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Summary 

Optimal allocation of energy to growth, reproduction and storage was considered for perennial plants 
differing in the proportion of vegetative structures persisting over winter and/or in the amount of resources 
which can be relocated to storage before abscission of some organs. It was found that for every mortality 
level there exists a critical proportion of persistent organs. Below this critical value it is optimal to grow 
without reproduction for the first years until a characteristic size is reached; afterwards, that size is 
maintained year after year and all extra resources are devoted to reproduction. Some storage is also 
necessary to maintain constant size. If the proportion of retained vegetative mass is above the critical value, 
the optimal strategy is gradual growth to an asymptotic size, with growth and reproduction occurring in 
several years following maturation. In this case real storage occurs only until maturation is reached, then 
storage is realized only by energy relocation from the vegetative body. Although the optimal solution 
changes abruptly qualitatively at a given proportion of resources saved from year to year, further growth 
of this proportion above the critical level brings about a greater difference between size reached at maturity 
and final size. The predictions of the model seem to follow the pattern of nature qualitatively. 

Keywords: Optimal life histories; perennial plants; relocations. 

Introduction 

In most of the existing papers on optimal energy allocation to growth and reproduction annual 
organisms are considered (e.g. Cohen,  1971; Vincent and Pulliam, 1980; Schaffer et al. ,  1982; 
King and Roughgarden,  1982a, 1982b, 1983; Ziolko and Kozlowski, 1983; Kozlowski and 
Wiegert, 1986). The most consistent result from the models in these papers is that in order  to 
maximize reproductive output  at the end of the growing season it is optimal to switch 
instantaneously from energy allocation into growth to energy allocation into reproduction. This 
result is unreliable only when season length is unpredictable (Cohen, 1971, King and Roughgarden, 
1982b) or when the growth rate of the reproductive part is constrained by the size of this part 
(Kozlowski and Ziolko, 1988). 

The problem becomes more complex when perennial organisms are considered. In a given 
season it is no longer optimal to switch from growth to reproduction at the point which maximizes 
reproductive yield at the end of the season. It is optimal to delay such a switch because losses 
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in reproductive output in a given year can be paid back in subsequent years if an individual is 
lucky enough to survive. When the survival rate is high it may even be optimal to postpone 
reproduction for several years. 

Optimal pattern of growth and reproduction in perennial organisms was considered by 
Kozlowski and Uchmanski (1987) under the assumption that all vegetative parts are retained 
over the winter. They concluded that after reaching maturity it is optimal to continue growing 
either asymptotically to the end of life (if life span is unlimited) or through several years (if life 
span is limited), which means that many years of mixed growth and reproduction should occur. 
In contrast, Pugliese (1987, 1988a) and, independently, Iwasa and Cohen (1989) assumed that 
all vegetative parts except for storage organs are lost, and an organism must regrow at the 
beginning of the next season using energy stored in the previous year. Results obtained with this 
assumption are qualitatively different; life span should be divided into two parts, with pure 
growth at the beginning and lack of growth (except spring regrowth) later on; only one transient 
year of mixed growth and reproduction can occur in this case. 

In nature there is a continuum of perennial species. At one extreme some herbs lose virtually 
the entire vegetative body at the end of growing season; then there are other herbs keeping part 
of root system; suffrutescent shrubs (half-shrubs) develop herbaceous shoots which die back each 
year and retain perennial woody tissues only near the base of their stems; deciduous shrubs and 
trees accumulate ageing or dead soma and an increasing body of dependent tissue and lose only 
the leaves in resting seasons. At the other extreme, there are evergreen shrubs and trees whose 
leaves can live a few years on average. Relocation of non-structural carbohydrates from parts 
that are shed to storage organs can also take place; this means that resources allocated to 
vegetative parts are not completely lost. 

In this paper we examine the optimal solution over this continuum of possibilities, when part 
of the vegetative body is retained into the next season (trees, shrubs, some herbs) and/or a certain 
proportion of energy can be relocated into storage organs from the parts that will be lost. We 
show analytically the qualitative characteristics of optimal solutions; using numerical examples, 
we examine the influence of the proportion of tissue conserved to the following year on growth 
pattern and size of plants. It is always assumed that there are discrete growing and resting 
seasons; therefore the model could not really be applied to evergreen plants. Apart from this, 
it is a very simple model which, at least to some extent, could be applied to most plant forms 
quoted above. 

The model 

The model describing the processes occurring in one season, denoted here by i, has been 
considered by several authors (see the Introduction). There are three compartments, V~(t), the 
vegetative parts, R~(t), the reproductive parts, and Si(t), the storage. If V is the size of the 
vegetative parts, resources are accumulated at the rate f(V); these resources can be allocated 
either to vegetative parts, or to reproduction or to storage. Neglecting all other processes, we 
therefore have the following equations on [0,77, where T is the length of the growing season: 

f d -'~ V i = (1-ui -v i ) f (Vi )  

d 
Ri uf(Vi) (1) 

d 
Ttt vJ(v ). 
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u~ and vi are the proportion of new resources allocated to reproduction and storage, respectively. 
Therefore, they must be between 0 and 1, and their sum has to be lower or equal to 1. 

What has to be clarified is what happens in winter. In previous work, we had assumed either 
that the vegetative parts are completely lost over winter and only storage persists (Pugliese, 
1988a), or that the vegetative parts are completely retained (Kozlowski and Uchmanski, 1987). 
In general, one may assume that a fraction ql of the vegetative parts persists over winter and a 
fraction qz is relocated to storage at the end of the growing season. Therefore system (1) is 
completed by the initial conditions for season i+ 1. 

Vi+,(0) = q,Vi(T) 
Si+l(0) = Si(T) + q2 Vi(T) (2) 
Ri+l(0) = 0. 

We may consider, within the approximations of the present model, that a large q~ is typical of 
trees and shrubs, especially if evergreen, while q~ should be close to 0 for herbaceous perennials; 
the magnitude of q2 could depend on the species. 

We further assume that resources are relocated from the vegetative parts to storage only, and 
not to reproductive parts as well. The latter process is also important in herbaceous perennials; 
however, as noted in Pugliese (1988a), if relocation is equally possible to storage and 
reproduction the qualitative conclusions of the model without relocations still hold. Therefore 
here we consider only the relocation process which is restricted to storage, mostly because of 
time constraints (reproductive allocation has to end by the time seeds are dispersed, while 
allocation to storage may go on after the end of the growing season). 

In order to produce a more mathematically tractable model, we apply a further simplification 
to Equations (1) and (2). Namely, if resources are to be transferred from storage to vegetative 
parts, we should add a term describing this translocation to Equation (1); however, we consider 
that the translocation process is so fast that its dynamics can be neglected, and that all resources 
in the storage compartment are instantaneously transferred to the vegetative parts at the 
beginning of each growing season (see also Iwasa and Cohen, 1989, for a discussion of this point). 
All unavoidable losses of energy in this process are also neglected. Therefore, we obtain the 
initial conditions 

Vi+l(0) = q Vi(T) ~ Si(T) (3) 
&+,(0) Ri+l(0) 

where q=ql +qz. The model of resource allocation we consider consists, therefore, of Equations 
(1) and (3). 

Mortality has also to be considered if we wish to study the maximization of fitness. Here we 
make the simplest assumptions, i.e. that mortality occurs only between growing seasons and that 
is independent of the age and size of the plant. Therefore, mortality is described in total by a 
single parameter, p, the survival probability between growing seasons. To consider mortality 
during growing seasons as well would simply make the formulae more clumsy (Kozlowski and 
Wiegert, 1986; Kozlowski and Uchmanski, 1987), while size-dependent mortality introduces 
more complications that can only be handled partially (Pugliese, 1987; Kozlowski and Wiegert, 
1987). 

Other simplifying assumptions have been made in order to obtain Equations (1) and (3). It 
has been assumed that the vegetative parts can be described by a single variable; Iwasa and 
Roughgarden (1984) consider roots and leaves separately for an annual plant model, and at least 
for trees one may have to consider a structural compartment. The ageing and herbivory of 
vegetative parts (described in Pugliese, 1988a as metabolic rate) are not considered here. It is 
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assumed that the relative cost of producing a successful seed does not change with the investment 
made in reproduction: the consequences of relaxing this assumption (see Schaffer and Rosenzweig, 
1977; Pugliese, 1988b) will be discussed below. Constant population size is also assumed; this 
makes it possible to use expected (at birth) offspring number as a measure of fitness. Finally, 
with the exception of seasonality, environmental fluctuations in space and time are neglected, 
as in most allocation models. 

Qualitative results 

The controls ui(t) and Vi(t ) that maximize the expected (at birth) lifetime reproductive output 
are 'bang-bang', that is they are either 0 or 1, as found by several authors (see the Introduction). 
Therefore it is sufficient to find, for each season, the switching times a'l to reproduction and "r2 
to storage. For model (1) it is irrelevant whether storage occurs before reproduction or vice versa 
or they both occur simultaneously, as long as the proportions of the allocation to either 
compartment are kept fixed; to be definite, we assume that storage occurs after reproduction. 
We then obtain the expressions for the vegetative parts, reproductive output and storage at the 
end of the season as follows 

1/ (73  = 

R( T) = (x2 - -~,)f(V('r,) ) (4) 
S(T) = ( r -  "r2)f(V(a',) ). 

It may well be that "r2 is equal to "q (no reproduction) or to T (no storage). 
For a study of the qualitative properties of the optimal allocation, it is convenient to rephrase 

the whole model as a discrete problem, similar to those considered in mathematical economics 
(McKenzie, 1986); this is briefly described in Appendix 1. 

It is found that two different kinds of optimal strategies exist. For a given function f and 
survival probability p, a critical value for the proportion q of vegetative parts that are kept or 
relocated, say q*, exists. For q below the critical value q*, the optimal strategy is growth without 
reproduction for the first years until a characteristic size is reached at the beginning of the season; 
afterwards, that size is maintained year after year, and extra resources are devoted to 
reproduction. For q above q*, on the other hand, the optimal strategy is a few years of pure 
growth until maturation, followed by growth and reproduction in all subsequent years; size 
increases gradually towards an asymptotic size. 

As for the allocations within the growing seasons, if q>q*,  reproduction, when it occurs, 
completely takes up the final part of the growing season, except possibly in the first year of 
reproduction. Allocation to storage then occurs only as relocation from vegetative structures 
after the end of the growing season. If q<q*,  in addition to relocation from vegetative structures, 
some allocation to storage always occurs during the growing season. 

Numerical results 

For numerical computations of the optimal strategies, we always used f(V) = aV  b. For that 
function, many expressions used in the Appendices for computation of the optimal strategy 
become explicit. First of all, one obtains that the critical value q* is equal to pl/b; the plots of 
q* vs p for different values of the power b are shown in Fig. 1. As may be noted, the curves 
change very little for different values of b; the value of q* depends almost only on mortality 
levels. 
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Figure 1. Plots of the threshold value q* against survival probability p. Where the proportion of persisting 
structures q is less than q*, the optimal strategy is first growth then reproduction. Where q is greater than 
q*, the optimal strategy is gradual growth together with reproduction. Different curves correspond to 
different values of b, the exponent in the 'production' function, f(V). 

There are also explicit expressions for the final size x*. If q>q*, we have 

ab( l-b )ql-bT 
(x*) = (5) 

1--pql-b--bql-b(1--p) 

while, if q<q*, we have 

ab( l-b)p(l-b)/bT 
(x*) 1-b = (6) 

1--q--b(pO-b)/b--q). 

Optimal switching times to reproduction and storage were found through Powelrs minimization 
algorithm, as described in Press et al. (1986). We let switching times vary for the first 20 seasons, 
while assuming that size at the beginning of seasons had to be the same for all seasons beyond 
the twentieth one. This yields only an approximation for the infinite optimal sequence, but a 
rather close one. 

In Figs 2A and B growth of vegetative parts (lines), the amount of stored energy (open 
squares) and relocated energy (closed squares) are shown. In Figs 2C and D reproductive output 
in consecutive years is also shown, both weighted by the probability of surviving to a given age 
(bars) and unweighted (squares). Figs 2A and C represents the case where the relocatable 
proportion of vegetative mass (q) is lower than pl/b (see figure caption for the values of 
parameters). Reproduction starts in the fourth year, and from the fifth year size both at the 
beginning of the season and at the end of the season remains constant. Reproductive output, 
storage and the amount of relocated energy are also constant from this year. 

Figure 2B and D represents the case when q is greater than pltb. Reproduction starts in the 
fifth year, but growth still continues and brings about a gradual increase of unweighted 
reproductive output year after year. Storage, which is present in the initial years, disappears 
after maturation, and spring regrowth is possible as a result of relocated energy only. 
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Figure 2. The optimal strategies for different values of q, the proportion of persisting tissues. In A and B 
the solid lines represent vegetative size over several growing seasons, the open squares the amount of 
storage accumulated at the end of a growing season, the black squares the amount of resources which either 
persist in the vegetative structures or are relocated to storage after the end of the season. In C and D the 
reproductive output of every season is shown; open squares represent the actual amount; bars represent 
that amount weighted by the survival probability (from birth) to that age. In A and C q = 0.5; in B and 
D q = 0.7. The production function f(V) is 0.2 1/~ The survival probability per season p is 0.7. 

In Fig. 3 the influence of q on size at maturi ty and on final size is shown. In Fig. 3A the solid 
line represents  the final size (Equation (5) or (6)),  and the dashed line size at maturi ty,  which 
is defined as the size at the beginning of the season following the first reproduct ive year. 
Although qualitatively the optimal  solution changes abruptly at a critical q, which is 0.62 in this 
example ,  an increase in the relocatable port ion of energy brings about  an increase in final size 
for values of q both below and above the critical value. An increase in q always leads to greater  
expected life t ime reproduct ive output.  Thus a small q must ei ther be considered to be a 
constraint  or it must  have some advantageous side effects, which will be discussed in the next 
section. 
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Figure 3. Final size and size at maturity for different values of q and p. In A the solid line represents final 
size, the dashed line size at maturity; p = 0.7 and f(V) = 0.2 I ,'~ The insert is an enlargement of the 
first part of the graph. In B the ratio of final size to size at maturity is shown by the solid lines for two 
different values ofp.  The ratios of final size to size in the sixth year (dashed line) and to size at the seventh 
year (line with dots and dashes) are also shown for p = 0.7. Further explanations can be found in the text. 

In Fig. 3B the solid lines represent  the ratio of  final size to size at maturi ty for different values 
of q. This ratio is equal to 1 for q below the critical value, and increases rapidly for q above this 
value. Moreover ,  the values of the ratio are higher when mortali ty is higher. 

The sharp decrease (for p = 0.7) in the ratio when q is just  below 0.9 is due to the fact that 
at that value of  q the first reproductive season changes from the fifth to the sixth year;  this causes 
an abrupt  increase in size at maturi ty,  which can also be seen in Fig. 3A, and therefore  a decrease 
in the ratio of final size to size at maturity.  In the same figure, the dashed line represents  final 
size over  size in the sixth year; the line with dots and dashes final size over  size in the seventh 
year. Both lines are smooth.  However ,  maturi ty jumps suddenly f rom the fifth to sixth year,  and 
then the ratio of  final size to size at maturi ty jumps from one line to the other.  On the other  
hand, when p = 0.5 maturi ty is reached in the third year  for all values of  q, and no such problems 
arise. 



82 Pugliese and Kozlowski 

Discussion 

Resource allocation models can be considered as an interface between life history optimization 
based on demography and the changing field of physiological ecology (Sibly and Calow, 1986). 
Such models make it possible to use the ultimate fitness measure, i.e. reproductive value at birth 
or expected offspring number at birth for constant population size, and on the other hand they 
incorporate some physiological and design constraints. Despite these advantages that make such 
models powerful predictive tools, at least potentially, they are not commonly used in evolutionary 
ecology. One possible reason is that they deal mainly with annual species, which are not very 
common in nature. Therefore, producing allocation models for perennial organisms seems very 
important. 

The model presented in this paper can be applied to the full continuum of abilities to keep 
vegetative parts over winter. It is a simple model with only one compartment for all vegetative 
organs, and does not distinguish formally between resource relocation to storage and maintenance 
of parts of the vegetative body over winter. Furthermore, constant mortality is assumed as well 
as uniformity of the entire growing season. Vegetative reproduction is also neglected, whereas 
this phenomenon is common among many perennials. There are, however, several perennial 
plants that do not reproduce vegetatively at all or do so so infrequently that, as the first 
approximation, the process can be neglected. For example, most trees do not reproduce 
vegetatively at all. 

Because of its simplicity, this model can only be considered a first approximation for any 
specific plant. On the other hand, it gives valuable qualitative predictions of growth patterns for 
different parameter values. In particular it shows the influence of the ability to maintain 
vegetative parts between growing seasons on growth patterns. 

Perennial species differ strongly in their ability to retain their vegetative parts (or at least the 
energy or nutrient content of these parts) over winter. Some animals, such as molluscs, fishes, 
amphibians or reptiles, keep their entire vegetative parts, except the stored materials, into next 
year. We restrict ourselves here to the consideration of plants, but similar models can and have 
been applied to animals (Horn, 1987; Koziowski and Uchmanski, 1987). As discussed in the 
introduction, plants range in this respect from evergreen trees and shrubs to herbs that lose their 
entire vegetative parts except for storage organs, which are usually in the form of bulbs or stolons 
(Harper, 1977). The results in this paper show that, in accordance with the value, q, of the 
proportion of resources allocated to vegetative parts that are either kept or relocated, optimal 
strategies divide in two distinct categories. When q is small (Fig. 2A), life is divided in two parts: 
first pure growth without any reproduction; and secondly, reproduction every year with growth 
occurring only in the first part of the season in order to grow back from storage to the size 
achieved in the previous year. There is at most one intermediate year in which there is some 
real growth and reproduction. On the other hand, when q is large (Fig. 2B) growth goes on after 
reproduction has started. Moreover, after reproduction begins, there is no more allocation to 
storage during growing seasons; storage occurs only as relocation after the end of the season. 
An increase of q beyond the threshold value causes an increase of the ratio of final size to size 
at maturity (Fig. 3B). 

These predictions were obtained assuming constant environment. Of course, biotic and abiotic 
fluctuations would bring about more complicated pattems with the possibilities of decrease in 
size, or of seasons with low or no reproduction interspersed between highly reproductive seasons. 
However, the general patterns shown in Figs 2 and 3 should withstand the effect of environmental 
fluctuations. 

Do real plants follow these predictions? We do not know of quantitative data on which to test 
whether the ratio of final size over size at maturity is about one for small q (the proportion of 
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resources in vegetative parts saved from one year to the next), and then grows with q as shown 
in Fig. 3B. However, we believe that this pattern is worth studying. 

As for a qualitative pattern, we would generally assign a large q to trees, and a relatively small 
q to herbs, especially those that lose most of their vegetative tissue from one season to the next. 
Trees have generally long juvenile periods (Harper and White, 1974), although this is clearly 
dependent on the environment; nevertheless, growth seems to continue after maturation. The 
phenomenon of 'mast' years is also widely known. For such a phenomenon to be advantageous 
it has to be relatively less expensive (perhaps because of lower seed predation) to produce seeds 
in large numbers; this possibility is not allowed for in the present model (but see Schaffer and 
Rosenzweig, 1977; Kozlowski and Uchmanski, 1987; Pugliese, 1988b). 

As for perennial herbs, not many data are available about growth and reproduction over 
various seasons, Smilacina racernosa individuals seem more or less not to increase in size after 
reproduction; actually, in some years they even decrease in size after reproduction (Pugliese and 
Armstrong, 1989), Hepatica nobilis individuals seem to have about the same number of flowers 
from one year to the next (Inghe and Tamm, 1988); however, it is unclear from that paper 
whether individuals tend on average to increase in vegetative size over the years; moreover, H. 
nobilis maintains leaves for at least one year and roots for several years (Inghe and Tamm, 1985), 
so probably q is relatively large. The pattern of flowering of several other perennial herbs is 
discussed by Inghe and Tamm (1988), but no quantitative data are given; it seems apparent that 
most, but not all of them reproduce almost every year after the first reproductive year. We also 
know of at least one herb species which apparently does not fit the scheme predicted from the 
model: Corydalis cava goes on growing after maturation despite low mortality and the loss of 
both stems and roots between growing seasons (D. Tumidajowicz pers. comm.). 

A higher proportion of retained vegetative tissues, as shown in numerical examples, brings 
about larger size at maturity, more growth after the onset of maturation (Fig. 3), and higher life 
time reproductive output as a result. Can we conclude that inability to keep the vegetative body 
is a design constraint or does renewing the entire vegetative mass or part of it have some 
advantages? One possible advantage is escape from the problem of ageing. If all tissues are 
rebuilt every year, a plant stays in perpetual somatic youth except possibly for the accumulation 
of viruses and somatic mutants (Harper 1977). Furthermore, the overwintering parts must cope 
with adverse environmental conditions which require special adaptations likely to decrease some 
aspects of physiological performance. Summing up, it is only advantageous to keep as large a 
part of the vegetative body as possible from year to year if it is assumed that all other things are 
equal. According to the model presented, an optimal pattern of growth and reproduction is 
heavily dependent on survival, on the function describing the dependence of net production on 
body mass, and also on the season length. Adaptations to keep vegetative parts may have a 
negative effect on all of these. 

Relocation of resources before vegetative part abscission always seems to be advantageous. 
The extent of this process is undoubtedly physiologically constrained and can be species 
dependent. There are also environmental limitations to this process. Relocation is not an 
instantaneous event, as is assumed in this paper, but takes some time and must occur when the 
temperature is not very low. Thus this process must be precisely placed in time, and must occur 
after it no longer pays to keep vegetative organs because of low net production but before the 
temperature drop is too great. This problem can be less serious for early spring herbs living under 
a canopy, because access to light, rather than temperature, seems to be the limiting factor on 
their season length. Such herbs can relocate their resources at the end of spring before shedding 
their leaves, and therefore can be expected to have a relatively large percentage of relocated 
resources. On the other hand, if fruits can ripen after the end of the growing season, resources 
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can also be relocated to maturing fruits. This changes the optimization results qualitatively, the 
solution corresponds to the case of very small q. 

The function f (w) ,  which describes the dependence of net production rate on vegetative mass, 
is expected to be concave downward for most cases. This is because of self-shading and an 
increase in the proportional size of support tissues. However, it is quite possible that the function 
f (w)  has several plateaus, corresponding for example to the build up of a new stem, with a sharp 
rise after each of them. Clearly, the intensity of self-shading and the proportion of support tissues 
to 'productive' parts will depend very strongly on the shape of the plant. This in turn will be 
influenced by neighbouring plants, by water and light conditions, and by soil fertility. We can 
therefore, expect strong plasticity in patterns of growth and reproduction. 
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Appendix 1. Qualitative behaviour of optimal strategies 

We want to transform the problem of maximizing expected lifetime reproductive output for 
model (1)-(3) into a completely discrete problem. To this aim, given two positive numbers, zi 
and zi+l, we consider all the controls, ui(t), vi(t), such that bring the vegetative size from Vi(0) 
= z~ to V~+1(0) = zi+t; among all these controls, assuming that at least one such control exists, 
we find the one that maximizes Ri(T). The existence of maximizing controls is guaranteed by 
standard theorems (for instance, see Theorem and Corollary 5.1 in Berkovitz, 1974) and they are 
the only ones that need be considered; it is in fact clear that a control that takes equally from 
zl to zi+l and yields a lower value of Ri(T) cannot be optimal. 

Let U(zi,zi+~) be the value of Ri(T) obtained through the maximizing control. The problem 
of finding the controls {ul(t), vl(t) . . . .  ,ui(t),vi(t) . . . .  } which maximize expected lifetime 
repro- 
ductive output is then reduced to 

Problem 1 

Find a sequence {zi} that maximizes 

O0 

pi-, U(zi,zi+, ) (A1) 

i= l  

under the constraints that zl is equal to V~(0), and that zi+~ are reachable from zi. 
Problem 1 is typical in mathematical economics (see for example, McKenzie, 1986). In order 

to study it, we wish to investigate better the properties of the function U(x,y). 
U(x,y) is precisely defined as the maximum for R(T) under the constraints 

f d 

v = O - u - O f ( v )  

d 
~ R  = uf(V) 

d 
- ~ S = v f ( V ) .  

(A2) 
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and 

v ( 0 )  = x ,  R(0)  = S(0)  = 0 

S(T) + qV(T)  = y. 

U(x,y) is only defined when y is reachable from x. 

Pugliese and Kozlowsld 

(A3) 

(A4) 

The main assumptions we make are that f(V) is increasing and concave and that f(0)=0.  We 
also need the technical assumption that f is log-concave, in the sense that the function +(u) = 
log f(e") is concave. Graphically, this assumption means that f looks concave, when drawn in 
log-log paper. Finally, for the sake of simplicity, we will also assume that there exist first and 
second derivatives of f. 

Using Pontryagin's maximum principle, one can prove the following facts: 
as proved by Kozlowski and Wiegert (1986), there exists § such that the control that 
maximizes R(T) + qV(T) under constraints (A2)-(A3) is: u is equal to 0 on (0,§ u( t )= l  on 
( ,73 
As for the controls (ti(t), v(t)) that maximize R(T) under constraints (A2)-(A4), we have: 

(a) I fy  >-qV(~(x)), a(t) + 0(t) = 0 on (0,§ a(t) + 0(t) = 1 on (~-(x),T). The relative allocation 
between storage and reproduction is then calibrated so as to have S(T) = y - qV(i(x)).  
(b) If y <qV(§ then we have 0(t) identically zero, while fifo = 0 on (O,r(x,y)), a(t) = 1 on 
(r(x,y),T); r(x,y) is such that qV(r(x,y)) = y. Note that V(t) depend s on x through the initial 
value V(0) =x. 

In case (b) then there is no allocation to storage during the growing season. For ease of 
notation, we define the function Q(x)=qV(§ we can then say that case (a) holds when 
y >-Q(x), while case (b) holds when y < Q(x). 

Defining 

M(x) = f(V(§ ) )(T-§ ) + qV(i(x) ) (A5) 

which is the maximum size that can be reached in a season starting from size x, we have 

I M(x) - y when y >- Q(x) 
U(x,y) = (A6) 

l f (V(~r(x,y)))(T-r(x,y))  when y < Q(x). 

From Equation (A6) one then obtains, through several computations similar to those 
performed in Appendix 2 of Pugliese (1988a), that 

M'(x) when y >- Q(x); 
(A7) 

Ox U(x,y) = ~ [(y/q) when y < Q(x). 
f(x) 

i 1 when y --> Q(x); 

~y U(X,y) [ f(ylq)(T-x(x,y))  - 1] when y < Q(x). (A8) 

We summarize some properties of the above functions as 

(P1) If xl < x2 and Yl < Y2, then U(Xl,Yl) + U(x2,Y2) > U(xI,Y2) + U(x2,yl). A function U 
satisfying this property is sometimes called supermodular (Ross, 1983). 
(P2) M(x) is a concave function. 
(P3) There exists .~ -> 0 such that Q(x) > x on (0,:~), Q(x) < x on (~ ,+~) .  
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(P4) pUx(x,x) + Uy(x,x) is a continuous, decreasing function of x. 

The main tools in the analysis of Problem 1 are the principle of optimality and Euler's 
equations. We define W(x) (the value of size x) as the maximum offspring number expected 
starting from size x, 

O3 

W(x) = sup E pi-I U(zi,zi+l) 

i = l  

subject to the constraints zl = x, and that zi+l is reachable from zi; for ease of notation, we 
define m(z) as the minimum size that can be reached from z, so that zi+l reachable from zi can 
be written as m(zO <- z1+1 <- M(zl). The principle of optimality states that 

W(x) = max[U(x,z) + pW(z)] (A9) 

taken over all z that are reachable from x. Equation (A9) can actually be used as the definition 
of W through a fixed point argument. We also define the map 

0(x) = max [z: m(x) <_z<_M(x), U(x,z) + pW(z) = W(x)]. 

In words, 0(x) is the first point reached from x along an optimal path (in case more than one 
such point exists, we choose the largest one). 

Euler's equations state that small variations from an optimal path are not advantageous. 
Therefore we have for an optimal path {zi} 

-> 0 i f  z i = M ( Z i - l )  

Uy(zi-l,zi) + pU~(zi,zi+l) = 0 i fm(z i - i )  < zi < M(Zi-l). (A10) 
-- 0 i fzi  = m(zi-l) .  

The first result is that optimal sequences do not oscillate. This follows from the fact that 

If x < y,  then 0(x) -< 0(y). ( A l l )  

The proof of ( A l l )  follows from (P1), repeating step by step the proof of the analogous result 
in Dechert and Nishimura (1983). 

Since, for an optimal path, zi+l = 0(zi), we have that either zi -> z H  for all i, or zi --< z~-i for 
all i. 

We have to add an assumption that avoids growth to infinite of optimal sequences, which is 
not very sensible biologically. Namely we assume 

(P5) ~im pM'(x) < 1. 

(P5) is true if lira f ( x )  < 1 - 0  which seems a reasonable assumption. 
x--,o0 T ' 

Under (P1)-(P5), the optimal sequence [zi} is monotone and bounded; therefore it admits a 
limit s 0. 

If ,f > 0, M(s > s Letting i go to infinite in Equation (A10), one then obtains 

Uy(YC,Yc)+pUx(s163 = 0. (A12) 

From (P4), we know that there exists at most one s satisfying (A12). If lin~+ pUx(x,x) + 
Uy(x,x) > 0, let x* >0  be the solution ofpUx(x,x) + Uy(x,x) = 0 (there exists ~n-'~ such solution 
because of (P4) and (PS)). If !i~+ pUx(x,x) + Uy(x,x) <- O, set x* equal to 0. 
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Size x* will be the one approached by optimal paths. To distinguish between the two cases 
discussed in the text, we have to use also size 2 introduced in (P3). We can now state our main 
result. 

Theorem. All optimal paths converge to x*. If x* -> 2, the optimal path [zi} can be described for 
z~ < x* as zi+~ = rain [x*,M(z~)l; i.e., the path is the quickest approach to x*. If x* < .~, there 
is only asymptotic convergence to x*; in this case, we can say that there is a finite number 
(possibly zero) of i's such that zi = M(zi-l) (no reproduction), followed by possibly one year 
where M(zi-l)  > zi -> Q(Zi-l), and finally by an infinite sequence of i's where zi < Q(zi-1) 
(relocation occurs only through storage); unless zl = x* (one starts already from the optimal 
size), this sequence is strictly increasing. 

Proof. If x* -> 2, consider the suggested optimal path; since x* >- Q(x*) >- Q(zi), we have zi+l 
>- Q(zi), for all i. Therefore 

OO oO O0 

Z pi-lU(zi'2i+l)= Z Pi-I[M(zi)-zi+l] > Z pi-I[M(z'i)-z'i+1] 
i = l  i = l  i = l  

OO 

> Z pi-lU(z'i'z'i+l) (A13) 

i = l  
for any feasible path {z'~] different from {z~}. The strict inequality comes from the results of Spence 
(1973) and Pugliese (1987). 

If 0 < x* < 2, consider only zl < x*. We already know that lim zi = x*; since 0(x*) = x*, 
from Equation ( A l l )  we know that zi+l = 0(zi) -< x*. It is impossible to have zi+l = x*; in fact, 
if we had zi < x* = zi.§ from Equation (A10) we would obtain 

Uy(zi,x*) + pUx(x*,x*) >- 0 (A14) 

while by definition of x* we have 

Uy(x*,x*) + = 0 ( A 1 5 )  

and, since x* < $, using Equation (A8), we have Uy(x*,x*) > Uy(zi,x*). 

Thus we have found that zi < x*; it is also true that zi < z~+~; in fact, if zi.l.~ = zi, from z~+l 
= 0(zi), it would follow that zi+z = 0(zi+0 = zi and so on, in contrast to lim zi = x*; finally 

x* < Q(x*) implies that, for i large enough, Q(zi) > x* -> zi+l (storage only from reproduction). 
We now prove that 

If zi < M(zi_l), then zi+l < Q(zi). (A16) 

This means that if in year i there is some reproduction, from year i+1 on there will always be 
reproduction, and there will be no direct allocation to storage. 

Suppose, on the contrary, that there exists i, such that z~ < M(z~_j), and zi+l >- Q(zO. Using 
Equation (A10) for year i and year i+1, we obtain 

p Ux(ZiZi+l) = - -  Uy(zi-1,zi) 
p U x ( Z i + l , Z i §  -> - Uy(zi,zi+O. 

zi,§ >- Q(zi) implies that - - U y ( Z i , Z i + l )  = 1, Ux(z i , z i_ l . i )  = M'(zi). We also know from Equation 
(A8) that -Ur(zi_i ,zi)  < 1 and Ux(zi§247 --< M'(zi§ Putting these equalities and inequalities 
together, we obtain pM'(Zi+l) >- pM'(zi), while the concavity of M and the fact that z~ < zi+l 
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imply that M'(zi) > M'(zi+l). We have therefore found a contradiction, from which Equation 
(A16) follows. 

Appendix 2. An explicit characterization of the two cases 

We have seen in Appendix 1 that the important constants to characterize the strategy are x* and 
~; s is defined in (P3), while, denotingpUx(x,x) + Uy(x,x) by Z(x),  we see from Equation (A15) 
that x* solves Z(x*) = 0. If x* < s we have gradual growth with reproduction; if x* >- s we 
have first growth, then reproduction. Since Z(x) is a decreasing function o fx  (see P4), we have 

if Z(s -> 0, then x* -> s 

if Z(s < 0, then x* < .~. 

We then see from (A7)-(A8)  and the expression for M(x) that 

Z(Yc) = pM'(s - 1 = pf(s163 - 1 

(A17) 

(A18) 

(A19) 

In order  to see how (A17) or (A18) depend on q, one can show, using the dependence of s 
on q and an explicit formula for M'(x),  that pM'(Yc) is a decreasing function of q. Since it is easy 
to show that for q = 0 Z(s > 0, while for q = 1 Z(s < 0, it follows that there exists q* such 
that Z(s = 0. For  q < q* (A17) holds; for q > q* (A18) holds. 

If we assume that f(V) = aV b, Equation (1) can be solved explicitly; then also s and x* can 
be computed.  From Equation (A19) one sees that Z(s = pq-b--1. Therefore  Equation (A17) 
holds when p >-- qb; Equation (A18) holds for p < qb. Expression (5) and (6) for x* can 
then be obtained through some computations. 


