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EXACT BOUNDARY ZERO CONTROLLABILITY
OF THREE-DIMENSIONAL
NAVIER-STOKES EQUATIONS

A.V. FURSIKOV

ABSTRACT. In a bounded three-dimensional domain  a solenoidal
initial vector field vo(x) € H3(R) is given. We construct a vector
field z(t,z) defined on the lateral surface [0,T] x 3Q of the cylinder
[0, T} x © which possesses the following property: the solution v(t, z)
of the boundary value problem for the Navier-Stokes equation with
the initial value vp{z} and the boundary Dirichlet condition z{%,z)
satisfies the relation v(T,z) = 0 at the instant T. Moreover,

fle(t, Weragay < ¢ exp(—k/(T - t)z) as t— T,

where ¢ > 0, k > O are certain constants.

We investigate an exact controllability problem for three-dimensional
Navier— Stokes equations. Namely, for a given initial value vo(z) defined
in the bounded domain  C R3, we seek a boundary Dirichlet condition
z(t,z),(t,z) € [0,T] x O such that the solution v(¢, ) of the boundary
value problem for the Navier-Stokes equations mentioned above is equal to
zero at the instant T. Moreover, the constructed control function z(¢,z)
provides v(t, z) with the high rate of decaying as t — T

[lv(t, ey < c exp (—k/(T - t)z) as t—T

with suitable constants ¢ > 0, k& > 0.

To solve the problem mentioned above, we use the method suggested
in the papers of Fursikov and Imanuvilov [1], [2], where exact controlla-
bility problems were solved in the cases of the Burgers equation and the
two-dimensional Navier—Stokes system. This method is based on the use
of the optimality system of a certain extremal problem for the equation
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being investigated. As in the two-dimensional case ([2]), we reduce the ex-
act controllability problem for three-dimensional Navier-Stokes equations
to the same problem for the Helmholtz equation which describes the curl
of the velocity vector field v(t,z). But in contrast to the two-dimensional
case, the three-dimensional Helmholtz equation is indeed a system defined
on solenoidal vector fields. To overcome the difficulties arising in the inves-
tigation of this system we had to develop the method of [1], [2] in several
directions and, in particular, to take a new minimized functional in the
extremal problem mentioned above.

The case of simply connected bounded domains is the main one in this
paper. Nevertheless, we can solve the controllability problem in the case of
multiply connected domains as is shown in Remark 1.1 below.

The principal part of this work was done during the author’s stay in Pade-
born University as visiting professor. I am grateful to Professor R. Raut-
mann for his kind invitation and the excellent conditions for scientific work
created there.

1. STATEMENT OF THE PROBLEM AND FORMULATIONS OF THE RESULTS

1. In a bounded simply connected domain Q C R3 with the C®-boundary
8Q we consider the Navier-Stokes equations

Sv(t,z) + (v, V)v — Av+ Vp(t,z) = 0, dive =0, (1.1)

where t € (0,T), z = (1, 2,23) € Q, v(t,z) = (v1, v, v3) is a velocity vec-
tor field, Vp is a pressure gradient, 8; = 9/0t, (v, V)v = Zj v;0;v, Ojv =
8v/0z;, A is the Laplace operator, divv = ; 9;v;.

Suppose that

v(t, &)|t=0 = vo(z), (1.2)

where vg(z) € (L2(£2))® is a given solenoidal vector field.
The boundary zero controllability problem for the Navier-Stokes equa-
tions is to find the boundary value z(t, z) of the velocity v:

o(t,z') = 2(t,2'), =’ €09, te(0,T), (1.3)

where 0 < T < oo , such that the solution v(¢,z) of the boundary value
problem (1.1)-(1.3) satisfies the relation

o(T,z) =0 (1.4)

at the instant 7". To make this statement more precise and to formulate the
results, we introduce certain functional spaces.
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We denote by W} (), where k is a positive integer, the Sobolev space of
functions defined on Q which have the finite norm

ol = [ 3 1D"v(@)Pds, (1.5)
a laigk
where o = (o, s, a3) is a multi-index, |a| = o1 + a3 + a3, D*v =

= 91%lv/82$1 0232023, We shall also use the Sobolev spaces W§ with
an arbitrary real s. These spaces are defined, for instance, in [3].
Let us define the space of solenoidal vector fields on Q:

H*(Q) = {v(z) = (v1,v2,vs) € (WF(Q))? : divw = 0}. (1.6)

In addition, we shall also need the following spaces of functions defined on
the cylinder ©® = (0,T) x Q:

W™ (0) = {v(t, z) € L2(0, T; W™H2(Q)) : (¢, z) € Ly(0, T; W™())},

(1.7)

HM() = {v € Ly(0,T; H™*(Q)) : v € L2(0, T; H™(Q))}.  (1.8)

The spaces W(™)(Z) of vector fields defined on the lateral surface & =

(0,T) x 0% are defined by analogy with (1.7) (in (1.7) §2 should be replaced

by 6%2).

Note that the solution of problem (1.1)-(1.4) can be reduced to the case

where the initial value vo(z) from (1.2) satisfies the conditions

vo(z) € Hs(Q), ”'U0“H3(n) <kg, (1.9)
where € > 0 is sufficiently small. In order to prove it, we set
z(t,z)=0

on time iterval (0,77), where T} is sufficiently large. It is easy to get by
energy estimate that the solution v(¢, z) of problem (1.1)-(1.3) with z = 0
satisfies the conditions v(T1, z) € H3(Q), [|v(T}, )||las(q) < 1 at the instant
t = T1. Then we can solve the controllablity problem (1.1)-(1.4) with the
initial value vo(z) = v(T1, z).

The principal result of this paper is the following.

Theorem 1.1. Suppose that Q C R? is a bounded simply connected do-
main, T > 0 is given, and vy satisfies (1.9) with a sufficiently smalle. Then
there ezists a boundary control z € W(/2)(X) such that the solution v(t, )
of problem (1.1)~(1.3) satisfies relation (1.4). Moreover,

”‘U(t, )”H:’(ﬂ) <c exp("'k/(T— t)z) as t —T, (110)

where ¢ > 0, k > 0 are certain constants. In addition, the required control
z can be found in the class of vector fields tangent to 9Q:

(2(t,2),n(z))=0, 2 € 09, t € (0,T), (1.11)
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where n(z) is the vector field of the normals external to 002

On the whole, this paper is devoted to the proof of this result.

Remark 1.1. It is possible to get rid of simply connectedness of {2 by re-
moving constraint (1.11) on control z in the interior parts of the boundary
8Q. To do this, we replace 2 by simply connected domain £2; with the
boundary 6Q; which coincides with the exterior part of 8Q2. Then we pro-
long the initial value from Q up to Q,, apply Theorem 1.1 to this case, and
thus solve problem (1.1)—(1.3) with the boundary condition z constructed
in Theorem 1.1. Then the restriction imposed on the solution of (1.1)-(1.3)
on 8 will be the solution of the exact controllability problem in the case
of multi-connected domain Q.

2. First of all, we pass from the Navier-Stokes equations (1.1) to the Helm-
holtz equations for the curl of velocity v(¢,z). Since by definition curlv =
= (Ov3 — O3v2, O3v1 — O1v3, O1v2 — Oav1 ), the following well-known equality
holds:

(v, V)y = —y x curly + V(y*/2), (1.12)

where y X z = (y223 — Y3z, Y321 — Y123, Y172 — Y221) is the vector product
of the vectors y = (y1,¥2,¥3), z = (21, 22,23). Therefore, applying the
operator curl to the first equation in (1.1) and taking into account the
relation curl V f(z) = 0, we get the Helmholtz equations:

Oy curlv(t, z) — A curle — curl(v x curlv) = 0. (1.13)

When the operator curl is applied to the relations (1.2), (1.4), the latter
take the form

curl v(t, z)|e=0 = curl vg(z), (1.14)

curl v(t, z)|s=7 = 0. (1.15)

The following result will be proved later.

Theorem 1.2. Let the condition of Theorem 1.1 be fulfilled. Then there
exists a function v(t,z) € H()(O) satisfying Egs.(1.13)«(1.15) and inequal-
ity (1.10). In addition, its boundary value z = v|g satisfies constraints
(1.11).
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2. UNIQUE SOLVABILITY OF THE OPTIMALITY SYSTEM FOR ONE
EXTREMAL PROBLEM

1. Let G C R? be a bounded domain with the C®-boundary 4G and Q =
= (0,T) x G. To prove Theorem 1.2, we consider the linearized analog of
(1.13) defined in Q:

d; curl v(t, ) — A curlv — curl(a x curlv) = f(t, ), (2.1)

where a(t, z) = (a1, az, a3) € (W?(Q))? and f are given. The assumptions
on f will be given below.

The exact zero controllability problem for (2.1) is to find v(t, z) € W(2(Q)
satisfying (2.1), (1.14), (1.15). (Note that in the first phase of our costruc-
tion we do not require that the desired vector field v(t, ) be solenoidal.) We
shall solve this problem under the following further assumptions on vo(z):

vo(z) € (WE(B))?, vo(z)|ac = Hvo(x)loe =0, §=1,2, (2.2)

where 37 is the derivative of order j with respect to the normal n external
to 0G.

First, we reduce problem (2.1), (1.14), (1.15) to the case where vg(z) =0
in (1.14); for this we consider the boundary value problem

Oex(t,2)— Ax —a(t,z) x curlx =0, (2.3)
xls =0, where S=(0,7)x 4G, (2.4)
X|t=0 = vo(z). (2.5)

Since (2.3)-(2.5) is a linear parabolic boundary value problem, it follows
that there exists a unique solution x(t, z) € W((Q) for vy satisfying (2.2)
(see [4], [5]).

We make in (2.1) the change of the unknown function

v(t, z) = ult, z) + O(t)x(t, z), (2.6)

where u(t, z) is the new unknown function, x(¢, z) is the solution of problem
(2.3)(2.5), 8(t) € C*(0,T), 6(t) = 1 for t € (0,7/3), 6(¢) =0 fort €
(27/3,T), 0 < 8(t) < 1. Substituting (2.6) into (2.1), (1.14), (1.15) and
taking into account (2.3)~(2.5), we obtain the relations

Lu = 9, curl u(t, z) — A curl u — curl{a x curl v) = g(¢, z), (2.7)
curl ul;=¢ =0, (2.8)
curlu|s=7 =0, (2.9)
where

g=Ff+fo and fo=—(0:6(t)) curl x(t, z). (2.10)
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By virtue of the well-known estimates for the solution x of problem (2.3)-
(2.5), we get

i

1ot Moy < 100 exp( [ 1 Vallem dlvalley (211
0

Ixllg@q)y £ Cllvollara(a)s (2.12)

where the constant C depends continuously on [la| yy(g)-

2. To reduce (2.7)—(2.9) to a coercive problem we assume that the solution
u € WP(Q) of (2.7)-(2.9) exists and consider the extremal problem of
minimizing the functional:

l/;{2(t,:c)uz’(t,:c)d:tr:dt — inf (2.13)

2
Q
on the set of functions u € W(2)(Q) satisfying (2.7)~(2.9). Here x(¢,z) > 0

is a certain weight function, which will be precisely defined below.
The optimality system of this problem is

L*p = 8, curl p + A curlp — curl(a x curlp) = »%u, (2.14)
divp =0, (2.15)
pls =0, Oupls =0, 8,curlpls =0, (2.16)

It will be clear later that it is not necessary to derive (2.14)-(2.16) in order to
make a formal rigorous justification. Nevertheless, to make our presentation
clearer, we give the draft of the optimality system derivation.

In order to apply the Lagrange principle ([6]), we must write the Lagrange
function

L(u,p) = %/zzuz dz dt +/((3,; curl u —
Q Q

— Acurlu - curl{a x curl u) - g), p) dz dt, (2.17)

where p(t, z) is a function defining a functional on the space coinciding with
the image of the operator L from (2.7). Since the image of L consists of
solenoidal vector fields, relation (2.15) holds.

The Lagrange principle asserts that there exists p(t,z) such that the
relation

Li(u,p) =0
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holds for the solution u of the extremal problem (2.13), (2.7)-(2.9). This
means that for an arbitrary h € W(z)(Q) satisfying the conditions h|i=g =
hlt=r = 0, we have

0= (Lu(u,p), ) =

= /[uz(u, h) — ((8¢ curl h — A curl b — curl(a x curl h)), p)] dx dt.
2 (2.18)

Taking h € C§°(Q), we obtain (2.14) understood in the sense of the theory
of distributions. Since for any ¢ € C*®(Q), div( = 0 there exists h €
(W2)(Q))® such that curl h = , we must substitute ¢ into (2.18) instead
of curl h and integrate by parts. Then we get p|s = 0, 8,p|s = 0. Now we
return in (2.18) to the function h and, integrating by parts, first transform
the operator curl from A into p and then obtain the third equality from
(2.16).1

The optimality system (2.7)-(2.9), (2.14)-(2.16) will be the main object
of our investigation. If we prove the unique solvability of this system, then
we shall automatically get the solvability of controllability problem (2.7)~
(2.9), taking the component u of the optimality system’s solution (u, p) as
its solution. To solve the optimality system (2.7)-(2.9), (2.14)-(2.16), we
first exclude from it the unknown function u. Multiplying both parts of
(2.14) by 32 and applying operator L from (2.7) to them, we get

L(»2L*p) = g. (2.19)
Taking into account (2.14), we can rewrite (2.8), (2.9) as follows:
curl (37 2L*p)|t=0 = 0, curl (3"2L*p)|;=r = 0. (2.20)

Thus we reduce problem (2.7)-(2.9), (2.14)-(2.16) to problem (2.19), (2.15),
(2.16), (2.20) with one unknown function p.

3. The main instrument that we use to solve problem (2.19), (2.20), (2.15),
(2.16) is the Carleman estimates for the solution of the Cauchy problem
(2.14)—(2.16). To derive them, we introduce the notations

3
ot z) =p(t) (0 = Y (z;—2])?), ¥(t) =(T—t)"2+1t"2,  (2.21)
ji=1
where z° = (29, 23) lies outside of the closure G of the domain G and
o > max|z — z°%.
z€EG

1This derivation of boundary condition (2.16) is not complete, of course. More detailed
proof will be given in another paper.
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Theorem 2.1. Let p satisfy (2.14)-(2.16). Then there ezisis a positive
continuous monotone nondecreasing function sg(A), A > 0, such that for an
arbitrary s > so(llallc(g) + IVallc(g)) the Carleman inequality

[ (b7 01 curlpf? + 1 curl o) + sw(©)] ¥ curlpf? +
Q
+ (S'lb(t))s! curl pIZ))e—%ﬂP dz dt + /((S'(,b(t))"l |V curlp(t, 3)12 +
G
+ s9p(t)| curl p(¢,z)|})e ¢ dz < C/ ste20y? dz dt (2.22)
Q

holds, where ¥, ¢ are functions (2.21) and C > 0 does not depend on s,u, p.

Proof. We denote
g=e"%p, w=e*¥ity (2.23)

and define the operator
Mq=e"%%((0: + A)(e**?q) ~ curl (a x (e*¥q))). (2.24)
This operator can be written as

Mg = (0: + A)g + s(Bep)g + 25(Vep, V) +

+ 52(Vp)lq + s(Ap)g — curl (a x g) — s(Ve x a x q). (2.25)

We introduce the notations

Mig = Ag+ s (Vp)?q, Mag=8ig+25(Vp,Vq)+s(Ap)g,  (2.26)

fs =curl(a x ¢) + s(Vp x a x g — (8:p)q). (2.27)
Obviously, Eq. (2.14) can be rewritten in the form
(M1 + Mz)g =w+ fs, (2.28)

where My, Ma,q,w, f; are defined by (2.26), (2.23), (2.27). It follows from
(2.28) that

llw+ £ill.ce) = 1M1allcq) + 1M24]13 0y + 2(M1g, M2g)r,(q)- (2:29)

Taking into account (2.26), we have

2(M1q, M2q)L3(Q) =h+ L4134+ 14 (230)
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where

L = 2/(Aq, 0:q) dz dt,
Q
=2 [(V¢P(a.00) dedt,
Q
I3y =2s / (Aq,(2(Ve, Vq) + Apg)) dz dt,
Q

Le=2° [(V6)"(a, 2V, Vo) + Apg) d . (2:31)
Q

It follows from (2.16), (2.21), (2.23) that
s =0, Onqls =0, Oncurlv|s =0, gli=o=4ql=7 =0. (2.32)

We transform Iy, ..., I3 by integrating by parts and taking into account (2.32)
and (2.21):

Il=0,

5.2
“;s / la1?8:(Vp)? dt do = —85? / laP9(8,9)|e — 2O dt da.
] ] (2.33)

I =

Using the agreement that the summation is taken over repeating indices,
we find, with the aid of (2.21), that

I; = 25/6,-.-qj(23k<p6kq]- + Onpy;) de dt =
Q
=2s /(-aiqj(26k¢6k6;qj + 20;0c 00k qj + Onpliq;) dz dt =
Q
= 25/(—(6k<ﬂ)3k(3i4j)2 ~ 2(9iip)(9ig;)? + 69(8ig;)*) de dt =
Q

=9 / (~6%(V9)® + 129(Vq)? + 645(Vq)?) dz dt = 24s / $(Vq)? dz dt.
3 5 (2.34)
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Finally we obtain the following expression for I4:
l=28 (V) (0up0ulal + Aplal) do dt =
Q

=253 /(—8k(5j<p6jgo))6ktp|q|2 dz dt = 32s° / |z — zo|%3|q|? de dt.
Q Q (235)

It follows from (2.27) that

llw + fillZ.0) < ClllwliZ, oy + (IVallZgyllali.ce) + allz @) Vall o) +

+(lallsqq) [ 1VePlaPdsdi+ [(@up)?laf da auy). (2:39)
Q Q

Substituting (2.33)—(2.36) into (2.29) and making simple transformations,
we get

1M1l gy + 1MagllZq) + 245 / W(Vq)? dz dt +
Q
+ 3253/|z _ o?9%|q|? da dt < szc(/ lal 9|8 |z — 2| dz dt +
Q Q
Hlallsay [ W7l =2 FlaP drde+ (0?0 ~ ln ~ wolPll? de ) +
Q

Q
+ C(IVallgq)llaliZ.e) + llallz IVl (o) + 1wl cq))- (2.37)

If we choose a sufficiently large value of the parameter s (this value depends
on ||a||é(Q) + ||Va||f;(o) ), then it will be possible to cancel all terms on

the right-hand side of (2.37), except ||w||?, with the last two terms on the
left-hand side. As a result, we obtain

1M1012 0y + 1MagllZ gy + 5 / W(Ve)? da dt +
Q

+6° [ | = 2P yRlaf dodi < ¢ [l o) (2:39)
Q
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Taking into account (2.26), we can get from (2.38) (as was done by Fursikov
and Imanuvilov in [1]) the following estimate:

[ (0P + 180 do e+
Q

+ S/¢(VQ)2 dz dt + 33/1/J‘q'|<1|2 de dt < ¢ [lwl|,0)-
J ] (2.39)

Obviously, there exists a constant ¢ > 0 which does not depend on ¢ and ¢
and is such that for any t € (0,T) we have

JUw) 194t 0 + sv0latt, ) ds <
G

1
< [ 5l0al +18qP) + vl da . (2.40)
Q

When we return from g, w to curl p, »?u, inequalities (2.39), (2.40) imply
(2.22). O

Instead of (2.21), we now take the function
a(t,z) = (T —t)" (o - |z — %), (2.41)
where o is the same as in (2.21).

Corollary 2.1. Let p satisfy (2.14) — (2.16) and sp()) be the function
from Theorem 2.1. Then, for s > so(llallciq) + IVallcg)), we have the
inequality :

(T - 1)?

. (18 curl p|? + |A curl p?) +

I(curl p) = /(
Q

+8(T — ¢y 3|V eurl p|* + s3(T — t)~ 8] curl p|?) e~ 2=} dz dt +

+ /((T — )2V curl p(t, 2)|?> + (T — t) " curl p(¢, 2)|?) e~ 2522 g <
G

< c-/xqe'z""‘u2 dz dt, (2.42)
Q

where the constant ¢ > 0 depends continuously on s and ||all¢(gy+|Vallc(q)-
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Proof. We denote

q(t, z) = curl p(t, z). (2.43)

It follows from (2.14)—(2.16) that ¢ is a solution of the problem
019 + Ag — curl (a x ¢) = s?u, (2.44)
gls =0, Oagqls =0. (2.45)

We provide this problem with the initial condition at the instant ¢3 € (0, T).
Then, as it is well known, the following inequality holds (see Ladyzhenskaya,
Solonnikov, and Ural’tseva [4]):

llallwor (o) < clllx®ullLa(qo) + llalto, Mlwz(ay), Qo = [0,t0) x G. (2.46)
Relations (2.43), (2.46), (2.22) imply (2.42). O
4. Everywhere below we take, as the function »?(t, z), the function
3 (t, z) = e?*o(t2), (2.47)

where «(¢, z) is the function (2.41) and s > 0 is the fixed number for which
inequality (2.42) holds. Let z. € 0G be a point such that

— 0 - 1 - 0
|24 — 2°] ;22 e —z°|. (2.48)
Obviously,
e=25a(t,@a) — pin e~ 2sa(tz) (2.49)
re€G

Proposition 2.1. Let p(t,z) satisfy (2.14) — (2.16). Then, for s > so,
where sy is the same as in Corollary 2.1, the following inequality holds:

T
_ [T =1t)? —211. 12
J(p)= [( p 18:pll a6y + (T — t)™*llpllEr2(q) +
0
+ 3T — 0% pllars(ay) e300 dt < ¢ / €222 (t2) |y |2 4 d.
J (2.50)

Proof. We extend p(t, z) by zero beyond G, denoting the new function by
p and set

curl p = v(t, z). (2.51)

By virtue of (2.16), (2.15), after acting on (2.51) by the operator curl, we
obtain

—Ap=curlv, (2.52)
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where curlv € La(R?), v(t.z) =0, =z ¢ G. Applying the Fourier transfor-
mation to both parts of (2.52), we get

B(t,&) = —i -5—%9 (2.53)

where p,7 are the Fourier transforms of the functions p,v respectively
and x is the vector product in R3. Since suppp(t,z) C G, suppv(t,z)
C G, it follows that p(t, &), 9(t,£) are entire analytic functions with respect
to €. Therefore, considering (2.53) for &;,£; € R and €3 = n + (o, where
n € R and (p # 0 is a fixed real number, we easily obtain the estimate

(1+ €)1, O < elat, )1,
which, when we return to the z-space R3, is transformed into the inequality
/ > IDZ(p(t, z) e8°7) | dz < 0/|8c°’°v(t,w)|2 dz.
G lalgl G

This inequality implies the estimate

et Mia ey < cllvt, lzae) (2.54)
because the domain G is bounded. Note that the relations
curl §;p = v, Veurlp=Vu, dipls = 0:0.p|s =0 (2.55)

follow from (2.51), (2.16). By analogy with (2.54), we obtain from (2.55)
the inequalities

N0:pllar (o) < ellBevllLacay plagey < cllvllfn(e)- (2.56)

Taking into account (2.49), we easily derive (2.50) from (2.54), (2.56),
(2.42). O

5. We shall formulate the generalized solution of problem (2.19), (2.20),
(2.15), (2.16) and prove the existence and uniqueness of this solution.

We define the space ® of the solenoidal vector fields p determined on @
by the relation

®={p: “P”% = ”e_saL*p||%2(Q) + I(curl p) + J(p) < oo,
lep =0, plS = 31;17'5 = an curl pls = 0}, (257)

where « is the function (2.41), I,J are defined by (2.42), (2.50), and s is
the same as in (2.50).
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Definition 2.1. The function p € ® is called a generalized solution of
problem (2.19), (2.20), (2.15), (2.186) if, for an arbitrary ¢ € ®, the following
equality is fulfilled:

(e™2L*p, I’ q)1,(q) = (9, 9)La(Q)- (2-58)

Theorem 2.2. Let g satisfy the following condition: there ezists a func-
tion ¢1(t,z) on Q such that g = curl g1 and

/ez‘"’lgl dz dt +/ez’°'|g1[2 dz dt < o0, (2.59)
Q Q
where o is the function (2.41) and s is mentioned in Corollary 2.1. Then
there exists a unique generalized solution p € ® of problem {2.19), (2.20),
(2.15), (2.16). The function p satisfies (2.19) in the distributions sense and
(2.20) understood as equalities in H™2(G). If the funciion u is defined by p
in (2.14), where 5% is the function (2.47), then

lle**ullZ(q) < clle™g1llZq)s (2.60)

where.c is the constant from (2.42).
Proof. Inequality (2.59) implies that

(9, )22y < lle**allZ cqylle™** curlgllL (o) (2.61)

and, therefore, the functional ¢ — (g, ¢),(q) is continuous on ®. By virtue
of Corollary 2.1 and Proposition 2.1, the bilinear form (e~2*4L*p, L* 9)L1(Q)
is coercive on the space ®. Hence, the Riesz theorem on the functional
representation on a Hilbert space implies the existence and uniqueness of
the generalized solution p. We substitute the expressions g = curlg; and u =
e~2*¢L*p from (2.14) into (2.58) and integrate by parts (in the distributions

sense) with ¢ C @ N (C8°(Q))3. As a result we get the equality

/(&u —~ Au — (a x curlu) — g1) curl q; dz dt = 0.
Q

This relation yields the equation
Oiu — Au~ (a x curlu) — g; = Vry

where r; is a distribution. We apply the operator curl to the last equality
and express u by means of p to show that p satisfies (2.19) in the distribu-
tions sense. Since p € ®, it follows, by virtue of (2.57), that the function u
appearing in (2.14) with sc from (2.47) satisfies the relation

e*“u € L2(Q).
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Hence e*®curlu € Ly(0,T; H Y(G)), e**(A curlu + curl(a x curlu) €
€ L3(0,T; H~3(Q))) and, therefore, by virtue of (2.7), (2.59), O;curlu €
L2(0,T; H=3(R2)). These inclusions allow us to understand (2.20) as equali-
ties in H~%(G). We set ¢ = p in (2.58). Taking into account (2.14) and the
definition of g, as g = curl g1, we can rewrite (2.58) as

leull3 gy = lle™*LPllE g) = (1, curl Pl <

< llgr €**llzaqelle™* curl pllz,(Q) <
< cllgr e ully@)lle™*L7Ppllza(q), (2.62)

8

where the last inequality in (2.62) follows from (2.42). Inequalities (2.62)
imply (2.60). O

3. SOLVABILITY OF THE LINEAR BOUNDARY ZERO CONTROLLABILITY
PROBLEM

1. Our first business is to investigate the smoothness of the generalized
solution inside the cylinder Q. We shall restrict our consideration to the
smoothness of the function u constructed by means of p with the aid of
(2.14).

Lemma 3.1. Let g € La(ty,tz; HY(G1)) for an aerbitrary G; C G and
0 < t, < ty < T, where g is the right-hand side of (2.19). Then, for
the function u defined by (2.14), the inclusion curlu € HD(Q,), where
Ql = (tl,tz) X Gl, holds.

Proof. If u is defined by (2.14), then it satisfies (2.7) understood in the
distributions theory sense. This assertion is derived simply from (2.19). We
rewrite (2.7) in the form

O¢ curlu — A curlu = g + curl (a x curl u). (3.1)

Suppose that b € W(?)(Q) and b is the linear operator of multiplication by
b. Then the Sobolev embedding theorem implies that the operators

b: Ly(0,T; HF) — Ly(0,T; HY), k=-1,0,1,2 (3.2)

are continuous.

We know from Theorem 2.2 that u € Ly(@1). Hence, by virtue of (3.2),
g + curl(a x curlu) € Ly(0,T; H~2). Since the operator 8; — A is hypoel-
liptic, it follows, by virtue of (3.1), that curlu € Ly(t1,t2; H°(G1)) and, by
virtue of (3.2), the right-hand side of (3.1) belongs to La(t1,t2; H™1(G1)).
Repeating these arguments several times, we get the assertion of the theo-
rem. []
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We study now the smoothness of u near the boundary.
Let p(z) € C*(G) be a function satisfying the conditions

p(z) >0, z€G; p(z')=0, 2’ €8G, 9p/0n <0,

where n(z) is the vector field of the normals external to 4G.
Lemma 3.2. Let u be defined by (2.14). Then

sup / ez:a(T - t)lzp(x)si curl u(t, x)|2 dz +
te[0,7]
G
+ / eZsa(T - t)12p6(g;)lv curlu(t, z)|®dz dt < 7 _/e?soz(g2 + uz) dz dt,
J (3.3)

La)

where g is the right-hand side of (2.19) and the constant vy, depends contin-
uously and monotonically on |lallc(gy + [IVallc(g)-

Proof. We denote v = curl u and rewrite (2.7) in the form
Giv— Av—curl{a x v) = g. (3.4)

Scaling (3.4) in Lz by (T — t)*2p(z)%e?**v and performing some simple
transformation, we get

t

//(T— t)12 <p6623a %ad’v(t,r)lz +p6623.alvvlz + %(sz’v(pﬁe%a)) =
0 G
- [(((v, V)a - (a, V)v),v) — div alv}z}psezm) dz dt =

://czs"(T——t)”ps(g,v)dxdt. (3.5)
0 G

Note that to transform the term curl (a x v) in (3.5), we use the well-known
relation curl (a x v) = (v, V) a - (&, V) v+ adivv — v diva and the relation



CONTROLLABILITY OF 3-D NAVIER-STOKES EQUATIONS 341

divv = 0. Integrating by parts once more in (3.5), we obtain

i
: / (T = 1) 25> o(tr, 2)[* dz + / / (T = )2 [p8e¥=(|Vo|* +
G 0 G

+ (6T - )" = sdu) o) - ZolPA(p%>) -

- ((v, V) a,v)p%e®** + %div alv|?pbe®** %|v|2(a, V(p®e**))] dz dt <

1, t
< c//ez’“lglzda: dt+//ez"”(T—t)12p6|v(t,z)|2d:z: dt. (3.6)
0 G 0 G
Taking into account that v = curl u and integrating by parts, we get

/|v|2x(t, z)dz = /[(curl v,u)x+ ((Vie x v),u)] dz. (3.7
G G

In our case
(t, ) = (T = )2[(6(T = ) — syax(t, 2))e™*p" —
~ SA) ~ 2(a, V(p%e )
and, therefore, the following estimates are true:
Il < e (P @)(T — )12 + (T = )65 (),
(V] < ce® (3 (T = )12 + (T = 1)5%(z)). (3.8)

To obtain the necessary estimates, we transfer all terms on the left side
of (3.6), exept the first two, to the right-hand side and apply (3.7), (3.8)
and the Young inequality. We obtain

ty

1
5/(T——t1)12p6e2’°‘|v(t1,z)|2d:c+//(T—t)lzpseZ’“IVv|2dxdtS
G 0 G
131
< [ [ (ol + @ -0l + lalloe) + I Vallogey) de di +
0 G

ty
1
+ 5//ez’a(p6(T— 82| Vo[ 4 p5(T — £) 22 + e, Juf?) d= dt.
0 G (3.9)

Transferring the term with |[Vv|? from the right-hand side of (3.9) to the
left-hand side and applying the Gronwall inequality, we get (3.3). O
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Lemma 3.3. Let u be defined by (2.14) and, in addition 1o (2.59), the
inclusion e**Vg € La(Q) holds true.
Then

fle**(T — £)1°0° curl ull} oy gy < 1allle**ull} ) + lle*®all7,(q))s  (3:10)

where the constant v, depends continuously on |jallc(g) +||Vallc(gy- More-
over,

lle**(T — )*2p° curl “I'%{(l)(Q) <

, i 3.11
< (e ull? g + e gll2, o) + Vgl o), D)

where v depends continuously on ||a|| g (g)-

Proof. Suppose that v = curlu as before and, in addition, w = (T —
t)Pp*e**v. We substitute v = (T — t)~Pp~*e~*%y into (3.4) and rewrite
this equation in the form

Srw — Aw — curl (a x w) = p*(T —t)Pe**g + (—=B(T — t)~ 1+
+s0ra)w 4+ 2(0, Vw) — 0 x (a x w) + (s%|Ve|? — sAa+
+2skp~H{Va, Vp) + k(k + 1)p~2|Vp|?> — k p~  Ap)w,

(3.12)
where

0= —sVa—-kp~'Vp.

Substituting w = (T ~ t)?p¥e’*v into the right-hand side of (3.12) and
taking (3.3) into account, we see that the right-hand side of (3.12) belongs
to L2(Q) precisely for § > 10, k > 5. We apply to (3.12) the well-known
upper bound of the solution of the parabolic boundary value problem via
its right-hand side and then estimate the Ly-norm of this right-hand side by
means of (3.3). As aresult, we get (3.10). Using now (3.10), we can estimate
the right-hand side of (3.12) in L,(0,T; H') if we set k = 6, 8 = 12. Now
the upper bound of the solution of the parabolic boundary value problems
leads to (3.11). O

2. Now we prove the theorem on the boundary exact zero controllability
for Eq.(2.1). It is convenient to assume that (2.1) is defined in the cylinder
© =[0,T] x Q, where Q C R3 is a bounded domain with the C*°-boundary
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Q. Also suppose that (1.14), (1.15) are defined for z € Q2. We set
L5(8, 50) = {f € La(0, T; (WH)) : 1F125(0.0) =
= [ 121y da < oo}, (3.13)

o 18I<k

Theorem 3.1. Let a(t,z) € H®(O), vy € H3(R), fi € L3(O,5c), and
f = curl fi, where s, are the same as in Corollary 2.1. Then there exisis
a solution v € LY(O, sa) of problem (2.1), (1.14), (1.15) which satisfies the
tnequealily

lle**(T — t)12 curl ””?;(1)(@) + ”U”ig(e,“,) <

3.14
<R 0,0m) + 112500 0y + leollirsn) (314

where vy > 0 depends continuously on (|all g (e)-

Proof. We choose a domain ¢ € R® containing Q and denote by R :
H3(Q) — (W3(G))? a linear continuous operator that extends the func-
tion u(z), z € Q to the function Ru(z), z € G, where Ru(z) = u(z), = €
and Ru(z) = 0 in a fixed neighborhood of the boundary 89Q of Q. Let
Ry : H?(O) — W?)(Q) be a linear continuous operator of extention of
the function from © = [0,T] x Q to @ = [0,T] x G and (Ryu)(¢t,z) = 0ina
fixed neighborhood of the lateral surface S = [0, T] x G of Q. In addition,
by Ry : LE(©,sa) — L5(Q,sa) we denote a linear continuous extention
operator. Thus

I Ruall(wz(ayys < clluollas(ay,

3.15
1Rafllz(Queay < cllfllzs(o,00 (3.15)
and we suppose that for R; the following inequalities hold true:
([R1allw gy £ cllaliiwaeys
(3.16)

1R1allcg) + IV Riallegy £ e (llallegay + [[Vallea))-

We consider problem (2.1), (1.14), (1.15) defined on @, where the coeffi-
cients @ = (a1, a2, a3) are replaced by R;a, the initial value vg by Ruvyp, and
the right-hand side f by Raf. Applying to this problem the construction
mentioned from the beginning of Sec. 2 to Lemma 3.3 inclusive and tak-
ing into account (3.15), (3.16), we get the assertion of Therem 3.1 after
restricting the obtained solution v on the input cylinder & = (0,7)x Q. [
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3. Our next step is to solve the boundary zero controllability problem for
equation (2.1) in the class of solenoidal vector fields v(¢,z). For this pur-
pose we apply the Weyl decomposition to the solution v(¢, z) obtained in
Theorem 3.1:

u(t, z) = w(t, z) + Vq(t, z), (3.17)
where for every t € [0,T] we have
w(t, z) € L2(Q), divw(t,z)=0, (w(t z),n(z))=0, (3.18)

where n(z) is an external normal to 02, and the last two relations in (3.18)
are understood in the well-known distribution theory sense (see [7], [8]).
Since curl Vq(t, ) = 0, w(t, z) is the solution of (2.1), (1.14), (1.15) together
with o(¢, z).

Our main aim 1s to establish the smoothness of w(t, ). Note that, for
every ¢t € (0,T), w(t, z) satisfies the boundary value problem

curl w(t, z) = curl v(¢, z), (3.19)
divw(t,z) =0, (w(t, z),n(z))|aa =0, (3.20)

where v(t,z) is a given vector field. The following assertion holds (see
Solonnikov [9]).

Lemma 3.4. Let w(t,z) € L2(Q) be a solution of (3.19), (3.20). Then
for k > 1 we have

o, Waangs < € (leurl ot M as g + ot MPcacaye), (3:21)
where the constant ¢ does net depend on curlv.
Theorem 3.1 and Lemma 3.4 imply the following statement

Theorem 3.2. Let the hypothesis of Theorem 3.1 be satisfied. Then
there exists a solution w € H()O) (particularly, divw = 0) of problem
(2.1), (1.14), (1.15) satisfying the following conditions:

(i) the normal component of w on 3Q is equal to zero:

(w(z,t), n(z))|seo0 =0, (3.22)

(44) the following estimate holds:

lle (T — £)"2 curl |y ey + 1e**(T ~ ) 2wl 20y <
3.23
< T s g0.0m + 113 0 0y + l1valiZagen)- (3.23)

Here y > 0 depends continuously on ||al| 2 (e) and

a(t) = oft, ), where |&— zol? = max |z — zo|”. (3.24)
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Remark 3.1. Taking into account (2.41), we see that & € G satisfies the

condition
es&(t) - esa(t,i;) - minesa(t,x)' (325)
z€G

Proof of Theorem 3.2. Let v(¢, z) be the solution of problem (2.1), (1.14),
(1.15) comstructed in Theorem 3.1. We define w(t, z) as a solenoidal com-
ponent of v(¢,z) in the Weyl decomposition (3.17), (3.18). Since relation
(3.19) holds, w(t, z) satisfies (2.1), (1.14), (1.15) as well as v(¢, z). Relations
(3.14), (3.19) imply the estimate of the first left-hand side term of inequality
(3.23) by its right-hand side.

The right-hand side of (3.19) is differentiable with respect to t. Hence
the left-hand side of (3.19) possesses the same property and, by virtue of
Lemma 3.4,

|10 w(t, ')”?W,f(n))i' < ¢|| curl d;0(t, m)”?W:"(ﬂ))"' + ||Bew(t, ~)||(2L2(n))3.
(3.26)
Multiplying both parts of (3.21), (3.26) by (T —¢)*2¢%*4(*)  integrating with
respect to ¢, and taking into account (3.14), (3.25), we get

e’ *(T = 1) *wllaye) < 1M + (14T - ) 28wll} o)),  (3:27)
where
M = [|fll73c0,50) + 1f1llZ 300,50y + v0llErs(a)- (3.28)

To estimate G;w in (3.27), we substitute (3.17) and the relation f =
curl f; into (2.1) and, because of the simple connectedness of the domain
Q, we get the equation

Ow—~Aw+Vp=fi—axcurlw = fs, (3.29)

where the last equality in (3.29) is the definition of f, and p is a certain
distribution. Applying the operator div to both parts of (3.29) and taking
into account (3.20), we obtain the equalities

Ap=divfa, 0Ouploa = (f2,n)en + (A w,n)lsa. (3.30)
By virtue of the hypothesis of Theorem 3.2 and (3.14),
lle**(T - )2 fallZ0,m5wa () < €M, (3.31)

where M is the magnitude of (3.28). Since —A w = curl curl w if divw = 0,
we have, by virtue of (3.14),
lle*®(T - )12A w“ig(O,T;W;(ﬂ)) <eM,

s& 332
1e*3(T ~ £)128upl2, 0 ryxamy < M. (3.52)
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Relations (3.30), (3.32) yield the estimate

le*(T - )*V pll7 0y < c1 M. (3.33)
Equation (3.29) and bounds (3.31)—(3.33) imply the inequality

lle*®(T — t)”(%w”%’:(e) < e M. (3.34)
Hence, (3.27), (3.34) yield the estimate of the second term on the left-hand
side of (3.23). O

4. EXACT ZERO CONTROLLABILITY OF THE HELMHOLTZ EQUATION AND
THE NAVIER—-STOKES SYSTEM

1. We begin with problem (1.13)-(1.15), i.e., with the Helmholtz equation.
First of all we prove the following assertion.

Lemma 4.1. Let (()A) be a positive continuous monotone nondecreasing
function defined for A > 0,

€ =sup{e: equation A =((N)e has a solution A}. (4.1)

Then, for the arbitrary € € [0,€), the numbers ag =0, a, = ((@n-1)e, n =
= 1,2, ... satisfy the inequality

0<an £ )\0(6), (4.2)
where Ao(€) is the minimal solution of the equation from (4.1). In addition,
Ao(e) =0 ase — 0. (4.3)

Proof. Since for an arbitrary A > 0 there exists an € > 0 such that A =
¢(A)e, it follows that 0 < & < oo, where £ is the number (4.1). For any
€ > 0 we have {(0)e > 0, which implies the inequality

ag =0 < Ao(e).

Suppose that inequality (4.2) is established for a certain n. Then (4.2)
and the monotonicity of {(A) imply the inequality

an41 = ((an)e < ((Ao(€))e = Ao(e) (4.4)

which proves (4.2) for all n.
For an arbitrarily small A > 0 there exists sufficiently small ¢ > 0 such
that ((A)e = A. Since Ag(g) < A, (4.3) is proved. [
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Proof of Theorem 1.2. In order to solve problem (1.13)-(1.15), we apply the
iterations similar to that used in the two-dimensional case (see [2]). We set

wO(t,2) = (i, z), wi(t, z), wi(t,z))=0 (4.5)
and define the iteration w" (¢, z) as a solution of the controllability problem
s curl w™(t, ) — A curl w® — curl(w”™~! x curlw™) = 0, (4.6)

curl w” (¢, z)|1=0 = curl vo(z), curlw™|s=r =0. (4.7)

It is essential that the solution w" of (4.6), (4.7) be constructed by the
method used in Theorem 3.2. Therefore, by virtue of (3.23),

(T = )" curl 0™ 0y + 10" Wy <
< |let*(T ~ t)!2 curl wn”%r(x)(e) + ”esa(T - t)lz'wn”}zq(a)(e) < (4.8)

< 'Y(”“'n“l”H’(O))”’)Olhzqsm)’

where y(A) is a continuous function. Increasing y()) when necessary, we
can assume that () is a monotone nondecreasing function. Estimate (4.8)
and Lemma 4.1 imply that if

Hvo||12qa(n) =¢ is sufficiently small, (4.9)
then
lw™llg@e) < %< 00, [E¥(T — 1) *w™[|lgaye) < 1 < 00,  (4.10)

l|e**(T ~ t)12 curl w"IlH(;)(@) < 363 < 00, (4.11)

where 3¢, 3¢;, 3¢5 do not depend on n and tend to zero as € — 0.
We denote y* = w"+! —w". Subtructing (4.6), (4.7) from the analogous
equation for w™t!, we get

O; curl y* — A curl y* — curl(w” x curly™) = — curl(y™~! x curl w®), (4.12)

curl y* Js=¢ = curl y* |s=r = 0. (4.13)

We want to show that y* satisfies the analog of estimate (3.23).

Let (u™,p") be a solution of problem (2.7)-(2.9), (2.14)~(2.16) with a =
Rijw™~!, where R, is the extension operator from the proof of Theorem 3.1.
We denote 2" = u**t! —u", ¢* = p"+! —p". By analogy with (4.12) we get
equations for z" and ¢™:

0; curl 2" — A curl 2 — curl (Ryw™ x curl 2°) = g, (4.14)

Ot curl¢™ + A curl ¢" — curl(Ryw™ x curl ¢") = e°%2" + h (4.15)
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with the boundary conditions as (4.13), (2.16), where
g = —curl(R1y™"! x curlu®™), h= —curl(Riy"~! x curlp™).  (4.16)
First we show that 2" satisfies the following analog of (2.60):
%22, 0y < salle’™(T = )2 wsce), (.17)

where 33 — 0 as € — 0 and ¢ is (4.9). Indeed, scaling in L2(Q) Eq. (4.14)
on ¢" and (4.15) on 2" and summing up the obtained equalities, we get,
after simple transformations, the relation

/ez’“lz"|2d:c dt = —/((g,q") + (h, z")) dz dt. (4.18)
Q Q

Let us estimate the right-hand side of (4.18):

||e’°’z"||%z(q) < ce, (Jle**(Riy™ ! x curl u")“%z(Q)+

- s £13 -3 419
Hlem*ahl2 ) +erllle= 22, gy +lle~ o curl 72, ), H19)

where €1 > 0 is sufficiently small. Applying the Carleman estimate (2.42)
to the solution ¢" of (4.15), we obtain

exlle™** curl ¢"||7 0y < ce1(lle**2" 13 ) + e *h™ 12 00y)-  (4.20)
Inequalities (4.19), (4.20) yield the upper bound
lle**2"[12,¢qy < c(lle*(Ray™ ™" x curl w™)|IZ,q) + lle™**RlIZ,(q))- (4:21)
Taking into account (2.60), (2.10), (2.11), (3.16), we get
le**(Ray™ ™! x curl u")||,24(Q) <
< ef|e’*(T - t)lleynml”(Zwu)(Q))s“em(T — t)? curl w™||Z 0 7,r-1(ay) <
< cle®(T — 1) 2y |5 oy w0l 20y (4.22)
where & is defined by (3.25) and v is the initial condition (2.5).
By analogy with (4.22), we apply (2.42) and estimate A:
le**hll3,cq) < clle’*(T =)’y ey -
Nle™**(V(T ~ t)? curl p")l1 q)) <
< elle*®(T — )2y ey le** " IZ ,q)) <
< clle*(T - )" 25" ||Faey lIvollza(a)- (4.23)

Now (4.17) follows from (4.21), (4.22), (4.23).
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Since the equality R,y ~! = 0 holds in the neighborhood of 4G, we get,
as in (4.22), with due account of (3.11), the estimate of g defined by (4.16):

g e* 17 0 Wiy <
< clle*®(T - )P Ry ”(ZW(Z)(Q))3 fle**(T — t)*?p° curl “nﬂz(x)(g) <

< elle**(T = )" 25" | yey lvollFrscny- (4.24)

Taking into account (4.17), (4.24) and applying Lemmas 3.1-3.3 and
Theorem 3.1 to the solution z™ of (4.14), we get the following analog of
(3.21):

[le**(T - '5)12 curl z"||§1(,)(9) + ”2"”%2(9,301) <
< ‘Y(”.‘J”i;(e,m) + ”.‘Iluig(e,m)) <
< ellvollzrsoylle**(T ~ )25 g e)- (4.25)

Since 2" and y" are connected by the Weyl decomposition 2z = y™ + V1),
estimate (4.25) yields the following analog of (3.23) due to Theorem 3.2:

le**(T —~ )2y I} oy < »alle”®(T - )2y Y %@ (o) (4.26)
where 3¢4 — 0 as € — 0 and ¢ is defined by (4.9). Hence
lle**(T - t)wyn“%(z)(e) <e27"

and, therefore, a unique solution v of problem (1.13)—(1.15) exists. More-
over,

lle*®(T — t)lzv“?{(,)(@) < 0. (4.27)

Estimate (4.27) implies the upper bound (1.10). O
As we can now show, Theorem 1.1 follows immediately from Theorem 1.2.
Proof of Theorem 1.1. Let v(t, z) be the solution of the problem (1.13)-
(1.15) constructed in the proof of Theorem 1.2. We can show that v(t, z) is

a solution of the Navier—Stokes equation (1.1) with a suitable Vp. Indeed,
(1.13) implies that

curl(8;v — Av — v x curlv) = 0 (4.28)
and (4.28) can be rewritten in the form
Oiv — Av — v x curlv = Vpy, (4.29)

where p; € L3(0,T; W2(Q2)) is a certain function. Now (1.1) follows from
(4.29), (1.12). Other assertions of Theorem 1.1 are obvious corollaries of
Theorem 1.2. O
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