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E F F E C T I V E L Y  I N F I N I T E  C L A S S E S  OF W E A K  
C O N S T R U C T I V I Z A T I O N S  OF M O D E L S  

S. S. Goncha rov*  UDC 517.15 

The study of computable classes of constructivizations is a central trend in the present-day constructive 

model theory [1-5]. The key pursuit in this direction is to construct numerations with specified properties, 

of which the most interesting is a uniform construction of an effective representation of a model, given its 

specification. The range of problems mentioned is of interest from the standpoint of both mathematical  

logic and foundations of the theory of information processing, which deals with the construction of semantics 

for specification and programming languages with abstract data  types. One of the main methods used to 

prove the infinity for classes of constructive models is based on proving that  they are effectively infinite. 

The concept of an effectively infinite class of constructivizations was introduced in [6], where it was 

used to provide a characterization of nonautostable models, to study the computabili ty of diverse classes of 

models, and to solve the problem of constructing a recursive model that  satisfies a given specification or has 

a specified decidable problem. The concept is closely related to studies dealing With algorithmic dimensions 

of models and with the description of models of infinite algorithmic dimension and of noncomputable classes 

of constructivizations [5-12]. 

In the present paper, we use the method to give a complete solution of the problem raised by Nurtazin 

in [12], which asks whether or not the class of weak constructivizations of strongly constructivizable models 

admitting weak constructivizations is computable. In [6], it was proved that  for 1-constructivizable models, 

the class of constructivizations that  are not 1-constructivizations is not computable if such a model has at 

least one constructivization that is not a 1-constructivization. The notion of n-constructivity, n E w, which 

is intermediate between constructivity and strong constructivity, was introduced in [13, 14]. 

We say that  a model (~J~, ~) of signature E is constructive of finite type n if it is n-constructive, i.e., for 

the enrichment ff)~* of ~9~ by the constants {c,, I n E N} such that the value of c,, in ~ "  is equal to ~(n), 

there exists an effective procedure verifying whether the formulas in F,~ (formulas with n alternations of 

quantifiers in prenex normal form) are true. 

The class of formulas in the signature EU{c,~ I n E N}, true in ff~*, is denoted by Th  (ff)~, v), and we write 

T l ~  ( ~ ,  ~) for the class of formulas in F,,, true in ff~*. A sequence of numerated models ( ~ ,  ~m'y(n, rn)) 
is called k-computable (strongly computable) if there exists an effective procedure enumerating all formulas 

from the corresponding set Wh~ ( ~ ,  ~m~,(n, m)) [Th (~ , , ,  ~rn'y(n, m))] uniformly in n. 

We note that  the notions of a 0-constructivization and a 0-constructive model are equivalent to the 

standard notions of a constructivization and a constructive model, respectively. To study the algorithmic 

properties of the class of formulas in the signature ~, U {c,,] n E N}, we fix a GSdel numbering [15]. 

The question of whether all constructivizations of a model are strong is closely related to the com- 

pleteness of the model; a similar connection exists between n-constructivity and n-completeness. Recall 
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that  if, for any formula ~ ( z 0 , . . . ,  z,~) in prenex normal form with at most ,~ alternations of quantifiers 

and for a tuple of dements  a o , . . . ,  a~  of ~ ,  the relation 9~l ~ ~v(ao,..., a,,,) implies that  there exists a 

3-formula ~b(z0,. . . ,  z,,,) for which ~l  ~ ~/(ao,..., a~) and ~ ~ ('¢zo,..., z,~)(~ --~ ~), such a model is 

called rt-comple~e [6]. 

In [6, 9], we asked if, for models having (rt + 1)-constructivizations, the class of constructivizations 

that are not (~t + 1)-constructivizations is effectively infinite. The question posed is connected to Nurtazin's 

problem on the noncomputability of the class of weak constructivizations for models having strong and weak 

constructivizations. In particular, in [9] the problem was positively solved for limit-rt-comple~e models, i.e., 

models that are n-complete in some finite enrichment by constants but are not (rt + 1)-complete in any such 

finite enrichment. 

We call a model ~J~ limi~-~-comple~e if, for any Tt, there exists a finite ,~-complete enrichment of ~ t  by 

constants, but there exists no finite complete enrichment by constants. A constructivization is said to be 

weak [12] if it is not strong. 

The results concerning the noncomputability of a class of weak constructivizations were announced in 

[6]. In [9], the fonowing theorem was proved. 

T H E O R E M .  If a model ~ is limit-rt-complete and has an (n + 1)-constructivization, then, given a 

computable class S of constructivizations of ~f~, we can effectively build a constructivization of ~JI that is 

not autoequivalent to any constructivization in S and is not an (rt + 1)-constructivization. 

At the same time, it is easy to see [6] that every constructivization of an rt-complete and rt- 

constructivizable model is an ,~-constructivization, and every constructivization of a complete and strongly 

constructivizable model is strong. Note also that a computable class of strong constructivizations (k- 

constructivizations) is not always strongly computable (k-computable). 

The present paper concludes our study of the class of weak constructivizations for strongly construc- 

tivizable models. We shall deal with constructivizations of limit-~-complete, strongly constructivizable 

models. 

Let us introduce some definitions and notation, which will be used below. The definitions and the main 

results developed in algorithm theory are borrowed from [16, 17], and in the constructive model theory - -  

from [15]. 
The set of natural numbers { 0 , . . . ,  n , . . . }  is denoted by N, and we often write ~ to denote a tuple of 

elements ( a0 , . . .  ,a,,). If we have (a0 , . . .  ,a,~) or a and some unary function 9, then 9(no,... ,a,~) or 9(a) 

will stand for the tuple (9(no),.. . ,  9(a~)). 
We say that  the function f :  N ~ N determines a,~ a,~tomorphism of the numerated model ( ~ ,  ~,) onto 

(~ , /~)  if the mapping ~ from ~0l to 9)l, induced by this function in such a way that  ~(~(,~)) = / ~ f ( r t )  for 

all rt, determines an automorphism of ~TJ~. 

For a formula ~(c0 , . . .  ,c,,) in the signature ~ U {c,~ I rt E N]- and for a partial function f : N --~ N, 

the formula obtained from ~(c0 , . . . ,  c,~) by replacing each occurrence of the constant c~ by cf( 0 is called 

an f-image in the model (~TJl, g) under the induced mapping from the numerated model ( ~ ,  r,) to (~TJI, g). 

Similarly, every formula obtained from ~(co,. . . ,  c,~) by replacing each occurrence of ci by cj such that  

/ ( j )  = i is called an f-pveimage in the model ( ~ ,  ~t) under the induced mapping from (~7~t, ~) to (~ , /~) .  If 

it is clear from the context which model is a "transmitter" and which one is a "receiver," the phrase "under 

the induced mapping from the numerated model (~TJl, r,) to (~Irt, g)" will be omitted. 

If ~ (co , . . .  ,c,~,~,9) is a formula in the signature r, U {c,,] ,t E N} with tuples of variables and con- 

stants ~, '3, and • = ( Z i o , . . . , z ~ ) ,  and rh is a set of indices (mo , . . . , r n~) ,  by ~(co . . . .  ,c,,,c~,'3) and 
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[~(c0 , . . . ,  ca, ~, 9)]~.,, we denote the formula obtained from ~O(co,..., c,,, ~, 9) by replacing all free occur- 

rences of z~, by cm.. 

The main result that  concludes our study of computable classes of weak constructivizations is the 

following: 

T H E O R E M  1. If a model ~ is limit-w-complete and has a strong constructivization, then, given any 

computable class S of constructivizations of S~, we can effectively build a constructivization of S~I that  is 

not autoequivalent to any constructivization in S and is not strong. 

P r o o f .  If v is a strong constructivization of ~ ,  then (S~l, v) is a strongly constructive model such that  

for any n, the model (S~l, a 0 , . . . ,  a~) is n-complete for some enrichment by the constants a 0 , . . . ,  a,~, but 

is not complete in any such finite enrichment. Without loss of generality, we may assume that  the enriched 

model ( ~ , a 0 , . . .  ,a ,¢) is 2-complete, and v(~) : a~ for i < n'. 

Let (S,7)  be a computable class of constructivizations of ~ ,  where grtT(m, n) :  N ~ In [  is a construc- 

tivization for which, given m, we can effectively construct an algorithm verifying the t ruth of quantifier-free 

formulas at the elements of ~ ,  given a formula and a set of numbers of these elements. 

In our construction, we also need a universal computable function f,~(z) for the class of unary partial 

recursive functions [16]; moreover, the v a l u e / t ( z )  is defined and equals /,~(z) if f , ( z )  is computed in no 

more than t steps and n, z < t; otherwise, f~(z)  is undefined. 

We proceed step-by-step to define the following: a partial numeration ~t t of ~ ,  a function ~t which 

reduces this numeration to a strong constructivization v, and a partial diagram D t of ~ft consisting of 

finitely many quantifier-free formulas in the signature E U {co , . . . ,  c , , . . . } .  At any step t, for every formula 

~v(c0,..., c~) in D t, a formula ~o(z0, . . . ,  z~) is satisfied in ~ at the tuple of elements (~ t (0 ) , . . . ,  #t(k)), and 

/.tt(s) : ~,/~t(s). Note that  since v is a strong constructivization, for any number t, tuple ~ ,  and formula ~b, 

we can effectively determine whether or not ~ is satisfied in S9~ at the e lements /~t(~) .  

In the construction, we will use markers of two kinds: [m, k], k, rn ~ ~ and [m], m ~ ~, [ -  1], which are 

attached to #-numbers at step t. A marker of the first kind ~ [m, k] - -  is applied to violate the reducibility 

to )tsT(rn, s) of the numeration # constructed via the function f~; a marker of the second kind - -  [m] - -  is 

used to violate the decision procedure for Th ($3~, ~t), defined by the function f,~; finally, [-1] labels a set 

of numbers { 0 , . . . ,  n '} to the elements of which it is attached constantly. 

The pairs (Vg~(~, ~, 9), r'no) and the label • will be attached to [m, kl; with each such [m, k] having an 

attached pair (Vg~(~, ~, 9), ~o)  numbered mo we associate the sequence of triples 

where the pairs 

(v~@(e ~, ~, 9~), ~, t~), ..., (v~' ~(e', ~', 9'), ~,, t,), 

(v~ ~,(e ~, ~, 9~), ml),..., (v~' ~,(e', ~', #'), ~,) 
have respective numbers r n l , . . . ,  rn~ and rn1 , . . . ,  m~ less than rno. 

The number of alternations of quantifiers in Vg~(~ , ~, 9) is called the complez~.y of the formula 

Vg~(~, ~, 9) and the pair (¥9~(~, ~, 9), r~to), attached to [m, k]. 
The pair (Vg~(~, ~, 9 ) , r  h o) on [m, k] is chosen to be a formula that  is potentially true at a tuple 

7(rn, f k ( ~ ,  ~to)) in the model (~f~,~nT(m, n)), where r~ are indices of constants from ~, and we will construct 

the numeration p in such a way that Vg~(~, ;~, 9) is false in the model at a tuple of elements numbered r ~ .  

For the formula V9~(£', ~, 9), however, we cannot effectively verify whether it is true in (9Y~, AnT(m, rt)) at 

the elements numbered f~ (~ ,  r~o). What we can do is to determine at some step, under some additional 

conditions, that  it is false. Let (Vg '~ (~ ' , $ ' , 9 ' ) , r~ , )  be a pair with number less than mo such that  we 
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cannot identify its falsity, and at  some step t,  < t, it will be impossible to force (V!Ts ~(~s  2,/~s),  rT~,) to be 

false at rYz0 in the model (gR, v) under construction. Then, with [m, k] to which the pair (V0~(~, 2, 0), tyro) 

is attached, we associate the triple (VO~&(~ ~, ~',  ~'),  rh,, L).  Note that  the existence of a tuple at which 

3O'Dt'(~k,~,O ') is true and V~'~(~.k,~,O) is false means that the function fk cannot determine an isomor- 

phism of (~ , /~)  onto (99I, An "r(m, n)). However, at step t, given a fixed set of numbers r~ and a natural 

number n, we cannot determine whether or not the model (SR, 7(m, r~)) is n-complete. As opposed to 

the case of an n-complete model [9], here attaching a pair to [m, k] does not guarantee the following. If a 

formula of the pair is not true, and at the elements of r~, fk determines a partial isomorphism extended to 

the automorpkism, or if a wrong pair is chosen, which does not violate the reducibility, then the falsity of 

the formula can be identified. Therefore, we attach to [m, k] several markers, but  each of the succeeding 

pairs on [m, k] contains a formula of lower complexity, i.e., markers will be attached in order of decreasing 

complexity. The markers attached to the pairs are ordered as follows: markers of different complexity 

are ordered by complexity; the ordering of markers of equal complexity respects the numeration of pairs, 

consisting of a Gbdel number of a formula and a number of the set of numbers for the corresponding marker. 

For our purposes, we need a procedure that correctly verifies whether the formulas are true in the models 

(fiR, ~n'y(m, n)) for all important  cases. 

Let us denote this procedure by F(r~, m, k, s, z, t). For s E N, we define it as an "approximation" of the 

truth verification for formulas in Th,  (fiR, AyT(m, y)) with respect to the function fk; the latter determines 

a partial isomorphic embedding at a tuple of elements rh for which f~ is assumed to be defined. 

For k = 0, the value of F(rh, m, k, 0, z, t) is defined if f~ is defined for the elements of rh and determines 

a partial isomorphic embedding of the model (fiR,#t) in (fiR, AnT(m, n)); F(r~, m, k, 0, z , t )  : 1 if z is a 

Gfdel  number of a quantifier-free formula in the signature ~ U {co, c l , . . . ,  cn,...}, and the formula 

, C O , . . . , C o  ' 

~37(m , 0 ) , . . . ,  7(m, c~) 

is true in fiR; otherwise, F(rh, m, s, 0, z, t) = 0. 

Suppose that,  for p < k, the values of F(r~,m,s,p,z,t) are defined. We define the values for 

F(r7% m, s, k + 1, z, t) as follows. First, consider the set r~ of/z-numbers.  If f~ is not defined at  least 

for one element of r~ or does not determine a partial isomorphic embedding of (gYt,/~t) in (fiR, ~n'v(m, n)), 
then, for all z, the value of F(r~, m, s, k + 1, z, t) is undefined. Otherwise we consider the following four 

c a s e s .  

Case 1. For the tuple (m, s, k + 1, z , t ,  r~), one of the following conditions holds: 

(1) z is a G6del number of a formula of the form 3z0 , . . . ,  zq~, where ~ has at most k alternations of 

quanth~ers, and for some indices i0 , . . - ,  iq and the G6del number z of the formula 

. Z 0 , . . . , Z q  
~PJCio, • • • ,  Ciq ' 

we have F ( r ~ ,  m ,  k, s, z ,  t)  = 1. 

(2)  z is a Ggdel number of Vz0, . . . ,  z~a, where ~ has at most k alternations of quantifiers; there exists 

a 3-formula 
! 

3Yo,...,Ymo ¢(Z'o,...,zk, Zo,"',z,n,,Yo,"',Ymo) 

such that  its G6del number is less than t; there exists a tuple so , . . . ,  Smo < t for which 

r l), so) , . . . ,  S,,o)), 
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and the formula 

1 . . . ,  . . . .  , ql~ 'J~,~u j  / 

is true in ( ~ ,  v~t (~) ) ,  where ~ is the set of indices of constants in the formula Vz0,. . . ,  zqm. 

Case 2. For the tuple (m, s, k + 1, z, t, ~ ) ,  one of the following conditions holds: 
1) y is a aBdel number of the formula in prenex normal form, obtMned by the standard reducing 

procedure from the negation of the formula with Gbdel number m, which has at most k ÷ 1 alternations of 

quantifiers in prenex normal form, and case 1 holds for F(r~, m, s, k + 1, y, t). 

2) y is a G6del number of a formula with more than k ÷ 1 alternations of quantifiers. 

In what follows, we denote by --,z a Gbdel number of the formula in prenex normal form, obtained from 

the formula with Gbdel number m using the standard reducing procedure. 

Case 3. For (m, s, k ÷ 1, z, t, rh), cases 1 and 2 fail. 

Case 4. For (m , s , k  ÷ 1, z , t , r~) ,  cases 1 and 2 hold. 

If, for (m , s , k  ÷ 1, z , t ,  rh), case 1 holds but case 2 fails, we put  g ( r ~ , m , s , k  ÷ 1 ,z , t )  = 1. If, to 

the contrary, case 2 holds but case 1 does not, we put F(fn,  m , s , k  ÷ 1, z,~) = 0. If case 3 holds, put  

F(m, s, k + 1, z, t, rh) - 1 (an undefined value). If case 4 is satisfied, put  g(rh, m, s, k ÷ 1, z, t) -- T Can 

overdefined value). Consider the value of the function F(rh, m, s, k ÷ 1, z, t). Suppose that  the tuple rh of 

dements  is not specified. Then such a tuple should be assumed to consist of those dements  which, at step 

t, either have markers less than [m, k] or attached to them is [m, k] itself, with markers of higher complexity 

than the candidate considered. 

To define the ordering of type w on the set of markers of the first and the second kinds, with [m, k] we 

associate the Gbdel number of the set (m, k), and with [m] the number of the tuple (rn); [-1] is the least 

marker. 

There is no loss of generality in assuming that  the constructivizations AnT(rn , n) for any rn E N and v 

are one-to-one [18]. 

We proceed to define our construction by steps. 

Step 0. De ne = for i = k, = i for i _< k, O ° , ( m ,  k, s, 0) = 0, a t tach  [ -1 ]  to  i _< k. 

Step T ÷ 1 = 2t ÷ 1. We verify if there exists a marker M with number less than t and such that  one 

of the following cases holds: 

A. Jh r is equal to [rn, ]e] and is not labeled by , .  We have two possibilities. 

Subcase (1): One of the following is satisfied: 

(1.1) The mapping An(f~ '+l ( f i t ) - l (n) )  does not determine an isomorphic embedding of a submodel of 

fl)~in ffOL 

(1.2) For z < t a number of a formula in F,,  either F(rh, m, k, s , z , t )  = T (i.e., an overdefined value) 

for some s, or the value of F ( ~ ,  m, k, s, z, t) is not equal to the t ruth value of an f~-preimage, where ~ is 

defined at the elements of rh. 

(1.3) M has a marker (Vy0,. . . ,  Yk ~(~, ~0, Y), rh~) with number p of complexity n + 1, and associated 

with them is a triple (Vyo, . . . ,  y~ 4~(e, ~0, ~), r ~ ,  to) with number mo of the pair (Vyo, . . . ,  y~ ~(~, ~o, ~), rho) 

less than p. Moreover, the function f~t is defined at r ~  and there exist tuples rh, h consisting of elements 

less than t, n o , . . . ,  n,  < t, such that for a Gbdel number G~, of the formula 

]c, r., Y o , . . . , Y , ,  
"~ "~ ] 

~'~( ,~o) ,  ~-,~, C , * o , . . . , c , , . ,  
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we have F(rh, m, k, n, G~,  t) = 1, and the formula 

[&DtO/~ e e no,co,c, 
~ , 0 ,  iJJ2,~o,2j. 

is true in the constructive model (fiR,)~nT(m,n)) at the elements with numbers fk(rho), rh, h. Here rho 

are indices of constants from ~; mo is a tuple of variables with the same indices as in ~; the indices of 

constants from ~ consist of those elements which either have markers less than M, or they have M to which 

a marker of complexity higher than n is attached. The set ~' of all constants of the formulas in D 2t is 
divided into three subsets: ~ are defined immediately above; Co are constants with indices from - ' • m 0 ,  C'I a r e  

all the remaining constants. In the tuples e and c, zo and co, zl  and cl, the corresponding variables and 

constants have equal indices. 

(1.4) M has a marker (Vyo, . . . ,  y} ~(e, eo, Y), r ~ )  numbered p of complexity n + 1. Moreover, at step 

T, associated to (Vy0, . . . ,  Yk ~(e, eo, Y), m~) is a subformula t(M)(e,  ~, Y) of Vy~(e, e, Y), obtained by the 

elimination of quantifiers Vy0, . . .  , Yk, and a tuple of elements rh0 T expanding rh o and satisfying the following 

conditions. The formula -~@(~, ~-o, 9) is true in (fiR, ]~T) at the elements /zT(rhoT); fT  is defined for rhoT; for 

a GSdel number G of the formula 
e, (e, 9), [.] 
cl~(.~o), c1.(,~g), 

F(rh', m, k, n, G, t) -- I, with some tuple rh' for the elements of which fT is defined. Here ~ are indices 

of constants from ~, consisting of those elements which have markers less than M and [rn, k], with markers 

whose complexity is higher than the complexity of the formula Vy0, . . . ,  yk ~(~, ~o, 9). 

We consider the second possibility. 

Subcase (2): (1) fails; we have 

Rang f~ ~ Dom f~ _D {0 , . . . ,  r(m, k, 0, 2t)}, 

and there exist numbers n, p < T such that one of the conditions (2.1) or (2.2) is satisfied. 

(2.1) M is marked by the pair (Vyo,...  ,y~ +'(~, ~ , 9 ' ) , ~ )  with number rn~ of complexity n + 1, and 

there exists a tuple n o , . . . ,  n, _< t such that for a GSdel number G,~ of the formula 

i e,~&,~o,..-,y,, 

a c/~ ('~,'~o), C'*o' " "", c,~., 

we have F(r-n' ,m,k,n,G~,t)  - 1 for some tuple ~ ' ,  for the elements of which f T  is defined. Here rh are 

indices of constants in the tuple ~, with markers less than M. 

(2.2) M either is not marked or has a marker with number i > p of complexity n +  1. In addition, for the 

markers on Ira, k] with numbers less than p, the lowest complexity of a marker on M is higher than n + 1. 

For any ~ < ,~ and ~ < ~(m, } , ~ , t ) ,  where ~ is a number of an ~-formula, the v ~ u e  o t F ( ~ , . ~ ,  }, ~, ~ , t )  is 

defined and equals 0 or 1. Further, suppose that a number of (Vy0,. • •, y~ ~(8, ~, 9), ,~o) is equal to p, and its 

complexity - -  to n + l .  Assume that  there are no tuples fi', n ~ , . . . ,  n~, _~ t such that  F(rh, rn, k, n, G v ' , t )  : 0, 

where G~' is a GSdel number of the formula 

] ~, ~0, Y0,- • •, Yk', 

- t C f L J c1~(,~,,~) , c . o , . . .  , ,q.,, 
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I I "r~ l 
Fin=ny, let F(rT% m, k, n,G'~p,~) = 1 for all ~', n~ , . . . ,  n k, ~ t such that  Gp _ r(m, k, 2~) and let the 

following formula be true in (~Jl, #2t): 

2 t  ~x g o  

where the set g~ of all constants of the formulas in D 2t is divided into three subsets: ~0 are the constants 

whose indices lie in rT~; t are the constants whose indices either have markers less than M or M with a 

pair of complexity higher than n + 1; tx are all the remaining constants. The corresponding indices in ~1 

and cl coincide; the tuples t0 and t,% are equal. 

We proceed to condition B. 

B. M = [k], is not labeled by *, and satisfies the following condition: 

There exists G _ t such that  the function f~t is defined at the G6del number G of the formula Vzo, . . . ,  z~ 

• 0(~, $) in Thn (~rJl,/~); its value is 1. Suppose that ( 3 ~ ) ( &  DT(~o, ~, 9) & (B$) -~o(~o, ~, $) is satisfied in 

(~y~,/~t) at the tuple to, consisting of constants whose indices have markers less than M; • are variables 

with indices i for which the function/~2t is defined, but ci is not in to. 

If such an M does not exist, we proceed to the final stage Z of the step, described below. 

If such markers M exist, among them we choose one that is least. 

If, for M, subcase (1) of A holds, and M = [m, k], then we mark by M all the numbers i for which 

#2t(i) is defined, attach • to M, and pass to the final stage Z of the step. 

If, for M, subcase (2) of A holds, we choose the least p satisfying (2). Suppose that  condition (2.1) 
I --I  -- - !  holds for M and the pair (Vy0,. . . ,  y~ ~'(~, z 0, ~/), trio) with number ra~ of complexity n + 1. Then we must 

remove all markers of complexity at most n + 1 from M and remove M with these markers from all numbers 

to which they are attached. Define r(ra, k, s, 2~ + 1) = r(m, h, s, 2~) + 1 for s _< n and pass to the final stage 

(z). 
If, for M, conditions (2.2) are satisfied, we consider the pair /VU0,..., ~/k ~(~, ~, 9), r~) with number p 

for which these conditions are met. By (2.2), the formula 

holds in ( ~ ,  #2t), provided the constants are appropriately divided into groups to and tz. We find the 

tuples (~0, ~t ,  ~2) such that  in (~3~, u) the following formula is true: 

2 t  "~xffo c 

under the interpretation of the variables (~o, ~, ~t, 9) by the elements (v/z2*(~), v~o, v ~ ,  v ~ ) ,  where 

n, m, and rat are indices of constants from c, co, and i t ,  respectively. We extend /2~t~ to #', so that  

/2t(~,ff~t) = (fi0, ~1), and then extend/~' to/2 ~t+t, so that 

Rang/2 ~~+1 ~ Dora/2 ~+1 D { 0 , . . . ,  2t + 1). 

Now, define #2~+1 = u/2~+t. 

Attach M with (V~/o,..., ~ ~(~, ~, 9), ~ )  to all the numbers in Dom/~2t+l; remove all markers greater 

than M and remove from them all labels and associated triples. Attach the pair (Vvo,. . . ,  V~ ~(t ,  ~, 9), r~) 

to M. Further, with each pair (Vv~,... ,  V~ @'(t, ~, f/), r~ )  of complexity n + 1 with a number less than p, 
we associate the triple 

(V~4),..., y', '~'(e, ~, 99, '~ ,  e), 
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where 4' < T is the least number such that the following formula is true in 9)l: 

V~ (39&Dt ' (~o , e ,9 )  ~ V2 ~(eo, e,2)) ,  

with the constants replaced by appropriate variables (if, of course, such t '  exists). As t (M)  we consider the 

formula ~(~, ~, Y) and take rho T+I to be equal to the tuple p~+l(no, nl). For all the other pairs attached to 

markers of the formula, we use the same tuples as at stage T and pass to the final stage (Z). 

If M is a marker of the second kind M = [k] satisfying case B, we consider the formula Vz0 , . . . , z ,  

• (~,2) and the function f2t,  for which this case holds. Next, choose the tuples ~o, rhl, ~2,  ~3  such that 

no is the set of indices from co, and the formula 

is true if the variables ~o, ~, 9, and ~ are replaced by the elements ~,p'(7~no), v(~zl), u(~2),  and v(~3) ,  

respectively. Here Zo have the same indices as ~o, and nl  is the tuple of numbers, not lying in rio, for which 

p2,+1 is defined. Consider p2~+l _D p2t satisfying p2'+l(n~) = m i' for n~ and rr~ such that  fil = (rio, . . .  , e~), 

rh I -- (m ~ , . . . ,  m~) Rang p2t+l D fi0 U r7 h U r?~ 2 U rh3, and e2, fi3 are the tuples such that 

= a n d  = 

Attach M to all the elements in Dom# :~+~. Attach Vzo, . . . , z , ~ ( ~ , 2 )  to M.  Remove all the markers 

greater than M and remove from them all labels and associated triples. Define #2z+~ __ ~,p2z+~ and pass to 

the next step. 

Remove all markers greater than M and remove all labels from them. 

Step T + 1 = 24 + 2. We find the quantifier-free sentence ~ with the least number such that  ~o ~ D 2~+~ 

and - ~  ~ D 2z+~. If the function ~2z+l is defined for indices of all the variables in ~, then we put D 2~+2 - 

D 2~+~ U {~o} if ~ is true in (ff)~,/~2~+~). If not, put D 2z+2 - D 2'+x tA { - ~ }  and pass to the final stage (Z). 

Otherwise we pass immediately to the final stage (Z) of the step. 

F I N A L  S T A G E  Z 

If pT+l is not yet defined, consider the extension/2 T+I of the map pT such that  

Dom/2r+l  A Rang pT~-I __~ {0,. . . ,  T-~- 1}. 

Put  ~ r+ l  __ v/2r+l.  For all pairs on the markers, the formulas and tuples remain t h e s a m e  as at stage T. 

Let D r + l  - DT; if r(rn', k', s, T + 1) is still undefined, we put r(m',  k', s, T + 1) = r (m' ,  k', s, T) and pass 

to the next step. 

The description of the construction is completed. We are going to consider some of its properties. 

Note that  if, after step to, no markers less than Ira, k] are either attached or removed and the pair Ira, k] 

marked by (Vyo, . . . ,yk  ~(~,~,9),r7~o) constantly stays at the elements of ~ ,  then, for any s, 4 > 40 and 

z, if F ( ~ , m , k , s , z , 4 )  : 1, then, for 4' > 4, F(~,rn ,  k,s ,z ,4')  is equal to 1 or T;  if F(~ ,rn ,  k ,s ,z ,4)  : T,  
then, for any t '  > t, F(r~n,m, k, s, z,4') equals T. 

L E M M A  1. The family of formulas {Dr[ t 6 w} has the following properties: 

1) D t is consistent; 
2) D t C_ Dr+l; 
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3) for every quantifier-free sentence ~o in the signature E*, there exists a step t such that ~o G D t or 
-~ 6 Dr; 

4) ~o&¢EUD ~ ¢>~6UDtand¢6UD~; 

5) %o 6 UD* ¢~ -,~ ~ UD'; 

6) -~o 6 UD' ¢> ~o ~ UD'; 

7) ~, V ,~ 6 UD ~ ¢> ~o 6 UD' or ¢ 6 UDt; 

8) ~ --~ ¢ 6 UD' ¢~ ~b 6 UD* or -~, 6 UD'; 

9) ~ ~ q 6 UD t and q ~, p 6 UD t ::~ t ~ p 6 UDt; 

i0) t ~ t 6 uDt; 

II) t ~ q 6 uD t ~ q ~ t 6 uD'; 

12) iftl ~. ql,...,t, __ q,~ 6 UD' and P(tl,...,t,) 6 UD', then P(q~,...,q,) 6 UD'. 
The P r o o f  follows immediately from the definition of steps of type 2~ + 2. 

We define the model 9X(D), taking the quotient set M(D) ~ {c0,. . .  , c , , .  . . } /  .m, where ci ~ cj if 

= cj 6 UD t, as the universe. 

Evidently, the lemma implies that  ~ is indeed an equivalence relation on C = {co , . . . ,  c,~,...}. 

We say that  a formula P ( Q / ~ , . . . ,  t,~/~) is true in 9X(D) if P ( Q , . . . ,  t , )  6 UD t. From the properties 

of the equality relation it follows that  the definition does not depend on the choice of a representative. 

ca is interpreted by the equivalence class c/~.. Thus, we obtain a model 9X(D) of the signature ~* = 

]~ u {co , . . . ,  c~, . . .} .  Define/~(n) ~ c,,/,-~. Since each step of the construction is effective, it is easy to see 

that  the sequence {Dt[t  6 N} is computable, and we have an effective procedure to verify the property 

9Yt(D) ~ P(vnl,..., vnt). 
Indeed, since ~)X(D) ~ e (vn l , . . .  ,vn~) <o (3t)P(c,~,...,c,,~) 6 D t ¢~ (Vt)(--,P(c,,,...,c,) ~ D'), the 

property mentioned is decidable. 

Our present goal is to show that  the model constructed is isomorphic to 9Jl, and that /~  is the desired 

numeration. 

The next two lemmas follow readily from the definition of step 2t + 1. 

L E M M A  2. If the marker M = [m, k] is attached infinitely many times, then lira r(m, k, 0, t) = oo; 

hence fk is a total function and Rang fk = N. 

L E M M A  3. If the marker M = Ira, k] is attached infinitely many times, then the function fk determines 

an isomorphism from (ffY~(D),/~) to (ffJl, AnT(m, n)). 

L E M M A  4. Suppose that  [rn, k] is the least pair such that [rn, k] is attached infinitely many times 

and the markers of complexity n + 1 and higher are attached to [rn, k] infinitely many times, whereas 

all markers of lower complexity are attached to Ira, k] finitely many times. Let to be a step such that,  

after to, no markers less than [rn, k] are either attached or removed and no markers of complexity lower 

than n + 1 are either attached to or removed from [rn, k]. Let rho be the tuple of all elements at which 

[rn, k] with some marker or some smaller marker stay constantly after step to. Then, for all t > to, ArM 

F(zho, rn, k , s , z , t )  is a well-defined function for s S n + 1, i.e., for each s-formula ~o with number z, 

F(rizo, m, k, s, z, t) = T does not hold; if ~o is true in (gJI, AnT(m, n)), then F(~9*o, m, k, s, z, t) equals 2- or 

1, and if it is false, then F(rho, m, k, s, z, t) equals .l_ or 0. But if F(rho, m, k, s, z, t) 6 {0, 1}, then, for all 

t '  > t, we have F(z7~o, rn, k, s, z, t) = F(r'no, rn, k, s, z, f ) .  Moreover, for any s-formula ~o with number z such 

that  s _< n + 1, there exists a step t at which F(~ho,rn, h, s, z , t )  6 {0, 1}, and each marker can be attached 

to [m, k] a finite number of times. 
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The P r o o f  follows immediately from the definition of a counter, namely from the fact that the markers 

of complexity at least n + 1 are attached to [ra, k] infinitely many times. In this case, r ~  is taken to be a 

stable set of numbers, and we can remove a marker from [m, k] if either some smaller marker is attached or 

the corresponding formula is identified as false, which ensures that it cannot be used twice. 

L E M M A  5. If the conditions of Lemma 4 are met, then the model (9"JI, 7(m, fk(rTzo))) is (n + 1)- 

complete. 

The P r o o f  follows by contradiction. Let s be the least number less than n + 1  and such that 

( ~ , 7 ( m ,  fk(rTao))) is not (s q- !)-complete. We choose an (s + l)-formula V0 ~(g0,~,0)  and a tuple a, 

so that  this formula is true at ~ when the constants go are interpreted by the elements of 7(m, fk (r?zo)) and 

there does not exist a 3-formula ~(go, ~) such that ~(go,*) is true at a, whereas W(~(go,  ~) ~ VO~(go, ~, 0)) 

is true in (gYt,'r(rn, fk(r'no)). 

Suppose that  r~ is a tuple for which 7(m, fk(r~)) = 5, and g is a tuple of constants with indices 

from r~. Now, for the fk-image of the (s + 1)-formula (V/7)ff(g0, g, ~3) which has number G and is true in 

(~,AzT(m,z)), there exists a step tl  > to such that F(r~,m,h,s + 1, G, t l )  = 1; the existence follows 

from the fact that  AzAt F(rTzo, m, k, s + 1, z, t) is well defined. By definition, this means that  there exists a 

q-formula ~.b(g0, ~), which is true at 5 when the constants g0 are interpreted by the elements ofT(m,  f~(rizo)) 

and the formula Vz(ff(g0, ~) ~ V~2~I'(g0, ~, '3)) is true in (9X, ugt(mo)). The argument given above implies, 

however, that  the (s + 1)-formula Vz($(g0, ~) ~ X/9O(g0, ~, '3)) is false in (gJI, 3,(m, fk ( r~ ) ) ) ;  hence, for the 

number G .~ of its fk-preimage, there will exist a step t > to such that  F(r~o,m,k,s + 1, G~,t) = 0. But 

since Vz(ff(go, ~) --, V~2'I'(e0, ~, '3)) is true in (3Yt, u/2t(mo)), it follows that * should be a t tached to Ira, k], a 

contradiction. 

L E M M A  6. If the conditions of Lemma 4 are met, then markers of arbitrarily high complexity cannot 

be attached to [m, k]. 

P r o o f .  By Lemma 5, if markers of arbitrarily high complexity are attached, then the model 

(DI, 'r(m, f k ( r ~ ) ) )  is (n + 1)-complete for any n, which is impossible by the assumption Of the theorem. 

L E M M A  7. If the conditions of Lemma 4 are met, we can find the greatest number n such that  the 

markers of complexity n + 1 are attached to [m, k] infinitely many times. 

The P r o o f  follows from Lemma 6. 

L E M M A  8. Suppose that the conditions of Lemma 4 are met, and after step t l  > to, no marker 

of complexity higher than n + 1 is either attached to or removed from Ira, k]. Let rizo be the tuple of all 

numbers which either have markers less than [m, k], or [rn, k] with some marker is attached to them and 

never removed. Let fk be a total function, Rangf~ = N, and the model (9X,-r(rn, f~ ( r~ ) ) )  be (r + 1)- 

complete for r >__ n. Then, for any number z of an s-formula, s < r + 1, there exists a step t2 >__ ~0 such that  

Vt > t~ F(m, k, n, z, t) = F(m, k, n, z, t~.) ~ {0, 1}; if F(m, k, n, z , t )  = 1, then the corresponding formula is 

true, and ifF(m,k,n,z,t) = 0, then it is false. 

P r o o f .  We will use Lemmas 5 and 7 to prove that the conclusion of this lemma is met for n + l  < s _< r + l .  

Suppose that  s is the least number for which the desired conclusion fails with formulas of complexity 

s + 1 _< r + 1. It suffices to show that for the number G of any formula ~b of complexity s + 1, there exists a 

step t such that  F(ra,  k, n, z, t) ~ {0, 1} and this value coincides with the truth value of ~b. By the definition 

of F, the value of F cannot vary after that step, because otherwise it would equal T,  from which it follows 

that Ira, k] will not be used again, a contradiction. 

Let a formula ¢ be false in (gX, Az'r(rn, z)) and let it be of the form ~/~36/(g0, g, ~3). Since the ~b-formula is 

false, there exists a tuple ~ such that  the formula -~(go,  g, g') with number G is true in 9X. But -~xY(g0, g, g') 
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is now an s-formula, where F is well defined. 

If the formula ~ with number z is false, has form 39@(e, ~), and is true for the f~-preimage, then there 

exists a tuple ~ for which q~(e, e,) is satisfied. But then that formula will be false for the fk-preimage of this 

~, which, by the induction hypothesis, is identified by the procedure F. In this case, however, • is attached 

to Ira, k], and after that  step, it cannot be attached anywhere, a contradiction. In the opposite case, the 

negation of the formula in question will be true for the fk-preimage and, by construction, the identification 

of falsity for ~o reduces to finding that its negation is true; this case will be treated below. 

Let a formula ¢ be true in (fix, AzT(m, z)). Suppose that  it has the form V~@(~, g). Since the model 

(~)~, rho) is (r + 1)-complete, there exists a 3-formnla $ which is true at the given tuple, whence the formula 

V~k~(~, ~) follows. That  6 is true will be identified after some step. It remains to prove that the/k-preimage 

of the implication 

V~ (5(~0, ~) -~ V ~ ( ~ ,  ~)) 

is true in (fiX, #). Suppose not. Consider the tuple e' for which the fk-prelmage is false. Then the procedure 

F determines that  the s-formula q~(~, if) is true at the f~-image of ~' and, therefore, the negated formula 

will be true at the fk-preimage. In this case, * is attached to [m, k], after which [rn, k] can no longer be 

attached elsewhere, a contradiction. Thus, the procedure F determines that  a formula of the form V~@(e, ~) 
is true. 

If the formula ~ with number z has the form V ~ ( £ ,  ~), then the fact that  it is true implies that there 

exists a tuple ~ for which ~(~, ~') is satisfied; this allows us to define the value of F for this formula. 

L E M M A  9. If all the markers less than M -- [rn, k] are attached and removed finitely many times, and 

if labels are attached to each of these markers finitely many times, then both M and the labels attached to 

M can be used only finitely many times. 

P roof .  Suppose, to the contrary, that M is attached infinitely many times. Consider step t0, after 

which no markers less than M axe either attached or removed. Assume that  no labels can be attached to 

or removed from these markers. Since only a finite number of labels can constantly stay on M, we consider 

a step Q > g0 after which no labels of this type can be attached to or removed from M. Let rho be all 

numbers such that,  at step Q, they either have markers less than M, or M with some marker constantly 

stays on them. 

Note that, after step Q, * cannot be attached to M, since it can be removed only in the case where a 

smaller marker is attached to M. Therefore, whenever M is attached after some step, it will have some 

pair attached. The conditions of Lemma 4 are thus met for "Ira, k]. Now, by Lemma 7 there exist a step 

t2 > Q and a greatest number n such that, after step t2, no markers of complexity n + 1 (and higher) can 

be attached to M, whereas the markers of complexity n are attached infinitely many times. By Lemma 6, 

there exists an r _~ n such that  the model (fix,7(m,/~(r7~o))) is r-complete but not (r + 1)-complete. By 

Lemma 8, the procedure F is defined for numbers of all s-sentences with s < r. 

Consider the enrichment of fix by the elements ;~0 = 7(rn, h(rho)) .  We know that  (fix,7(m, h(rT~o))) is 

not (r + 1)-complete by assumption, from which it follows that there exist elements a and an (r + 1)-formula 

V~@(e, e, 9) satisfying ~ ~ V~q?(~f(rn, h(rT~o), a, 9)). At the same time, if, for every ~-formula ~, we have 

fix ~ ~o(7(m, h(r7~),  a)), then there exists a tuple h such that fix ~ ~(7(rn, h(rho) ,  h)) but the formula 

is in fix. 

Now, we choose the tuple rh such that 7(rn, f~(rh)) = ~ and consider step Q > ~o at which the function 

f~' is defined for all numbers from (rho, ~ ) .  
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We observe that  each pair can be attached to M only a finite number of times. Indeed, the pair is removed 

only when a pair with a smaller number is attached, or if the corresponding formula -~¢2(7(m, fk(rho)), 

" r (m, /k (~) ) ,7 ( rn ,  ~)) with number Ga is true in 9)I and the procedure AzAt g(m,  k, n, Gr,,t) yields 1 at 

some step. This ensures that  the pair (Vg@(g0, ~, 9), ~ )  can no longer be attached after that step. 

Consider the pair (Vg@(eo, ~, 9), rh) numbered too, where eo is a tuple of constants with indices from 

#to. Choose a step t2 > t l  at which a pair with a number greater than the number of (Vg@(~0, $, 9), ~ )  is 

attached to M and after which to M we can attach only pairs with numbers greater than m0. 

By Lemma 8, the procedure AzAt F(m, k, s,z, t) ,  s < n, is well defined for all t > to. This implies that 

when M is attached again at some odd step tz > t2, for the pair (VgO(eo , ~.,9), ~)  we have the following 

cases: all the conditions for (Vg@(~0, $, 9), ~ )  to be attached to M are satisfied, which is impossible by 

assumption; a pair with a smaller number of complexity at most r + 1 is attached to (Vg@(~0, ~, 9), rh); or 

there exists a step t < t3 such that the triple (V9@(e0, $, 9), ~ ,  t) is associated with M and with the pair 

attached to M. If, in the first case, the corresponding formula is false, its falsity will be determined by 

Lemma 9. If the formula is true, then, by definition, we can find its f~-preimage that is false. Whenever 

the fk-image of this preimage is identified to be true, • is attached to [m, k], and the l a t t e r  can no longer 

be attached elsewhere, a contradiction. In the second case, the formula 

(V~) ((92) (& Dt(~o, ~, 2)) ---* (V9)@(~o, $, 9)) 

must be true in ~ .  By the choice of ~, however, there exist tuples ~1  and fi such that  

& Dt('r(m, h (rho, ~) ) ,  "r(m, ~1))  & ~{(7(rn,  fk (rho, ~ ) ) ,  7(m, fnl), 7(rn, ft)) 

is true in ~ .  

Finally, consider the number G,~ of-~@(7(rn, f k ( r ~ o , ~ ) ) , ' r ( m , ~ ) ,  3,(m, n)). Note that  in view of 

Lemma 8, there exists an odd step t,, > t3 such that F(m, k,n,  Gr,,t,~) = 1. In this case, condition (1.3) is 

satisfied for M at that  step, and • is attached to M and never removed, a contradiction. This completes 

the proof of the lemma. 

L E M M A  10. Each marker is attached a finite number of times. 

P r o o f .  Consider the least marker M that is attached infinitely many times. Then all of the smaller 

markers can be attached and removed only a finite number of times. Consider a step to after which neither 

of these markers is either attached or removed. In this case, M cannot be a marker of the second kind, 

since such markers can be removed if a smaller marker is attached. Let M = [m, k]. By Lemma 9, M can 

be attached a finite number of times, which contradicts the assumption. 

L E M M A  11. There exist infinitely many markers that are attached and never removed. 

P r o o f .  Assume that  there exist a finite number of steps at which some markers are used, never to be 

removed or attached again. Let to be the step such that all such markers have been attached before, never 

to be removed. Consider the number m such that the function numbered m is total and identically equals 

1, and M = [m] is greater than all of the markers which stay constantly. We turn to step t l  > to after which 

the markers less than M and M itself are neither attached nor removed. Such a step exists by Lemma 10. 

If, at step tl ,  M is at tached to some number, then it can no longer be removed, since markers of the second 

kind can be removed only when a smaller marker is attached. But we have assumed that  now M cannot 

stay constantly on this number. This means that,  at step Q, M is not attached, nor will it be attached to 

some number after this step. We proceed by obtaining a contradiction to this statement.  
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Consider a quantifier-free formula ~ (co , . . . ,  c,) such that - -~(c0, . . . ,  c,) belongs to D t~, at some t2 > Q, 

which exists by Lemma I. Let G be a number of the formula ~ ( c o , . . . ,  c , ) .  Choose t3 -- 2t + 1 in such a 

way that  t 3 ~> ma.x{g2, G} and f ~ ( G )  is defined and equals I by the choice of m. In this case, M must be 

attached at step g3; this contradicts the argument given above. 

L E M M A  12. For every n, there exists a to such that /2t(n)  =/2t°(n) at all t _> t0. 

The P r o o f  follows immediately from Lemma 11 by virtue of the fact tha t /2 t (n)  = /2 t° (n)  holds for all 

t _> to for the numbers n to which the marker is attached and is not removed after step t0. 

L E M M A  13. For every m, there exist n and to such that /2t(n)  = m at all t _> t0. 

The P r o o f  follows immediately from Lemmas 11 and 12 in view of the fact that  for a partial numeration 

/2 t, Rang/2 t contains all m < t, and at step t, some marker is attached to all n for which/2t(n) is defined. 

L E M M A  14. The models ffJl and ~ ( D )  are isomorphic. 

The P r o o f  follows readily from Lemmas 12 and 13 by virtue of the fact that the function /2 ~ lira/2t 

determines an isomorphism from (gR(D),/~)) to (92~, v). 

L E M M A  15. Suppose that, after step t l ,  no marker of complexity higher than n + 1 is either attached 

to or removed from [m, k], and that the markers less than Ira, k] are neither attached nor removed. Let 

r?~o be all numbers such that, at step tl,  they either have markers less than [m, k] or the marker Ira, k] 

(with some other label), which cannot be removed from these numbers after step t l .  Let fk be a total 

function, Rang/l ,  = N, and the model (~J~,7(rn,/~(rho))) be (r + 1)-complete for r :> n. Finally, suppose 

that there exists an isomorphism ~o from ~)t to ~ such that ~0(~/2 t '  (rh)) = 7(rn, rh). Then,  for all t > gl, 

)~z~t F(rh, m, k,s, z , t )  is a well-defined function, with any s, i.e., for each s-formula ~ with number z, 

F(rh, rn, k, s, z, ~) = T does not hold; ff ~o is true in (if)t, ~nT(rn , n)), then, starting from some step t > t l ,  

F(rh, m, k, s, z , t )  is undefined or equals 1, and if ~o is false, then F(rh, m, k, s, z , t )  is undefined or equals 0. 

Moreover, if s < r + 1 and fn D fno, then F(rh, rn, k, s, z, t) E {0, 1} for some t > Q, provided the values of 

/2t(r~) do not change a n d / ~ ' ( ~ )  is defined after step tl .  

We use induction on s to prove that the procedure is well defined. 

Let s = 0. Then all of the conclusions are met, since )~zAtF(~, m, k, 0, z, t) is defined as a decision 

procedure for quantifier-free formulas. 

Let so > 0 and suppose that the above statement holds for all s < so. 

First, we consider true formulas. Let z be a number of an so-sentence V~¢(~, ~), true in (if)t, ~nT(rn, n)), 
and suppose that,  at some step g > Q, F(rh, rn, k, so, z,t) is equal to 0 or T.  By the definition of F, this 

means, however, that  there exists a tuple ~ such that for z~ g number of the formula -~o(~,~'), we have 

F ( ~ ,  m, k, s o -  1, z~, t l )  = 1 but the formula V~qo(~, 9) is true in (Dr, ~nT(m, n)) and, consequently, -~0(e, ~)  

is false. This implies that  F is not well defined already at stage so - 1, a contradiction. 

Next, let z be a number of an So-sentence of the form 3 ~ ( ~ ,  .~), true in (ffJt,),nT(rn, n)), and suppose 

that F(rh, rn, k, so, z, t) is equal to 0 or T,  for some ~ > Q. By definition, this means that  for -~z a number 

of the negated formula - ~ o ( ~ ,  ~), F(rh, rn, k, so, -~z, t) is equal to 1, from which it follows that  there exists 

a ~-formula (~)@(~o, ~, ~), where ~o is a tuple of constants with indices from rh, such that  the formula 

- .  

is true in (9~, u~"( rh) ) ,  whereas ~/(~0,~, e )  is true in (~Jl,7(rn, f~(rh)) ,7(m, h ( ~ , ) ) )  for some tuple e ,  

where rhz are indices of constants from ~ o ( ~ ,  #). Now, it follows immediately that  there does not exist an 

isomorphism ~o from ~ to ~ such that ~o(vuto(rT~o)) = 7(rn, f~(rh0)). 
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Second, consider the formula V.0~(~0, ~, 9) numbered z, false in 93I. Suppose that F is not well defined for 

its number, i.e., that  F ( r ~ , m ,  k, so,z, t)  is equal to 1 or T for some t > tl .  Then there exists a 3-formula 

~I'(~o, ~) which is true in (~Tt, Ar~7(m, n)), whereas an f~-preimage of the formula 

o)) 

is true in (~3l, u/~tO(r~o)). This means that there does not exist an isomorphism ~0 from ~ to 92q such that  

~0(v# to (r~)) --- "r(m, fk (r~)), a contradiction. 

Farther, let z be a number of a faJse formula 3 ~ ( ~ ,  9). Suppose that  F(r~, m, k, s, z, t) is equal to I or 

T for some t > t l .  By definition, there then exists a tuple ~ such that  for G a GSdel number of the formula 

¢(~, ~),  F(r~, m, k, s - 1, G, t) -- 1, where so is the complexity of 3,3~0(~, '3), which means that  F is not well 

defined already at stage so - 1. 

To complete the proof, by induction on s we show that  for z a number of some formula of complexity 

s, if s < r + 1, then F(r~, m, k, s, z , t )  E {0, 1} for some t > tl .  

If s is equal to 0, the conclusion follows immediately from the definition of F. Consider the least s _< r +  1 

for which the conclusion is not true. For a formula of complexity s, which is true in (93t, An'r(ra, n)) and is 

quantified 3, we use the induction hypothesis and the fact that the procedure is well defined, proved above, 

to state that  there exists a step t > t l  at which the conditions of case (1) specified in the definition of F are 

satisfied for this formula, and that F(r~, m, k, s, z, t) - 1 holds for its number z. Similar considerations show 

that  the required condition will be met for the formulas of complexity s which are false in (99I, An'/(m, n)) 

and are quantified by V. Now, suppose that the formula V~(~,  ,j) of complexity s is true in (93l, An'/(m, n)) 

and is quantified by V. Since (931,3,(m, fk ( r~ ) ) )  is (r + 1)-co,nplete, it follows that  there exists a 3-formula 

(q~)g'(~0, ~, ~), where ~0 is a tuple of constants with indices from r~, and the formula 

(w) 9)) 

is true in (DI, "r(m, f~ (r~))), whereas ~(e0, e, e') is true in (~31, "r(m, f~ (r~)), "r(m, f~ (rhx))) for some tuple ~'. 

Since there exists an isomorphism ~o from 93I to 99l such that 9(v#t ' ( r~))  = 7(m, r~), it follows that  

9) 9)) 

is true in (99l, vl~ t, (r~)). Therefore, for the number z ofV~o(~, ~2), the conditions of case (1) in the definition 

of g will be satisfied at some step, whence the required conclusion follows. 

It remains to consider the case where a formula of complexity s, quantified by 3, is false in 

(~.Ol,)~n'r(m,n)). It follows by the argument given above that for a number -~z of its negation, 

g(fr~o, m, k, s, - ,z , t)  : 1 at some step t > tl, in which case for z, we have g(rho, m , k , s , z , t )  = 0. The 

lemma is proved. 

L E M M A  16. For any m and k, if f} is a total function, then f~ does not determine an isomorphism 

of (9~(D), #) onto ( ~ ,  ~,,~,,(m, ,,)). 

P r o o f .  Assume, to the contrary, that the constructive models (97[, An-r(m, n)) and (~O~(D),u) are 

isomorphic. Then there exist a recu~sive function f~ and an isomorphism ~ f.tom 931(D) to ~7l such that  

~ol~(n) = "r(m, f~(n)) for all n. Consider the marker [m, k]. By Lemma 10, there exists a step t after which 

no markers less than or equal to [m, k] can be attached or removed. For [m, k], we then have one of the 

following three cases: • stays on [m, k] constantly; at least one of the markers of the form (V.~(~0, ~, ~3), rh) 

of complexity s + 1 constantly stays on [m, k] and the model (~Tt,~(m, f~(r~0))) is s-complete, where r ~  is 

a related tuple; neither of the two cases holds. 
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First, we prove that  the last case is impossible. Suppose that, at step C1, fito consists of all numbers 

with markers less than M, or with M itself to which a certain label was attached at some step, never to be 

removed. 

Consider the tuple ~o : (m,f~(mo)).  The model ~ is not (n + 1)-complete but is n-complete for 

some n over do. Therefore, there exist an (n + 1)-formula V9 ~(ao, 4, 9) and a tuple b such that  ~ 

Vzj~(a0, b, 9). But if, for every 3-formula ~o(~, ~), we have ~ ~ ~o(a, b), then there exists a tuple ~ such 

that fl)~ ~ ~o(~, ~) &Vg~(~, ~, 9). Since f} is a total function that  determines an isomorphism of (~]l(D), ~) 
onto ( ~ ,  ~n-r(,~, n)), it follows that there e ~ t s  an i s o m o r p ~ m  ~ from ~ to ~ such that ~o(~,~'o(fito)) = 
~(m, f k ( ~ ) ) .  Consider the tuple fit, satisfying ~(m,/k(fit))  = ~, and the p ~  (V,g~(~o, ~,,j), fit). Since/k 
is a total function and Rang f~ = N, there exists a step C1 > Co such that  

R a n g / ~  n Dora /~  D {0 , . . . ,  r(m, k, ~o)}. 

By Lemma 15, the procedure AzAC F(fito, m, k,s,z , t)  is well defined for s _< n. Therefore, for the marker 

M and the pair (V~(~0,~,9) ,  fit), the following conditions are met at step 2C + 1 > C~: 

(1) There does not exist a tuple ~ such that for G ~ a number of the formula 

~(~(~, f~ (~)), ~(~, f~ (~)), ~(~, ~)) 

and for any ~ > Co, F ( ~ ,  m, k, n, G '~, C) is not equal to 1 because 

(V~)~(~,(m, f} (fito)), 7(,n, f} (fit)), 9) 

is true in ~JE and ~zAt F(fito, ,n, k, s, z, C) is well defined by Lemma 15. 

(2) After step to, the values of ~t and ~t at the elements of r ~  do not change. Consequently, after 

s tep  C 1 > C0, the values of functions ~t and ~t also remain unchanged at fito because f~ determines an 

isomorphism of (9"J~(D),/~) onto (gYt, SnT(m , n)) and ~ : lim ~t determines an isomorphism ~ of (9~(D), I~) 
onto ( ~ , v ) ,  defined by the rule ~/~t~(fito) : "r(rn, f~(fito)). Now, for every 3-formula ~b(e,g) such that 

q~(1;gt~ff~.O,Tgt~rTt ) is true in ~ ,  the formula 

(39) (3~)~(~'~ (~), ~, 9) a ~ ( ~  (~), ~) 

is also true in ~J~. Therefore, for the pair (V96(~0, ~:, 9), fit) at an odd step C2 > C~ such that  f~' is defined 

at the elements from fito and fit, if M does not have a marker of complexity lower than n + 1, then all of 

the conditions for M to be attached and for the given pair to b'e attached to M are satisfied. Since smaller 

markers cannot be used, it is the marker M proper that is attached, a contradiction. If, starting from some 

step T',  a pair (V96'(~o, ~, 9), fit') of complexity not higher than n + I stays on M constantly, we choose 
one with lowest complexity and consider the formula C(~, fit') and the tuple fit, T' constructed for this pair 

- / T :  at step T'.  By construction, for these C(6, fit') and m , the formula -~t(~, fit') is true in ~rt at the tuple 

rq~t'(fit'T'), and after that  step, M with the pair <V~'(~o, 4,9), fit') constantly stays at the elements of 

fit':"'. Since the function f~ determines an isomorphism and /~t(fit,T') stabilizes after step T', it follows 

that  the formula mentioned is also true for the f~-image of these elements in the model (9/t,)~nT(rn, n)). 

By virtue of the fact that  AzAC F(fit0, rn, k, s, z, C) is a well-defined procedure for s < n, it is easy to see 

that, starting from some step C~, F(fito, rn, k, n, G~,  C) = 1 will be satisfied for the GSdel number G,~ of the 

formula 
] ~ , ~ , ~ 0 , - . . ,  Y~, 

c f~ (~,~o), c~o, • • •, ca,, 
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In this case, conditions (2.1) are satisfied at some step for such a marker, which, therefore, must be removed, 

a contradiction. This means that the case where M has a marker of lower complexity is also impossible. 

Now we prove that  case (2) is unfeasible. Assume the contrary. Let at least one of the markers of 

the form (V~(eo,  ~, ~), fit) of complexity s + 1 stay on M constantly. Suppose that  (3R, 7(m, f~ (fito))) is 

s-complete for a related tuple fito. Among such pairs, we choose one with lowest complexity and consider 

the formula t(~,  fit') and the tuple rW T', constructed for this pair at step T'. By construction, for these 

t(ff2,fit') and fit,T', the formula -,t(q~,rh') is true in 99~ at vfit~(~'z'), and after that  step, M with the pair 

(V9~'(~o, ~, if), fit') constantly stays at the elements of fit,T'. Now, since ~t(fit,T') stabilizes after step T',  it 

follows that  -,t(~, rh') is true in (fiR, v) at v~t(~'T') .  The fact that f~ determines an isomorphism implies 

that the A-image of this formula will be true at the tuple 7(rn, fk(rh'T')). Using Lemma 15 and the fact 

that (fiR, 7(m, fk(rho))) is s-complete, we assert that AzAt F(rho, m, k, s, z, t) is well defined for s, in which 

case after some step t2, F(rho, m, k, n, G~, t) : 1 is satisfied for the G6del number G~ of the formula 

[ ] e , ~ ' o ,  y o , . . . , v , , _ l ¢ ,  _ 

Cf~ (,~,,~o), Cno, • • • ,  Cn. ,  

But then conditions (2.1) will be satisfied at some step for such a marker, which, therefore, must be removed, 

a contradiction. This means that case (2) cannot hold. 

We have shown that  • constantly stays on M after some step. For • to be attached to M, there are also 

several possibilities. Namely, they are listed in conditions (1.1)-(1.4) specified for the odd step to. 

Condition (1.1) fails because fk determines the isomorphism of (93l(D), #) onto (97l, AnT(m , r,)). 

(1.2) also cannot hold since it follows from Lemma 4 that the procedure verifying whether 

AzAtF(ra, k, s, z,t) is true for s _< n is well defined at all t > to. Moreover, the isomorphism is deter- 

mined by fk and, consequently, the truth values of sentences are preserved under taking their f~-images. 

We turn to condition (1.3). Suppose that, at step to, M has an associated triple (Vffff(~0, ~, ~3), fit, t) 
and there exist tuples fit1 and fi such that the formula 

-,~(~(m, A ( ~ ) ) ,  ' ~ ,  ~)) & (3~)DtCTm, A (~0)), ,~1, ~))) 

is true in fiR. This is so because AzAtF(m, k, s, z, t) is a well-defined procedure for t > to, from which it 

follows that  F(m,k,n,G,  to) = 1 implies that the left conjunctive term is true. The truth of the right 

conjunctive term follows immediately from the definition of the step. Now, since the function fk determines 

an isomorphism of (fiR(D),/z), (93l, v), and (fiR, AnT(m, n)), the formula 

3~33~.(-'¢(vl~t°r~, £, Y) & 3~. & Dt(vl~t°fito, ~, ~.) ) 

will be true in 93l. This contradicts the fact that with M we associate only those triples for which 

(V~.)(3z & Dt(v#trho, £, ~.) ~ (V~3)~.(v~t fito, ~, ft) ) 

is true in 9X. The fact that  the pair with which the given triple is associated constantly stays at the elements 

of rho until step to is reached implies that 

(ve)C3z & Dt (v#tr~, ~, 2) --~ (V~7)--,OCv/~tri'~o, e, 9)) 

is true in fiR. This is also a contradiction, which proves that condition (1.3) cannot be met. 
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It remains to consider condition (1.4). Suppose that a pair (V9~'(60, ~, 9), ~') is attached to M at step 

T', and that M with this pair stays constantly until step t0 is reached. For the pair (V9~'(60, ~, 9), ~'), at 

step T' we define a formula t(~, Vn') and a tuple ~,T', for which, by construction, ~t(~, rW) is satisfied in 

~YSt at the tuple v~n(~'T'), and after this step, M with the pair (V9~'(6o, ~, 9),~') constantly stays at the 

elements of ~,T'. Since /~t(rh'T') stabilizes after step T', it is easy to see that ~*(~, ~') is true in (~rSt, v) 

at v/~t(ri4T'). The fact that the function f~ determines an isomorphism implies that the fk-image of the 

formula is true at 7(m, ft (~ve')). By Lemma 15, AzAt F(fr~o, m, k, s, z, *) is a well-defined procedure for all 

s. But if * is attached to M at step t0, then, for the G6del number G~ of the formula 
-- --p 

Cl~. (r~,r~o), C~o, • • •, C. •, 

F(rho,m, k, n, G~, to) = 0 must hold, which contradicts the fact that F is well defined. This completes the 
proof of the lemma. 

LEMMA 18. The constructivization # of ~ is not strong. 

Proof. Assume the contrary. If the theory Th (gX,/I) is decidable, then the characteristic function for 

the set of G6del numbers of sentences in this theory is recursive and has a number, i.e., it is equal to fk. 

First, we show that M equal to [k] is attached at some step, never to be removed. Assume it is not. Fix a 

step to after which no markers less than M are either attached or removed; this step exists by Lemma 10. 

Let ~ be all numbers to which the markers less than M are attached at step *0- There exists an n such 

that (gX, v~t°(r~)) is n-complete but not (n + 1)-complete; the models (~, vfit°(r~)) and (9)I, #(rho)) are 

isomorphic by Lemma 14, in view of the fact that v/~°(rT~o) - #t(z~o) at all t >_ to. Therefore, there exist 

an (n + l)-formula V9~(60, ~, 9) and a tuple #d such that V9@(60, ~:, 9) is true in (9~t, v/2'°(~r~o)) at v(rTz'), 

and for every B-formula ~(~0, ~) which is truc in 9X at v/~t°(rT~o), v(zh'), the formula 

39~.~(.-,¢(,..,/o~, .~, 9) ~ ~ ( ~ , o ~ ,  .~)) 

is true in ~ .  By Lemma 13, there exist a step ~ > to and a tuple rh such that/2t(~z) = ~ '  at all t _> t~. 

By Lemma 14, the formula V90(6o, 6, 9), where the tuple of constants 6 is equal to 6,z,, is true in (~J~, #). 

Hence, for its G6del number G, the value of f~ equals 1. 

We consider an odd step *2 > tx such that f~(G) = 1. By the choice of V90(6o , ~, 9) and v(rTz'), the 

conditions of case B now hold for M at step t2. Since smaller markers cannot be used, it follows that  the 

marker M should be attached, an impossibility. 

We have thus proved that M will be attached at some step, never to be removed. In this case, M is 

marked by the formula V90(6, 9) with G6del number G, and S~(G) = 1, i.e., the formula considered belongs 

to Th (~J~,/~). At the same time, we define/2 t° so that  for some tuple ~ ,  the formula --~0(6o, 9) is true in 

(~Jl, u/2*° (zTzo)) at v/~t°(rh). All the elements of rTzo and r~ are marked by M, which cannot be removed after 

this step, and so -~0(6o, 9) is true in (93l,/z(rT~o)) at /z(r~) by Lemma 14. This conflicts with our previous 

considerations. 

By the properties of the construction proved above, we obtain the required algorithm to build a con- 

structivlzation that is not strong and does not lie in the given computable class of constructivizations. The 

theorem is proved. 

THEOREM 2. If ~J~ is strongly and weakly constructivizable, then, for a given computable class of 

its constructivizations, we can effectively build a weak constructivization of ~Yt that is not autoequivalent 

to any constructivisation belonging to this class. 
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Proof .  If there exists a tuple a such that (9"~, a) is complete, then every constructivization of a strongly 

constructive model ~ is also strong (see [6]). But the model ff)l has a weak constructivization and, therefore, 

is not complete in any finite enrichment by constants. If, for every n, there exists a tuple a,, such that  the 

model (9~, ~,~) is n-complete, then 9Y~ is limit-w-complete, and the result follows by Theorem 1. If the latter 

assumption does not hold, then there exists an n such that 9~ is limit-n-complete, in which case the result 

follows from [9]. 

C O R O L L A R Y  1. The class of weak constructivizations of a strongly constructivizable model is either 

empty or effectively infinite, i.e., given a computable class of weak constructivizations, we can effectively 

build a weak constructivi~.ation that is not autoequivalent to any constructivization belonging to this class. 

C O R O L L A R Y  2. The class of weak constructivizations of a strongly constructivizable model is either 

empty or infinite and not computable. 
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