
Size Exclusion Chromatography in Pore Networks 

C. M c G r e a v y  1. / J. S. A n d r a d e  Junior  2 / K. Ra jagopa l  2 

1Department of Chemical Engineering, The University of Leeds, Leeds LS2-9JT, UK 
ZPrograma de Engenharia Quimica, COPPE Universidade Federal do Rio de Janeiro CP 68502, Rio de Janeiro, R J, 
Brasil 

Key Words 
Size exclusion chromatography 
Network model 
Band broadening 

Summary 
A network model is proposed to describe the intra- 
particle porous structure of an SEC (size exclusion 
chromatography) column and solved using orthogonal 
collocation. Comparison of the retention and band 
broadening features with the conventional model of a 
parallel bundle of capillaries shows significant dif- 
ferences, which demonstrate the importance of in- 
cluding morphological characteristics into the model 
to account for the mass transfer restrictions. 

Introduction 
Size exclusion chromatography (SEC) has been 
largely employed as an analytical procedure for 
separating macromolecules according to differences in 
size and in obtaining information on the molecular 
weight distribution of polymers [1]. A number of 
theoretical models have been proposed in the 
literature for describing the basic mechanistic pro- 
cesses [2--4]. Basically it is concerned with hindered 
diffusion [5] in a disordered porous medium such as 
the intraparticle pore volume of the column packing. 
The majority of studies in this field [6-7] have been 
developed assuming that a homogeneous macroscopic 
model based on an overall effective diffusion coeffi- 
cient can provide a match between model predictions 
and experimental data. Much less effort has been 
devoted to improve the structural description of the 
intraparticle morphology. Recently, Sahimi and Jue 
[8-9] introduced a network model to represent the 
diffusion of macromolecules in randomly structured 
porous media. Computer simulations showed that the 
topology of the pore volume plays a significant role in 
determining the mass transport process. 

The main objective of the present work is to apply the 
network modelling technique to the investigation of 
the influence of the pore volume morphology on the 
SEC mechanisms related to retention and b a n d  
broadening. A parallel bundle of capillaries is taken as 
a conceptual reference model so as to illustrate the 
importance of the pore interconnectivity as a network 
topological feature. 

Physico-Chemical System 
The conceptual physico-chemical description of the 
system is based on the following assumptions: 

a) The chromatographic column is represented by a 
fixed bed packed with porous particles of uniform 
size. 

b) The polymer samples used as tracers are assumed to 
have a very narrow molecular weight distribution, i.e. 
they are standard samples. To illustrate the approach, 
data related to polystyrene in chloroform will be used. 
Correlations [7] for the root mean square radius of 
gyration (Rp) and the molecular diffusion (D ~ of the 

polymer as a function of its molecular weight (MW) 
are given by: 

Rp = 0.0150 x 10 -7 MW ~ (1) 

and 

D ~ = 1.61 x 10 .4 MW -~ 

MW < 38 000 (2) 

D ~ = 3.72 x 10 -4 MW -0"577 

MW _> 110 000 (3) 

at 20 ~ 
Axial dispersion (DL) is regarded as being significant 
and dependent on the molecular weight of the poly- 
mer. For the system used here a theoretical correlation 
developed in [10] is employed. All the relevant para- 
meters are listed in Table I. 

c) The porous particles are structurally represented by 
two different models (Figure 1): 
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Table I. Parameters employed in the simulations (from reference 
[13]). 

Column parameters 

length (L) 121.2 cm 
interstitial velocity ((v)) 0.0958 cm/s 
porosity (c~) 0.364 

Particle parameters 

size (/p) 0.003 cm 
small radius (R1) 10 -6 cm 
large radius (R2) 3 x 10-6 cm 
porosity (%) 0.616 
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Figure 1 
Pore volume representations of the porous particles in a SEC 
column. 

( i ) -  a 20 x 20 two dimensional square network made 
up of cylindrical pores of constant length (l) con- 
nected to sites or nodes of negligible volume. 

(ii) - a parallel bundle of cylindrical capillaries. 

d) By fixing the frequency of the smaller radius (F1), 
two different radius sizes (R1 and Re) can be assigned 
to the parallel bundle and the network pore radii. In 
the network case, the spatial arrangement of both types 
of capillaries is generated using a routine for random 
permutation of vectors. 

M a t h e m a t i c a l  F o r m u l a t i o n  

P a r t i c l e  M o d e l  

Figure 2a shows the lattice representation of the net- 
work with the nodal enumeration scheme adopted in 
this work. In a typical pore between nodes {i} and {j}, 
the tracer concentration (~(x, t)) is described by the 
following mass balance: 

3--t- = m 0x 2 (4) 

b) X=O.? X, X~ iS- x~_~ x~ X=l.O 

! ] | f / !  

Figure 2 
a) Network lattice with the nodal enumeration scheme employed 

in the simulations. 
b) Schematic representation of the SEC column showing the 

collocation points and the network lattice employed in the 
simulations. 

where Dm is the hindered molecular diffusion coeffi- 
cient and x is the axial coordinate in any particular 
capillary between nodes {i} and {j} of the network, 
where {i} is the origin with respect to the local value of 
x, i.e. each capillary is treated separately. Assuming 
that the polymer molecules interact with the capillary 
pore wall by a hard sphere potential ,  the following 
expression given by Pappenheimer et al. [i1] can be 
used to evaluate Din: 

D m = D ~ (1 - 2.1044X + 2.0888~. 3 - 0.948X 5) (5) 

where X = Rp/R. 

The corresponding boundary  conditions are intro- 
duced in a convenient  form by using the Laplace 
transform with respect to time in Eq. (4): 

d2c 
s c -  D m ~ - =  0 (6) 

assuming that there is no tracer species inside the pore 
initially, i.e. ~(x, 0)= 0. The transformed form for the 
boundary conditions is then: 

c (0, s) = c{i ] 

c (l, s) = clj I (7) 

Solving Eq. (6) subject to the boundary conditions (7): 

c (x, s) - sinh (ax) 
sinh (al) clJl 

+[cosh(ax) sinh (ax)l 
t--annh clij (8) 

where a = (s/Din) m. 

640 Chromatographia Vol. 30, No. 11/12, December 1 9 9 0  Originals 



The transformed form of the molar flux of the tracer 
into a pore from adjacent sites {i} and {j} can be written 
as: 

where ~ is the partitioning or distribution coefficient, 
the ratio of the average intrapore concentration to the 
bulk solution concentration, for a single capillary at 
equilibrium. For purely steric interactions between 
the solute and pore wall it follows [1] that: 

r = (1 - ~,)2 (10) 

Then, Jli, jl can be expressed as a linear function of the 

two terminal transformed concentrations at the con- 
nected nodal points: 

Jli, i} = rIR~i, i} 0 (Dins)it2 [ �9 ,c-JiTI ,, cli-] .] (11) 
ktann tall sinh(al) J 

The nodes are considered to be points of perfect 
mixing. Imposing the conservation of mass at each 
internal node by setting the algebraic sum of the fluxes 
to zero, for the node {i}, this can be expressed in terms 
of the transformed representation as: 

J(i,i_ N} + Jli, i_ 11 + Jli, i+ 11 + Jli, i + N} = 0 (12) 

For a tube of the parallel bundle, the hindered mass 
transport is described by the same mathematical 
formulation derived above for the network capillary. 
The length of the capillary in the network is defined 
by: 

l=/p/(N + 1) 

but the particle size itself (Ip) is utilized as the capil- 
lary length in the simulations based on the parallel 
bundle. To complete the description of the net flux 
to/from the network, a mass conservation equation for 
all the connection nodes at the end of the structure 
must "also be included at {N2+ 2} (see Figure 2a). This 
is the only nodal mass balance needed for the parallel 
bundle case. 

C o l u m n  M o d e l  

A simple mass balance in the mobile phase of the SEC 
column gives: 

~2Cm ~Cm ~Cm 
D L ~ -  (V) ~-~ ~- 

(1 - e c ) e  p N +  I 
--~2 J{1, i} = 0 (13) 

EcVps i 

where DL is the column dispersion coefficient, (v) 
represents the fluid intersticial velocity, Vps is the 
internal volume of the particle pore volume and er and 
ep are the column and particle porosities respectively. 
The factor 

(1 - %) Cp 

cr Vvs 
in the flux summation term of Eq. (13) corresponds to 
the reciprocal of the external fluid volume sur- 

rounding a single particle in the mobile phase. It is 
assumed that the particle porous structure repeats 
itself in the axial direction of the fixed bed and so the 
same network configuration is applied over the whole 
range of X values. Initially, the bed is taken to be free 
of solute: 

C m (X, 0) = 0 (14) 

with the following boundary conditions holding for 
the entrance and the exit of the column: 

(v) 5(t) = (v) Cmi0, t) - DL--b-X--IX = 0 (15) 

Oem 
~-~ IX=L=0 (16) 

where 5 (t) is the Dirac function. 

Introducing the Laplace transform of the mobile phase 
concentration (Cm): 

o o  

C m (X, s) = f Cm (X, t) exp (-  st) dt 

0 

then: 

~2 Cm o3Cm (1 -- ec) ep N + 1 
DL > --~-~-- Z OX2 --(V- O)~" -SCm EcVps j=2 

with: 

OCm I 
OX 

and 

At 

JB, il = 0 

(17) 

: (v) (Cm(0 , s) - I)/D L (18) 
X=0 

= 0 (19) 
~X X=L 

any time, assuming that the mobile phase 
concentration is equal to nodal concentration at the 
network entrance, the following equation provides the 
connection between the mobile phase and the intra- 
particle pore volume: 

Cm = c'[1} (20) 

Combining Eqs. (17)-(20) and the internal site mass 
balances (Eq. (12)) together with the expression for 
the transformed form of the molar flux in each 
capillary (Eq. (11)), a complete description of the 
whole system is obtained. 

Numerical Solution 
For a fixed value of the transformed variable (s), the 
mobile phase Eq~ (17) is discretized using orthogonal 
collocation [12]. The normalized orthogonal collo- 
cation points employed are the zeros of the Jacobi 
polynomial p(0,0) and the boundaries (X/L = 0 and ~N c 
X/L = 1) are taken as interpolation points. A sche- 
matic representation of the collocation procedure for 
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axial d iscre t iza t ion  of  the system is shown in 
Figure 2b. The  resulting system of l inear algebraic 
equations is conveniently expressed in matrix form as: 

AC = B (21) 

where C is the vector of transformed concentrations, B 
is the input vector obtained from Eq. (18) and A is a 
conductance matrix corresponding to the coupling 
between the internal site mass balances of the net- 
work and the or thogonal  col locat ion coefficients  
(Figure 3). 

This system of equat ions  is convenient ly  solved 
numerically using L U-decomposition of real sparse 
matrices. The prodecure is then repeated for different 
s values f rom which calculated t rans formed con- 
centrations at the column exit (C m (L, s)) are obtained. 

The first and second moments  of the residence time 
d i s t r ibu t ion  are then  c o m p u t e d  by numer i ca l  
differentiation using: 

a C r e ( L ,  s) s (22) 
~1 = RT - <3s = 0 

<32 Cm(L ,S) s :  
- (23)  13"2 0S2 0 

where RT is the polymer retention time. The standard 
deviation of the elution curve is obtained as: 

8 D  = (]32 - ~t2)1/21 (24) 

: :::::::::::::::::::::::::::: ][ 
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Figure 3 

Schematic representation of matri,c A. 

The approximation order  Nc of the or thogonal  poly- 
nomials (i.e. the number  of or thogonal  collocation 
points)  for  the mobi le  phase Eq. ( i7 )  has been 
examined  for Nc = 3, 4, 5, 6. Compar ison  with the 
higher  order  approximat ions  shows Nc = 4 to be 
adequate  for obtaining relative errors  smaller than 
0 .01% of the first moment  and 0 .1% of the standard 
deviation. F o r  a fixed polymer molecular weight and a 
small radius f r equency  (F1), 40 s imulat ions with 
distinct network samples have been carried out, from 
which average values for the first and second moments 
have been obtained. 

R e s u l t s  a n d  D i s c u s s i o n  

The Figures 4 and 5 show the calibration curves for 
different values of F1 for the parallel bundle and the 
network models respectively. The retention time (RT) 

106- 

I 0 s~ 

WI04' 

103' 

F1,,0. 251 
F1,-O, 501 
FI~0. 75 

#' F ~1.00 

[ i 

RT 

Figure 4 
Calibration curves using the parallel bundle as the intraparticle 
pore volume model (RT in minutes). 
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a |  

RT Figure 5 
Calibration curves using the network as the intraparticle pore 
volume model (RT in minutes). 
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depends on the exclusion mechanism. For a fixed 
polymer molecular weight, it decreases as F1 in. 
creases. Also, as the polymer molecular weight 
increases the elution retention time decreases, tending 
to the total exclusion limit. 

The dashed lines represent the polymer molecular 
weights obtained from Eq. (1) for the corresponding 
values of Rt and R2. They set the limits on the 
molecular weight region where the exclusion becomes 
total in relation to capillaries with radius R1. In this 
zone, for a fixed MW value, the calculated retention 
times for the network model are lower than the 
retention times for the parallel bundle. As expected, 
this indicates that the parallel bundle accessibility for 
those exclusion conditions is higher than the acces- 
sible pore volume of the network. 

The analysis of the band broadening mechanism is 
more complex. Figure 6 shows the standard deviations 
(SD) of the computed elution curves in terms of the 
polymer molecular weight for different values of F1 
for the parallel bundle pore structure. The predicted 
maximum value for SD is a well known effect [1]. It 
results from the competition between the exclusion 
and the hindered diffusion mechanism in the intra- 
particle pores. This is also predicted by the network 
model and the results are shown in Figure 7. However, 
for a fixed MW, the band broadening in terms of the 
structural parameter F1 is not of the general pattern 
found for parallel bundles. Whereas the results plotted 
in Figure 6 show a monotonic behaviour for the 
calculated SD values with respect to F1, the network 
results shown in Figure 7 give evidence of a maximum 
in SD values around a frequency F1 equal to 0.75. At 
this F1 value, the predicted tortuosity factors for 
randomly generated square networks are notably high 
[13]. This is a consequence of the mass transfer control 
of the large pores governed by the frequency (1-F1) 
and spatial distribution of pore sizes equal to R2 in the 
network. 
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Figure 7 
Dependence of the standard deviation on the polymer molecular 
weight for the network model (SD in minutes). 
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Figure 6 
Dependence of the standard deviation on the polymer molecular 
weight for the parallel bundle model (SD in minutes). 
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Degree of scattering of the standard deviation at F1 = 0.75 for the 
network model (SD in minutes). 

Figures 8, 9 and 10 show the degree of scatter arising 
from the sampling procedure  for a given value of F1. 
At  F1 = 0.5 (Figure 9) the calculated SD for the eluted 
chromatographic  peak fluctuates widely in the zone 
where the exclusion mechanism for capillaries with 
small radius is total, i.e. in the domain bounded by the 
dashed lines in the figures. This frequency is known as 
the percolat ion  threshold for the square network [14] 
and the large uncertainty is directly re la ted to the 
critical conditions in which the network samples have 
been generated. 

C o n c l u s i o n s  

A network model for SEC has been developed and 
compared  with a convent ional  pore  volume model  
based on a parallel bundle of capillaries. It is shown 
that the pore  volume morphology can have a very 
strong influence on the band broadening behaviour of 
SEC columns. Spatial  non-uniformit ies  have been  
generated in a systematic manner  so that the concept 
of a network tortuosity factor [13] can be employed to 
elucidate the structural influence. 

The approach to modelling presented  in this work 
offers a useful methodology for the specification and 
design of the SEC column packings. It also points to a 
means of using size exclusion chromatography with 
standard polymeric samples to characterize the porous 
structure of SEC column packings. 
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S y m b o l s  

C m - transformed mobile phase concentration 

c - t ransformed capillary concentrat ion 

m 

Cm 

DO 
Dm 
DL 
F1 

J 

L 
l 
lp 
N 
R 

S 

t 
( v )  
Vps 
X 
X 

m 

m 

B 

m 

D 

R 

m 

mobile phase concentration (inol/cm 3) 

capillary concentrat ion (mol/cm 3) 
molecular diffusion coefficient (cm2/s) 

hindered diffusion coefficient (cm2/s) 
dispersion coefficient (cm2/s) 
frequency of the smaller radius 
transformed molar flux 
molar flux (mol/s) 
column length (cm) 
network capillary length (cm) 
particle size (cm) 
network dimension 
pore radius (cm) 
transformed variable 

- time (s) 
- interstitial velocity (crn/s) 
- internal volume of the particle (cm 3) 

- column axial coordinate (cm) 
- capillary axial coordinate (cm) 

S u b s c r i p l s  

i - related to node i 
j - related to node j 

G r e e k  S y m b o l s  

e e - column porosity 

ep - particle porosity 

q~ - distribution coefficient 
Ix - moment  of the residence time distribution 
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