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K A M - S T A B L E  H A M I L T O N I A N S  

M . B .  SEVRYUK 

ABSTRACT. We present a simple proof of Riissmann's theorem on in- 
variant torl of analytic perturbations of analytic hltegrable Hamilto- 
nian systems of the form dp/dt = O, dq/dt : OJ(p)/ap, where (p,q) 
are the action-angle variables. Ri.lssmam~'s theorem asserts that  if 
the image of the mapping p ~-* OJ(p)/Op does not lie in any linear 
hyperplane passing through the origin, then any sufficiently small 
Hamiltonlan perturbation of this integrable system possesses many 
invariant tori close to the tmperturhed tori {p = const}. The main 
idea of our proof is that  we embed the perturbed Hamiltonlan in a 
family of Hamiltonians depending on an external multidimensional 
parameter.  We also show that the Rfissmann condition is necessary 
(i.e., not only sufficient) for the existence of perturbed tori and give 
analogs of Rfissmann's theorem for exact symplectic diffeomorphisms, 
reversible flows, and reversible diffeomorphisms. 

1. INTRODUCTION AND THE MAIN RESULT 

This paper contributes to the classical problem of invariant tori in nearly 
integrable Hamiltonian systems. Such tori are the subject of the Kolmogo- 
rov-hrnold-Moser (SAM) theory (see, e.g., [1] for a review and extensive 
bibliography). Consider a Hamiltonian differential equation 

dp _ OH dq _ OH 
dt Oq ' dt Op '  H = H(p ,  q), (1) 

where p = (P l , . . - ,P~ )  are action variables ranging in some open domain 
in ~ "  and q = (ql , . - .  , qa) are the conjugate angle variables varying over 
the standard n-torus ~'~ = (~/2rZ) '*.  If system (1) is integrable, i.e., its 
Hamilton function H - f ( p )  is independent of the angle variables q, then the 
phase space is foliated into invariant n-tori {p = const}, the flow on these 
tori being linear with frequency vectors w(p) = Of (p ) /Op  (quasiperiodic for 
vectors w(p) with incommensurable components). The question arises of 
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whether nonintegrable Hamiltonian systems with Hamilton functions close 
to / (p )  still admit many invariant tori filled up with quasiperiodic motions. 
To be more precise, let S C ~'~ be the closure of a bounded connected open 
domain and O(S) C C ~ be a complex neighborhood of S. One can assume 
for simplicity that S is diffeomorphic to a closed n-dimensional ball. 

Defini t ion.  The holomorphic function / : O(S) --* C (real-valued for 
real values of the argument) is said to be KAM-stable if there exist a smaller 
complex neighborhood 01(S) C C ~ of S whose closure lies in O(S) and a 
complex neighborhood O(T n) C (C/2~rZ) n of the standard n-torus ~ with 
the following property: for any 5 > 0 there is ~ :> 0 such that for every 
holomorphic function g : O~(S) x O(T n) - ,  C real-valued for real values 
of the arguments and subject to the inequality [g[ < ~ on 01(S) x (.O(T"), 
we have the following. System (1) with H(p,q) = f ( p ) +  g(p,q), where 
p E 01(S)NI~  n and q E Tn  possesses analytic invariant n-tori of the form 
p = p(q) carrying quasiperiodic motions, and the measure of the union of 
these tori is no less than 

(1 - ~)meas2~(S • V n) = (I - ~)(2~)~ 

(here measN denotes the N-dimensional Lebesgue measure). 

The following conditions guaranteeing the KAM-stahility of the unper- 
turbed Hamilton function f(p) are widely used [1]-[8]: the nondegeneracy 
in the sense of Kolmogorov: 

6~W 02f 
d e t ~ p  = d e t ~ r  inS,  (2) 

the isoenergetic nondegeneracy: 

w 0 = det af/Op 0 r 0 in S, (3) 

the nondegeneracy in the sense of Bruno: 

rank w -~p =rank  Op Op 2 /  = n  inS.  (4) 

The Bruno condition (4) is weaker than the nondegeneracy of the Hessian (2) 
or the isoenergetic nondegeneracy (3). 

However, if rank(w, Ow/cOp) = n at some point p0 E S, then at least one 

of the equalities rank(Ow/Op) = n and rank (OW/wOP O) = n +  1 exists at 

this point. 
In the present paper, we prove the following result concerning the neces- 

sary and sufficient condition for the KAM~stability. 
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T h e o r e m  1. The unperturbed Hamilton function f (p)  is KAM-stable i f  
and only i f  the image of the unperturbed frequency map w = Of /Op : S ~ ]Rn 
does not lie in any linear hyperplane passing through the origin. 

The necessity of this condition is a rather simple fact whose proof  we 
postpone to See. 3. The  real problem is to prove tha t  the condition of 
Theorem 1 is sut~cient for the KAM-stability. In the sequel, we will call 
this hard half  of Theorem 1 the Rfissmann statement because it was first 
announced by Riissmann [9]-[11]. Similarly, we will say that  the function 
f (p )  defined in O(S)  is nondegenerate in the sense of  R/issmann if the image 
of the m a p  S ~ ~'~, p ~ Of/Op does not lie in any linear hyperplane passing 
through the origin. 

Remark. Riissmann himself used the term "twist-Hamiltonians" instead 
of "KAM-stable  Hamiltonians" [11]. In fact, paper  [11] is devoted to a much 
more general context of lower-dimensional invariant tori (whose dimension 
is less than  the number  of degrees of freedom). 

The  Riissmann s ta tement  was proved only very recently by Xiu et M. [12] 
and Cheng et al. [13]. These two proofs are independent but very similar. 
The  main purpose of the present paper is to give an alternative proof  of the 
l:tiissmann s ta tement .  

The  main difficulty of the problem is that  the nondegeneracy in the sense 
of l~iissmann is a very weak condition. The image of the frequency map  for 
an integrable Hamilton function nondegenerate in the sense of l~iissmann 
can be a variety in IR '~ of any positive dimension. It  can even be a curve. 

E x a m p l e .  Let k be an integer and 1 < k < n. We denote by u = 
u(px , . . .  , Pk) the solution of the equation 

k 
~--~juJ-lpj = u, 

j = l  

which is defined and analytic in P l , . . .  ,Pk near the point Pl = " '"  = Pk = 
0 and vanishes at this point. The local existence and uniqueness of the 
function u are ensured by the implicit function theorem. If  k = 1, then 
u = Pl, and if k = 2, then u = pl(1 - 2p2) -1.  I t  is easy to verify tha t  

Ou = j u J _  10._._u_u _ O(uJ_____)) 1 < j < k, (5) 
Opj Opl Opl ' - - 

and tha t  u = 0 for Pl = 0. Now consider the Hamiltonian 

PI 

f(p)  = ,pk)dx + pj.  (6) 
0 j=k-I-1 
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It follows from Eq. (5) that  the frequencies corresponding to this Hamilto- 
nian are 

0f(p) [ (~(Pl,... ,Pk)) j for 1 __~ j _~ k, 
wi(P) = - -~P j  = P1 for /r 1 _~ j _~ n. 

Thus, the integrable Hamiltonian (6) is nondegenerate in the sense of Riiss- 
mann and the image of its frequency map is of dimension n - k + 1. A 
similar example for k - n = 3 can be found in [8]. 

Let the image of the frequency map for the integrable Hamiltoniaa f(p) 
nondegenerate in the sense of Riissmann be, say, a curve in ]R ,~. An arbitrar- 
ily small perturbat ion of this Hamiltonian of the form f(p)+g(p) will distort 
this curve (note that we consider a perturbation leaving the Hamiltonian 
integrable). The new curve and the original one can be disjoint. Moreover, 
the situation is possible where there are no two points pl and p2 such that  
the vectors Of(p 1)/Op and O[ f(p2)+g(p2)]/O p are proportional.  For an ap- 
propriate example in dimension n = 3, see [8]. T h e  set of the unperturbed 
frequencies and that  of the perturbed ones in Theorem 1 can therefore have 
nothing in common, irrespective of how small the perturbation is. One can 
guarantee that  a perturbed system will admit many invariant tori and es- 
t imate the Lebesgue measure of the union of these tori, but no per turbed 
torus can in general be assigned to a particular unperturbed one. Unfor- 
tunately, Ri]ssmann himself in his landmark notes [9]-[11] spoke about  the 
"survival" of unperturbed tori. This term is in fact quite unsuitable. In the 
context of his statement,  the unperturbed tori do not, in general, survive a 
perturbation.  They are broken up, and new tori appear nearby. 

This circumstance prevents us from proving Theorem 1 by the classical 
KAM technique [2]-[5], where one fixes beforehand the frequency vector 
satisfying some Diophantine conditions and then looks for a per turbed torus 
with this frequency vector. However, the KAM iterative procedure can 
also be forced when it is impossible to choose the perturbed frequencies a 
priori [14], [15], and it is in this way that  x iu  et M. [12] and Chang et a/. [13] 
proved the Riissmann statement.  Their  proofs seem to be very cumbersome. 

In the present paper, we introduce a different method of studying small 
perturbations of highly degenerate Hamiltonians. The essence of our ap- 
proach is that  we embed the perturbed Hamiltonian in a family of Hamil- 
tonians depending on an external multidimensional parameter /~ and thus 
achieve full control of the frequencies. The invariant tori of the original 
Hamiltonian system (corresponding to /~ - 0, say) can then be picked 
out using the fact that  the invariant tori of the whole family constitute 
a Whitney-smooth foliation. 
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2. PROOF OF THE RUSSMANN STATEMENT 

Our proof is in fact based on the so-called parametric KAM theory de- 
veloped by Broer, Huitema, and Takens [16], [17]. This theory deals with 
invariant tort of I-Iamiltonian systems depending on external parameters. 
The results of Broer, Huitema, and Takens pertain to n-tort as well as lower- 
dimensional tort (of dimensions l < n). The parametric KAM theorem for 
n-tort will be sufficient for our purpose. 

In the sequel, the point a 6 ~N is said to be of type (7, v) (7 and u 
being some positive constants) if, for any integer vector s 6 zN\{0},  the 
inequality 

l(s,a)J >  (Jsll + . . .  + Is I)-" 

holds. Here and henceforth, (.,.) denotes the standard inner product of 
vectors; 

(s ,  a) --  s i a l  --]-. . .-[-  8 N a N .  

Let the analytic Hamiltonian H in Eq. (1) depend analytically on the ex- 
ternal multidimensional parameter/~ 6 Rm: 

H = Y(p,  q, p) = r (p ,  #) + G(p, q, #), 

the parameter p varying in some neighborhood of the set B C l~ "~ diffeo- 
morphic to a closed m-dimensional ball. As before, the variables p and 
q are assumed to range in some real neighborhood of S C R" and over 
~" ,  respectively. Moreover, we suppose that the functions F and G can 
be holomorphically extended to some fixed complex neighborhoods of their 
real definition domains. 

T h e o r e m  2 ([16], [17]). Fix the function F(p, #) and the number v > 
n -- 1 and assume the frequency map 

a :  S • B -+ ~'~, a(p ,~)  = OF(p,~)/Op (7) 

to be submersive everywhere, i.e., its Jacobin x (n + m) matrix to have 
rank n. Then, for any 7 > 0 and any C~176 II of the identity 
mapping 

I :  S x V " x S - - . I R " x ' l r " x ~  m, I(p,q, lz)=_(p,q,p),  (8) 

there is a. number r > 0 such that whenever [G(p, q,/z)[ < e throughout the 
complex definition domain of the function G, there exists a C~176 

gl : S x l i  ~ x B .--, ~ '~ x 'E"  x l~ "~ 

of the form 

ql(p, q, I t) = (P(p, q, It), Q(p, q, It), A(p,/.t)) 
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which lies in II, is analytic in q, and possesses the following property: for 
any pair (Po, I~o) E S • B for which the vector f~(Po, ~o) E ]R'* is of type 
(7, u), the set 

{ (P(po,~,#o) ,Q(po,~, t 'o))  I ~ e ~s C IR '~ x ~s 

is an invariant analytic n-torus of system (1) with the Hamiltonian 

H = H(p,q,A(po,#o)) .  

The motion on this torus is quasiperiodic with frequency vector ~(Po,~uo). 

Theorem 2 is a direct generalization of an earlier result by PJschel [5] who 
considered Hamiltonians H = H(p, q) = f(p) + g(p, q) without an external 
parameter # but with nondegenerate Hessian 02flOp 2. When the parameter  
# is absent, the submersivity condition on the frequency map p ~ w(p) = 
Of(p)/Op is just the nondegeneracy in the sense of Kolmogorov (2). 

To be brief, Theorem 2 asserts that if the frequency map (7) is submer- 
sive, then the unperturbed invariant tori with Diophantine frequencies do 
not disintegrate under small perturbations but just undergo a slight de- 
formation (with a small shift along the parameter p). Moreover, the  map- 
ping which projects unperturbed tori onto the corresponding perturbed ones 
can be extended to a C~176 defined everywhere rather than only on 
tori with Diophantine frequencies. The last property is referred to as the 
smoothness of the Cantor set of the perturbed tori ill tile sense o f  Whit-  
ney [5]. The first results concerning the Whitney smoothness of the Cantor 
families of invariant tori in the KAM theory (without external parameters) 
were due to Lazutkin [18]-[21] and Svanidze [22]. For a very recent exposi- 
tion, see Lazutkin's book [23]. 

We also need some facts from the theory of Diophantine approxima- 
tions on submanifolds of I~ N (approximations of dependent quantities in 
Sprind~uk's terminology [24]). The literature devoted to Diophantine ap- 
proximations on submanifolds is very extensive [24]-[32], and these approxi- 
mations have already found important applications in the theory of dynam- 
ical systems. First, approximations of dependent quantities are necessary 
to construct invariant tori carrying quasiperiodic motions when the dimen- 
sion of the tori is too large or when there are some degeneracies which 
pose obstacles to the control of the frequencies or their ratios [12], [13], 
[33]-[35]. The second class of applications pertains to the averaging theory 
[36]-[42]. In the latter, Diophantine approximations on submanifolds are 
used when Ns < N! - I [37], where Ns is the number of slow variables and 
N 1 is the number of fast angular variables; see the discussion in [38] (the 
case N, > N! - 1 has been examined in, e.g., [39]-[42]). We will use the 
following theorem. 
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Theorem 3 ([121, [321, [371). Let the mapping  ~ : S ---, R N of  the 
class C r possess the following property: for every point p E S the collection 
of (n + r)!/nlr! vectors 

Ol.l~(p) 
c~ E ~ ,  0 < [c~[ = cq + . . . -{-  o~n _< r, (9) Op~ , 

spans the linear space IR g.  Then for any fixed value of v > N r  - 1 the n- 
dimensional Lebesgue measure M.r,v(w 1) of the set of points p E S, for which 
the vectorwl(p) is of lhe type (3', v), tends to measn(S) as 7 "-* 0 uniformly 
with respect to all the Cr-functions w 1 : S --* IR N in some C"-neighborhood 
of the mapping w. 

Finally, we will use the following very simple proposition. 

L e m m a  1 ([9], [10]). t i the  image of the analytic mappingw : S ---+ a N 
does not lie in any linear hyperplane passing through the origin, then there 
exists a number r E N = ~+\{0} such that for any point p E S the collectwn 
of vectors (9) spans R N. 

Proof of the Riissmann statement. Consider system (1) with Hamiltonian 
H = g (p ,  q) = f ( p ) +  g(p, q), where the unperturbed Hamilton function 
f (p)  is nondegenerate in the sense of Riissmann and g(p, q) is a small per- 
turbation. Let w = Of/Op be the unperturbed frequency map. According 
to Lemma 1, there exists a number r E N such that for any point p E S the 
collection of vectors (9) spans ~'~. Embed Hamiltonian H in the analytic 
family 

F(p,r  ~t, E]~ m, F(p,O) =- f(p) (10) 

such that  the extended frequency map f~ defined by Eq. (7) is submersive. 
For instance, we can take m = n and F(p, p) = f(P)+/~lPl+. . .+#nPn.  Note 
that  f2(p, 0) -- co(p). To apply Theorem 2 to family (10), we fix v > nr - 1 
and consider a small number 7 > 0 and a narrow C~176 H of 
mapping (8). In the sequel, the closeness of functions will be understood 
as the Coo-closeness. Let Igl < ~(3',/4). Since A(p,~) is close to p, we can 
solve the equation A(p, $t) = 0 with respect to # and obtain/~ = A(p), where 
the Coo-function A is close to 0. For any point P0 E S, for which the vector 
f~(p0, A(p0)) is of the type (7, v), the set 

{(P(po,~,A(po)) ,Q(po,~,A(po)))  [~  e qY'} C R  n • T ~, (11) 

which is close to {p = P0}, is an invariant analytic n-torus of system (1) 
with the original Hamiltonian H = f ( p ) +  g(p, q). The motion on this 
torus is quasiperiodic with the frequency vector f2(p0, A(p0)). On the other 
hand, f~(p, A(p)) is close to co(p). Consequently, according to Theorem 3, 
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the n-dimensional Lebesgue measure of the set of points p0 E S, for which 
the vector f~(p0, A(p0)) is of the type (7, v), is arbitrarily close to measn(S) 
for sufficiently small 7. The 2n-dimensional measure of the union of all the 
tori (11) is therefore arbitrarily close to (27r)nmeas~(S) for sufficiently small 
7 and narrow U. The proof is completed. [] 

A similar construction was exploited by Xia [35] to prove the existence 
of invariant n-tori in the volume preserving diffeomorphism A of ]R x "It a. 
Xia considers an augmented diffeomorphism Aaug of I~ n x ql ~,  the original 
mapping A being realized as the restriction of Aaug to a certain (n + 1)- 
dimensional invariant submanifold J.  The existence of a Cantor  family 
of invariant n-tori of Aaug can be proved with the use of ordinary KAM 
schemes. This family is C~~ in the sense of Whitney. Then the 
author verifies that  many of these tori lie in J .  For a much simplier version 
of this approach, see the proof [16], [43] of the KAM theorem for isoen- 
ergetically nondegenerate unperturbed Hamiltonians from the theorem for 
unper turbed I-Iamiltonians nondegenerate in the sense of Kolmogorov. 

The difference m e a s n ( S ) -  M.r,v(w 1) in Theorem 3 is of the order of 71/r 
for fixed u [12], [32], [37]. On the other hand, e in Theorem 2 is of the order 
of 72 [16], [17]. Thus, in the context of Theorem 1, the Lebesgue measure 
of the resonant zone (the complement of the union of the invariant tori) is 
of the order of e 1/~r, where e is the perturbation magnitude and r is the 
number from Lamina 1. Recall that if the unperturbed Hamilton function 
satisfies the usual nondegeneracy conditions (2) or (3), then the measure of 
the resonant zone is of the order of el/2 [5], [6]. 

Theorem 2 can be carried over to Hamiltonians of class (7, ~ or even class 
C R for sufficiently large R E N [16], [17]. At the same time, the analyticity 
of the mapping w in Lemma 1 is essential [12]. The Ftiissmann s ta tement  
can therefore be generalized to the smooth case as follows: the unper turbed 
Hamiltonian f : S ~ IR of class C n (R E N U{oo} is sufficiently large) is 
KAM-stable if there exists a number r < r0(R) < R such that  for any point 
p E S the collection of vectors (9) with w = Of/Op spans ll~ n. Of course, the 
perturbat ions g(p, q) are also assumed to be of class C R. According to [12], 
one can take r0(R) = E(R/n) + 1 for finite R, where E denotes the integral 
part  (obviously, ro(oo) = oo). 

3. COMPLETION OF THE PROOF OF THE MAIN THEOREM 

In this section we show that nondegeneracy in the sense of l~iissmann is 
not only a sufficient condition for the KAM-stability but also a necessary 
one. Although this fact is very simple, it seems to have never been stated 
in the literature. 

Let the unperturbed Hamiltonian f(p) be degenerate in the sense of 
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Rfissmann. This means that  there exists a vector c E IR'~\{0} such that  

(c, Of(p)/Op) -- 0 in S. 

Let f l ( p )  = f ( g - l p ) ,  where g e G L ( n , ~ ) .  Then 

(c 1, Of  1 (p)/Op) - 0 in S, 

where c 1 = Kc.  One can choose K arbitrarily close to the identity matr ix  
in such a way that  c 1 will be proportional to an integer vector: 

(s, Ofl(p)/Op> = O, s ~ ~"\{0}.  

Now set 

Then 

H(p, q) = f ( K - l p )  + r cos(s, q), r # 0. (12) 

d(s, q> = (s, col 1 (p)/Op> = O, 
dt 

dPi = r i sin(s, q), 1 < j < n. 
dt - - 

Thus, the derivatives dpi /d t  = C 1 = const are time independent, and Cj 
0 provided that s i r 0 and 

sin(s, qinitial) ~ 0. 

We can infer that the system with the Hamilton function H defined by 
Eq. (12) possesses no invariant tori. On the other hand, the perturbat ion 
g(p, q) = H(p, q) - f (p )  can be chosen arbitrarily small in the real analytic 
topology. The unperturbed integrable Hamiltonian f (p )  is therefore KAM- 
unstable, which completes the proof of Theorem I. 

4. SOME GENERALIZATIONS 

The concept of the KAM-stability and Theorem 1 can be carried over 
mutat is  mutandis  to exact symplectic diffeomorphisms, reversible vector 
fields, and reversible diffeomorphisms. Recall that the diffeomorphism A 
of Ore~l(S) x "II "~ is said to be exact Symplectic with respect to the exact 
symplectic structure dp A dq = d(pdq) if the 1-form A*(p dq) - p dq is exact 
(Oreal(S) being some real neighborhood of S C ~n). Here, as before, p E 
Ore~l(S) and q E lr '~. Recall also that  the vector field 

V = X(p ,  q)O/c~p + Y(p ,  q)O/Oq 

and the ordinary differential equation determined by this vector field are 
said to be reversible with respect to some involution E of the phase space 
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Oreal(S) x ~ ( ~u = identi ty)  if ~ transforms the field V into the opposite 
field - V .  In the sequel, we will consider only the special involution 

I~: (p, q) ~-, (p , -q) ,  (13) 

in which case V is reversible with respect to P~ if and only i f X  is odd in q and 
Y is even in q. Analogously, the diffeomorphism A is said to be reversible 
with respect to the involution ~ ifP~ conjugates A with A -1, i.e., A ~ A  = Z. 
The reader is referred to [33], [44]-[53] for a survey of the main properties 
of reversible dynamical systems, examples, and physical applications. 

To carry over Theorem 1 to exact symplectic mappings, reversible vec- 
tor fields, and reversible mappings, one needs the corresponding analogs of 
Theorem 2. The analog for reversible vector fields can be found in [16], [53], 
and the theories for exact symplectic mappings and reversible mappings 
correspond to those for Hamiltonian vector fields and reversible fields. The 
Whitney smoothness of the Cantor families of invariant tori in reversible 
systems (without external parameters) was first proved by PSschel [5]. 

We will confine our consideration to the formulation of the results and 
the verification that  the corresponding conditions for the KAM-stability 
are indeed necessary. Their sufficiency can be proved just as in the case 
of Theorem i. The necessity proofs are also similar to the proof given in 
Sec. 3. However, they differ in some details, which are worthwhile to point 
out. All the integrable systems and their perturbations are assumed to be 
analytic. 

T h e o r e m  4. The integrable exact symplectic diffeomorphism 

(p, q) ~-~ (p, q + Of(p)/Op) 

is KAM-stable i f  and only if  the image of the frequency map w = Of/Op : 
S ~ IR '~ does not lie in any affine hyperplane in ~n 

T h e o r e m  5. The integrable reversible differential equation 

dp dq 
d-7 = O, = . , ( p )  

is KAM-stable i f  and only if  the image of the mapping w : S ~ IR n does not 
lie in any linear hyperplane passing through the origin. 

T h e o r e m  6. The integrable reversible diffeomorphism 

(p, q) (p, q + 

is KAM-stable i f  and only if  the intage of the mapping w : S ~ ]R n does not 
lie in any aJfine hyperplane in ~n.  
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We will prove that the KAM-stability condition of Theorem 4 is neces- 
sary. Suppose that there exist a vector c E Rn\{0} and a number co E 
such that 

(c, Of(p)/Op) - Co in S. 

Let f l (p )  _ f ( K - l p ) ,  where g �9 6 L ( n , ~ ) .  Then 

(C 1, Of l(p)/Op) ~- CO in S, 

where c 1 = Kc. One can choose K arbitrarily close to the identity matr ix  
in such a way that  the pair (c 1, co) will be proportional to (s, 2~rs0), where 
s is an integer vector and so is an integer: 

<s, Of ' (p) /ap)  - 2 ~ s 0 ,  s �9 zn \{o} ,  s0 � 9  (14) 

Consider the mapping 

(p,q) ~-* (p',q') = (p+ess in ( s ,q ) ,q+Of l (p ) /Op) ,  ~ # O. (15) 

It is easy to verify, using Eq. (14), that this mapping is exact symplectic; 
the crucial fact is that 

Then, again using Eq. (14), we observe that 

(s, q') = (s, q + Of'(p)/Op) = (s, q) + 2~rs0 = (s, q). 

Thus we can infer by analogy with Sac. 3 that mapping (15) possesses no 
invariant tori. 

Now we will prove that  the KAM-stability condition of Theorem 5 is 
necessary. Suppose that there exists a vector c �9 II~n\{0} such that  

(c,w(p))=O inS. 

Let wl(p) - K- lw(p )  where K �9 GL(n,I~). Then 

(cl,wl(p)) -- 0 in S, 

where c 1 = KTc (K T being the transpose of K). One can choose K arbi- 
trarily close to the identity matr ix in such a way that c 1 will be proportional  
to an integer vector: 

(s,,,.,' (p))  - -  O, s ~ ~ " \ { 0 } .  

Consider the differential equation 

dp dq = K_~w(p), �9 I~'~\(0} (16) d--t- = r/sin(s,q), ~ q 
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reversible with respect to involution (13). Then 

dis' q) - (s, w l(p)) = O, 
dt 

and, therefore, Eq. (16) possesses no invariant tori. 
Finally, we will prove that  the KAM-stability condition of Theorem 6 

is necessary. Suppose that  there exist a vector c E JR'*\{0} and a number 
co E ]~ such that  

(c ,w(p))=c0 inS .  

Let wl(p) = K- iT (p ) ,  where g e GL(n,]R). Then 

(cl,wl(p)) ~ co in S, 

where c 1 = KTc. One can choose K arbitrarily close to the identity matrix 
in such a way that  the pair (c 1, c0) will be proportional to (s, 27rs0), where 
s is an integer vector and so is an integer: 

(s ,~l(p)) = 2~s0, s e Z"\{0},  so e Z. (17) 

Consider the mapping 

(p,q)~-~(p' ,q')- .=(p+ 2Z(q),q+ h'-lw[p+p~(q)]),  (18) 

where 

~(q) ---- ,/sin(s, q), '1 E I~n\{o}. 

It is easy to verify, using Eq. (17)~ that this mapping is reversible with 
respect to involution (13); the crucial facts are that /3 is odd and ~(q + 
wl(p)) = fl(q). Then, again using Eq. (17), we observe that 

(s, q') ---- (s, q), 

whence ~(q') -- /3(q) and, therefore, mapping (18) possesses no invariant 
tori. 
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Note added in proof. After this paper went to press, two important articles 
came to my attention. The Whitney smoothness of the Cantor families of 
invariant tort in nearly integrable I-Iamiltonian systems was also obtained by 
L. Chierchia and G. Gallavotti [Smooth prime integrals for quasi-integrable 
Hamiltonian systems. Nuovo Cimen~o B 67 (1982), No. 2, 277-295]. In- 
teresting topological conditions for the existence of invariant tort have been 
found by P.I. Plotnikov [The Morse theory for quasiperiodic solutions of 
Hamiltonian systems. (Russian) Sibirsk. Mat. Zh. 35 (1994), No. 3, 657- 
673]. To be more precise, Plotnikov constructs a one-to-one correspondence 
between invariant tort (with a fixed Diophantine frequency vector) of sys- 
tem (1) with Hamiltonian H(p, q) = f(p) + g(p, q) and critical points of a 
certain analytic function defined in S (in our notations). His results imply, 
in particular, the existence of invariant tort in some cases where the unper- 
turbed Hamilton function f(p) does not satisfy the Bruno condition (4). 
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