and their 

associated attributes--including accuracy and confi- 

dence-must also be combined. Such attributes can have 

both a spatial nature, for example, characteristics related 

to spatial frequency or distribution, and a nonspatial na- 

ture, for example, characteristics related to the properties 

that identify the mapping units as homogeneous distinct 

objects 0VlcMaster, 1991). 

Furthermore, maps may represent different types of 

observations: (I) continuous measurements, for example, 

gravitational field; (2) discrete samples, for example, geo- 

chemical stream sediment data; (3) distinct geometric 

objects (polygons, segments, and points), for example, 

individual landslides, lineaments, mineral occurrences; 

and (4) complete polygonization of map space, for ex- 

ample, bedrock geology. Frequently, maps consist of many 

layers of different types of observations overprinted on 

the same planar surface, where spatial and inherent pro- 

cess relationships are represented for human perception. 

One layer represents the main theme, whereas the other 

layers provide the secondary or accessory information. 

In some cases, it is desirable to construct special-pur- 

pose or thematic maps, in which various aspects of com- 

plex associations of mappable features are grouped into 

classes of importance for human use, such as the assess- 

mcnt of nonrenewable resources, natural hazards, and 

environmental impacts. The first task is to define the 

purpose of the integration; the second task is to represent 

the map information in a uniform way according to the 

defined purpose. We propose a general background for 

systematic representation of geoscience spatial infor- 

mation for computational decision processes in support 

of data integration. 
The field of geographic information systems arose from 

the need to computerize the process of map data capture, 

management, and analysis for theme representation and 

modeling, The approach proposed here is based on the 

definition of favorability functions, on three different in- 

terpretations of such functions in terms of certainty, be- 
lief, and possibility, and using several methods of esti- 
mation. An application on an artificially constructed 
example is described, and a processing strategy is pre- 
sented with a discussion of the combination rules re- 
quired in predictive integration. 

As will become evident in the remainder of this article, 
the approach we propose is equally applicable in explo- 
ration and in environmental studies. The term "'geopo- 
tential maps" was proposed by Luttig (1987) to cover 
under one roof the thematic nature of maps representing 
a potential either for natural resource hazard or for en- 
vironmental impact (van Westen, 1992). 

Capturing and Modeling Spatial Data 
Capturing spatially distributed data is generally done by 
computer by assigning a geographic location to one or 

more points belonging to each feature and by associating 

to each feature codes for its identification and description. 

A synthetic form of computer representation is termed 

the "vector model." In this model, a minimum number 

of points is used to locate point data, segments, or po- 

lygonal features. The elementary objects or features are 

identified by labels, which are also used in relational 

tables to associate several attributes to them. Complex 

hierarchical data structures are generated to express the 

topological relationships of points, segments, and poly- 

gons. The vector model is very efficient for representing 

objects with low spatial variability, that is, map units 

with constant value over large areas. 

Many types of data, however, arc characterized by 

high spatial variability, such as geophysical or geochem- 

ical anomalies, remotely sensed images, or digital ele- 

vation. For the latter data types, a satisfactory represen- 
tation is the "raster model." In this model, a rectangular 
matrix of numbers is used in which each element, termed 
a picture element or pixel, is in one-to-one correspon- 
dence with a small area on the ground or in the original 
picture material. The value of  the pixel may represent 
the geophysical intensity field, its brightness, or its mem- 
bership in a class or in a map unit. Also, point, segment, 
and polygonal objects can be represented in this model. 
Absolute location of  the pixels is obtained by supplying 
the coordinates of one pixel, say, at the top leR of a 
rectangular matrix, the pixel size (or better, the size of 
the area corresponding to the pixel), and the orientation 
of the matrix or raster. This convention avoids the rep- 
etition of such coordinates for each pixel. As with the 
vector model, topological relationships and other non- 



spatial attributes can be stored in relational tables where 

the pixel values are also stored. 

In spatial data integration studies, some map data 
layers may be in raster model format (or variable rasters), 
whereas other layers may be in vector model format. To 
compare data sets from different data model formats and 
to integrate them into a map showing target areas for 
further study, they should all be conveniently represented 
in a single dam model format. Each of  the two basic data 
models have computational advantages and disadvan- 
tages (Arono~, 1989); however, the raster model seems 
to be the most practical representation for statistical in- 
terpretation and analysis, and is therefore the represen- 
tation we will use. 

Another interesting aspect of the computer represen- 
tation of map data is the assignment of feature identifi- 
cation to polygons (two dimensions), segments (one di- 
mension), and points (zero dimensions). In the vector 
model, a point is located by coordinate values in a very 
fine virtual grid; therefore, a virtual zero dimension is 
implied. In the raster model, a point is assigned to a pixel 
containing it and is, therefore, equated to the pixel itself-- 
its location within the pixel is not necessarily specified. 
In processing spatially distributed data, map unit features 
or samples must be quan tized, that is, the range of their 
characteristic values, including location coordinates, must 
be divided into intervals; all the values within an interval 
must be represented by a single quantization level. 

The main consequence of quantization is that in the 
assessment of a mineral potential theme, we will identify 
the pixels (or the subpolygons) that are likely to "'contain'" 
point-like undiscovered mineral occurrences, whereas in 

the assessment of landslide hazard, we will identify the 

points (pixels) that are likely to "be contained" within a 

future landslide (set of pixcls or a polygon). This also 

depends on the relationship of pixel size to deposit size. 

In some cases, to "be contained" would apply to mineral 

deposits. Such a duality of theme representation is simply 

due to the fact that the target of some themes can be 
considered as having zero dimensions, whereas in other 
themes the target can have one or more dimensions. 

Consider a study region A and m layers, L, ..... Lm, of 
spatial data in A.  The whole area is divided into small 
cells, and the data are recorded at each pixel for each 
layer. Obviously, the size of the area corresponding to 

the pixel plays an important role and also determines 

what types of representation and measurement are suit- 

able for describing the data and their location. This be- 

comes particularly crucial if the size of the pixel is very 

large. For continuous data the average minimum, max- 

imum, and/or range (maximum-minimum) values with- 

in each pixel may be used. For polygonal data, binary 

(presence/absence) representations for each polygon type 
(for example, color) at each pixel within it can be the 
effective description. 

Most map data not only represent real observations 
but also abstractions or interpretations from a limited 
number of observations. Thus even if  a map shows the 
coverage of the entire area for a particular map unit, real 
observations of the unit are usually made at a few lo- 
cations, for example, along flight lines for airborne geo- 
physical surveys, at one or two sample points for each 
station in lake or stream sediment surveys, or along tra- 
verses by geologists in reconnaissance mapping. For these 
reasons, maps can differ in quality and in the level of 
uncertainty assigned to each occurrence of  a map unit. 
Varnes (1974) describes engineering geological maps in 
which different degrees of  uncertainty are assigned to 
different map units and to the contacts between such 
units. Similarly, more recent and detailed geological maps 
separate the outcrop pattern from the interpretations, 
thus making it easier to integrate map data with remotely 
sensed data (airborne or spaceborne). In addition, the 
description and homogeneity of  mapping units is fre- 
quently represented in lengthy legends, which, in some 
cases, lead to a synthetic and structured description of 
the map symbology and characterization. Often, the un- 
derstanding of  such symbology is an essential key to 
quantitative representation and statistical modeling. We 
can conclude, therefore, that the computer representation 
of  mappable data requires various levels of abstraction, 
redefinition, and absolute positioning. 

Representation of Favorability Functions 
Consider m layers of map data each containing one set 
of map units (that is, a single theme) in a study area A 
where an exploration target for a specific mineral deposit 
type D is sought. Consider a pixel p in A and a propo- 
sition: 

Tp: "p contains a deposit of  type D." (i) 

The layers can be grouped into two classes, one of 

continuous and the other of noncontinuous measure- 

ments. For each kth layer Lk containing continuous mea- 

surements, the quantized value at p for Lk is a finite 
interval [mink, maxk], where mink and maxk are known. 
For each layer Lk containing noncontinuous measure- 
ments, such as lithology, without loss of generality, we 
may assume that the quantizecl value at p for Lk takes 

one integer value among {I, 2 ..... nJ, where nk is the 

maximum number of the map units in Lk. One of these 

nk units may represent the areas not covered by observed 

values in the kth layer (that is, it may represent an "oth- 



ers" class). Then, the m layers of map data at every p in 
A are represented, in a quantized form, by  

layer Lk. We define the compound function fk of rk and 

Vk at each p in A: A(P) ffi rk(vk(P)), for all p ~ A, that is, 

{(vk(p), k ffi 1 ..... m), p ~ A},  

where vk(p) is the quantized value for the/cth layer Lk at 
p. Here the m quantized values (vk(P), k ffi 1 . . . . .  m) in 
equation 2 are regarded as m pieces of  evidence of  the 
proposition that p contains a deposit. 

However, one has to be very careful in interpreting 
the value of vk(P) because very often it only represents a 

unit in that layer at p; for example, on a geological map, 

it represents the presence of a specific rock type. There- 

fore, Vk(P) < vk(q) does not mean anything except that p 
belongs to the Vk(P) unit and q belongs to the vk(q) unit. 

We may regard the quantization, vk, as a function of 

A into a finite interval for the/oah layer: 

vk: { 1, 2 . . . . .  n J ,  

if  Lk is continuous 
pattern, 

if Lk is noncontin- 
uous pattern. 

For our exploration target, mineral deposit of type D 
in A, the value vk(P) alone at P may have very little 
meaning [that is, vk(P) means only that p belongs to the 
vk(p)th map unit in the kth layer], although vk(p) could 
have a significant meaning with respect to the other val- 
ues within the kth layer, Lb. In addition, when we com- 
pare vk(p) with the value v~(p) of  the lth layer Lt at p, it 
is again difficult to comprehend the significance of the 
comparison with respect to a mineral exploration target 
of  deposit type D in A, because vk(p) may represent the 
map unit of the rock type, whereas vr(p) may symbolize 
aeromagnetic intensity observation at p, for example. Only 
a physical model might justify assigning importance to 
such a comparison (Green and Craig, 1984). 

As a first step in quantitative modeling for data in- 
tegration in exploration and environmental studies, we 
propose to define a relative favorability index function, 
rk, for each kth layer Lk. We first define for each layer. 

[ [mink, max~] [a, fl], 

{ 1, 2 . . . . .  nk} 
r~: [~, ~], 

if Lk is continuous 
pattern, 

if Lk is noncontin- 
uous pattern. 

(2) IA -~ [mink, maxk] --, [a, ~], if  Lk is contin- 
Vk rk uous pattern, (5) 

/ 

fk: | A  -, { 1, 2 ' . . . ,  nk} -~ [a,/~], if Lk is noncon, 

l tinuous pattern. 

wherefk is termed a favorability function for the kth layer 
Lk. A fk(P) value near a indicates that the sureness that 
the proposition is true is very low, that is, given the 
evidence Vk(p) at p, the support that p belongs to min- 
eralized areas with deposits of type D is very low. How- 
ever, a fk(P) value near ~ means that the evidence vk(P) 
strongly supports the proposition being true. 

Many different interpretations, such as probability, 
certainty, belief, plausibility, or possibility, of the mea- 
surement related to the favorability function can be giv- 
en; the values ,~ and ~ depend on the interpretation. We 
will discuss this in the next section. 

(3) For a given proposition, suppose that we have defined 

m favorability functionsfk(p) (k ffi 1 ..... m), one for each 

layer. Contrary to the quantized value, Vk(P) for the kth 

layer Lk at p, fk(P) then contains a significant meaning 
with respect to the proposition. For example, fk(p) < fk(q) 
implies that within the kth layer Lk, the support for the 
proposition from the evidence vk(q) at the pixel q is stron- 
ger than the evidence vk(P) at the pixel p. Another example 
is thatA(p) <J~p) implies that, at the pixel p, the support 
for the proposition from the evidence v~(p) of the lth layer 
Lt is stronger than the evidence vk(P) of the ~ h  layer Lk. 
In other words, if we wish to study the contributions of 
the evidence of the kth and the lth layers to the propo- 
sition of D at a pixel p, we may examine A(P) and f~p) 
instead of Vk(P) and vt(p). We will elaborate on this in the 
next sections. 

At each pixel p we have 

(4) 

where c~ and/~ are two known constants, and rk(~) (~ [a, 
/~]) represents a measurement related to the "sureness"-- 
probability, certainty, belief, plausibility, possibility, or 
comparability-that the proposition (p contains a deposit 
of  type D) is true given the evidence of~ a tp  in the/cth 

(f~ @), A(p) . . . . .  fro(p)), (6) 

indicating how each of the m pieces of evidence (vk(p), k 
ffi 1 ..... m), in equation 2 supports the sureness that the 
proposition is true at p. We will discuss how to estimate 
these m functions in the section on estimation of favor- 
ability functions. 

Therefore, the m layers of map data (or individual 
themes) are now represented by 

{(fk(P), k -~ 1 ..... m), p ~ A}, (7) 

instead of  equation 2. 
This proposed representation (eq. 7) is more useful 



A than the original representation in equation 2. Similar 
considerations can be easily made in the analysis of a set 
of maps for landslide hazard assessment. 

Interpretation of Favorability Functions 
The favorability function defined in equation 5 represents 
a measurement related to the sureness--probability, cer- 
tainty, belief, plausibility, or possibility--that the prop- 
osition is true given the evidence at a pixel. 

ProbabtTistic Interpretation 
Given a proposition, the favorability function fk(p) is 
interpreted as the conditional probability, denoted by 
Prob~{T~ is true I v~(p)) that p contains at least one de- 
posit given the evidence v~(p) a~ p in L~; that is, for k = 
1,2,...,m, 

f~(p) ffi Prob~{T~ is true I evidence v~(p) at p). (8) 

Another possible interpretation off,(p) as a probabi- 
listic representation is that, for k ~ 1,2 ..... m, 

f~(p) = Prob~{evidence v~(p) is observed at 
P I T, is true). (9) 

Here we definefk(p) as a conditional probability that the 
evidence vk(p) is observed at p, given that the proposition 
is true. This representation is somewhat related to the 
inversion theory in geophysics. When we compare these 
two interpretations in equations 8 and 9, the conditional 
probability in equation 8 is a much more natural choice 
than that in equation 9 for the favorability functionfk(p). 
Hence, we propose from now onA(p) ffi Probk{T~ I Vk(P)) 
in equation 8 as our probabilistic interpretation of the 
favorabflity function, and that a and fl in equation 5 are 
0 and 1, respectively. 

However, using Bayes" theorem, we also establish the 
relationship between these two probability interpreta- 
tions in equations 8 and 9: 

Prob~{% I v~(p)} Prob,{v~(p)} 
:~Probk{v~(- 0) I Tp) Pl'obk{T#}, (lo) 

where Tp denotes the proposition thatp contains a deposit 
of type D. Probk{T~} is the prior probability that a pixel 
p contains a deposit before we have any evidence 0ayers), 
and Probk(v~(p)} is the probability that p has evidence 
v~(p). Both Prob~{T,} and Probk{vk(p)) can be relatively 
easily estimated from the data and do not play any crucial 
roles. Particularly, Probk{Tp) should be a constant for all 
k's and all pixels, because it relates to neither any specific 
layers nor any specific pixels. 
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equations 8 or 9 we choose is obviously crucial to th( 
final results, although we can convert one interpretatiot 
to the other easily using equation 10. 

Certainty Factors (CF) Interpretation 
In a rule-based system (or expert system), uncertainty L, 
usually associated with the rule from evidence of a prop. 
osition. A certainty factor (CF) at p for the kth layer.. 
denoted by CTk~) is defined as the change in certainq 
that the proposition (a pixel p contains deposits of type 
D) is true, from without the evidence vkO) at p to give~ 
the evidence vk(p) at p in the kth layer. Certainty factors 
(CF's) originally proposed by Shortliffe and Buchanan 
(1975), for the medical expert system MYCIN, range 
between - 1 and + 1. Positive numbers for CF correspond 
to an increase in certainty in a proposition after the ev- 
idence vk(p) is observed, whereas negative numbers cor- 
respond to a decrease in certainty. In this interpretation, 
a and fl in equation 5 are - 1 and + 1, respectively, and 
for p r A and the kth layer Lk, 

AO) = CF~(p). ( l  l) 

However, CF is defined as a function of probability. 
The original CF proposed by Shortliffe and Buchanan 
(1975) was defined as 

(Probk{T, [ vk(P)} - Prob~{Tr 
| 1 - PrObk{T,) 

ifProb~{Tp I vk(P)~ > Prob~{T,L 

CF~(p) = | Probk{Te [ v,(p)) -- Probk{T,), 
| Probk{Tp} ' 

ifProbk{Tp I Vk(P)} < Probk{Tp). 

(12) 

From this definition, reasonable strategies for data 
integration could not be established for CFo~(p) when 
uncertainties are propagated through several pieces of 
evidence. Heckerman (1986) discussed the desiderata of 
CF for propagating uncertainties through a complex in- 
ference network, and proposed the following modified 
certainty factor in terms of probabilities: 

CF~(p) ffi 

I~robk{T, I v k ( P ) )  - Prob~iTp) 
Probk{T, [ v~(p))(1 - Probk{T,))' 

ifProbk{Tp [ vk(p)) > Probk{Tp}, 

Probk{T, I v~(p)~ -- Probk{T,} 
Probk{Tp)(1 - Probk{Tg)) ' 
ifProbk{Tp ] Vk(p)} < Prob~{Tp). 

03) 

By following the probability rules, CF defined in equa- 



tion 13 satisfies the desiderata to propagate uncertainties 
through a complex inference network. An excellent dis- 

eussion on this subject was provided by Heckerman 
(1986). According to this definition, CF is equal to zero 
if the conditional probability is equal to the prior prob- 
ability;, the absolute value of CF increases if the condi- 
tional probability is far from the prior probability. Thus, 
CF is a measure of certainty with respect to the prior 
probability only. From now on when referring to CF, we 
will use the definition in equation 13. 

Dempster-Shafer Bel ief  Function Interpretation 
In this approach (Sharer, 1976), two favorability func- 
tions for each layer, denoted by Belk{T. [ vk(P)} and Plsk{T. 
I Vk(P)}, are defined to represent the minimum and max- 
imum degree of belief that the evidence vk(P) of Lk sup- 
ports the proposition that a pixel p contains deposits. 
These functions are called a belief function and a plau- 
sible function; they range from 0 to 1. Whereas the belief 
function represents the minimum belief that vk(P) of Lk 
supports the proposition that the pixel p contains de- 
posits, the plausible function represents the maximum 
belief. The difference Plsk{T, I v,(p)} -- Belk{T. I v,(p)} 
represents ignorance of one's belief that p contains de- 
posits given evidence v,(p) in Lk (Shafer, 1976). 

Another interpretation of these two functions is as- 
sociated with the uncertainty of the conditional proba- 
bility that the proposition is true given the evidence vk(p) 
as discussed in equation 8. Instead of specifying one prob- 
ability measure, Probk(T, I vk(p)L we present an interval 
[Belk{T. [ v,(p)}, PIs~{T. [ vk(P)}]. The distance, PIs,{Tp 
[ vk(P)} -- Belt{T. [ vk(P)}, of the interval represents the 
uncertainty associated with Probk{T. I Vk(P)}. 

We have the following relationship between these two 
functions. Let Belk{~ . I vk(P)) represent the degree of 
belief that the evidence Vk(P) in Lk supports the propo- 
sition that the pixel p does not contain any deposit. Then 
the plausible function can be expressed (Shafer, 1976) as 

Plsk{Tp I vk(p)} = I - Belk{1". I Vk(P)}. (14) 

Comparing this approach with the probabilistic in- 
terpretation in the previous section, we would expect the 
following relationship (Wally, 1987): 

Belk{T. I vk(P)} < Probk{T. I Vk(P)) < PlSk{T. I vAp)L 
(15) 

IfPlsk{T. I Vk(P)} - Belk{T. I vk(p)} = 0, and hence 

function, and we would expect all three mappings, Plsk{T. 

I vk(P)}, Probk{T. I vk(0)L and Belk{Tp I vk(P)}, to be 
identical. 

Fuzzy  Logic Interpretation 
Consider a fuzzy set S consisting of all the pixels (p e A) 
where the proposition is "likely" to be true (Zadeh, 1965). 
The fuzzy set S is defined by a membership function t~s: 

~s: A -  [0, 1], (17) 

which represents grade of membership or degree of  com- 
patibility. We may also interpret the membership func- 
tion as a possibility function (Zadeh, 1978) of p, where 
the proposition is likely to be true (Zadeh, 1965) and is 
denoted by a set of  ordered pairs, 

S = {(p, ~s(P)), P e A}. (18) 

The main difference between randomness (probabil- 
ity) and fuzziness is as follows: Randomness has to do 
with uncertainty concerning membership or nonmem- 
bership of an object in a nonfuzzy (ordinary) set that has 
precisely defined criteria of membership (any object is 
either in the set or not in the set), and the probability is 
the measurement of the uncertainty. Fuzziness, on the 
other hand, has to do with sets in which objects may have 
grades of membership intermediate between full mem- 
bership and nonmembership (a fuzzy set does not have 
precisely defined criteria of membership; it has only fuzz- 
ily defined criteria), and the membership function is the 
measurement of the fuzziness (Bellman and Zadeh, 1970). 

The problem of estimating t~k from the prior knowl- 

edge of the set of m pairs, (p~, tts(p,)), (P2, #s(P2)) . . . . .  
(P,., ~s(Pm)), is called abstraction (Bellman and others, 
1966). 

At each kth layer Lk, we define a fuzzy set Sk by a 
membership function #, based on the evidence in Lk: 

#k: A--* [0, 1]. (19) 

That is, at each layer, we define a fuzzy set Sk: 

& = {(p, ~,,(p)), p ~ A) .  (20) 

In this interpretation, the favorability function is fk(P) 
= ~k(P) for each kth layer Lk; it represents the grade of 
membership of the pixel p in which the proposition is 
likely to be true. If the membership function/~k(P) is near 
1, it implies that p is likely to contain a deposit. 

Belk{Tp I vk(p)} ~ 1 - Belk{~'p I vk(P)}, (16) 

then Bell in equation 16 is termed the Bayesian belief 

Estimation of Favorability Functions 
In a study area, the construction and estimation of fa- 
vorability functions for map layers axe complex but cru- 
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Figure 1. Plots of three hypothetical 
simple thematic maps: a, a geological map 
with four units, labeled grl-gr4; b, a geo- 
chemica| map with four units labeled gc l -  
gc4; and c, a geophysical interval map 
with four uni~, labeled gpl-gp4, d, Sev- 
en known mineral deposits. See tables 1 
and 2 for the statistics on the maps and 
on their overlays to the known mineral 
deposits. 
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cially important tasks in data integration. To obtain fa- 
vorability functions, the first step is defining a proposition 
Tp, such as "A pixel contains at least one mineral oc- 
currence of  a given type," or "A pixel will be affected by 
the environment." 

Favorability functions depend on the corresponding 
propositions. The more precisely the proposition is de- 
fined, the easier it is to construct a favorability function. 
For instance, it would be much easier to construct a fa- 
vorability function for a proposition stating that "A pixel 
will be affected by active landslides of  the type flowslide'" 
than from one simply stating that "A pixel will be affected 
by a landslide." On the other hand, the usefulness of a 
study is limited by the scope of the proposition. Hence, 
it is important to balance the ease of constructing favor- 
ability functions and the simplicity of formulating prop- 
ositions. 

A favorabflity function must be constructed for each 
layer in a study area. For a given layer and a given prop- 
osition, there is no unique procedure for constructing the 
favorability function. In this article we consider three 
separate situations: (1) few or no recorded occurrences 
of the proposition in environments similar to the one in 
the study area; (2) known occurrences within the study 
area; and (3) known occurrences in similar environments 
outside the study area. 

To illustrate the estimation procedures of the favor- 
ability functions in this section, we construct an artificial 
study area that contains these four layers: (i) lithological 
map; (ii) geochemical anomaly map based on a stream 
sediment geochemical survey and a drainage basin map; 
(iii) geophysical anomaly map; and (iv) location map of 
the known volcanogenic massive sulphide deposits. They 
are shown in figure l; statistics related to the spatial data 
are shown in table 1. To simplify the discussion in this 
example, we view the deposits as points in two-dimen- 
sional space. 

No Known Occurrences in Study Area 
In the absence of  known occurrences in a similar envi- 
ronment that could be used as a control area, the con- 
struction of favorability functions depends on the evi- 
dence in the study area and on  the opinion of experts; 
therefore, it is targely subjective. In the absence of a strict 
rule, we discuss only one possible scenario in the follow- 
ing example, shown in figure 1. Knowledge acquisition 
techniques described by McGraw and Harbison-Briggs 
(1989) and Butler and Carter (1986) should play an im- 
portant role, although such techniques are not used here. 

For each map layer, the first step is to order the map 
units with respect to their importance in the proposition. 
Let us assume that the proposition Tp is 



Table 1. Pixel counts for the map units in figure 1, the three maps of a hypothetical study area for mineral exploration. 

a. Geology b. Geochemistry c. Geophysics 

Type Name No. of pixels Type Name No. of pixels Type Name No. of pixels 

grl Intrusive 7,777 gcl Low 15,304 gpl High 10,733 
gr2 Mixed volcanics 5,236 gc2 No data 18,654 gp2 Medium 9,579 
gr3 Acidic volcanics 21,455 gc3 High 13,219 gp3 Low 18,828 
gr4 Sedimentary 15,255 gc4 Very low 2,546 gp4 Very low 10,583 

" A  pixel p contains at least one volcanogenic massive 

sulphide (VMS) deposit.'" (21) 

Suppose that the lithological map layer in figure l a  
represents the bedrock geology map units as follows: (1) 
intrusive rocks, (2) mixed volcanic rocks, (3) acidic vol- 

canic rocks, and (4) sedimentary rocks. For the propo- 
sition, a possible order of  the map units is mixed vol- 
canics (2), acidic volcanics (3), intrusives (1), and 

sediments (4). Under  this order, the favorability function 
for the layer should satisfy the expression 

/~ ~ f(2) -> f(3) - - f(1)  -> f(4) >- a. (22) 

The next step is to determine which map units are un- 

related to the proposition and the relative importance of  
space-time contacts between any two map units. 

We assign weights as follows: f(4) = a, because the 
sedimentary rocks are not genetically related to the min- 
eralization. Suppose that our experts say that the ratio 

f(2)/f(3) -- 3, approximately, that is, that mixed volcanics 
are three times more important than acidic volcanics. 

Suppose that our experts say thatf(3)/ f(1) = 10, that is, 
acidic volcanics are one order of  magnitude more im- 
portant  than intrusives from the point of  view of  VMS 
mineralization. Then we can set the following relations: 

f(4) -- a, 

/ ( 2 ) / f (3 )  = 3, 

/(3)/f(1) = 10. 

(23) 

The expressions in relations 22 and 23 imply that 

f(2) -- 30t < #, 

f (3 )  = 10t, (24)  

f(1) = t, 

f(4) = a, 

where t is a constant term assigned toJ(1), and the weights 
in equations 24 reflect the experts' view about the relative 

properties of  deposits per unit area of  the given rock units. 

The final step in the construction of  a favorability 
function for this layer is to determine a and 8. In this 

example, the value of  t in equations 24 depends on how 

much  support the layer can provide to the proposit ion 
of  the presence ofvolcanogenic massive sulphide depos- 
its. It  may also depend on the size of  the area corre- 

sponding to the pixel and on our interpretation o f  the 
favorability fimction (or o f  the model  underlying it). 

Probability Function. A s  discussed previously, we 

may  assume that the favorability function is regarded as 
the conditional probability that the proposit ion is true 
given that the pixel or point belongs to a map  unit in the 
map  layer. Returning to our example, we can write 

f ( i )  = Prob{the pixel contains at least one VMS 

deposit I a pixel is assigned to unit k} 

= Prob{T, I Vk(p)}. 

(25) 

First we assign a = 0 and ~ = 1. Although we may  assume 

that all the values assigned to the f(/) 's in equations 24 
hold here, we must be careful in selecting the value for t 
to reflect equation 25. For example, i f  five VMS deposits 

known in unit 3 are believed by the experts to be all that  
exist, then, considering the area occupied by acidic vol- 
eanics (21,455 pixels as shown in table la) and using 

equation (A1) discussed in the Appendix, t should satisfy 

f(3) = lOt = 1 - (1 - (1/21,455)) 5 -- .000233,  (26) 

where the area covered by acidic volcanics is 2,145,500 
m 2, the area occupied by a pixel (that is, the pixel size) 

is 100 mL and f(3) illustrates the conditional probabili ty 
that a pixel (100 m 0  contains at least one of  the five 
deposits given that the pixel is covered by acidic volcan- 
its. Equation 26 implies that t = .000023. 

However, if  the experts also believe that unit I, in- 
trusive rock, contains one VMS deposit, then we have 

f(1) -- t = 1 - (1 - (1/7777))' = .000129, (27) 

where the area occupied by intrusive rocks is 777,700 

m'. Equation 26 implies that t = .000129. 



Obviously, there is a conflict in determining t by equa- 
tion 26 and by equation 27. In this situation, one or two 
of  the following three assumptions must be modified to 
estimate t consistently: 

( i )  ] ( 3 )  ~ 10t a n d ~ l )  ffi t ,  

(ii) five deposits exist in unit 3, 

(Hi) one deposit exists in unit 1. 

Suppose that we accept (i) and (iii). We have f(3) ffi 
.00129. Then the estim_ated number of  deposits in unit 
3, by using (A3) in the Appendix, is 

known occurrences are applied in this procedure. The 
other procedure is through equation 13 by first estimating 
the probability as discussed in the previous section on 
probability function. 

In this latter procedure using equation 13, we need to 

estimate the prior probability Prob{p contains a deposit}, 

which represents the probability that a pixel contains a 

deposit prior to obtaining any evidence, in addition to 

the conditional probabilities discussed in the previous 

section. Obviously, 

Probk{p contains at least one deposit} 
ffi Prob{Tp}, for all k, (31) 

n ffi integer part of 

{.5 + log(0.99871)/log(21,454/21,455)} 
= 27, ( 2 8 )  

which is quite different than (ii) in which a total of only 
five deposits is expected. Hence, we may construct the 
favorability function in terms of probability by accepting 
(i) and (ii), or (i) and (ii)', where for (ii)', the experts state 
"Ten deposits exist in unit 3." If we accept (i) and (ii)', 

then 

t = (1 - (21,454/21,455)1~ = .000047, (29) 

and allf(0's are assigned according to equations 24. Hence, 
in this example, 

f(1) ffi Prob{Tp I P is in intrusive rock} 

= t ffi .000047, 

f(2) = Prob{Tp [ p is in mixed volcanic rock} 

= 30t ffi .00141, 

f(3) ~ Prob{Tp ] p is in acidic volcanic rock} 

10t ffi .00047, 

f(4) = Prob{Tp [ p is in sedimentary rock} = 0. 

(30) 

By following this type ofiterative procedure, we may 

guide the experts to bring out and logically modify or 

adapt their opinions to determine the favorability func- 

lions. 

Certainty Factor. Certainty factors can be estimated 
two ways. The first procedure is direct estimation, where 
a and ~ in equation 5 are - 1 and + I, positive numbers 
for CF correspond to an increase in certainty in a prop- 

osition, and negative numbers correspond to a decrease 

in certainty. We do not discuss this procedure here, be- 
cause similar lines of thought as in the section on no 

and this prior probability depends on the expected total 

number of deposits in the study area regardless of any 

evidence. 
Following the discussion in the previous section, from 

equations 30, in our example we obtain the estimated 
number of deposits in each rock type by using equation 
A3 in the Appendix: 

n(l) = # of deposits in intrusive rock =ffi 1, 

n(2) ffi # of deposits in mixed volcanic rock = 8, 

n(3) = # of deposits in acidic volcanic rock == 10, 

n(4) - # of deposits in sedimentary rock ffi 0. 

(32) 

The expected total number of deposits is approximately 
19. Using equation A 1 in the Appendix, we estimate 

Prob{T,} = I - (I - 0/49,723))" ~ .000382. (33) 

Comparing equations 33 and 30, we see that the in- 
trusive and sedimentary rocks provide negative evidence 
for the proposition, whereas the mixed and acidic vol- 
canic rocks provide positive evidence. Using equations 
30, 33, and 13, we have 

CF(1) ffi - .87,  

CF(2) ~ffi .74, 

CF(3) ffi .19, �9 
(34) 

CF(4) ffi - 1.00. 

Belief Function and Plausible Function. Instead of 

specifying one probability measure, PrObk{Tp I Vk(P)}, as 
we did in the section on probability functions, we con- 

struct an interval [Belk{T, I vk(p)}, Plsk(T, I vk(P)}]. One 



of the difficulties in constructing the interval is that Belk{ ~Pp 
[ v,(p)} (z1 - Plsk{T, [ vk(p)}) + Belk{T, I vk(p)} -< 1, 

contrary to Probk{l' o I v~(p)} + Prob~{T,  I vRg)} -- 1. 
To overcome this difficulty, we emphasize the following 
assumptions: (i) the interval is related to uncertainty on 
the conditional probability that the proposition is true 
given the evidence vk(p); (ii) the distance, Plsk{Tp [ vk(P)} 
-- Bel~{Tp ] vk(P)} is a measure of the uncertainty of  the 
conditional probability; and (iii) a function of  the cer- 
tainty factor (CF) defined in equation 13 may be used as 
a measure of the uncertainty. 

The certainty factor CF [assumption ('tii) above] is a 
measure of  uncertainty with respect to the prior proba- 
bility and not of uncertainty with respect to the condi- 
tional probability that we are discussing here. In the ab- 
sence of an uncertainty measure on the conditional 
probability, we use assumption (iii) instead. This unde- 
sirable assumption can produce unreliable and uninter- 
pretable results. Whenever possible, we should try to 
estimate the uncertainty on the conditional probability, 
following the similar argument previously discussed in 
the section on no known occurrences. 

We have already obtained the conditional probabili- 

ties for our example in equations 30 and CF's in equa- 
tions 34. Having only the evidence of the rock types with 
respect to the proposition that p contains a deposit, and 
following the arguments that we have used in previous 
sections, we conclude that the uncertainties associated 
with the conditional probabilities are very high. That is, 
the probability values in equations 30, except perhaps 
for Prob{T~ I P is in sedimentary rock} = 0, are unstable. 

We first state the belief function equal to the proba- 
bifity function in this example as shown in equation 30. 
We also state the distance of the interval equal to (1 - 

I CT I ). We obtain 

[Bel{Tp [ P is in intrusive}, Pls{Tp [ P is in intrusive}] 

= [0.000047, 0.130047], 

[Bel{To [ P is in mixed volcanics}, 

Pls{Tp I P is in mixed volcanics}] 

-- [0.00141, 0.26141], 

[Bel{T, I P is in acidic volcanicsL (35) 

Pls{Tp I P is in acidic volcanics}] 

ffi [0.00047, 0.81047], 

[Bel{Tp I P is in sedimentary}, 

PIs{T, I P is in sedimentary}] 

= [0, 0]. 

Fuzzy Logic Membership Function. Considering the 
example again, we now define the fuzzy set S, for the 
geological map shown in Figure la, which consists of all 
the pixels likely to contain VMS deposits: 

S, -- {(o, ~(o)), p E A}, (36) 

where ~ :  A -- [0, 1] is the membership (or possibility) 
function based on the geological map. 

For a pixel in unit i, assuming that the possibility that 
a pixel belongs to S is identical to the probability that 
the proposition is true given that the pixel is in unit i; 
the membership function is the same as the probabilities 
(eqs. 30) discussed previously. Logic more than calculus 
could be our guideline in defining possibility[ Here we 
can repeat the arguments previously made (see Zadeh, 
1968). 

The assumption that the possibility function is iden- 
tical to the probability function must be carefully ex- 
amined. An excellent comparison between these two 
functions, including the possibility/probability consis- 
tency principle, was made by Zadeh (1978). In fact, Zadeh 
(1978) has suggested that this principle provides a basis 
for computing the possibility function of  the conditional 
probability, and that the possibility function can be used 
as the uncertainty of the conditional probability needed 
to construct belief and plausible functions. 

Known Occurrences in the Study Area 
Suppose that there are N instances in which the propo- 
sition is true within the study area. Among N, we have 
n known events (or observations where the proposition 
is true), and N - n unknown events (or unobserved sit- 
uations in which the proposition is true). Combining 
knowledge from experts and n known events, we wish to 
identify the areas where the N - n unknown events are 
likely to occur. 

Traditionally, n known events and m layers within the 
study area are studied using multivariate statistical alml- 
ysis (for example, Agterberg and others, 1972; Chung, 
1978, 1983), such as regression analysis, discriminant 
analysis, and canonical correlation analysis. The estab- 
fished multivariate relationships between the known 
events and m layers are used to delineate areas where 
other unknown events are likely to occur. The advantages 
of the multivariate approach are as follows: 

al .  The relationships between the known events and the 
all-combined layers Coy overlaying and merging the 
information) are studied at the same time. Thus, the 
relationships among the layers are also taken into 
account when the relationships between the known 



events and the all-combined layers are established 

using multivariate analysis. 
a2. The procedures are well established, and many ex- 

isting computer software programs, such as SPSS 

(SPSS Inc., 1990), STATGRAPHICS (STSC Inc., 
1991), SYSTAT (SYSTAT Inc., 1990), and SIMSAG 
(Chung, 1983), are available. 

a3. The multivariate approach requires relatively fewer 
assumptions than those for the approach that we are 
discussing here. 

However, the disadvantages of  the multivariate ap- 
proach are the following: 

dl .  We assume that n ffi N; that is, to establish the mul- 
tivariate relationships, we assume that N - n un- 
known events will not occur. 

d2. The number of  known events n must be reasonably 
large. 

If n is no t large, multivariate relationships established 
may not reflect the true relationships. This is particularly 
so if  the number of layers is also large (for example, we 
have 10 or more layers). 

Nevertheless, the first step must be the application of 
the multivariate analysis techniques to establish the sta- 
tistical relationships between the known events and the 
combined layers. When the results are not satisfactory 
(that is, associations are not statistically significant), the 
following procedure is recommended. 

For each layer, the table containing statistics related 
to the layer is computed. In our example, statistics cor- 
responding to figures la, Ib, and lc are shown in tables 
la, lb, and lc, respectively. In addition, based on the 
seven known events shown in figure ld, the values in the 
last column of tables 2a, 2b, and 2c represent the esti- 
mators of the conditional probabilities that the propo- 
sition (assuming a pixel size of 100 m 2) is true given that 
the pixel is contained in the unit specified in the corre- 
sponding first column, using (AI) in the Appendix. 

Using the statistics (for example, the conditional prob- 
abilities in the last column of table 2), we construct the 
favorability function for the geological map of the study 
area with the following order. 

> f , ( 3 )  > - f , ( 2 )  -> y , (1)  -> f , ( 4 )  >- ~,  (37)  

which contradicts the order, based on the experts' con- 
ceptual VlVIS deposit model, of equation 22. 

The presence of acidic volcanic rocks appears more 
significant than that of mixed volcanic rocks. Assuming 
that figure la is correct, we may interpret it in two ways: 

(i) the genetic model that implies equations 23 by the 

experts is wrong; or (ii) many more unknown deposits 
are hidden in mixed volcanic rocks in the area. 

If  we were to accept (ii), then the value .000191 cor- 
responding to f,(2) in table 2a should be changed to a 
value larger than .000233 corresponding to f~(3) in table 
2a. As discussed in equations 24, we also did expect that 
f~(3) is about 10 times larger than fl(1), the conditional 
probability related to f,(3) is only 1.8 times larger than 
that off~(1) as shown in the last column of table 2a. We 
infer that these differences are due to undiscovered VMS 
deposits in the study area. 

Using these arguments, we may modify equations 24 to 

f,(2) ffi 10t < #, 

f,(3) = 5t, 

f , ( 1 )  ~, t, 
(38) 

f l ( 4 )  ~ OL 

We will use these relationships to construct the favora- 
bility function for the geological map of the study area. 

Although the values in equations 38 now satisfy equa- 
tions 23, they do not satisfy the conditions in equations 
24. We can now modify the values in equations 38 again 
or accept the values to construct the favorability function. 
Obviously equations 38 will provide the necessary guide- 
lines to construct the favorability function. 

Suppose that we perform a statistical analysis of the 
stream geochemical data from the study area. We divide 
the study area into the mosaic of drainage basins, as 
shown in figure Ib, and then classify the basins into five 
classes (high, medium, low, very low, and no data) for 
the potential of VMS deposits, according to the results 
of the statistical analysis. In figure I b, we do not have a 
basin classified as medium. 

The relationships among the conditional probabilities 
in the last column of table 2b are reasonable; we obtain 
the following favorability function for the geochemical 
map: 

f2(3) = 3r < ~, 

f , ( 2 )  -- r, 

f,(1) ~= 0.5r, 

f , ( 4 )  m a.  

(39) 

Similarly, we obtain the following relationships among 
the favorability functions for the geophysical anomaly 
map, which has been divided into four classes (high, me- 



Table 2. 

Type 

Pixel counts and mineral deposit counts (shown in figure ld) for the map units in figure 1. 

No. of 
mineral deposits 

Name No. of pixels in fig. ld  Probability (A1) 

a. Geology 
grl Intrusive 7,777 1 
gr2 Mixed volcanics 5,236 1 
gr3 Acidic volcanics 21,455 5 
gr4 Sedimentary 15,255 0 

b. Geochemistry 
gcl Low 15,304 1 
gc2 No data 18,654 2 
gc3 High 13,219 4 
gc4 Very low 2,546 0 

c. Geophysics 
gpl High 10,733 3 
gp2 Medium 9,579 2 
gp3 Low 18,828 2 
gp4 Very low 10,583 0 

.000129 

.000191 

.000233 

.0 

.000065 

.000107 

.000303 

.0 

.000279 

.000208 

.000106 

.0 

dium, low, and very low) for potential VMS deposits as 
shown in figure 1 c: 

f3(1) = 4 k  < 3, 

f3(2) = 2k, 

A ( 3 )  = k, 

/ 3 ( 4 )  = ~. 

(40) 

The last, but not the least important, problem is how 
to assign the values for t in equations 38, r in equations 
39, and k in equations 40. These values should be as- 

signed according to the importance of the map layers 
with respect to the proposition on the VMS deposits. 

Probability Function. By accepting equations 38, 
which are based on the conditional probabilities com- 

puted from the seven discovered VMS deposits in the 
study area, as well as a genetic VMS mineral deposit 
model, we must now determine a value for t to construct 

the favorability function for the geological map. In this 
example, t is directly related to the number of  deposits 
expected in intrusive rocks in the study area. Suppose 

that the discovered deposit is the only VMS deposit ex- 
isting in intrusive rocks (that is, we assume that no more 
undiscovered VMS deposits exist in intrusive rocks in 

the study area). Then from table la, we have 

t = 1 - (7,776/7,777)= .000128, (41) 

and allf(13's are assigned according to equations 38. Hence, 
in this example, 

f,(1) = Prob{Tp I 17 is in intrusive rock} 

= t = .000128, 

f,(2) = Prob{Tp I P is in mixed volcanic rock} 

= 10t = .001280, 

f,(3) = Prob{Tp I P is in acidic volcanic rock} 

-- 5t = .000640, 

y,(4) = Prob{Tp I P is in sedimentary rock} = 0. 

(42) 

We can also estimate the number of  deposits from 
equations 42 by using equation A3: 

# in intrusive rock -- 1, 

# in mixed volcanic rock = 7, 

# in acidic volcanic rock = 14, 

# in sedimentary rock = 0. 

(43) 

Under these conditions, we expect six more deposits in 

mixed volcanic rock and nine more deposits in acidic 

volcanic rock. 

To find the favorability function for the geochemical 

map in figure Ib, we simply assume that the probability, 

Prob{T~ I P is in "no data"} = r, that a pixel in a "no- 

data" area (class 2 in figure I b) contains a VMS deposit 

is the same as the prior probability, Prob{TpL 

To obtain Prob(Tp}, wc use the estimated total num- 

ber (22) of VMS deposits in the study area, including the 



seven known deposits obtained in equations 43. Hence, 
using (AI) again, we obtain Prob{Tp} = .000442. Now 
using equations 39, we have 

A(3) = Prob{T, I P is in "high"} 

=~ 3r ffi .001326, 

Y2(2) ffi Prob{T~ [ p is in "no data"} 

r •, .000442, 

A(1) = Prob{T, I P is in "low"} 

= 0.Sr = .000221, 

A(4) ffi Prob{T, [ P is in "very low"} = 0. 

0 4 )  

f~(l) ~ Prob{T, I P is in "low"} 

= 0.1 r ~ .000044, 

f2(4) = Prob{Tp I P is in "very low"} -- 0. 

Using (A3) and assuming equations 47, we calculate 
the modified number of deposits in each unit: 

# in "'high" geochemical anomaly ~ 12, 

# in "'no data" = 9, (48) 

# in "low" geochemical anomaly = 1, 

# in "very low" geochemical anomaly -- 0. 

Using (A3) and assuming equations 44 arc "correct," 
we can again obtain the number of deposits in each unit: 

# in "high" geochemical anomaly = 18, 

# in "no data" = 9, 

# in "low" geochemical anomaly = 4, 

# in "very low" geochemical anomaly = O. 

(45) 

Now the total number of  deposits in the study area A is 
31 from equations 44, whereas the total number of de- 
posits is 22 from equations 42 based on the geological 
map. I f  we assume that two layers, geology and geochem- 
istry, provide equally weighted evidences, then the two 
numbers, 22 and 31, are contradictory. To avoid this 
contradiction, we must modify either equations 38 or 
equations 39. Suppose that equations 38 are "correct," 
and we wish to modify equations 39 as follows: 

];(3) = 2r < B, 

f ; (2 )  - r, 

. f~ (1 )  = 0.1r, 

y;(4)  = a. 

(46) 

Then by modifying equations 44 according to equations 
46, we obtain 

A(3) =Prob{Tpl  p i s in"h igh")  

= 2r = .000884, 

A(2) ffi Prob{Tpl p is in"noda ta"}  

= r ffi .000442, (47) 

Now the total number of  deposits in the study area A is 
22, as we had in equations 43. 

For the favorability function for the geophysical map 
shown in figure lc, we assume that Prob{Tp [ p is in 
"medium" anomaly} = 2k = Prob{Tp} ~ .000442, and 
then we apply equations 40 and obtain 

A(D = Prob{T, I P is in "high"} 

ffi 4k ffi .000884, 

A(2) ffi Prob{Tp [ p is in "medium"} 

- 2k ffi .000442, 

A(3) --- Prob{Tp t P is in "low"} 

= k = .000221, 

A(4) •ffi Prob{Tp [ P is in "very low"} = 0. 

(49) 

Using equation A3 and assuming equations 49, we 
calculate the number of deposits in each unit from figure 
lc: 

# in "high" geophysical anomaly -- 10, 

# in "medium" geophysical anomaly = 5, 

# in "low" geophysical anomaly -- 5, 

# in "very low" geophysical anomaly -- 0. 

(50)  

The total number of deposits is 20, which is compatible 
with the previous total number 22, so we accept equations 
49 as a favorability function of the geophysical layer. 

Certainty Factor. Using equation 13 and Prob{T~} 
= .000442, we obtain the CF's for the geological map by 
equations 42, the CT's for the geochemical map by equa- 
tions 47, and the CF's for the geophysical map by equa- 
tions 49. For the geological map, 



CFI(1) ~ -0.710,  

C F ~ ( 2 )  ffi 0.655, 
(51) 

CFI(3) = 0.310, 

CF,(4) -- - 1. 

For the geochemical map, 

CT2(1) - -  0.50, 

CF2(2) = 0, 
(52) 

CF2(3 ) =: - 0 , 9 0 0 ,  

CF2(4 ) = - I. 

For the geophysical map, 

CF3(1 ) = 0.50, 

CF3(2) - 0, 
(53) 

CF3(3 ) ---- --0.50, 

C F 3 ( 4 )  = -I. 

Belief Function and Plausible Function. Instead of 

specifying one probability measure, Prob,{Tp I VK(p)}, as 
we did previously, we construct an interval [Belk{T, I 
v~(p)}, PlSk{Tp I Vk(P)}]. We again emphasize these three 
points: (i) the interval is related to uncertainty on the 
conditional probability that the proposition is true given 
the evidence Vk(P); (ii) the distance Plsk{T, I Vk(P)} -- 
Belk{Tp I vk(p)} is a measure of  the uncertainty of  the 
conditional probability; and (iii) the certainty factor (CF) 
is defined in equation 13 and we may use a function of 

the CF as a measure of  the uncertainty in the previous 
section. The CF is a measurement of  uncertainty with 
respect to the prior probability and not of uncertainty 
with respect to the conditional probability. But in the 

absence of an uncertainty measurement on the condi- 
tional probability, we use (iii) instead. 

Returning to the example for the geological layer, we 
have already obtained the conditional probabilities in 

equations 42 and CF's in equations 51. We first define 
the belief function as equal to the probability function in 
this example, as shown in equations 42. We also define 

the distance of the interval as equal to (1 - I CF I ). We 
obtain 

[Bel{T, I P is in intrusive}, Pls{T o I P is in intrusive}] 

ffi [0.000128, 0.290128], 

[BeI{T, I P is in mixed volcanics}, 

PIs{T, I P is in mixed volcanics}] 

[0.00128, 0.34628], 

[Bcl{Tp I P is in acidic volcanics}, 

PIs{T, l P is in acidic volcanics}] 

ffi [0.00064, 0.69064], 

[Bel{Tp [ p is in sedimentary}, 

Pls{Tp I P is in sedimentary}] 

= [0, 01. 

(54) 

Fuzzy Logic Membership Function. All the discus- 
sions of fuzzy logic in the section on no known occur- 

rences apply here. Using similar arguments, we assume 
that the membership functions are identical to the cor- 
responding probability measures discussed in equations 
42, 47, and 49. 

Known Occurrences Outside Study Area (Control Area) 
Suppose that there are no or very few known occurrences 

for the proposition in the study area, but we have known 
occurrences in other areas where geological environments 
are similar to the study area. Usually such areas have 
been well explored with respect to the proposition, and 
the known occurrences within the areas are well recorded. 

The areas are called control areas for the proposition. 

Although it is highly desirable to have one control 
area that contains all the layers considered in the study 
area and the occurrences for the given proposition, in 
practice, we rarely have such control areas. When all the 
information is contained in one control area, tradition- 
ally, a multivariate statistical analysis (Agterberg and oth- 
ers, 1972; Chung and Agterberg, 1980; Chung, 1983), 
such as regression analysis, discriminant analysis, or ca- 
nonical correlation analysis, is applied to establish mul- 

tivariate relationships between the known events and .the 
combination of all input layers. Then the established 
multivariate relationships are applied to the study area 
to identify the areas where unknown events are likely to 
occur. The three advantages of  the multivariate approach 
discussed previously are also valid here. 

In practice, we take one control area for each layer to 
estimate the favorability function. For the example dis- 

cussed previously, we show three separate control areas 
in figure 2, one for each layer for the three maps shown 
in figure 1, to construct the favorability functions. We 
assume that the mineral deposits shown in figure ld  are 
unknown. 

Table 3 presents the statistics for the control areas of  
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Figure 2, Plots of three different hy- 
pothetical control areas of geology, gee- 
chemistrY, and geophysics from terranes 
of similar characteristics to those repre- 
sented in figure 1, but where mineral de- 
posits were discovered, Map unit labels 
correspond to the labels in figures la, lb, 
and lc. The mineral deposits are indicat- 
ed by the points in these control areas. 
See table 3 for the statistics. 

(c) 

figure 2. The values in the last column of tables 3a, 3b, 
and 3c represent the estimators of the conditional prob- 
abilities that the proposition (assuming the size ofa pixcl 
is 100 m s) is true given that the pixcl is contained in the 

unit specified in the corresponding first column using 
equation A 1 in the Appendix. 

If  we use the statistics (for example, the conditional 
probabilities in the last column of table 3a) to construct 

Table 3. Pixel and mineral deposit counts for the map units in the three hypothetical control areas shown in figures 2a, 
2b, and 2c. 

Type Name No. of pixels 

No. of 
mineral deposits Probability 
in fig l d  (A1) 

a. Geology 
grl Intrusive 3,646 1 .000274 
gr2 Mixed volcanics 932 2 .002145 
gr3 Acidic volcanics 6,512 3 .000461 
gr4 Sedimentary 2,896 0 .0 

b. Geochemistry 
gcl Low 3,722 1 .000269 
gc2 No data 5,706 2 .000350 
gc3 High 2,284 2 .000875 
gc4 Very low 2,690 1 .000372 

c Geophysics 
gpl High 1,116 1 .000896 
gp2 Medium 6,570 4 .000609 
gp3 Low 6,364 2 .000314 
gp4 Very low 1,210 1 .000826 



the favorability function for the geological map of the 

study area, then the favorability function should have 

the following order:. 

# > A(2) ~ L(3) -> L(1) ---f~(4) -> a, (55) 

which is the same as in expression 22, based on a con- 

ceptual V'MS deposit model. 

From table 3a, we obtain 

2b, we must allow the possibility that there might be 
deposits, therefore, we modify equations 57 and obtain 

the following favorability function for the geochemical 
map: 

L(3) = 2r < 0, 

f 2 ( 2 )  = r, 

f2(1) = r, 
(58)  

f~(2) = 7.83t < ~, 
L(4)  = 0.5r  > a. 

f , (3) = 1.68t, 

/ , ( 1 )  ffi t, 

L(4)  = ~. 

(56) 
Similarly, we obtain the following relationships among 

the favorability functions for the geophysical anomaly 

map from table 3c for figure 2c: 

f3(1) -- 3k < B, 

Except for y,(3) ffi 1.68 t, equations 56 are similar to 

equations 38. If  we were to accept equations 56 as the 
basis for constructing a favorability function for the ge- 
ology layer shown in figure 1 a, we would have somewhat 

different functions from those discussed in the section on 
known occurrences in the study area. Using similar ar- 
gnments, we may wish to modify equations 56 as follows: 

f1(2) = St < B, 

L(3) = 3t, 

L(1) -- t, 
(57) 

f , ( 4 ) f a .  

As we discussed previously, equations 57 will provide 
the necessary guidelines to construct the favorability 

function for the geological map of the study area. The 
probabilities in table 3a are much higher than those in 
table 2a because we do not expect any unknown deposits 
in figure 2a by the definition of the control area, whereas 

we do expect to discover many more deposits in the study 

area in figure 1. 
Looking at the conditional probabilities shown in the 

last column of table 3b, which correspond to the control 
area in figure 2b, we see that the relationships among the 

conditional probabilities are not acceptable. For exam- 
ple, the "very low" geochemical anomaly area has much 
higher probability than the "low" area. This may suggest 
that the geochemical anomalies considered in the control 
area are not significant for the mineralization. We have 

also assignedf2(4) = a in equations 39, implying that if  
the areas are classified as "very low," we do not expect 

to discover any deposits. From the control area in figure 

.f3(2) = 2k, 

/ , (3)  ffi k, 

A(4) =,~.  

(59) 

Again, it is critical to assign the values for t in equa- 

tions 57, r in equations 58, and k in equations 59. These 
values should be assigned according to the importance 
of the map layers with respect to the proposition on the 
VMS deposits. 

By using arguments similar to those used in the section 
on known occurrences in the study area, as well as the 

guidelines in equations 57, 58, and 59, we can construct 

the favorability functions for probability measures, cer- 

tainty factors, belief and plausible functions, and mem- 

bership functions. 

Discussion 

I. In this article we provide a fundamental concept of  
establishing a favorability function for each layer, as 

a first step to integrate several layers of spatial geo- 
science data. The proposed approach establishes a base 
for developing integration rules in a geographical in- 

formation system (GIS), based on logical, statistical, 
probabflistic, evidence theoretical, and fuzzy logic op- 
erations. This approach is particularly useful for pre- 
dicting potential areas for mineral exploration and 

geological hazards. The prediction of point-like ob- 
jects, such as mineral deposits, as a function of their 
multilayered context, is just one example of  a much 

greater variety of  "geopotential" maps that can be 
generated (Luttig, 1987). This representation can be 

used for hazard assessment of  soil erosion, land use, 



and landslide risk, as well as environmental impact 

assessment. 
2. I f  the different layers in a multiple data set represent 

expert knowledge in the best available terms (that is, 
enhanced images, extracted knowledge or features, de- 
grees of  belief, spatial characteristics of topological 
relationships, direct or indirect symptoms of hazard- 
ous or beneficial events), then it is feasible to consider 
the geometric probabilities associated with the differ- 
ent map patterns. 

3. The artificially constructed example maps may seem 
simple at first. However, the problem of representa- 
tion is a complex one, particularly in view of real-life 
situations with many layers and with some ill-defined 
relationships between layers, within layers, and be- 
tween layers and the known occurrences. 

4. As mentioned in the discussion of the estimation pro- 
cedures of the favorability functions, there is no unique 
method possible for constructing favorability func- 
tions. A particular difficulty is how to combine the 
expert opinions and the known data. Knowledge ac- 
quisition techniques (see Butler and Carter, 1986; and 
McGraw and Harbison-Briggs, 1989) have an impor- 
tant role in constructing favorability functions. 

5. In the fuzzy logic approach, the problem of estimating 
~k from the known data set o fm pairs, (p~, ~s(Pl)), (P2, 
~s(P2)) . . . . .  (Pro, ~s(Pm)), is called abstraction (Bellman 
and others, 1966). Although we have not used this 
method in this article, we should have followed this 
abstraction to estimate the membership function when 
we have the control areas. 

6. We had many difficulties estimating the belief and the 
plausible functions in the Dempster-Shafer approach. 
We may be able to overcome these difficulties by fol- 
lowing the possibility/probability consistency princi- 
ple (Zadeh, 1978), which provides a basis for the com- 
putation of  the possibility function of the conditional 
probability; the possibility function can be used as the 
uncertainty of the conditional probability. This un- 
certainty is of course needed to construct the belief 
and the plausible functions. 

7. The combination (or integration) rules are determined 
depending on the interpretation of the favorability 
functions (Chung and Moon, 1991; Moon and others, 
1991). For example, if the favorability functions are 
constructed as the CF's (certainty factors), then there 
exists a rule to combine several types of evidence for 

the proposition. 
8. Real applications are bound to include a mixture of 

geological and conceptual modeling, and expert 
knowledge and statistical analysis of the known oc- 
currences. 

Figure 3. 

A p p e n d i x  

In figure 3, S denotes the whole area and u denotes 
subarea in S. Let ~r be the size of  S, and let v be the s ~  
of  u. Suppose that we have n random points in S. Let j 
be the probability that u contains at least one of  the ! 
points. Then it can be shown that 

p ffi Prob{at least one of  the n points is in u} 

= 1  - ( l -  ,,)~, (All 

where a ~ffi minimum(v/o, 1). 

However, if v < r (for example, 50nv < o), then 
can be approximated by the expected number of  the 
points in u: 

p ~- nv& = E(# of the n points in u). (A2) 

The approximation (A2) is shown here in addition to the 
true probability in equation A1 because (i) relation A2 
is mistakenly but commonly used as the true probability, 
and (ii) under the restricted condition (50nv < r relation 
A2 approximates the probability well. 

Inversely, for a given probability ~P that a subarea u 
of  size v in S contains one of  the 7, points in S needed to 
achieve the probability ~, 

logo - ~o)} 
7~ = integer part of 0.5 + log(1 a) ' (A3) 

where a = minimum (v&, 1). 
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to express our ideas better but also to correct several mistakes. 
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