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S M A L L  S U B - R I E M A N N I A N  B A L L S  O N  R 3 

EL-H. CH. EL-ALAOUI, J.-P. GAUTHIER, I. KUPKA 

ABSTRACT. This paper deals with sub-Riemannian metrics on R 3 in 
the contact case. We study the singularities of the exponential map- 
ping in the neighborhood of its pole. This is in stark contrast with 
the Riemannian case where this situation never occurs. 

1. INTRODUCTION 

1. Sub-Riemannian geometry has a t t racted a lot of interest in the past 
five years. To give an exhaustive list of references would be beyond the 
scope of this paper. 

Here we will limit ourselves to the dimension 3 and study the conjugate 
locus of a sub-Riemannian structure in the neighborhood of its pole as well 
as the wave front sets of small radius. 

A sub-Riemannian metric on an open subset M of R 3 is a couple Z ---- 
(A, g), of a two-dimensional vector subbundle of TM, and a metric g : A --. 
R+ on A, such that  A is a contact structure on M. It is well known [17] 
tha t  this couple defines a metric d on M. The set of the ~ = (A, g) will be 
denoted by Sub R(M). 

There  are many important differences between Riemannian and sub- 
Riemannian metrics. One of them is tha t  the conjugate locus and the cut 
locus of a point x contain x in their adherence. Consequently, even spheres 
of small radius have singularities. 

The classical model for sub-Pdemannian metrics is the Heisenberg case: 
M is the 3-dimeusional Heisenberg group, A is the unique (up to conjuga- 
tion) left invariant nonintegrable 2-dimensional distribution, and g is left 
invariant. This case was analyzed by Brockett  [4] and Vershik and Ger- 
shkovich [19], among others. This will play a major role in our study, since 
our approach is to consider any sub-Riemannian metric as a perturbat ion 
of the Heisenberg one. 
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In the Heisenberg case, the picture of the wave front is well known. Balls 
are just perfect "apples," and the conjugate locus of a point a is the a-coset 
with respect to the center of the group. 

In the general case, as we will show, the situation is more complicated: 
the germ of the conjugate locus at the origin is a 2-dimeusional surface. 
The picture of the least singular case has been exhibited for the first time 
by A. Agrachev in 1994 at the Zfirich congress [1]. 

Here we will give a generic classification of what can happen for the 
conjugate loci, and their intersection with wave fronts and sub-Riemannian 
spheres. 

2. S t a t emen t  of  our  ma in  results .  Associated to a sub-Riemannian 
metric, there is a canonical cylindrical coordinate system (R, ~, r) on T~M 
(R radius vector, ~ angular coordinate, r third cartesian coordinate). The 
line R = 0 is the annihilator of the distribution A at zero (see Sec. 4.3 for 

1 
precise definitions). For r ~= 0, we set p = - .  

r 
As in the Riemannian case, the sub-Riemannian metric (A, g) has an 

exponential mapping. Contrary to what happens in that case, a geodesic 
is not determined by its initial point and initial velocity, but rather by its 
initial point and a covector in T~M (see Sec. 4.1). We assume that 0 belongs 
to M and we denote the exponential mapping of pole zero by $(s, ~, p). 
Precisely, E(s, ~, p) is the point at distance s from 0 on the geodesic having 

the initial point 0 and the initial covector of coordinates 1, ~o, ~ in T~M. 

The parameter p has a simple differential geometric interpretation: this is 
the curvature radius of the geodesic with respect to the connection defined 
in See. 3. 

The conjugate time mapping sc(~o, p) is defined as usual: the graph S of 
sc is the set of points at which g(s, ~, p) is singular for the first time s > 0. 
The conjugate locus CL is the image of S by E. 

When p tends to zero, Sc(~, p) is equivalent to 2~rp. Hence CL has its 
pole 0 in its closure. The precise description of CL near its pole is given in 
Theorem 1.1. 

To state this let us point out a few facts: 
(i) The structural group of the metric bundle (A, g) can be reduced to 

SO(2) (since A is orientable). This allows us to decompose the tensor fields 
associated to A according to the action of SO(2) on them. 

(ii) The metric g on the vector bundle A and a choice of orientation on A 
define a volume form volg, section of the bundle A2A * of 2-skew symmetric 
covariant tensors on A. volg defines a complex structure j on A by the 
formula: 

For any couple (u,v) e A • A, volg(u,v) = g(j(u),v). If we change 
the orientation, j is changed into - j .  
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(iii) We associate to the pair (A, g) two symmetric covaxiant tensor fields 
Q, V on A, of degree 2 and 3 respectively. These tensor fields depend func- 
torially on (A, g), and represent differential geometric invariants of  (A, g). 
The interpretation of these invaxiants in terms of the connection canonically 
associated to (A, g) will be given in Sec. 3. 

As mentionned in (i), these tensors have canonical decompositions with 
respect to the action of S0(2): 

Q = Qo + Q2, V = Vl + Va. 

The expressions of Qo, Q2, V1, V3 in terms of j,  Q, V can be given as 
follows: 

1 1 
Qo(v) -- ~ trg Q g = -~(Q(v) + Q(jv)) ,  

Q~_(v) = Q - Qo = ~ ( Q ( ~ )  - Q ( j v ) ) ,  

1 1 
v~(v) = ~ v(~) + ~ (v(~ + j ~) + v(~ - j v)), 

1 1 
V(v) - ~(V(v  + j r )  + V(v - j r ) ) .  

o "  

( 1  ) 
Let us set ~i(Q) = -  detg Q - ~ trg Q g . 

The exponential mapping s ~o, p) has an expansion in p at p = 0, of 
the form 

4 

s  ,~  +O(p5), (1.1) 
i = l  

where O(p 5) is of the form p5 f , ~o, p and f and gi are smooth functions. 

T h e o r e m  1.1. There exists a linear coordinate system (x, y, w) on ToM 
such that A(0) ---- kerw and the restrictions of x, y to A(O) satisfy 
x o j = --y, y o j  = x. There exists a diffeomorphism dp from a neighborhood 
of zero in ToM to a neighborhood of zero in M, such that the conjugate 
time mapping so(v, p) and the conjugate locus mapping CL(v, p) have the 
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following expansions in p: 

(i) so(v, p) = 2~p - 12~ p3 Qo(v) + 20 ~ p4 (V~ (j(v)) - 

_ ! v~ (d(~))) + o l  (P) ;  
2 

(i~) (=~(~'P)~ ~p4 v~(j(~)))~ + \yc(~,  p ) )  = ( - 8  ~ p Q2(v) - 

+ ( - 2 ~ p  3 Q2(v + J(~)) - ~Pv3(~))j(~) + 
+ o2(p5); 

wc(v, p) = ~r p 2 - 3 7r p4 (3 Qo(v) - 2 Q2(v)) + O3(p5). 

Oi (pS) is a function of  the form p~ fi (v, p), where fi  is a smooth function 
of p and v. v is the unit initial velocity of the geodesic. Moreover, the 3-jet 
o f t  (w.r.t. the gradation defined later on in Sec. 2) is unique, and (x, y, w) 
is unique up to a rotation of x, y. 

Remark 1. Obviously, xc (resp. Yc, we) means xc o ~b -1 (resp. Yc o r  
w ~ o r  

We will also use the complex notations: 

z = x + i y ,  v = e ~ ,  

Qo = cl + ca izl2 Q2 = cl - c2 , ~ Re (z2), 
(1.2) 

V1 = Re (~z ]z]2), V3 = Re (bz3), 

= complex conjugate of a, cl, c2 E R, a, b E C. 

Then,  

Zc((p, p) -- r p  3 (c2 - cl) (e 3i~ + 3 e - i~ )  + 1~52~rp4i (be 4 ~  - 2be  - 2 ~ )  + 

+ o2(p5); 

~(v, p) = . p~ - a t  p~ (3 (cl + c2) + 2 (c~ - c~) cos 2v )  + o3 (p~). 

T h e o r e m  1.2. (i) I f  the differential invariant Q2 is nonzero, then E 3 = 
P~I d- p2E2 + p3E3 i s  a s u f f i c i e n t  jet  for the exponential mapping E, in a 

neighborhood of S A (0 < p < a) for ~ sufficiently small; 
(ii) if  Qa = 0 but the differential invariant V3 is nonzero, then E a = 

4 
pi ~i is a sufficient jet  for the exponential mapping, locally around each 

i-----1 
point of S N (0 < p < a) for a sufficiently small. 



SMALL SUB-RIEMANNIAN BALLS ON R 3 363 

As a consequence, the conjugate locus is diffeomorphic to the image of 
E 3 in case (i) and to the image of ~4 in case (ii), but  locally only in this last 
case. They  are shown in Sec. 6, Fig. 2 for case (i), Fig. 11 for case (ii). 

In a separate publication, we will deal with the stability in the case (ii) 
and prove that  a global result similar to case (i) of Theorem 1.2 holds. 

To prove these two theorems, we construct a normal form for sub-Rie- 
mannian metrics. This normal form is interesting in its own right for several 
reasons, which will appear in the paper. 

T h e o r e m  1.3. Any formal sub-Riemannian metric has an orthonormal 
basis (F, G) of the following form (setting el --- F(0),  e2 -- G(0), e3 = 
[F, a](0)):  

F = (1 + y2~) el - x y ~ e 2  + Y(1 +V) ea = 

= 0- +y 
(.hfY) G =(Z + x 2 ~ ) e 2 - x y Z e l - ~ ( l  +7)e3 = 

(with an obvious abuse of notations), 

where (x, y, w) are the coordinates on ToM dual to (el, e2, e3), ~, 3  ̀ are 
power series satisfying the conditions 

8(0, o, w) : 3`(0, o, w) = o, w) = o, w) = O. 

Observe that if/3 = q' = O, this is just the orthonormal frame field of the 
Heisenberg metric. 

C o r o l l a r y  1.4. In the coordinate system defined by the normal form 
.h/'Y r, the values of Q, V at O, as polynomials in x, y, are related to 3  ̀ as 
follows: 

3  ̀= (Q + V) (x, y) + terms of degree > 3 or terms containing w. 

Let us now state our generic result. 

T h e o r e m  1.5. For generic sub-Riemannian metrics, Q2 ~= 0 except on 
a one-dimensional submanifold of M, and on this submanifold, 1/3 ?s O. 

This theorem shows that  the two situations we have studied in Theo- 
rem 1.2, are the only possible generic situations for sub-Riemannian met- 
rics. 

3. O r g a n i z a t i o n  o f  t h e  p a p e r .  In Sec. 2 and 3, we construct the 
canonical form and the connection V respectively. 
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Section 4 is devoted to general facts about the geodesics, the exponen- 
tial mapping, and to our method of approximation of the conjugate time 
mapping. 

In Corollary 4.6, we state a well-known elementary fact, which simplifies 
considerably the effective computation of the conjugate time mapping. 

This computation and the computation of the conjugate locus are carried 
out in Sec. 5. 

In Sec. 6, we prove our stability results for the exponential mapping 
(Theorem 1.2, which is stated more precisely in the series of Theorems 6.2 
to 6.5). 

Pictures of the conjugate locus are shown: Fig. 2 for the first generic 
situation (i), Q2 ~ 0, and Fig. 11 for the second generic situation (ii), 
Q2 -- 0 but V3 ~= 0. 

We show pictures of the bifurcation of the conjugate locus, as we move 
continuously from situation (i) to situation (ii), in Figs 7 to 11. 

In case (i), we show also pictures of the wave fronts of small radius, and 
their intersection with the conjugate locus (Figs 1, 3, 4, 5, 6). 

Section 7, at the end of the paper, is devoted to some complements in 
the case (ii): we show that, for an open set of values of parameters, the 
conjugate locus has in fact 6 cuspidal lines (Fig. 12) (and not 3 as in the 
approximation E 4 of E). Pictures of its intersection with small wave fronts 
are also shown (Figs 13-16). 

2. NORMAL FORMS 

In this section, we will study the normal forms of orthonormal frames of 
a forma/sub-Riemannian metric. Such a frame ~ is a couple (F, G) of two 
formal vector fields. Since we restrict ourselves to contact distributions, 
must satisfy the condition: F(0), G(0), [F, G] (0) are independent. 

A typical point of R 3 is denoted by ~. We call the canonical coordinates 
in R 3, (x ,y ,w) ,  and write z for the couple (x,y).  We normalize the couples 

= ( f ,  G) by chosing dw(f(O)) = dw(C(O)) = O. 
The set of these couples ~ = (F, G) will be denoted by T~. 

2.1. N o t a t i o n s  and  s t a t e m e n t  of  the  p rob lem.  
1. 5 r is the set of all formal power series in the variables x, y, w. We define 

a gradation on ~- as follows: the weights of x, y will be one, that of w, two. 
Let us denote by ~'n the space of all homogeneous polynomials of degree 
n with respect to this gradation. Then ~" is the completion l~ ~'n of the 

n>_0 
direct sum ~ ~-,~ with respect to the "valuation defined by this gradation 

n_>0 
(see [5]). 

2. Y'~" wil l  denote the free JC-module of rank 3 of all formal vector 
fields. It has a basis (el ,e2,e3) ,  where el (resp. e2, e3) corresponds to the 
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0 (resp. O D ,  O derivation -~x y Ow )" A gradation of 5 r induces a gradation on 

the module V9 r of derivations of ~': el, e2, e3 have the weights -1 ,  - 1 ,  - 2  
respectively. 

Then, V~- is the completion 1-I VSrn of ~ V~'n, where V~-n is the 
n_>--2 n>--2 

3 
vector space of all ~ a i el, a 1, a 2 E 5rn+l, a 3 E ~'n+2. 

i=1 
3. The elements of V9 r act on 5 r as (Lie) derivations as follows: 

Of, Of, Of 
Lel (f) = -~x Le2 (f) = ~y Lea (f) = "~w" 

The Lie derivation operation is compatible with the gradations of 9 r and 
VJ:: 

if V E V.T,., and f E .Tin, Lv(f)  E .T'n+m. 
4. VY ~ denotes the submodule of V~" such that: if V E V ~  ~ then 

dw (V(0)) -- O. Equivalently, VY ~ = l'I V~'n. 
n,~--I 

Let us set (V~') 2 --- VY ~ x V~ ~~ 
5. V~" is also a Lie algebra under the following Lie bracket operation: 
X E V Y ,  Y E V Y ,  [X,Y] = Z ,  w h e r e Z n =  E [Xi, Yj]. 

i + j  = n  

6. D e f i n t i o n  of  7). We shall denote by 7) the set of formal diffeomor- 
phisms preserving the origin and the plane w = 0. This is a group under 
the natural composition operation, and can be identified in a natural  way 
to a subset of V9 r as follows: 

Let us denote by :Do the set of all ~ = (7~, ~ ,  ~ )  E V~'0 such tha t  

0Y 2 ~ 0 and de t 00~ 0~01 

Ox Oy 

Then, 7) is the completion 

7. D e f i n i t i o n  o f  

7)0@IIv o 
n:>l 

TO, 7~-1, Tr Tr C (VgV~ 2 is the completion 

n_>O 

where 

7"r = {(F-1,G-O I 
F - I ,  G-1 E V~'-I ,  
F_I  (0), G-1 (0), [F-l ,  G-l ]  are independent S " 
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Let us denote by A/-1 the couple (F~  G~ where 

F0 y x 

the Heisenberg frame, and set 

~ = ~r._l E~ 1-[ (w~/~. 

8. Topo log i e s .  We endow 9 ~ with the topology of convergence of coef- 
ficients, V ~  which is isomorphic to iT 3 with the product  topology, (VSV) 2 
also with the product  topology, Tr C (VS~-~ 2 and :D C V~" with the induced 
topologies. D is a topological group. 

9. G r o u p  o p e r a t i o n  a n d  g a u g e  g r o u p .  Both  :D and ~" operate on T~ 
as follows: 

�9 Action o f v  e ~:  ~ .  (F, G) = (v . (F) ,  V.(a));  

�9 Action of a E ~': a.  (F, G) = (F  co sa  + G s ina ,  - F  s i n a  + G cosa) .  

a is called a formal gauge transformation. 
This action defines a semi-direct product  structure on T) x ~" denoted 

:Pcr ~ .  
The  action of :D or ~" on Tr is continuous. 
The semi-direct product  of the group of origin-preserving formal diffeo- 

morphisms with the group of formal gauge transformations will be called 
the gauge group. 

10. D e f i n i t i o n  o f  t h e  n o r m a l  fo rms .  The  following subgroups of 
c< ~" will be needed: 

~o ={(~o ,  ~o) e ~0 ~ ~ o 1 ~  = cos~0 x + sin~o y, 

~o~ = - sin so x + cos ao y, ~o32 = w }, 

ax = {(~o,a) e :D c< 9 v In0 = 0, T0 = Identity}. 

Gx is a normal subgroup of T) cc ~ .  Hence, the product  set G1 Go ~ is 
a group G ~ It is easy to check that  the decomposition of a g �9 G o as a 
product  g2 gl, gl �9 G ~ g2 �9 Gx is unique. 

Let  us explain how we shall proceed. First, we shall prove that:  

(i) 7r meets every orbit of the action of :Dcc ~ o n  7r 

(ii) The  stabilizer of ~ H  in T) ~ ~" is G ~ 

(iii) The set of all g �9 :D oc ~" such that  g. Tr A Tr ~= 0 is just  g ~ 
(2.1) 

These remarks reduce the study of the orbits of T) or 9 v in Tr to those of 
G O in ~ H .  
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The usual way to study the action of a group is to construct a continuous 
section of the action. But the action of G O in ~'~H does not have a continuous 
section, that  is, a section of the canonical projection ~ H  --* ~ H / G  ~ which is 
continuous for the topology of coefficients on 7~H and the quotient topology 
on T~H/g ~ On the other hand, we shall prove that  the action of gx o n  T~ H 

possesses such a section. 

Def in i t i on  2.1. A normal form Af.F is an element of such a continuous 
section A/'. 

11. R e d u c t i o n  to  t h e  ac t ion  o f  g0 in 7EH. Taking (F, G) 6 7~, 
(~o, a) E :D o( 9 v, we have (~, a ) .  (F, G) = (F ' ,  G'), where 

-1 = ~Oo. (F- l )  cos ot 0 q- ~0.(G-1) sin ao, (2.2) 

G'_i = -~0 . (F -1 )  sine0 + qa0.(G_l) cos a0. 

If we take a0 = 0 in (2.2), easy computations left to the reader show 
that  there exists a unique ~o0 such that  (F'_i, G'_i) is the Heisenberg frame, 
because F_I(0),  G-l (0) ,  [F- i ,G-1]  are independent. Hence: 

L e m m a  2.2. ~ - i  is the orbit of (F_~ G~  under the action of the 
group 790 o( ~o. The stabilizer of (F_~ G~ is go. 

The assertions (2.1) follow from this lemma. 

2.2. C o n t i n u o u s  sec t ions  o f  t h e  ac t i on  of  gI on  ~ H .  
1. Let us chose (~ ,a )  E gI,  with ~ = Id  + ~n+l + ~ + 2  + . . . ,  a = 

O(n+l "4- O~n+2 -[- . . . ,  and (F, G) E 7EH, F = F_~ + . . .  + Fn-1 -4- Fn q - . . . ,  
G = G ~  + . . .  + G,~-i + G,, + . . . .  

Set (~a, a ) .  (F, G) = (F ' ,  G'). 
Easy computations left to the reader show that:  

L e m m a  2.3. 
r ~ = ~ ,  

1. , k < n - 1 ,  
G k = G~, 

{ o o 2. F n -  Fn = [~On+l,F~ + n+iG_i ,  

' o a .  a .  = 

(2.3) 

The relations (2.3) lead to the introduction of the linear operator Ln, 
n > 0 :  

L. : V .+ i  x .F,~+i --+ (V.F.) 2, 
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L e m m a  2.4. 

1. Ln is injective. 
2. Ln is not surjective for n k 1. 

The proof of this lemma is a consequence of the results of the Appen- 
dix 9.1. 

In order to construct continuous sections of the action of G: on 7~H, we 
choose a vector space Afn C (V~',~) 2 which is a complement of the image 
of Ln for each n > 1 (the sum of Afn and Im Ln is direct and is the whole 
space). The sequence of choices (Af,~, n >_ 1) determines a continuous section 
in a unique way. 

There are several choices for the Afn. We have made one, which is most 
convenient because of its simplicity and its inwriance with respect to the 
action of G ~ 

2. O u r  n o r m a l  fo rm.  A[n is the vector subspace of (VSrn) 2, 

{ �9 .Afn ----" (y2el -- xye2)~n-1 Jr g~'n+le3, (x2e2 -- xye l )~n-1  -- ~'~'n§ 

~n--i e ~'n--1, %+1 e ~'n+l,  

~n- - l (0 ,0 ,~ )  ~--- 0, ~'n+l(0,0, W) = 0•+1  (0,0, W) ~--- 0%+1 (0,0, W) ~--- 0}  
Ox Oy 

T h e o r e m  2.5. Any couple ( F, G) of formal vector fields at O, such that 
F(O), O(O), [F, C] (0) are independent, is equivalent under the action o/ the 
gauge group to one of the following forms: 

Y (i + ~(~)) e3, el + (y2 el - x y e2) fl(~) + ~ (2.4) 

(~fY) x (1 + z(e)) e3. e2 -~- (x 2 e2 -- x y el)  Z(~) -- 

1~ and ~ belong to Jr and satisfy the conditions 

~(o, o,,,,)= o, -y(o, o, w) = o, ~(o, o,,,,)= --~(o, o, v,)=o. 

Moreover, the stabilizer of any element Af.~ under the action of ~I is 
trivial, and the section is invariant under the action of G ~ The action of 
~~ o is the natural one. 

The fact that  the section is invariant under the action of G ~ is just  a 
mat ter  of trivial computations. That  the stabilizers of the elements H~  r 
under the action of ~I  are trivial is a consequence of Lemma 2.4. 

This Theorem 2.5 is proved in Appendix 9.1. 
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2.3. P a r t i a l  n o r m a l  forms.  
1. If f E ~" (resp. V E V P ,  ~o E :D, . . .  ), let us denote by j ~ f  (resp. 

j'*V, j ~ , . . . )  the element f o + f l + . . . + f n  (resp. V-I+.. .V,~, ~Oo+...+ 
~ ,  . . . ) .  

j n f  E J'~.~ (resp. j'~V E JnV.~C~ j'~o E J'~D,... ). 
The action of :D oc 9 v on 7~ induces actions of Jn+lG1 on J'~T~H. 

Def in i t i on  2.6. We call an element of a section of the action of j i+ lG:  
on J i T ~  a "partial normal form of order i" and denote it by Af9 v~. 

A normal form Af~  determines partial normal forms Af9 v~ of any order 
i: Any ~ E ~ can be written as follows: 

(A[~)  r, = ~_~ + . . .  + ~ + . . .  + ~ + O ~+~, ~ ~ ~ ,  (2.5) 

where O i+l 6 (V~') 2 and O ~+1 has order i + 1 in the gradation defined in 
Sec. 2.1. 

For our s tudy in the next sections, we will need mainly the partial normal 
forms of orders 1 and 2. Since the components ~l, 72, 73 are fundamental 
for us, we call them l, Q, V respectively. 

tFO n o  ~ Y x (j~f~-l) ~ = ~ - t ,  '~-1] + (~Q e 3 , - ~ Q  e3) + O 2, (2.6) 

with Q -~ Q(z), a quadratic form in z. 

= r.-1 + El + ~2 + 0 3, 

) ~- I  ( - 1 , G ~  ~'l= ~Qe3,--~Qe3 
2 ) 

~2 = ((y2 el - xye2) l(z) + 

+ Y ( z ) e3 , ( x2e2 - - xye l ) l ( z ) - -~  / 

(2.7) 

where l(z) is linear, Q(z) is quadratic, V(z) is cubic. 

Remark 2. Our normal form has three advantages which will simplify our 
computations of the conjugate locug in the following paragraphs: 

(1) it has a high order contact with the Heisenberg canonical form; 
(2) the section is invariant under the action of the group Go ~ as was 

already noticed; 
(3) the variable w does not appear in the partial normal form Af~F 2. 
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In a certain sense, the coordinates introduced by the normal form play the 
same role as the so-called "normal coordinates" associated to Riemannian 
metrics: they are the coordinates in which the expression of the metric is 
the simplest possible. 

2. A c t i o n  o f  G O on  p a r t i a l  n o r m a l  forms.  Let us go back, for V, to 
the notations (1.2) of the introduction. Trivial consequences of Theorem 2.5 
are: 

C o r o l l a r y  2.7. The action of G O on the partial normal forms j~f ~2 is 
as follows. (~ao, ao) e C ~ transform Q, l, V in the following way: 

(i) Q(z) -~ Q(e~oJ(z));  

(ii) l(z) -~ l(~"oJ(~)); 

(iii) Y(z)  --* V(e~~ 

or, a -* e -i=~ a, b - *  e 3 i a ~  b. 

2.4. S tabi l izers .  With these complex notations (1.2) of the introduction, 
V = V1 + V3, Q = Q0 +Q2 ,  we get 

C o r o l l a r y  2.8. The action of J2T) oc Jr on the open subset 

J z a l  C jIT~, a l  = {~]Q2 ?~ 0}, 

admits the following smooth sections ~.1. 
~.1 is the set of all jl~. such that 

(~.~1) j , ~  o o ( Y  e x ) (2.8) = (F~I,G_~) + ~Q 3,-~Qe~ , 

where Q(z) = ClX 2 + c2y 2, cl < c2. 

The stabilizer of any element ~ 1 is the sub~oup {(V(0), 0), (V(-), ~)} 
o f g  O. 

A quasi-section of the action of a topological group G on a set X is a 
subset of X,  which cuts any G-orbit in X such that  the stabilizers of its 
elements are discrete. 

C o r o l l a r y  2.9. The action of j3~) c( J: on the subsets 

j2G2, (resp. j203,  J2Ga) C J2n ,  Gu = {~IV3 :/: 0, Q2 = 0}, 

Gz={~IVI#O,Q~.=O}, G,L = {~ll-r 0, Q2 = o} 

admits the following quasi-section (resp. smooth sections) ~ . i ,  i = 2, 3,4. 
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~ ,  i = 2, 3, 4, is the set of all j2E  such that 

( ~ )  j2E = (F 2, G2), 

F2 = F0 trg Q y y -1 "~ - - ~  IIZH 2 5 e3 -k l(z) (--x y e2 + y2 el) -~- V(z) e3, 
(2.9) 

trg Q x 2 G2 = C~ 2 Ilztl 2 ~ e3 + l(z) ( - x  y et + x~ e~) - V(z)  e3, 

with (V3(1, O) -- O, V3(O,I) < O) (resp. (V1(1, O) -- O, Vl(O, 1) > 0), 
(l(0,1) =0, l(1,0) > 0)) 

The stabilizers of all elements ~,-~3, ~ are trivial. 

2.5.  C o d i m e n s i o n  o f  s o m e  bad  s u b s e t s  in 7~. 
1. We will consider the two bad subsets of ~ ,  B 1 and B 2, that  are 

the complements of G1 and G1 LJ G2 respectively (G1, G2 just  defined in 
Corollaries 2.8, 2.9). 

2. SJ?%(~) denotes the set of standard n-jets of elements (F, G) of T~, 
i.e., SJ?%(T~) is the set of couples of standard n-jets of vectors. 

Forcing no to be 0, we already know, as a consequence of Lemma 2.2 
and Theorem 2.5, that  there is a well-defined map H~r, putting any ( F, G) 
under normal form, I I~  : ~ --, .hf_ 1 (~  I-I Af?%. 

?%_>0 
?% 

rl~f induces a map H~r : SJn+2(7~) --. Af-1 ~ (~) Af,~. 
i----0 

The following lemma is easy to check (left to the reader). 

L e m m a  2.10. I I ~ / s  an analytic surjective submersion. 

Remark 3. II~f is a rational map. 

T h e o r e m  2.11. B 1 and B 2 are analytic submanifolds of SJ4(T~), of 
codimension 2 and 4 respectively. 

Proof. The space All (~.Af2 is the space {Q(z), V(z), l(z) }, where Q, V, l 
are as in Secs 2.3.1, 2.4. 

The set of all quadratic forms with zero discriminant is the set of multiples 
of (x 2 + y2), hence has codimension two. Therefore, H~r(B 1) has codimen- 
sion 2. The cubic forms V, such that  V3 = 0, form a vector subspace of 
codimension 2, hence H~w(B 2) has codimension 4. Lemma 2.10 implies that  
B 1 and B 2 are analytic manifolds of codimension 2 and 4 respectively. [] 
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3. DIFFERENTIAL-GEOMETRIC INTERPRETATION OF OUR. MAIN 
INVARIANTS 

In the previous Sec. 2, we were led to consider Q, V, I tha t  appear natu- 
rally. Also, V3 and Q2 play a special role: They define the bad sets B 1 and 
B 2 that  we will have to consider in order to describe the generic situations 
for sub-Pdemannian metrics. In this section, we will interpret these invari- 
ants in terms of classical differential geometry. For this we will associate 
canonically a linear connection to a given sub-Riemannian metric. 

3.1. C a n o n i c a l  c o n n e c t i o n  a s soc ia t ed  to  a s u b - P A e m a n n i a n  m e t r i c  

1. We consider, the one form w, unique up to orientation, defined by: 
(i) A = kerw, 
(ii) d~ -- volume form over A, 
and the unique vector field v on M, such that  

^ = 

This last fact is equivalent to i(v)(d~) = O, w(v) = 1. 
The bundle A carries a natural complex structure j : A --, A, defined by 

dw(X, Y) = ( j  X, Y)a" We extend the operator j to T M  in a natural  way, 
setting j v -- 0, and call the extended operator j again. 

L e m m a  3.1. (i) T M  (resp. T ' M )  is canonically isomorphic to 

A ~ R v  
M 

(r~sp. A* ~ ) M  A0,  where A* is the dual of A and A ~ the annihilator of A 
in T ' M ) ;  

(ii) the structural group of A can be reduced to S0(2) ,  that of T M  and 
T*M to SO(2) x IdR. 

Proof. (ii) is an immediate consequence of (i). (i) follows from above if we 
remark that  A* can be canonically identified to the annihilator of R v. 

2. D i s t i n g u i s h e d  c o f r a m e  fields. A coframe field (wl,w2,w 3) on an 
open subset M '  C M is said to be distinguished if 

(i) (W1)2-~-(0j2)2]A=g , (ii) w3----w, da)3--w1Aw 2. 

(ii) implies tha t  wl(v) --- w2(v) ---- 0. If (el,e2,e3) is a frame field of M ' ,  
dual to (wl,w2,w3), then el,e2 E A, e3 ---- v. 

3. C a n o n i c a l  connec t i on .  T M  and __A will denote the sheaves of 
sections of T M  and A respectively. 
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T h e o r e m  3.2. There is a unique linear connection such that, if  
V : T M •  T M  is the associated covariant derivative, then: 

(i) V : T M  XM • ~ A, (V has a restriction to the bundle A); 
(ii) Vg = 0 and Vw = 0; 

(iii) V~v -- 0; 
(iv) the torsion of V is v | dw; 
(v) the bilinearform II : A x M A ~ R,  I ~ ( X , Y )  - -  (Vx~' ,Y}g is 

symmetric. 

Defini t ion 3.3. II is called the second fundamental form. 

The proof of Theorem 3.2 is given in Appendix 9.2. 
Note that our canonical connection is different from the one considered 

in [6]. 

Remark 4. Let g* be the tensor representing the cometric of g: for r E 

T*M,g*( r  ,r 2 [u E Aq, u?~0, q=TrT*M(r T h e n i t  is e a sy  
~u, u)g , 

to see that V g* = 0. 

3.2. I n t e rp r e t a t i on  of  the  invariants  f~, V. Let q be any point in M. 
Let (F, G) be any germ at q of an orthonormal frame field for (A, g). We can 
apply Theorem 2.5 to the pair (j~~ j~~ of infinite jets of F,  G at q and 
obtain the formal functions f~, V, denoted 13F, G,q, 7F, G,q respectively here. 
The expressions of these functions with respect to the linear coordinates 
(x, y, w) which are dual to the frame (F(q), G(q), IF, G] (q)) are determined 
in Theorem 2.5. 

For each n, the components of degree n, ~n,F,G,q and Vn,F,G,q, of ]~F,G,q 
and 7F, G,a respectively, define tensors belonging to the sub-tensor bundle 
of |  

| 1 7 4 1 7 6  mod 2}, 

where SkA * is the bundle of all symmetric covariant k-tensors on A and 

(AO)-~ "~ is the ( ~ - ~ )  th tensor power of A~ We have used the identifica- 

tion of T*M with A* @M A0 introduced in Lemma 3.1. Then the definition 
of the normal form and Theorem 2.5 imply the proposition. 

Proposition 3.4. 
(i) The tensors ~n,F,G,q and V~,F,C,q are independent of the choice of the 

germ of frame field ( F, G) at q; 
(ii) Denoting them by Bn,q, Fn,q, the correspondences q E M ---* B,~,q, 

Fn,q define tensor fields on M which are invariants of the structure (A, g). 
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Proof. (ii) is an easy consequence of (i) which follows from the fact tha t  if we 
replace the germ at q of frame field (F, G) by another one, say (F1, G1), then 
the unique mapping A 6 O(3), mapping the frame (F(q), G(q), [F, G] (q)) 
onto (Fl(q), Gl(q), [F1, G1] (q)), belongs to SO(3). Then an easy computa- 
tion shows that  ~F1,Vl,q = ~F,V,q o A and 7Fl,V~,q = 7F, V,q o A. [] 

The tensor fields most important to us will be those corresponding to 
/~1, 72, 73, which we have denoted by l, Q, V respectively. Note tha t  
l, Q, V depend only on (x, y). Hence the corresponding tensor fields, which 
for simplicity we shall still denote by l, Q, V, belong to the tensor spaces 
A*, S2A *, SaA * respectively. 

3.3. D e c o m p o s i t i o n  o f  t en s o r  fields. Let J be a subbtmdle of a tensor 
bundle | q-covariant tensors on A). Let J(0) be its 
typical fiber. Then the structural group S0(2)  of A operates on J(0). 
J(0) considered as a SO(2)-module decomposes into irreducible components 
J(0) = ~ {Jn(0) In 6 Z, n not necessarily distinct}. The representation 

?% 

of S0(2)  on Jn(0) has character X n, n th  power of the basic character X : 
x(e ~e) = e~e 

Later on, we shall need the following decompositions of S 2A*, S 3A*, 
A* @ S2A *, into isotypic components. If N is an SO(2)-module, we denote 
by Nk its isotypic component corresponding to the kth power of the basic 
character X, k E Z. 

s a. = G(s a,)o, �9 = 

n *  | s=A �9 = G (n"  | s = A ' ) . .  
n=3, 1 

A* @ A2A * is irreducible with character X- 
It is easy to see that  (S2A*)o can be identified with the line bundle Rg,  

g the tensor representing the metric, ($3A*)1 with the symmetric product 
A* | Rg.  Then ($2A*)2 (resp. ($3A*)3) is just the orthogonal component 
of (S2A*)o (resp. ($3A*)1) in S 2A* (resp. S 3A*) with respect to the 
metric induced by g on A* | A* (resp. A* O 3). 

I f q  6 S 2A*, then q -- q2+qo ,  qn 6 (S2A*)n, n = 0,2,  and qo = 

1 (trg q)g~ where trg q is the trace of q with respect to g and trg q2 = 0. 
2 
The determinant of q2 with respect to g is negative or zero. Its opposite is 
denoted by 6(q). 

Let w 1, w 2 be an orthonormal cofraine field for (A,g),  defined on an open 
subset M '  of M such that  w 2 o j  = - w  1. Then fl = w 1 z,-iw2 : A ~ C is C- 
linear for the complex structure on A defined by j .  A tensor ~- E S2A *, x 6 
M',  belongs to ($2A*)2 (resp. (S2A*)o) if and only if it can be written as 
r = Re(A~- (~)2) (resp. #~ ]l~] 2 , #r  6 R), and a tensor r 6 SsA * belongs 
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to ($3A*)3 (resp. ($3A*)1) if and only if r = Re(b. ([2)3), b~ e (2 (resp. 
Re(g, [2 11212), a ,  E C), ar is the complex conjugate of at. 

In particular, if we go back to the fields l, Q, V introduced in Sec. 2.3.1, 
1 Cl + c2 idzol2 we have at the point 0: Q = Q2+Qo, where Qo = ~ trg Q g = ~ 

Q2 = cl - c 2  Re((dzo) 2) V = V3 + 111, V1 = Re(gdzo [dzo[2), V3 = 

Re(b (dzo)3), where dzo = dxo + i dyo, x, y being the coordinates intro- 
duced in the normal form Af5 v, cl, c2 E R, a, b E C. 

3.4. Eva lua t ion  of  Q2, V1, V3 in t e rms  of the  Gaussian cu rva tu re ,  
t he  second fundamen ta l  form and  the i r  covariant  derivat ives.  We 
refer to the notations of our Appendix 9.2. 

The Gaussian curvature form is f121 = dw21. II is a section of S2A *, [2211z~ 
of A2A *. Hence, the restrictios of VIII~ and V[2211~ to A | are sections of 
A* | S2A * and A* @ A2A * respectively. Let III1, III3 be the components 
of the restriction VII[z~ in (A* | $2A*)1 and (A* | $2A*)3. 

Then: 

T h e o r e m  3.5. 

l I I (u, j (u)) ,  

= m 3  

1 
Bl(u) ---- l(u) = IIIl(j(u), u, u) + ~  

Also: 

1 (VvII(j v, v) + Vj vii(v, v) ), v3(v) = 56 
1 1 1 

B~(v) = l(v) = ~ ( ~ Vv[22(v, jv)  + Vj~II(v, v ) -  V~,II(jv, v)) ,  

Vl(v) -- l (vv[2~(v, jv)  + VjvII(v, v) - VvII(jv, v)) ,  

and ~ denotes the Gaussian curvature of V (~ = dw~(el,e2)): 

IC = 6 trgQ. 
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3.5. E q u a t i o n  o f  geodes ics  in  t e r m s  of  t h e  c o n n e c t i o n  V. In the 
following sections, we will use the Hamiltonian formalism to compute the 
geodesics. However, one could use the Lagrangian formalism and the con- 
nection V. 

The following theorem gives the equations of the geodesics in tha t  for~ 
realism. 

T h e o r e m  3.6. The geodesics A(s) of a sub-Riemannian metric (s is the 
arclength) are parametrized by their initial tangent vector i (0) and a real 
parameter r0. They are the solutions of the following equations: 

{ v~ i= r iC i ) ,  
+ I I ( i )  = 0, r(0) = r 0  

Remark 5. As stated in the introduction, the first equation shows tha t  r 
is the curvature of the geodesic A with respect to the connection ~7. 

This connection, together with the above equation for geodesics, has been 
introduced independently by Rumin [16]). 

4. BASIC FACTS ABOUT GEODESICS AND THE CONJUGATE LOCUS 

4.1. Geodes ics .  Let ~ = (A, g) be a sub-Riemannian structure on an open 
set M of R 3, which contains 0. We can define a "cometric" 7 / :  T * M  --* R, 

1 [ r  2 j 
associated to (A, g) as follows: 7/(r = ~ sup ] v e Am\  {0}, m ---- 

t (v, v)g 

foot of ~ .  On each fiber of T ' M ,  7 / i s  a positive semi-definite quadratic 

form, the kernel of which is the annihilator A ~ of A. Finally, if (F, G) is an 
orthonormal frame field for (A, g) defined on an open set O, then on T*O 
we have 

1 ((r + (r ~ ( r  = 

Def in i t i on  4.1. A geodesic is a parametrized curve A : J --* M, J some 
interval, which is a_.projection of a trajectory A : J --* T*M of the Hamil- 
tonian vector field 7/ associated to 7/. 

Since we consider only contact structures, there are no abnormal mini- 
mizing curves and the following fact holds: 

Proposition 4.2. Any length-minimizing curve for (A, g) is a geodesic. 

It  is not true in general that  a geodesic curve is minimizing, but for any 
sufficiently short geodesic this will be the case (see Remark 6, Sec. 4.2 for 
a precise statement). 
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As we have said before, a geodesic A : [0, T[ --* M is not determined 
TA 0" by its initial point A(0) and its initial velocity ~ - ( ) ,  but rather by A(0) 

and the covector A(0) E T;~ 0 M For a general sub-Pdemarmian structure, ( )  - 

it can happen that A has several liftings, but this does not happen in the 
contact case. 

- - - 4  

Notations. (1) The unique trajectory A of 7-/, of which A is the projection, 
will be called the lifting of A; 

(2) in analogy with the initial velocity, we will call the covector A(0) the 
initial covector of A. 

4.2. T h e  exponent ia l  mapping  and  the  conjuga te  locus. For c > 0 ,  
c arbitrary, any minimizing curve is the projection of a trajectory of 7-/ 

located in the surface 7-/-1(c). Here, we shall take the level surface ? / - 1 ( 2  ) 

(which is clearly smooth). This corresponds to the trajectories of 7-/, for 
which the time parameter s is equal to the arctength. 

The intersection C of T-/-l(1) with T~M is a cylinder. 

Let us denote by E : C ~ M, the exponential mapping associated to 7-/, 
C R+ x C, C = {(s , r  < s < e(r e(r is the positive escape time 

of the trajectory ~(s, r  of ~ such that ~(0, r -- r s r  = ~r (~(s, r  
lr denoting the canonical projection, ~r : T*M --* M. 

Defini t ion 4.3. For any r E C the (first) conjugate arclength so(C) 
associated to r is the positivenumber ~', whenever it exists, such that for 
any 0 < s < ~', T(8,r : T(s,r ~ Tg(8,r is injective, but T~r163  is not. 

Defini t ion 4.4. The conjugate locus at the source is the graph of sc : 
dom(sc) --* R+ (dom(sc) is the set of all r for which sc exists). 

The conjugate locus is its image by the exponential map. 

We shall denote the conjugate locus at the source by S and the conjugate 
locus by CL. 

Remark 6. For any ~ E [0, so(C) [~ the curve s E [0, ~ ~ e(s, r  is U ~ 
locally minimizing. 

As we pointed out in the introduction, the main difference from Rieman- 
nian geometry is that the point 0 lies in the adherence of UL. The main 
object of our study in this paper will be the germ of UL at 0. 
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4.3. A bas ic  p r o p e r t y .  Let 7-/be any Hamiltonian homogeneous of degree 
A on T*M. Let k be a regular value o f ~ .  T/- l (k)  is a smooth hypersurface 

..--+ 

in T*M. r r  denotes again the trajectory of 7-/ such that ~(0, r  = r  
Let a be the Liouville one-form on T ' M ,  ~(Vr = r162 Let  Cs 
be the open subset of C, where r .) is defined. Set ~8(r  = ~ ( s , r  
~s  : C8 -* T * M .  

The following result is well known, but  for the convenience of the reader, 
we shall supply a simple proof. 

Lemma 4.5. ~s preserves the Liouville one-form a, restricted to 

U-l(k). 
Proof. (Os)*a denotes the pullback of a. 

= LT ( (*s ) ' - ) ,  L T = i T d + di  T .  

L and i are the Lie-derivative and contraction operators respectively. 
i T a  = A T/. Hence, since ?-( is constant on T(-l(k),  

d i T a l ~ - l ( k  ) = O. 

Otherwise, 
i T dc~ = d ~  

which is also zero on 7-/-1(k). Hence, L T a l n - , ( k  ) = O. [] 

The lemma has the following important Corollary 4.6. Let (x, y, w) be 
a coordinate system on M such that at 0, 

glAo = (dx) 2 + (@)2, dx(v) = O, dy(v) = O, dwl~o = O, dw(~) = 1. 

(x, y, w) induces a Darboux coordinate system (x, y, w, p, q, r) on T * M .  
In this system (~ = p dx + q dy + r dw. 

Let (R, ~, r0) be the cylindrical coordinate system on the fiber T ~ M  
at 0: 

r0 is the restriction of r to T~ M, p = R cos ~, q = R sin ~. 

Then the couple (~a, r0) is a cylindrical coordinate system on C. (C is the 
surface R = 1.) 

S e t X s =  ~--~E(s,~o, ro), Xr.  = s  X ~ =  ~ E ( s , ~ , r o ) .  Then, 

these vectors are the projections on T M  of the vectors 

~ ( ~ 8  (r  r0))),  T ~ 8 0 r 1 7 6  T e s  Or176176 
Oro ' O~ ' 

respectively. 
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For s = 0, a takes the value 0 on the vectors TOs(~O, ro) TOs(~o, r0) 
Oro ' 0~o ' 

since they are tangent to C C T~M. By the invariance of a of Lemma 4.5, 

a[T~s(~o, ro)~ = a[TOs(~o, r0)~ _- 0 for all s. Moreover 
\ Oro ] \ O~o ] 

a(~(~S(~o, ro))) ---- 2~(Os(~o, ro)) ---- 1. 

Hence, the values of the covector Os(~o, r0) on the vectors Xs, X~, X~ o are 
1, 0, 0 respectively. Now dx A dy A r162 ro) = r(Os(~.o, ro)) dx A dy A dw. 

C o r o l l a r y  4.6. 

dx A dy A dw (As, X~, Xro) ---- 

1 
dx A dy A ~s(~o, r0) (Xs,X~,Xro) 

r(~s(~,~0)) 
1 

dx A dy (X~, Xr o). 
~(~s(~,ro)) 

Notation. Let us set D = dx A dy ( X~, Xro). 

4.4. E q u a t i o n s  of  geodes i c s  in n o r m a l  form.  
1. The most convenient way to write the equations of the geodesics is 

to introduce the Hamiltonian liftings f ,  g : T*M --* R, of the vector fields 
F, G: f ( r  -- (F, r  g(r  -- (G, r  Then the Hamiltonian 7-/ has the 

1 

expression 7-/----- ~(f2  + g2). 

Let A : I --* M, s --* A(s), I interval, be a geodesic parametrized by 
arclength and A : I --* T ' M ,  s --* A(s) be its lifting. Let (x, y, w) be any 
coordinate system on M and p, q, r : T*M --+ R be the dual coordinates. 
Finally, let { } denote the Poisson bracket on T*M associated with its 
canonical symplectic structure. 

The equations determining A are: 

(i) 

(ii) 

(iii) 

d)~( s) 
ds 

df(A(s)) 

- -  = s(A(s)) F(~(s)) + g(ACs)) C(~(s)), 

d ~  = g(h(s)) {L g}(A(s)), 

dg(h(s)------A) = f(h(s))  {g, f}(h(s)),  
ds 

dr(A(s)) S A s 0S(A(s)) 0g(A(s)) 
~---V--=- ( ( ) )  ~ ~(A(s)) 0~ 

(4.1) 
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In fact, if we know a solution A(s), f (A(s) ) ,  g(A(s)), r(A(s)) of the 
equations, then p(A(s)), q(A(s)) can be computed since there are smooth 
functions A, B, C, D : M --* R such that  p = A f + B g, q = C f + D g. 

To s tudy equations (4.1), (i), (ii), (iii), we shall use the results of The- 
orem 2.5, Sec. 2. Let us start  with an orthonormal frame field (F, G) of 
(A, g) on M. There exists a formal diffeomorphism ~o and a formal function 
a at 0 such that  the formal fields 

l ff  = ~0. ( ( j~F)  c o s a +  ( j~G) s in~) ,  
= ~0. ( - ( j ~ F )  sinc~ + (j~G) cosc~) 

are in normal form AfF (with Q diagonal). 
By Borers theorem, ~0 and a are, respectively, the infinite jets at  0 of a 

C r162 diffeomorphism r and a C cr function A. Then the vector fields 

( F = r  (F  c o s A + G  sinA),  
= r  ( - F  sinA + G cosA) 

are C ~ vector fields having their infinite jets in normal form. Obviously, 
r and A are not unique, but the only thing that  will matter  later is their 
infinite jet  at 0. 

On a neighborhood of 0 in TOM, r will be a diffeomorphism onto a 
neighborhood of 0 in M. Hence, the functions x o r  1, y o r  1, w o r  1 will 
form a coordinate system in a neighborhood of 0 in M. Since our s tudy is 
local, we can assume that  the image of r is the whole of M. 

To simplify the notations, from now on, we identify x o r  y o r  
w o r  with x, y, w respectively and we replace the frame field (F, G) by 
the frame field (F  cosA + G sinA, - F  s inA + G cos A), which defines the 
same metric. 

The gradation on the ring Y of infinite jets of germs at 0 of functions on 
M induces canonically a gradation on the ring S of infinite jets of germs 
at 0 of functions on T*M as follows: the gradation on 5 ~ is defined by the 
following trivial action of R~_ on R3: a E R~., a .  (x, y, w) = (ax, ay, a 2 w). 
This action lifts canonically to a symplectic action of R~_ on T 'R3:  

a. (x ,y ,w,p,q ,r)  = (ax, ay, aUw, a- lp ,  a -1 q, a-2r). 

It is clear tha t  the Poisson bracket { } : S • S --* S is homogeneous for 
this action, if u 6 Sin, v 6 S , ,  {u, v} E Sn+m. (S = H Sn.) 

n > - 2  

2. F o r m a l  e x p a n s i o n s  o f  t h e  var iab les  f ,  g, {f, g}. In the gradation 
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just  defined on S, we have the expansions 

f = f--1 "~- f l  -[" f2 "~- f(3), g = g--1 + gl + g2 + g(3)" 

0 = {1, g} = ~-2 + 80 + ~1 + 0(2) 

(here if u = f ,  g or ~, uk E Sk, and U(k) E S(k)  = I I  S,,), 
n>_ k 

and 

r r 
f - l = P + y ~ ,  g - l = q - x ~ ,  

f~ = } ( 2 ( y p -  ~q)Z + r v ) ,  

0-2 = { l - l , g - ~ }  = r, 

(4.2) 

Q r  Q r  
f l  = y -~ - ,  gl = - x  2 ' 

x 
g~ = - ~  (2 ( y p -  ~ q) l + r V),  

e0 ---- { f - l , g l }  -]- { f l , g - 1 }  = 2 r Q .  

el = ( s - l ,  g2} + {s2, = 4 ( y p - x q ) l  + r( V + 

74 is the component of degree 4 in 3', 

x2 + y2 l" ~ 

2 J 

0~'a 
- - r  - -  

Ow ' 

(1 + 7) = 7o + 71 + 72 + 7(3), +g~ =7= -2 y f  x________~g 

y f - x g  
77o= 2 , 7 1 =  7o Q, 72 = 7o V. 

3. In our subsequent dealings we. shall be constantly computing with 
expansions and the following lemma will be useful to get estimates of the 
orders of terms. 

L e m m a  4.7. Let u E Sn and assume that u is linear in p, q, r. Let 
X = X l ~ l  .4_ X 2 ~ a l + l  ~_ . . .  , y .~. Y l ~ a i  ~ _ y 2 ~ i + l  .]_ . . .  , W --~ W 1~  r ~- 

W2 ~O'2"{-1 "~ - �9 - , P = P l  ~vl + P 2  ~ ' l + l  .~_ . . .  , q __ q l  ~-1 _{_ q2 ~ r l + l  . }_ . . .  , r 

r l  6 r2 -I-r2 E~'2+l+. �9 �9 be formal expansions in a parameter ~ with coe~cients  
in some R-algebra A;  then u(x l  e ~ + . . .  , Yl e al + . . .  , Wl ea2 + . . .  , Pl ~1 + 
�9 .. , ql erl + . . .  , rl  c ~2 + . . .  ) will start with terms of degree at least 

min (min { P a l  + Q ~2 / P, Q integers, p + 2Q = n + 1} + T1, 

min { P  ~1 + Q ~2 / P, Q integers, P + 2Q = n + 2} + T2). 

The  easy proof of this lemma is left to the reader. 
It will be convenient to use the following complex notations: 

z = x + i y ,  h = f + i g ,  C = p + i q .  
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As a first application of the concepts just introduced, we will prove the 
following proposition which will be useful later on: 

Propos i t ion  4.8. For any compact K of C, infg sc > 0. 

Proof. Let A : [0, S] --, M be a geodesic parametrized by arclength s, such 
that A(0) = 0, and let A : [0, S] -~ T*M be its lifting. Its initial covector 
A(0) is cos~dx0 + sin cp dyo + ro dwo E T~ M. Then 

z(~(s)) = e~s  + O0~), h ( h 0 )  ) = e~  + O0)  , 

~(~(s ) )  = O(s), ~ (h0 ) )  = r0 + O(s). 

dh(A(s)) 
Using expansions (4.2) and Lemma 4.7, we see that ds = - i  (ro + 

O0~)) h(A0)  ) and z(~(s)) = Io h(A0))  d= + 0 0 %  Hence, h (A0)  ) = 
e'~(1 - i r o n  + O(s2)) and 

r0 + o(==)). h ( 1 0 ) )  = e ' ~ 0  - ~ r 0 =  + O0~))  and =(~0) )  = e ' ~ 0 - i =  ~ W 
(4.3) 

Finally, 

Og) ro _2 dw(~(=)) aS + g ~  (A(=)) = +003). 
ds = f ~r -'4 ~ 

Hence, w(A(s)) = r~ + O(s4). The expansions of z(A(s)) and w(A(s)) 
12 

imply the proposition. [] 

4.5. Equa t ions  of  geodesics in r educed  form wi th  new t i m e  and  
1 

expansions  of  solutions in t e rms  of  P0 = - - .  Since we are interested 
r0 

in the conjugate locus near the origin, Proposition 4.8 shows that we need 
to consider the values of r0 near c~ only. In this section we shall obtain 

1 
expansions of the geodesics in terms of the parameter P0 = - - .  

?'0 
To do this, we shall make a change of variables and also repara.metrize 

the geodesics. The change of variable will be 

T 

on the open subset (T*M)r of T ' M ,  where r # 0. This change is equivalent 
to replacing the symplectic structure on T*M by the associated contact 
structure defined by 7/. 

f ,  g, ~ h f + i ~ ,  ~ 8, ~-=  r Note that Let f" r Y = r r r r 
since f, g, h, 8 are linear in p, q, r, then f', ~, h, 0 are smooth functions 
in (x ,y ,w,  ~, q~, affme in ~, ~. 
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Let A : [0, S] ---* M be a geodesic parametrized by arclength starting at 
0 whose lifting A : [0, S] --* T*M lies in (T*M)r. We make the following 
change of parameter s --* t, t the new time, 

8 

t = t~(s) = / r ( h ( s ) )  ds. (4.4) 

0 

The inverse change is t --+ s = s~(t). Let A(t) = A(s~(t)), A(t) -- A(s~(t)). 
A 

Then A, A satisfy the following system of equations: 

~(A(t)) -i~(X(0) ~(X(t)) + ~'(X(t)) ~(X(t)), 
(i) dt = 

(ii) dA(t) dt = f'(A(t)) F(A(t)) +~(X(t)) G(A(t)), (4.5) 

(iii) dr(A(t)) 
dt =-~(X(t))~'(X(t)), 

where ~ = ] ~ww + g ~ww" 

The expansions (4.2) give the following expansions: 

T = ~ + s 1 6 3  ~= ~ +~ +~ +~c~), 

.~ = ~2 + ~,~ + ~(~), 

where, if u -- f ,  g, h, 8, ~ or~/and un is homogeneous of degree n and u(n) 
starts with terms of degree at least n: 

~o = ~, ~ = 2Q(~), ~'~ = 4z(~) Im(~ ~) + ~v(~) + z(~), 

~4=~1 Im~iz) ~O'Y4 ~/2=21 Im(~1 z), 
1 ~/4 = ~ (Im(~l z ) O ( z ) +  Im(~3Tz)). 

�9 Q(z) z (2l(z) Im(~z)+V(z)), ~3 = -~ z --/-, L = -i 

(4.6) 

Let A : [0,T] --+ M, .~ : [0, T] --* (T*M)r be a geodesic and its lift- 
ing, such that  A(0) = 0, -~(0) = Po cos to dx0 + Po sin ~o dyo + dwo. Then, 
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dz(A(t)) h(.~(0)) e '~.  z(A), h(A), w(~) smooth functions L-o Po are 

in t, ~, Po, and we can expand them in powers of P0 : 

~(~)  = po z~ + po ~ ~2 + po ~ ~ + po ~ :a + po ~ :(s),  

h(A) = Po H1 + p2//2 + po a/-/3 + p~ Ha + po 5 H(5), 
(4.7) 

where zi, H~, 1 < i < 4 are smooth functions of t and ~, z(5), H(5) are 

smooth functions of t, ~, Po. Since w(A(0)) -- 0 and dw(A( t ) )  = ~(A(t)),  

then the relations (4.6) and Lemma 4.7 show that  

~ ( ~ )  = po ~ ~o~ + po ~ ~3  + po ~ ~ + p8 ~c~). (4.8) 

From (4.6) we can also conclude that  using Lemma 4.7: 

~(A) = poe '~ + O(p~), e~(X) = i + 2p~ Q ( z l )  + po ~ ~3(z~, H~) + O(p~).  

From this we get the following relations using Lemma 4.7: 

(i) d ~ ( x ( t ) )  = 

(ii) d w ( A ( t ) )  = 

+ 

+ 

(iii) dz(A( t ) )  = 

(iv) dr(3, ( t ) )  = 

-i (i + 2p~ e(,,) + po ~ ~(~,) + o(pS)) ~(X(t)), 

1 2 ~Po Iraqi(t) zl(t)) + 

1 4 
Po (Im(-Hi( t)zi( t ) )  Q(zi (t) ) + 

Imps(t) zi(t)) + Im~i(t)za(t))) + O(p~o), 

h(A(t))  - ipSz i ( t ) l ( z i ( t ) )  ImC-Hi(t)zi(t)) + O(p5), 

i , ova (zl(t), ~2(t)) + --~Po r(A(t)) Im~l(t) zi(t)) ~w 

+ o(pS). 

1 
Setting p = - ,  we get 

r 

i Im~(t) :~(t)) a~ (~) ~p(~(t)) = p(T~(t)) (p~ ~ ~(:~(t), ~(~)) + 
+ O(pS)). (4.9) 
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These equations imply the following ones: 

d Hl(t) = - iHl ( t ) ,  d H2(t) = - iH2(t) ,  

d H3 (t) = H3 (t) - H1 (t) Q (Z 1 ( t ) ) ,  2 i 

d H4(t ) = - i  (Ha(t)+ ~3(zl(t),Hl(t)) Hi(t)) ,  
d d 

d z l ( t )  = Hi(t), ~/-~z2(t)- H2(t), ~-~z3(t)--- H3(t), 

 z4(t) = H4(t) - i z l ( t ) l ( z l ( t ) )  z l ( t ) ) ,  

dw2( t  ) = 1 Im(-Hl(t)zl(t)), (4.10) 

d w a ( t )  = l (Q(zl (t) ) Im(-Hl (t) zl (t) ) + Im(-H3(t)zl (t) )+ 

+Im(-Hl(t)z3(t))), 

with initial conditions z~(0) = 0, 0 < i < 4, Hi(0) = 0, 2 < i < 4, 

dz~ 0 ~ " -~--( ) = 0, 2 < i < 4, - - ( 0 )  = Hi(0)  = e '~,  w2(0) = w4(0) = 0. 

4.6. C o m p u t a t i o n s .  The only informations we will need in the following 
are the expressions of the functions zl, w2 and the values zi(27r, ~), i = 
2, 3, w4(2 r ,  ~). 

The computations of zl are trivial, 

(1 - e - " ) .  (4.11) Hi(t) = e i(~-~), zl(t) = i 

In particular, Hl(27r) - H i ( t )  = i zl(t). The following two remarks make 
the computations trivial: 

(1) Let k be a continuous periodic function of period 27r and let u be a 

du(t) - i  u(t) - i k(t) Hi (t) such that  u(0) = 0. solution of the equation d----~ = 

Then 

27r 27r 

/ u(t) dt = i / zl(t) k(t) dt. 
0 0 

In fact, u(t) = - i  H1 (t) fo k('r) dr. u(27r) -- - i  HI  (27r) f :~ k(t) dr. 
grating the equation for u, we havd 

2~ 2~ 2~ 

0 0 0 

(4.12) 

Inte- 
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Hence, 

27r 2~r 21r 

f u(t)dt= / (Hl(2~r)-  H i ( t ) ) k ( t ) d t = i  f zl(t)k(t)dt. 
o 0 0 

(2) Let P be a polynomial in z and ~, P(z,-5) = ~ am,,, z m -~. Then 

2~ 

J ( m  + 1)[ rt! i m-n+l 
0 

This is a direct consequence of the following simple computation: 

2~r 2~r 

f ~(t)m~(t) '~ e~ = f ~(t)m+~, e'"' e-~'n~ et = 2~ (m~!+,~!.)! ~,~m-~,)~i~_,~ 
0 0 
Applying (4.12) to the equation for/-/3 and the fact that  

we get 

t 

z3Ct) = f H3(~) d~, (z3(0) = 0), 
0 

(4.13) 

27r 

o 

B u t O ( z ) = c l x 2 + c 2 y  2 c l -C2(z2+ 'E2)+c t+c2  = ~ ~ ]zl 2. Applying (4.13), 

we ge~ 

Z3(2r ~0) = ~r (a2 -- Cl) (e 3i~ + 3e -~ ~) + 6 ~r (cl + c2) e ~ ~. (4.14) 

Applying (4.12) to the equation for z4, we get 

0 
27r 

+ 2i -X  Izl(t)l ~ + 2 I rn (Ht  (t) zl(t))  - 
0 

i ~ (t))) zl (t) dt. - ~ ~(y~(t) l(~(t)) 

But [zl(t)l 2 = 2 (1 - cost), Im(Hl ( t )  zl(t))  = 1 - cost.  
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27r 

z~(2~, v) = T z~(t) v(=~(t)) d~. 
o 

Since V(z) = lbz3 +l-b-23 + l ~  lz12 z + l a  lz12 -5, applying (4.13), we get 

Clearly, 

za(27r,~)=5~ri ( l  b ea i~ -  2-be-2i~-  2-ge2i~ + 3a)  . (4.15) 

1 ( t -  sint), and w3(t) = 0; (4.16) ~ ( t )  = 

27r 

w4(2~r) = 1 / (Im(-t~l(t)zl(t)) Q(zl(t)) + Im(-I-ia(t)zl(t)) + 
o 

+ Im (-H1 (t) z3 (t))) dr, 

2~ 1/ 
~4(2=-) = ~ lr = Q(zl(t)) dt q- 

o 

2~- 

+ 1/(Im(H3(t) zl(t))+ Ira(Hi(t)z3(t)))dr. 
o 

Applying (4.13), we get 

~4(2 ~) = - 3  ~ ~ (2 (e~ - el) cos2~ + 3 (el + c~)) 

The preceding considerations allow us to state: 

(4.1~) 

L e m m a  4.9. For any T > 0, there exists a compact neighborhood KT 
of O in R and a smooth mapping E : [0,T] • S 1 • KT -* M, (t, ei~,po) -+ 

~(t, ~, Po) such that: (i) the curve t --* ~(t, ~, Po) is the geodesic parametri- 
zed by the new time starting at 0 with initial covector 

Po cos ~ dxo + Po sin ~ dyo + dwo 

( covector for the lifting parametrized by the new time). 
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(ii) E" has expansions in powers of po: 

( : )  �9 1 ~t 
z(~') = poe'~ + po~  + p ~ ,  + o(pS), 

(4.18) ~(~) = 1 
~po ( t - sin t )  + p~ ~4 + o(pos). 

4.7. R e l a t i o n s  b e t w e e n  t h e  a r c l e n g t h  s a n d  t h e  n e w  t i m e  t. In view 
of Lemma 4.9, we have: 

for any T > 0, there exists a smooth function v : [0, T] • S i x K T  --* R 
such that  

p(E(t,90,po)) = Po exp(Po' ~(t,90,Po)), for all (t, 90,po) E [0,T] x S 1 x K ~  
(see 4.9). 

Lemma 4.10. Using the notations of Lemma 4.9, for any T > 0 there 
exists a smooth function #i : [0, T] x S 1 x K T  -+ R such that the length of 
the geodesic r E [0, t] --* E'(7-, 90, Po) for  any (t, 90, Po) E [0, T] x S i x K T  is 

s(t, 90, Po) = Po t + p~) #](t ,  90, Po). (4.19) 

T h e m a p p i n g [ O , T ] x S l x K T  --* R+xSZxKT, (t, 90,po) -~ (s(t, 90,po),~o, po) 
is a diffeomorphism onto its image. 

Proof. Inverse function theorem. [] 

Notation. The inverse diffeomorphisn-, is of the form 

(6(s, 90,po), 90, Po), 6: s([0,T] x S 1 x KT)  x S i x K T  --* R+, 

6(s, 90, po) = ros  + po 4 #2(to s, 90, po). (4.20) 

5. EFFECTIVE APPROXIMATION OF THE CONJUGATE TIME AND THE 

CONJUGATE LOCUS 

This section is a bit computational but  absolutely necessary. All the 
main formulas are established in this section. 

5.1. The method for computing the conjugate time mapping. 
1. Let us look for conjugate times in the case of initial conditions 

(90, P0) E C such that  P0 is small (on g neighborhood of infinity on C).  
Our Lemma 4.9 shows that 

(~(t, 90, po)) = po ~ (t, ~) + po ~ z~(t, ~) + po' =,(t, ~) + p~o ,~(t, 90, po). 
(5.1) 
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By Corollary 4.6, the determinant D we have to compute has the expres- 
sion 

= I m (  . (5.2) 

Denote by Z the function z o s then (z o s ~, Po) = Z (~(s, ~, Po), ~, Po)- 
Hence, 

im[(OZ(6,T, po) + OZ(6,~,po) 06 
b ( s , ~ , p o )  = 

0~ & ~ " 

Let D be the composition 

D(t, ~o, Po) = D(s(t, ~, Po), ~, Po)- (5.3) 

Then we have 

L e m m a  5.1. D has an expansion in terms of po, of the ]orm 

1. D = poD" = po(D1 + p2(D2 + D'2) + p3D3 + O(p~)), 

. { (  .Oz l~Oz l  2. D =,mt, ), 

(5.4) 

Proof. Let us first compute OZ(~, ~, Po) OZ(g, ~, Po) O~ 
Opo + O~ Opo " 

We know by (4.20) that 

_ _ _  0#2 o ~  = s p4  O ~  _ p~ s _ _  

Opo p~ +. o Opo O(ros) 

and by (4.19), 

Opo Po 
( 5 . 5 )  
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Therefore, a straightforward computation shows that  

;( ( c')Z(S,~,po) OZ(S, cp, po) a6 _ tOz l  +p2 3 z 3 -  + 
Opo + Ot Opo zl Ot Ot ) 

+p~(4z4-t~ +o(p~). (5.6) 
& ]J,=~ 

Now, we compute 

By (4.20), 

therefore 

Oz(~, ~, po) 

oz(s, ~, po) oz(s, ~,po) os 

o~ = O(p~); (5.~) 

+ Oz(s,~,po) OS [ Ozl ~ . 40z4"~ 
= 

All these relations, (5.6), (5.8) in particular, hold for t as large as we 
need, for Po small. 

Plugging (5.6), (5.8) into the expression (5.3) of the determinant D gives 
the result. [] 

2. The equation D = 0 can be rewritten as 

D1 + p2(D2 + D'2) + p3D3 + O(P 4) = 0; 

we can compute DI: formula (4.11) gives 

( ' '  
sin ~ 5 cos D1 = 4sin ~ - �9 

(5.9) 

(5.10) 

Plugging this value into formula (4.18), we get that  z(2~r) = 0, since in the 
Heisenberg case z3 = z4 = O(p~) = O. Therefore we get the well-known 
result that  in the Heisenberg case the conjugate locus is the w-axis. 

27r 
sc(~, r0) - --. 

ro 

t t ~) 
The function sin ~ - ~ cos ~ does not vanish for 0 < t < 2~r. 

Hence, in the case of the right invariant metric on the Heisenberg group, 
for which D2 = D2 = D3 = O(p 4) = 0 in formula (5.9), the conjugate new 
time is constant and equal to 2~r. Since in that  case r is constant, we get 
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P r o p o s i t i o n  5.2. For any compact neighborhood K of the circle {r = 0} 
in C, infc\K tc > O. 

Proof. This is similar to that  of Proposition 4.8. 

It follows that  for any s > 0, there is a B > 0 such that IP01 < B implies 
OD1 

tc(~o, go) > 2~r - e. Moreover, one can easily compute ~ at t = 2~-: 

OD1 . (5.11) 

This shows that  one can apply the implicit function theorem to solve 
Eq. (5.9) around any point (t, ~o, p0), with t = 27r, go = 0. 

There is an open neighborhood W = T x U' of the subset {2r} x $1 x {0} 
in R+ x $1 x R, ($1, the circle) such that the set of solutions of (5.9) in W 

�9 is the graph of a smooth function t'c : U' --* T ,  such that ~'~(~, 0) = 2~r, and 
the domain {( t, ~o, go)]0 < t < t'c(~o, go),(~,go) �9 U'} does not contain a 
solution of (5.9). 

These last considerations and Proposition 4.8 allow one to conclude: 

T h e o r e m  5.3. There is an open neighborhood V of 0 in M and an open 
neighborhood U of infinity in C such that the conjugate time mapping of 
~..]v, our sub-Riemannian metric restricted to V, has domain U and is the 
mapping "rely, ~c restricted to U. 

Proof. Let us take U' defined just  above. U 'c, the complement of U' in C, 
is compact. By Proposition 4.8, there is ~ > 0 , such  that  sc(~,ro) > E for 
all (~o, r0) E U '~ We replace M by a smaller neighborhood V, in such a 
way that the positive escape time e(~o, go) of any point r of U '~ (for the 
equation of geodesics with arc-length time) is smaller than ~ (for instance, 
look to the expansion (4.3) of geodesics). We just  replace U' by the subset 
U of the (~o, po) such that ~'c(~o, go) < e(~o, go), where s'c is the arc-length 
time corresponding to ~'c- U is again an open neighborhood of infinity in 
C. [] 

3. A straightforward computation gives the following expansion for 
tc(~o, g0): 

r 

tc(~o, Po) = 2 r  + ~ (p~(D2(2~r, 7~) + D2(2r,  ~)) + p3D3(27r, ~)) + O(p~), 
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~Zl ,~ 
We note that  Zl(2~', ~o) = 0 = - ~  (,~/r, ~o) by (4.11). Hence, as we already 

know, D~(2~r) = 0, but also 

o'z) D2(2~r, ~) = 0, D2(2r, ~) = - 2 r  Im (2~r, ~), 

D~(~-,~) = - ~ .  ~ t .  ~ ~ ) c - ' " ' ~ J  

Hence, one has 

~c(~,, po) = 2,~ - ~ A , .  - ~ A ~  + O(p~), with 

(s.~2) 

A~ = )(2~-,~), A~ = .mr. -~ (2~',~). 

5.2. Computation of  the conjugate t ime and conjugate locus .  Let 
us compute A2 and A3. 

bzl Computation of A2: A2=Im(-~--(2~r,~o)0z3,~ ~o)). 
0zl (2~, ~) = e ~. 
0t 

By formula (4.14) : 

Oz3 (21r, ~) = 3i  lr (c2 - cl) (e 3i~ - e - i~ )  + 61ri (Cl "~- c2 )e i~ ;  

A2 ---- Im(3i  lr (c2 -- cl) (e 2i~ -- e -2 i~)  + 61ri (cl + c2)) ----- 6~r (cl + c2). 

{ Ozl , .  Oz4 
Computation of A 3 : A 3  ---- Im [-~--tzlr,  ~) -~-~-(2r, ~ ) / .  

By formula (4.15): 

OZ4 ,~ , ,  0 ~ ( z r , ~ )  = 5 ~ i  (2i be 4i~ + 4 i  be - 2 i ~ - 4 i ~ e 2 i ~ ) ;  

A 3 = 511" Im(-2be  3i~ - 4be -3i~ + 4 ~e i~ ) ;  

A3 = 51r ( 2 Ira(be 3'~) + 4 I m ( ~ e ' ~ ) )  = 101r Re(b(ie'~) 3) - 

- 2 0 r  Re(~i ei~); 

A3 = 10,, ~(.~ 0')) - ?0~" Vl (.i0')), (5.14) 

where v denotes the unit initial velocity of the geodesic. 
Hence we have the formula 

tc(~,po) = 21r-6~rp2tr, Q-~rpZo ( 1 0 ~ ( j  iv)) - 20 Vl(j(v)))  -I-O(p4). 
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To compute the conjugate locus, using the notations of Lemma 4.9, we 
get 

z (g(tc (~, Po), ~, Po)) = Po zl (t~, ~) + p~ z3 (to, ~) + Po' z4 (to, ~) + O(p~); 

z,(t~, ~) = z,(2~, ~) - ~ (2~, ~o)(p~, ,,2 + p~ A3) + oCp'~), 

z3(tc, ~) = z3(27r, ~P) + O(p~), z4(tc, ~) = z4(27r, ~) + O(p2). 

Hence, 

~(~ ( to (~ ,  po), ~,  po) ) = p o ~  (~, ~) + po ~ (~3(2~, ~)  - a ~  ~ (2~, ~ ) )  + 

0zl 
+p~ (z4(2~, T) -- ~3 W(2~, ~)) + O(Po~); 

zl (2r, ~o) = 0. 

To compute the other terms, we note that  

z3(2r,  m) - A2 ~ (~-x, m) = 

- Im (i ~ -~  ~(2~, ~)))  = ~'" (i Im (~-'~ z~(2~, ~)) - 

0 im (e,, ~ z3(2~',~o))). 

Similarly, 

o~ " (~ ~ ( ~ - ' ~  ~(2~,~))  z4(2~r,  r - -  A 3  --~--(2~r, ~0) = e 'm 

- ---0 Im (e-'~ z,(2~, ~)1). 
0 ~  

By formula (4.14), 

e -im zs (2~r, r ---- ~r (e2 - -  c1)  (e 2i ~ + 3 e -~-i ~) + 6 7r ( c  1 -~- c 2 ) .  

Hence, Im ( e -ira z3(2~r, ~o)) -- -2~r (c2 - c~) sin 2~o; 

~(2~r, ~) - A2 ~ ( 2 ~ r ,  ~)  = 2 ~r (e~ - c~) e ~ ~ (2 cos 2 ~  - i sin 2 ~)  = 

---- 4~r (c2 - Cl) (cos a ~o - i sin 3 ~o). 
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By formula (4.15): 

e-i~z4(2~-,~) 5~-i be 3i~ 2 be - 3 ~  2"de i~ + 3ae - i~ 

0Zl  r  

= 5re ~ - ~ i  Re(be 3iv) + iRe(~e  i ~ ) -  

Going back to vector notation and to the notations of Sec. 3.3, we get 
that  

0zl 
z4(2~, V) - ~3 -~-(2~, V) = 

) = 5~ - v3(,)j( ,)  + vl(v)j(,) - ~(j(v)) ~ -  ~ ~ ( j ( . ) ) ,  

Computation of w(tc, ~, P0): 

w(to, ~, po) = p~ ~ ( t~ ,  ~) + p~ ~,(to,  ~o) + O(p~o) = 

= p2 w2(2~, ~) + P~ (W4(2 ~r, ~a) - ~ ( 2  ~r, ~) A2) + O(p~); 

0w2(2 
w2(27r,~) = 2~r, 0t " r , ~ )  = 0, 

7[" 
~, (~ .  v) = - 3 ~  (2 ( ~  - ~ )  co~2v + 3 (cl + ~)); 

7r 
~(  to, ~, po) = 2~ p~ - 3~ p~ (2 (~  - ~ ) r 2~ + 3 (~ + c~) ) + o(p~). 

Finally, let us make a last coordinate change. In vector notations, we set 

(~, y~ = "~ = z - 5 w2 (Vl(v)j(v) - V1 (j(v)) v). (5.15) 

We get the final expressions for the approximations of the conjugate time 
mapping (using (4.19)), and the conjugate locus, summarized in the next 
theorem: 

Theorem 5.4. Making the coordinate change (5.15), the following ap- 
proximating formulas hold for the arc-length conjugate time mapping sc and 
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the conjugate locus CL, provided that we restrict our sub-Riemannian met- 
ric to a su~ciently small neighborhood U of the origin 0 on M: 

(i) sc(v, po) = 2~rpo-67rp 3 t rgQ3-20~rp~ Vl(j(v)) - ~ V3(j(v)) 3- 

+ ol(p~); (5i6)  

(ii) CL is the intersection with U of the image of the following mapping ~c: 

~o, ~ _ f ~o(v, po) ~ 
tv, po~-  \wo(v, p0)) ' 

~c(v, po) = ( - s  ~po ~ Q~(~) - "'~po ~ v~ (d(v))) v+ (5.~71 

( 1 5  4 - 5 .  + - 2  ~ po 3 Q~ (v + j(v)) - T ~ p o ~ ( ~ ) )  3 (v) + os(po), 

~ ( v ,  po) = ~ p~ - 3 ~ p~ (3 Qo(~) - ~. Q~(v) ) + o3(p~),  

v being the unit initial velocity of the geodesics. 

In complex notations, (i) and (ii) of Theorem 5.4 give, with v = @~': 

sc ---- 21rpo - 67rpo 3 trg Q 3- 20frp o ~ Re(bie 3~) 3- Re(~ie i~) 3- Ol(p5); 

zc(~, po) = Irpo 3 (c2 - cl) (e 3i~ + 3e  - i~ )  + 

15 
+ -E~p~i(be4'~ - 2~e-:'~.) + O2(po~); 

3 4 ~c(v, p0) = ~ po ~ - ~ po (3 (cl + c2)+ 2 (c~ - c l )  cos 2v) + o3 (p~o) 

6. STABILITY OF OUR APPROXIMATING FORMULAS FOR CL 

6.1. G e n e r i c i t y .  

P r o p o s i t i o n  6.1. There is an open dense subset of SubR(M) (in the 
Whitney topology) for which the following holds: 

(i) condition Q2 ~ 0 holds everywhere on M except on a dimension 1 
smooth submanifold (could be empty); 

(ii) condition Q2 ~= 0 or Q2 = 0 but V3 ?s 0 holds everywhere on M. 

Proof. This follows immediately from our Theorem 2.11 and standard trans- 
versality arguments. [] 
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In this paragraph, we will s tudy more precisely the approximation of CL 
in these two generic situations, (i) and (ii) of Proposition 6.1. 

6.2. T h e  case  Q2 ~ 0 (gener ic  p o i n t s  for  gener ic  e l e m e n t s  o f  
S u b R ( M ) ) .  In this section, we restrict ourselves to w > 0 in R 3, and 
po>O. 

1. Representation of  the e x p o n e n t i a l  m a p p i n g  as  a s u s p e n s i o n .  

T h e o r e m  6.2. Them exist a constant ~1 > O, a neighborhood U of ,5 N 
{ o < po < ~ } in ~+ • C, a n=ghborhood V oS E (S n { 0 < Po < ~ }) and a 
coordinate system (~, ~o, e) in U, ~o unchanged, a coordinate system (~, ~, z-) 
in V, such that the expression E in those coordinates of the exponential 
mapping is a suspension 

( ) E(~,~ ,~)  = Eo(~,~) + = E~.(~,~,e)  + 
C 0 0 (~6.1) 

where O(e) has order one at least in e, and 

OZl ,~ 
Eo(~, ~) = ~ ~ - ( z ~ ,  ~) + z3(2~, ~). (6.2) 

Proof. Let us go back to the expression (4.7), (4.8) of the exponential map- 
ping, for the new time t: 

(z(t,~,po) w(t,~o, po) ) =  ( p~  pa~176 +Ox(p~) g(t ,  po). p~ w2C t, ~) + 02(p~). ) = ~' (6.3) 

To represent this map as a suspension of a map between two-dimensional 
spaces, we will make simple coordinate changes at the source and at the 
image of ~. 

First, observe that  we can consider g as a mapping from dom(~') O {2~r - 
< t < 21r + 7/, 0 < P0 < 7/} into {w > 0} for 7] sufficiently small. We make 

the following coordinate change at the source: 

(t,~o, po) ~ a = ---2g'-, ~o, po �9 
Po 

In the image, first we make the change (x,y,w) -~ ( x , y , e  = ~ ) .  At 

the source, we apply (a,~a, p0) --* (a ,~ ,e ) ,  solving the equation w = ~re 2 = 
po ~ + o(p~). 
Then we notice that  for the z-component of s 

z(a,~o,~) = ~3(a~-~(27r, tp) + z3(27r, qo)) + O(64). (6.4) 
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Hence, we can make a second coordinate change in the image: 

(x,Y,6) --~ ( ~ =  x Y-- ~ , �9 [] 

2. S tabi l i ty .  To determine CL, that  is, the singular set of s in an 
appropriate open set U, we shall show that  Ein in (6.1) is a sta~cientjet for 

on U. This will show that  in a neighborhood of zero, CL is diffeomorphic 
to the singular locus of Ein. In order to prove that  Ein is a sufficient jet, 
we will use the fact that  E0 is a "Whitney map" in a neighborhood of S. 

We say that  a map F between 2-dimensional manifolds is a Whitney map 
if: 

(1) Its singular set S at the source is a smooth curve. 

(2) Restricted to its singular set, F ] s  is injective and proper. 

(3) The image curve F(S) presents only fold points and cusp points 

as singularities (for these concepts see Whitney [20]). 
(6.5) 

By well-known facts of singularity theory, Whitney maps are stable, in 
the sense of Thorn and Mather (Whitney [20], or Mather [13]). 

Let us consider the map Eo, restricted to a neighborhood 

S ,  = {(a,~) I - 6 7 r t r a Q -  a < a < - 6 7 r t r a Q  + a } 

of the circle So, So = {(or, ~)l a = -67r trg Q}, a > 0, sufficiently small. 
It  is easy to check that  for a small enough, the restriction Eo]s= is a 

Whitney map. By (4.11), (4.14), we have 

(4c  + 2Cl + cos(2 )(c2 
Eo(a,~) = \sinqo] -t-zTr~sin(~)(2c2+4c 1 +cos(2~)(c2 c l ) ) ) i6 .6)  

We already know that  the circle So is the singular set of Eo]s= for c~ 
sufficiently small, and it is obvious that  the conditions (1), (2), (3) stated 
above are satisfied. Therefore, for 6 sufficiently small, E0 is R.L. equivalent 
to our E0 + O(6) in (6.1) and, since O(6) is smooth, it is possible to check 
that  the diffeomorphisms appearing in the R.L. equivalence relation between 
E0 and Eo + 0(6) depend smoothly on 6. Therefore, the following theorem 
holds. 

T h e o r e m  6.3. If Q2 ~ 0, there is a constant eo > 0, a constant a > 0, 
a neighborhood 

so,~o = { (~, ~ ,  6) 1 - 6~  trg Q - ~ < ~ < - 6 ~  trg Q + ~ ,  0 < 6 < 60 } 
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of So = { ( ~ , ~ , e ) l ~  = - 6 =  t rgQ,  o < e < to } ,  a neighborhood S' of 
t 

~ t  s t  Ein(So)  in M N {w > 0}, and di f feomorphisms ~ : Sa,,o -'* -S, = : --* -S 
such that: 

~ t  
(i) E preserves  the fol iat ion e = constant, = preserves the fol iat ion w = 

constant; 
(ii) E = -  o E i ,  o -  . 

The set of singular values of E0 Is,,~o is given by the approximation (5.17) 
of C L  at order p3 for P0 = 1, i.e., 

y - sin 3 ~ " 

k7 r It is a closed curve, without self-intersection, presenting 4 cusps at 9o = ~-, 

0 < k < 3. Hence, the same holds for sections of C L  by planes w = ~2 for 
small enough. The pictures are shown in the next section. 

6.3. T h e  case  Q2 = 0 b u t  V3 ~ 0 (gener ic  s ingu la r  case) .  
1. In this degenerate situation, we will also conclude on the stability of 

our approximating formulas for C L ,  but in the local sense only (that is, for 
germs at points of S), because of the self-intersections of C L ,  as we shall 
see. 

When Q2 = 0, using a simple rotation, we can assume that  V3 (1, 0) = 0, 
$~ (0, 1) = b > 0. Our formula (5.17) for the approximation of C L  can be 
rewritten: 

~c = 15~ bpo -2s in(2~)  + sin(4~o) ' (6.7) 

wc ~rP~ 2 . t rgQ 4 
= - ~ T r T p  0. 

J 

R e m a r k  7. 
(1) The determinants 

faro / 
Az = det \ 8po 8~ ) ' 

\ 8po 0~o / 

apo  3=aet 
\ Opo ~ / 

are, respectively, up to nonzero constant factors, 

A1 = s i n 2 ( 3 ~ ) ,  A2 = s in(3~o)cos  7~, A3 = s in(3~o)s in  ~o. (6.8) 



S M A L L  S U B - R I E M A N N I A N  BALLS ON R 3 399 

7r 
These determinants vanish simultaneously for sin(3~o) = 0, that  is, ~o = k~ ,  

0_<k_<5.  
(2) The map defined by formula (6.7) has period ~r in ~. 
(3) The image of the mapping (6.7), shown in Fig. 11 in the next section, 

presents 3 cusps which are double points of this mapping. 

To analyze the stability, we will proceed as in the previous section. But 
there is a crucial difference from the previous case: the approximation Ein 
is not a sufficient jet globally on the singular locus any more, although, 
locally along the singular locus, it is sufficient everywhere. 

Remark 8. The reason for this is that  the restriction of Ein to its singular 
locus is invariant under the involution P0 ~ P0, ~ ~ ~ -b ~r, a fact not true 
for the mapping E. 

2. R e p r e s e n t a t i o n  o f  S as  a su spens ion .  

T h e o r e m  6.4. If  Q2 = O, there exists a constant rl > O, a neighborhood 
U of S N {0 < P0 < r/} at the source, a neighborhood V of C(S N {0 < Po < 
r/}), and a coordinate system (q, ~o,e) in U (~o unchanged), a coordinate 
system (~., ~, ~) in V, such that in those coordinates, the exponential map 
E has the suspended form (6.1), where 

( c~ ~~ ) q- z4(27r, ~o ) . (6.9) E0 (a, ~o) ---- a sin ~o 

z4(2~r,~) has already been computed (formula (4.15), where we can 
choose V3 (1, 0) -- 0, ]/3 (0, 1) -- b ~ 0). 

Proof of Theorem 6.4. 
Our approximation of the exponentiat m a ~ m ~  .o now 

We will proceed as in the proof of Theorem 6.2. Our first coordinate 
( t - 2 z r  + 6 ~ t r ,  Qp~ ) 

change at the source will be (t, ~, Po) --* a = p3 , ~o, Po �9 

Our first coordinate change at the image wilt be again 

Our second coordinate change at the source will be the same as in Sec. 6.2.1. 
We get for the z-component of s 

zCa, ~,~) = ~4 (a(cos ~,sin ~) + z,(2~, ~) )  + OCc~). 
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The second coordinate change at the image is 

( x , Y , ~ ) - ' * ( ~ = x ~ 4 , y = ~ 4 ' ~ )  �9 [] 

3. Stabil i ty.  As before, we consider the map Eo in a neighborhood Sa 
of the set 

So = {(a,~a) / a = 2OTr ( 1 R e ( b i e 3 i ~ )  + P~e(-diei~) ) } , 

Sa = {(or + h,~a) I (a,~a) E So, Ihl < a}. (6.10) 

Again, we already know that for a small enough, the singular set at the 
source of Eo]s, is exactly the circle So (see (5.13), (5.14)), and the singular 
locus CL in these coordinates is given by the expression (5.17) for P0 = 1. 

But the map Eo is not a Whitney map any more since the property (2) 
of Whitney maps fails to be true : E01so is not injective. 

Nevertheless, the two other conditions for Whitney maps hold, and the 
germs of Eo along So are stable. 

As a consequence, we can state the following theorem. 

T h e o r e m  6.5. In the situation where Q2 = 0 but V'3 ~ O, the conjugate 
locus CL is of the form 

( i5 bt(2cos(2 ) +cos(4@ ) 
2 9 4 

~rp o -- ~ r  trg Q Po 

Sections of CL by the level surfaces w = constant, w ~= 0 are closed 
curves, presenting 6 cusp points (when counted at the source). 

We shall see below that in general there are six distinct cusp points al- 
though the approximation at order p4 presents only 3 cusp points at the 
image, due to the fact that it is invariant by the involution of above Re- 
mark 8. 

6.4. P ic tu res .  In this section we will show a certain number of sub-Rie- 
mannian pictures. None of these pictures has required numerical integra- 
tion. They just required evaluation of our approximating formulas. 

1. First, we deal with the case where Q2 ~ 0. 
Figure 1. The sub-Riemannian smallsphere (wave front). The equations 

of the approximation are (from (4.18)). 
z(t, Po, ~a) = pozz(t) + pao za(t, ~a), with 

;) ;)) zl(t) = 2 s m ~  



SMALL SUB-RIEMANNIAN BALLS ON R 3 

z3($, ~ )  = (x3( t ,  ~o), y3(t, ~ ) ) ,  w h e r e  

= (24c2t  cos  ~ + 24 c l t  c o s ( ~  - t)  -t- 

+ 24 c25 c o s ( ~  - t )  - 6 c l t  c o s ( 3 ~  - t )  § 

+ 6c2t c o s ( 3 ~  - t)  - 6 c l t  c o s ( ~  + t )  + 

§ 6 c2t c o s ( ~  -t- t)  - 42c l  s in  ~ - 

- 18c2 s in  ~ § 2c l  s in  3~o - 

- -  2c2 s in  3 ~  + 6c l  s i n ( ~  --  2t)  § 

+ 6c2 s i n ( ~  - 2t )  - 6c l  s i n ( 3 ~  - 2t )  + 

-}- 6c2 s i n ( 3 ~  - 2t )  + 21cl  s i n ( ~  - t )  + 

+ 27c2 s i n ( ~  - t )  + ct  s i n ( 3 ( ~  - t ) )  - 

- c2 s i n ( 3 ( ~  - ~)) § 3c~ s i n ( 3 ~  - ~) - 

- 3c2 s i n ( 3 ~  - t)  § 15cl  s i n ( ~  + t)  - 

- 15c2 sin(~o + t ) ) / 1 2 ,  

y 3 ( t ,  = (42c2 cos  ~ -b 18 Cl cos (~ )  -t- 2 c2 c o s ( 3 ~ )  - 

- 2 c l  cos (3~)  - 6c l  c o s ( ~ 2 t )  - 

- 6c2 c o s ( ~  - 2t)  + 6 c l  c o s ( 3 ~  - 2~) - 

- 6c2 c o s ( 3 ~  - 2t )  - 27cl  c o s ( ~  - t)  - 

- 21c2 c o s ( ~  - ~) - c l  c o s ( 3 ( ~  - t ) )  § 

+ c2 c o s ( 3 ( ~  - t ) )  - 3c l  c o s ( 3 ~  - t )  + 

-{- 3C2 COS(3~O -- ~) + 15Cl COS(~ + t )  --  

--  15C2 COS(~ + t)  + 24Clt  s in  ~ + 

+ 2 4 c l t  s i n ( ~  --  t )  + 24c2t  s i n ( ~  --  t )  --  

--  6c~t s i n ( 3 ~  -- t )  + 6c2t s i n ( 3 ~  --  t )  + 

+ 6Clt  s i n ( ~  + t)  --  6c2t s i n ( ~  + t ) ) / 1 2 ,  

401 

(6.12) 

p o ,  = - s i n s ) .  (6.13) 

N o t i c e  t h a t  t h i s  l a s t  f o r m u l a  is t h e  s a m e  as  in  t h e  H e i s e n b e r g  case ,  as  we 
have  shown.  

I n  t h e s e  fo rmu la s ,  ~ E [0,21r], Po is smal l ,  a n d  s = pot  is t h e  r a d i u s  of  t h e  
s p h e r e  ( r e m e m b e r  t h a t  s is t h e  a r c l e n g t h ) .  W e  o b t a i n  t h e  fo l lowing  p i c t u r e  

1 
for  c2 = .85, c l  - -  - 1 . 5 2 ,  s - -  

160" 
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.,q 

CA) 

_L- ~ , ~  , ~ i ~  . . . .  

Fig. 1. Generic sub-Riemannian  small sphere (wave front). 
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In Figs. 3 to 6, 13 to 16, we will give a detailed representation of the 
region marked by (A) in Fig. 1, which corresponds to t close to 27r or s 
close to 21rp0. 

Figure 2: The generic conjugate locus CL at generic points. 
The expression is tha t  of formula (5.17). We draw the picture for w > 0 

only. 

Fig. 2. Generic conjugate locus CL at generic points. 
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Fig. 3 

Fig. 4. Region (A). 
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Fig. 5. Region (A). 
(Same picture as Fig. 4, but the intersection with the 

conjugate locus has been marked.) 

Fig. 6. Region (A). 
(Same picture as Fig. 5 

from above.) 
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As one can see, the intersection of the wave front and the conjugate 
locus is a closed curve, presenting 4 cusps. Moreover, the intersection of the 
sphere with the cut-locus is a line segment, the endpoints of which are 2 of 
the 4 cusps. 

2. Now we show how the approximation (5.17) of order p04 of the conjugate 
locus CL changes when we star t  from cl ~ c2 (i.e., Q2 ~= 0) and move to 
Cl = c2 (i.e., Q2 = 0). 

We show a succession of pictures for the following values of cl,  c2 : cl -- 
- 1 ,  c2 = a - 1, a being specified under each picture. 

Fig. 7. a = 0.1 
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F ig .  8. a = 0.06 

F ig .  9. a = 0 .02  
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Fig. i0. o~ -- 0.005 

Fig. 11. a = 0 

Of course, in the figures (Fig. 7 to Fig. 10) the sections wc = e have 4 
cusp points for e sufficiently small. For a larger e they have 6 of them which 
coalesce in pairs, to produce the final picture, Fig. 11, with 3 cuspidal lines 
only. 
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7, T H E  GENERIC CASE FOR Q2 - -  0 

In this section, we give numerical results on the conjugate locus and the 
wave fronts of order 5 for the following values of the parameters: 

cl -- - 1 ,  c2 = - 1 ,  12 -- -0 .1 ,  Iz = 0, 
- i  (7.1) 

~12=-~ - ,  t 2 1 = t 3 0 = t 0 3 = 0 ,  

where V(z) = E t~j x ~ yJ. 
i+ j=3  

We use our partial normal form v~f9 v3 of order 3 

12"" 0 0 ( ( l + y ' ( l +  ~ ) ~ - x y ( l + f 2 ) N +  

3) 
12"" 0 xy(l-t-f2" 0 ( 1 + x 2 ( ~ + ) ) N -  )~- 

x \ -g(l+Q+V+wg2+h4)-~ 
with the following choices: 

We apply the same method, but  take the approximation of order 5 instead 
of 4 in P0 for conjugate points. We get some complicated formulas tha t  we 
do not give here. Just  evaluating these formulas allows us to draw the 
following picture: 

Fig. 12. The conjugate locus CL of order 5, for Q2 = 0. 
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This picture shows that  there are actually 6 cusps, and not 3 (even for 
wc arbitrary small). 

Now~ we show pictures of the typical sub-Riemannian wave front in tha t  
case.  

The wave front, under several viewpoints, near ~ = 27r: 

Fig. 14 
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Fig. 15 

Fig. 16. 
Wave front plus intersection with the singular locus marked on it. 
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Figures 13 to 16 are obtained by evaluating the approximate equation of 
the geodesics of order 5, 

{ =(t) = po ~ ( t ,  v,) + p~=z(t, ~) + pS=~(t, ~) + p~z~(t, v,), 

~( t )  = po ~ ~=(t, v,) + po ~ ~ , ( t ,  ~o) + po ~ =~(t, ~); 
(7.2) 

t ( [ ~ ) , s l n ( r  ~ - ) ; t  " z3 is given in formula (6.12). zt(t,~o) = 2s in~kcos \~-_  

p~ 
w2 = ~-(t  - sint); all the other terms za, zs, w4, ws were computed using 

Mathematica. We do not give the formulas here because they are too long. 
Observe that, in Fig. 16, the intersection (marked) between the wave 

front and the conjugate locus is a closed curve presenting 6 cusp points. In 
Fig. 14, we see that the intersection of the sphere and the cut-locus consists 
of 3 line segments having one endpoint in common. The other 3 endpoints 
of these segments are 3 of the 6 cusps. 

It is an interesting observation that this will also hold, for the approx- 
imation at order 4 only in Po, an approximation for which the conjugate 
locus has only 3 cuspidal lines (Fig. 11). 
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9. APPENDICES 

9.1. C o n s t r u c t i o n  o f  n o r m a l  fo rms .  

1. In this section, J denotes the 2 x 2 matrix J : 

2 x 2 matrix 

0 1 ) C(z) the 
- 1  0 ' 

I y2 --xy ) : _ j z z t j  " 
C ( z )  = - x y  x 2 

We write ~ = . 

N 
With these notations, our normal form can be rewritten under the matrix- 

differential operator form: 

(]r ) o) '  **J (i+-~(~,~)) o 
(Zd + C(,)#(~,~,))  ~ - T ~ '  

#(o, ~)  = o = -~(o, ~)  = - ~  (o, ~,). (9.1) 
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We denote by V~: The vector subspaces Vn C 5rn-1 x ~'~+1, n _> 2, 

o 

If n = - 1 ,  0, we set Vn = {0}. If n = 1, 171 C {0} x 9v2, 

1/1 = {(0, Q(z)) / Q quadratic}. 

N,~ : Vn --~ (V~'n) 2 is the operator 

N~(&_~, ~+~) = 

2 ~7~+1e3, y e2 - x y e l )  ~ - i  ~7,,+lea). = ((y2 el - xye2)  13n-1 + (x 2 

Then Af,~ = Im(Nn). 
Our Theorem 2.5 can be seen as a corollary of the following lemma. 

L e m r n a  9.1. The operator Mn = L ,  + Nn, 

M ,  : :D,,+I x 9rn+l x Vn -'+ (Vgrn) 2, is injective. 

Since the dimension of :D,+I x 9r,+1 x V~ is equal to the dimension of 
(VgVn) 2, this statement is equivalent to: (a) L~ and Nn are injective, (b) 
Im(Nn) is a supplement of Im(Ln), which is exactly what we need. 

Observations: dim 9Yap = (p+ l )  2, dim 9r2p+1 = (p+ l ) (p+2) ,  dim V~'2p = 
(2 + 2)(3/) + 4), dimV~'2p-1 = (p + 1)(3p + 4), dimV2p = 2p(p + 2), 
dimV2p+l = (p + 1) 2 + (2 + 2) 2 - 2, dim~Dn = dimVhrn. This shows 
that  dim(:D,~+l x ~'n+l x Vn) = d i m ( V f , )  2. 

Our proof of the fact that  A / i s  a normal form is given just  below. In 
this proof, the heuristic selection rules that  we apply for the choice of A/'n 
will appear clearly. 

An alternative proof (but this proof does not put in evidence the selection 
rules we have chosen) is to check directly Lemma 9.1, i.e., the kernel of M,~ 
is reduced to {0}. 

2. By  Lemma 2.3, we have to consider the equations 

F.' [~n, -i]+ riG_l, ~ - 1  - F n - 1  = F ~ a o 

G' - G,,_~ = [~o,.,, G O 11 - o~, F ~  
' n - - 1  - -  - -  �9 

We set 

B1 0 B 2  ,~ B 3  0 
(9.2) 
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An (A~, A2) t, Bn (B~, 2 t �9 �9 ---- = B n ) ,  degA~ = degB~ = k; 

1 0 2 0 3 0 ( ~ + 1  ) ,  deg ~ 

Any f 6 ~',~ can be written in a unique way as 

f= fA(x,y)w 2 ; 
A_<m,A=m rood 2 

hence we have 

E E An = A A w  --~ '- ,  B~ = BA W T ,  an  = aA w ~ , 

An+ 1 ---- A W 2 , n + l  ---- /~U W z . 

We use the following matrix notation: 

CA= ( A~A~ B~B~ ) '  Du = (A3' B3)" 

The equations above are equivalent to 

d z n - A + 3  (EA,n) z~A 4 ~ - 2  zt J -  J a~-i = C~-1, 

0 < A < n + l ,  A = ( n + l )  mod2 ;  

E "d 3 n - # + 4  3 zt J 
u,-) z~~ ~ ~~ zt J - "~" ~ + (~~ -l)t ~ = Dt'-1' 

0_</.t_<n+2, #=n mod2. 

Here z~o A d z (resp. dz~ 3) denotes the Jacobian matrix of ~ (resp. ~3) 
w. r . t . z .  

3. E l i m i n a t i o n  of  t h e  ~ s .  

L e m m a  9.2. P, Q are homogeneouspolynomialsinz, o/ degree n. There 
does exist a unique system U, V of homogeneous polynomials, deg U ---- n + l ,  
deg V - n - 1, such that 

OU OU 
+ y V = ~  - - - x V = Q .  

Ox Oy 

They are given by 

U = ~  
1 

n + I ( X P + Y Q ) ,  
1 oQ) 

V=n+1 -~x 



416 EL-H. CH. EL-ALAOUI, J.-P. GAUTHIER, I. KUPKA 

Therefore, if n)~_ 1 is given, the equation E~,~ determines uniquely ~0~,, 

Let us write %0~, -- E~,n ~0~, ~0~_ 2 = E~,n ~0~,_ 2. 
But ~0~_ 2 can also be computed using E~-2,,~. One gets 

~o~_ 2 = E~-2,n %o~_2. 

The  system E~,n has a unique solution as soon as the compatibility relations 

E~,n Io~_2 = EA-2,n ~0~--2 (9.3) 

are satisfied (here ~oz~ = 0 if u < 0, or v > n + 1, or v ~ n + 1 rood 2). 
These compatibility relations can be rewritten 

O A ( n - A + 3 )  O 0 _  
(C~-i,n) ~ z z a ~ - i +  4 ( A - 2 )  a ~ - 3 J z = - ~ v A ~ - l - y  o x B ~ - i -  

A ( n - A + 3 )  
c _3 z, 

A = (n+l) rood2.  

By Lemma 9.2, this equation has a unique solution nA-z : ~ - i ,  n~-3 : 
~ - 3  , and we can state the following lemma. 

L e m m a  9.3. The system E~,n has a unique solution ~ ,  ~ - 2 ,  ~ - 1 ,  if 
one requires that ~ - 2  have the following form: 

1 
~ - 2  = A - 2 (C~-3 z + n~-3 J z). 

Then, a~-3  = ~A-3, ( ~ - i , ~ : ~ - 3 )  is the unique solution of C~-i,n. ~ ,  = 
E~,, ~o~, with n~-i  = ~ - l .  

4. These two Lemmas 9.2 and 9.3 allow us to construct normal forms. 
For this, we make a combinatorial choice allowing us to solve in a unique 
way some of the equations E~,=, E3,n. The other equations, which will not 
be satisfied, will lead to residual terms that  are the coefficients of the formal 
normal form. We will illustrate this in the case of our normal form Af. 

Our choice will be the following: for ~ ,  we will take the value given by 
the equation C~,,,, except in the following cases: (i) n = 0 mod 2, u = 0, 
(ii) n = l  m o d 2 ,  u = l .  

Once the n are chosen, we always take ~o~ = E~,~ ~o~ for this choice of 

nA--i = ~ - - i "  
Finally, for ~o~ we always choose the solution of E3,n. 
In case (i), n = 0 mod 2, n0 will be the solution ~o of C2,n, 

O 3n OA2 OB2 3 n 
-~zzn~ + --(no J z = Oy Ox -~ Coz, (9.4) 
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because there is no equation Co,n to determine a0. 
This choice for ao and the choice of ~2 for as imply that  the systems El,n 

and E3,n can be solved exactly. Therefore, the residual terms A~es, B~ es, 
A~ es, B~ es are zero. Applying Lemma 9.2 again shows that  the residual 
terms A 3 res, B 3 res are also zero. 

In case (ii), n = 1 mod 2, v = 1, we do not use C3,,~ as previously to 
determine h i ,  a3 (c~l = ~l ,  c~3 = ~3), but  to simplify as far as possible the 

0 
terms in ~ww in the normal form, we determine a l  as follows: 

We solve E2,~ and E3,,  as functions of h i ,  A, B, D. This determines 
~0~, ~0~, ~031 as functions of a l .  This being done, we replace qo~ in E33,n to get 
the system 

(E3,n) Tz~o 3 --~--~olz J = 92 q- C1 z + -~ 0ll. 

By Lemma 9.2, this system has a unique solution ~o 3 : ~33, qo 3 ---- ~3. We 
3 express tha t  ~3 is given by El,  n, ~3 __ Z3,,~ ~oa, to get a relation which 

determines uniquely a l  = ~1 and shows that  A~ e~ = B[es = 0, Ao 3 res = 
Bo 3 ~es= A~ res=  B3,'~s = O. 

But,  in general, we get tha t  A~es ~= 0, B~es ~ 0. 
5. Finally, let us note that  the residual terms are given by the relations 

C~_s 1 = Tz~o~z n -- 4 ~ + 3 ~ - 2  z t  J - ~ A - 1  J - C A - 1 .  (9.5) 

1 
Since ~ - 2  - ~ _ 2 (C~-3 z + J z ~ , - 3 ) ,  and since 

C~- i  T ^ ~  n - ~ + 3 ~ _ ~ z ~ j _ ~ _ l j ,  = z~o~ 4 

where 

we have 
- 2(c -3z+ 

A ~ l  _ n - ,~ + 3y (~ , -2  - ~ , - 2 ) ,  
4 

B i l l  = n - A + 3 x =z 
4 (~ , -2  - q~ 

n - A + 3  n - A + 3  
A~- i  -- 4 (A - 2) YI;~-3 R, B ~ I  = - 4 ()~ - 2) x f~-3 R; 

R = y el - x e2, "f~-3 = ( ~ - 3  - ~ - 3 ) .  

For qo~, we take the solution 3 3 E~,,~ ~o, of E3~  and it is easy to give the 
explicit expression of A 3 res B 3 res Finally, notice tha t  it is also possible to / ~ - - i  ~ / ~ - - i  " 

give explicit formulas for Ares, B res in terms of A and B. 



418 EL-H. CH. EL-ALAOUI, J.-P. GAUTHIER, I. KUPKA 

9.2. P r o o f  of  T h e o r e m  3.2. Assume that  V does exist. Let (wl,032,03 3) 
be a distinguished coframe field on a certain open M' C M. 

V03~ =-~3=z03~ | j, i = 1 , 2 ,  
Vw 3 = 0 (03}, standard Cartan's forms [9]). 

2 V9 = [ V031 | 031 + V032 | w2] lax MLX ( e  = symmetric tensor product). 

3 
[v03~ | + w 2 | = _ ~ ( ~ )  |  | | (,,.,~ | 03~)) 

j = l  

and 
2 

1 - V ' ( J .  2 0 = ~ v 9  = z_.,. ~ | (03J o 03~) + ,,,j | (03~ o 03~1). 
j = l  

Hence, 

,,,~ = 03~ = ~ '  + , 4  = o. (9.6) 

Let (el, e2, e3) be the dual coframe of (w I, w 2, w3); 

r e 1  = 03~ | e2, r e 2  = ~ | e l ,  r e 3  = 03~ |  + 032 | e 2  

Otherwise, e3 = VIM,, therefore (V xv, Y) g = 03~ ( X) 03z (y) + 032 (X) 032 (y). 
II being symmetric, one has 

0331 AW 1 + a;2 A W 2 = 0 on A X M A .  

But, since Vvv = 0, 03](e3) = 032(e3) = 0. This shows that  

0331 A ~0 1 -'~ 032 Atd 2 ~" 0 on TM' X M'  TM'. (9.7) 

Let us compute V in the coframe (w 1, 032, w3). 
The torsion T of V is T : TM XM TM ~ TM, with 

{ 03IoT=dwl+031A032+w~A033, 
032 o T = dw 2 + 032 A 031 + w2 A w 3, (9.8) 
w 3 o T = dw 3. 

Hence, since 

Set 

Aj.,k + A~,j = 0, i =  1,2, (9.9) 

Because 03~(e3) = w32(e.) = 0, B31,3 - B~. s = 0. 

d~ i 1 ~ . = ~EA~,kw3 A w  k, 
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By (9.7), B21,3 =B2,3 . By (9.6), 1 2 Bk, 2 + Bk, 1 = 0. Therefore, we have the 
equations 

3 3 2 
1 
- -  , ~- 'k,2 A 02 2 k ,3  A 02 3 = 0 ,  

j ,k=l k = l  k = l  

3 3 2 
1 
2 E  1+E8  - k,1 A k,3 

j , k = l  k = l  k = l  

A 1 B 1 = 0,  A 1 1 + B21 3 = 0 ,  A 1 B 1 = 0,  1,2 -~- 1,2 2,3 - -  B 3 , 2  , 3,1 - 1,3 

A 2 B 2 = 0 ,  A 2 + B 2 2 3 = 0 , A  2 - B 2  + B 2 1 = 0 .  1,2 - -  2,1 2,3 , 3,1 1,3 , 

Hence, B~, 2 - A  1 B 1 = A  1 B 2 2 , 1 = A  2 B22,3 A 2 �9 1,2 ,  1,3 3 , 1 '  1 ,2,  = - -  2 , 3 '  

A 2 B 2 - B 2 = A 2 - B 1 - B 1 = A 1 - B 1 B 1 = 0.  
3,1 -[- 3,1 1,3 3,1 3,2 2,3 2,3 3,2 -b  2,3 

Hence, 

1 2 A 1 1 1 A 2 B1 B2,3 ~(A3,1 - 2,3), B31,2 = -B2,1 = ~(A2,3 + 3,1), 2,3 = = 

B21,2 = - B 2 , 1  = -A2x,2, B~,I = - B ~ , 2  = A~,2" 

This determines the wj. and shows that  V is unique. In the same way, 
these formulas determine uniquely a connection with the required proper- 
ties. [] 
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