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A nonclassical model for  the stress-strain state ofa piecewise homogeneous composite bar isproposed. The model 

is based on an iterative process and takes into account the deplanation o f  crass sections o f  the bar caused by trans- 

verse shears. Based on the shear strains o f  some particular approximation, higher approximation models are 

constructed. The model accounts for  both the normal and tangential loads. 

Introduction. The development of models for bent bars with regard to the effect of  transverse (tangential) shears began 

with the solution of the vibration problem for bars suggested by S. P. Timosbenko, who was the first to introduce the concept of a 

shear-caused rotation angle of a cross section. The models taking into account the transverse shears were called refined, 

nonclassical, or Timoshenko-type models [I]. The construction of  such models and the corresponding theories of bending of bars 

(beams), plates, and shells is widely described in the literature, including monographs and fundamental overviews [ 1-9]. Especially 

complicated is the construction of nonclassical models for nonuniform composite objects, particularly for composite bars with a 

discrete or so-called hybrid structure whose inhomogeneity is manifested both in their structure and cross-sectional shapes. From 

this it follows that the creation of nonclassical models for such bars is a high-priority task. The present study describes a 

nonclassical model for bent composite bars, allowing for the influence of transverse shears on the basis of  an iterative process. 

Since we are dealing with transverse (tangential) shears, it is important to take into account not only the normal but also 
tangential loads, which can significantly affect the stress-strain state of a bar. 

1. Initial Prerequisites. Classical Model 

Structure of a Bar. We consider a bar with a constant cross section along the length. The material of  the bar consists ofn 

phases, generally composite ones, whose properties are represented by the generalized characteristics obtained experimentally or 

calculated by the methods of micromechanics of composites. R is assumed that, as found from experiments, the often used unidirec- 
tional fibrous composites, to sufficient accuracy, can be considered as linearly elastic bodies. 

The bar is referred to a system ofortbogonal coordinates XYZ(Fig. 1), chosen so that X - -  the longitudinal axis normal to 

the transverse cross sect ion--  passes through its stiffness center C. The Y and Zaxes are the principal stiffness axes of the cross sec- 

tion, whereas the XCY and XCZ planes are the main planes of stiffness. The cross section has such a shape that the planes tangential 
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Fig. 1. Transverse section of a bar with the loading scheme. 
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to the contour surface of the bar and normal to the principal axes do not intersect the body of  the bar, i.e., the contour of the bar cross 

section is inscribed in a rectangle whose sides are perpendicular to the principal axes, and the intersection points of the contour with 
the principal axes belong to this rectangle. 

The bar is in equilibrium under the action of loads which can be applied to each of the main planes: in the XCZ plane 

- -  normal q.t (x ~ q ~ (x) and tangential qt= (x), qb (x) on the upper z = z t and lower z = z b boundaries of the intersection of this 

plane with the surface of the bar;, in the XCu p lane - -  normal q~ (x), qlv (x) and tangential q~, (x~ q~ (x) on the right y -- Yr and left 

Y = Y] boundaries of the intersection of the plane with the surface of the bar. 

For each phase of  the material of the bar, k = 1, 2,..., n, the elastic modulus Ex (k) and the transverse shear moduli G~ ) and 

given. 

Account of  the transverse shears under the action of a given load is modeled based on an iterative process, where the distri- 
bution law for transverse shear strains in a cross section of the bar found on a certain iteration mis assumed as a hypothesis for the 

following s t ep - -  iteration m+ 1. As the zero step of iteration (m = 0~ we assume the model of the classical theory of bending based 

on the hypotheses of  plane unreformed cross sections, which can be presented in the following known way: 

the shear strains in the cross section YCZ and in the main planes XCY and XCZ are absent, 

the transverse strains along the principal axes are absent, 

(1.1) 

and the pressure from the longitudinal fibers along the principal axes is neglected, 

(1.2) 

~y =0~ gz --ff (1.3) 

Let us consider, without loss of generality, the bend in the XCZplane. The strains in this plane are defined by the Cauchy 
relations 

sx(x,z)=~, c , ( x , z ) = - ~ ,  v=(x,z)=~ + ~ 
0z 0x (1.4) 

Integration of  the second and third relations with respect to z leads to displacements 
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8= 8: 8: (1.5) 

Here, w(x)are the unknown displacements (deflections) normal to the X axis at an arbitrary level z = 8 z in the XCZplane and u(x) 
are the unknown longitudinal (along the X axis) displacements at the same level z = 8:.  

Taking into account the third relation of hypotheses (1.1) and the second one from (1.2), we obtain from Eq. (1.5) the ex- 

pressions for displacements 

w(x,z)=w(x), u(x,z)=u(x)---~x ) (Z-8:  ), 
(1.6) 

Obviously, the normal displacements are constant along the Z axis, whereas the tangential ones vary linearly along this 

axis, which ensures the compatibility of longitudinal strains of fibers in all n phases of the bar. These strains are defined by the first 

relation of Eqs. (1.4) with regard to Eq. (1.6): 

c x ( x , z ) = d u ( x )  d2w(x) ( , _  8 
dx dx 2 "" �9 ) (1.7) 

Assuming that Ex ok) = E  t and using Hooke's law, we find the longitudinal normal stresses in each kth phase of the bar 

dx 2 ( z - 5 :  . 
(1.8) 

The expressions for the flexural stresses in the XCY plane are the same. 

Based on the principle of superposition, we write the total stresses 

(k) ~, (k) {k) cr x (x ,y , , )= t r  x (x,z)+r x (x,y). (1.9) 

Consider next the transverse stresses. Since, according to the hypotheses introduced, the transverse shears are absent, these 

stresses cannot be obtained from Hooke's law. We find them from the equilibrium equations of a three-dimensional body related to 

an elementary volume of the kth phase: 

~ , ~ )  /:),r (k) /~(k) ~_(k) :a,.(k) 

~x 0y 0z 0x 0y & (l.lO) 

a,c~ ) /~(k) ~{k) 
§  + ' ~ ' z  ----0~ 

~x 0y 0z 

where the variables x, y, and z are referred to the chosen coordinates XYZ. In what follows, the superscript k for stresses, strains, and 

displacements is omitted. 

We assume that the first relation of hypotheses (1.1), according to which y~... = 0and respectively Xy z = 0~ is valid. Taking 

into account the independence of the stresses a x (x, y) and a x (x, z), we assign them to the transverse tangential stresses z~ (x, y) 

and z~z (x, z)  Then, the following two equations are identical to the first equilibrium equation (1.10): 

aa~(x,y) O%(x,y)  a%(x , : )  &~=(x,z) 
- - + - - = 0 ,  - - ~ - - = 0  

ax ~y Ox • (1.11) 

and, instead of the remaining equilibrium equations, we have 

_ _  aav(x,y) 0x=(x,z) Oa,(x,z) O x Y x ( x ' Y ) §  ~ =0, - -  + - -  =0. 

0x 0y 0x 0z (1.12) 

The unknown transverse stresses, which were originally neglected due to the hypotheses adopted, can be found from four equations 

(1.11) and (1.12). 
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For bending in the XCZplane, by integrating the second equations from (1.11) and (1.12) with respect to z, we obtain 

~= (x, z) = - i  0~x (x, z) dz + O= (x), 
Ox (I.13) 

7. b 

cj,(x,z)=_ i ox~..~x,z) dz. + ~  (x), 
7. b 

(1.14) 

where O= and O, are the integration functions. 

Since the external load is aligned with the coordinate axes, the stresses (1.13) and (1.14), with regard for their sign conven- 
tions, must obey the conditions at the "lower" and "upper" (along the Z axis) points of the cross section, 

b b ~=(x, zb)=--q=(x ), ~ ( x ,  zt)=q~(x~ 
(1.15) 

cJbz (X, Zb )=-'-q b: (;C~ I~t (x, Zt )=qt (x). 

Conditions (I. 15) relate the tangential and normal loads to the corresponding stresses and determine the integration functions pro- 
vided the following condition at the lower boundary (z = zb) is satisfied: 

O=(x)=-q~(x), Oz(x)=."q~(x). (1.16) 

Now, substituting expression (1.8) and the first value of(1.16) into Eq. (1.I3), we have 

.Cxz(X,g)=- 02u(x) z ~ i ' E k  . OX 2 f E k d7. + (Z--8. )dz--qb (x) *. 
~b ~ gb 

(1.17) 

Account of the condition for the upper boundary point z = zt gives 

,~ (x,z, )= -  
02u(x) :* 3 : ,  

0x e SE* dz+d~w~,x)fdx ~ _" E,(z-8. .  )dz-qb(x)=qt(x) .  
gb ~b 

(1.18) 

Introducing the following designations for the constants: 

B=~E~ dr., 
gb 

Zt 

B o = fE k (z-8~)dz, 
(l.19) 

we have from Eq. (1.18) 

~2 ~3 B B q= (x)+q*~(x) . (1.20) 

This inhomogeneous equation is the equilibrium equation for the bar in projection on the X axis. The displacement function u(x), 
determined by integrating this equation, depends on the deflection function w(x) and the tangential loads. The deflection depend- 
ence can be removed by assuming that B0/B = (1 Introducing an auxiliary axis Yo parallel to the Y axis and replacing the coordinates 
z = z o -zc,  we obtain from this condition 

~t ZOc 
Z~176176 Ekdz~ =Sz f E~d:~ (1.21) 
~0 b ~0 b 20 b 

From here, we find the coordinate of the stiffness center with respect to the Y0 axis, 
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Z c o, 
k sob / sob 

(1.22) 

In the particular case 8:  = O, we have the displacement function u(x) at the level of  the stiffness center. 
Substituting expression (1.20) into Eq. (1.17) and collecting similar terms, we find the transverse tangential stresses 

d3w[! (z-~i)dz--~fEkl~. t 
~= (~,-')=~-~- zt l's, J 

+q:(x){BfEtdz-l)+~qi(x)fEkdz'=b lJ " =b (I.23) 

It follows from expression (1.73) that the tangential stresses at the level of  the z coordinate are the same in all phases. In 
this case, the influence of  the phase properties is taken into account "integrally": the integral in formula (1.23) contains information 

on all the phases occurring in the range from z b tO z, which corresponds to a rigid inteffacial contact. 
Let us introduce designations for the distribution functions of  the tangential stresses along the z coordinate: 

" E 

2 b Zb 

S b Eb 
(1.25) 

Then, the expression (1.23) takes the form 

d 3w b b t 
x,~ ( x , z ) = - - - ~ -  f o ( z ) + q  ~ (x)fq (=)+q~= (x)f~ (z~ (1.26) 

The transverse normal stresses can be determined from Eq. (1.14), where we take into account the transverse tangential 

stresses (1.26) and the integration function �9 S (x)--. .qb (x)from Eq. (1.16). Then 

" dx dr  (1.27) 
Zb 7"b "~b 

Let us satisfy, for these stresses, the condition (1.15) at z = z t : 

d4 :t ~_b zt a_t i-x z, W u,qxz txxt ] b uqx: t "i ] t az(x, zt )=---~-~-f  io(Z)dz- -__ f fq (z)dz-  -'•.. S fq (z )dz -qb(x )=q i (X)  
dx - ax ux 

2b Sb Sb 
(1.28) 

Now, we introduce the following designations: 

$| Zt St 

Sb Sb Sb 
(1.29) 

Then, from Eq. (1.28), we have 

~ = -  t d b 

dx 4 Doo 

This is the equilibrium equation of  the bar in the projection on the Z axis, i.e., an equation in the required deflection functions w(x), 

where D0o is the bending stiffness of  the bar. Equations (1.30) and (1.20) form a system of  differential equilibrium equations for a 
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pieeewise homogeneous composite bar corresponding to the classical model, which is regarded as a zero iteration of  the process of  

constructing a nonclassical model. We should note that, in these equations, both the normal and tangential loads are taken into ac- 
count. 

2. Nonclassical ModeL The First Iteration 

Based on expression (1.26) and Hooke's law at G~ ) =G~, we obtain the transverse shear strains in the kth phase of tbe  

classical model (zero iteration), 

Vo= (X,Z)=X=(x,z) d3w(x) fo(z).~ qb (x)fb(z) qt  (x)fqt(z) 
G k' dr. 3 G/~' G' k r G k' 

d3w(x) " z ' +  b , x - -b  : , x +  - "-~ qhkl,) qxzt )~Pqk,-, q.t(x)q~qk(Z). 
(2.1) 

It should be noted that, as a consequence, the shear strains in the kth phases at the level of the z coordinate will be different since the 

shear moduli of  separate phases are also different. 

The functions 9tk (z), ~0q b (zX and 9qk (z)define the distribution laws for shear strains over the height of  a cross section, 

which are related to the sought-for deflection function and the given functions of tangential loading. 

Let us assume the following relation: 

d3w(x) ~ d~(x) 
dx 3 dx .' (2.2) 

which introduces a new sought-for function X(x) m the so-called "shear function" [6] - -  in the irreversible correspondence. Then, 

instead of Eq. (2.1), we have 

T% (x,z)=d~-~) r (z)+q b (x)~Pq b (z)+ q~ (x)cp~ (z)~ (2.3) 

This expression is assumed as a hypothesis for constructing the first iteration ((m = 1) of a nonclassical model. In addition, we retain 

the hypotheses 7yz = 0, s z = 0, and a z = 0 of the classical model. With account of the hypotheses adopted, the displacements in a 

bar loaded inthe XCZ plane, according to Eq. (1.5), can be written as 

_ _ ~  dZ b b , , w(x,z)=w(x), u(x,z)fu(x)- (Z-Sz)----~u165 (2.4) 

where we assign the following functions: 

u (z) =-S r (z)dz, 
8-- 

Z 
t t 

8-- 8. (2.5) 

According to Eq. (1.4) and Hooke's law, the longitudinal strains and normal stresses take the form 

. d Z . . dq=(x) b.. dq~:(x) t 8~(x,z)=du(x ) d2w(X) (z_8 * 2 b t 
dx dx 2 ) - - - - ~ t l l k  (z)-- dx Yqk (Z)-  dx Yqk (Z)~ (2.6) 

ax (x,z )= Ek sx (x,z ). (2.7) 

Let us now determine the tangential stresses corresponding to the first iteration of the model, i.e., to the normal 

stresses (2.7) with regard to Eq. (2.6). Substituting these stresses into Eq. (1.13), we write 
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. . rd2u(x)~_ - -  d3w(x)~_ . o d 3. z 
._---=7_2 J ' : , ' = - 7 :  L dx ~ dx ~b :~ 

d 2 b~22( x.  z 2 t z 1 d q= (x) f t _qb (X). 
) f E k Y bk ( g )dg - dx 2 j E" k Y q k ( Z )dZ 

2b gb (2.8) 

In view of conditions (1.15), we have on the upper boundary surface 

Fd2u(x)z~ d3w(x)~ d 3 z ~  
0 - . . . ,  

d2q.b (X)--b d 2 q t ( x ) - t l  b- . t . .  
- Z  oq - d :  % j-q=(x)=qx:tx~ (2.9) 

Here, the following additional constants are introduced: 

~'t 2t Zt 
J' b f b t f t Bl= Eku Bq = E,~/qt(z)dz, Bq= EkYqk(z)dz. 
~'b gb gb 

(2.10) 

From Eq. (2.9), we obtain the equilibrium equation of the bar in projection on the X axis, 

d2u(x) d3w(x) B 0 d3z(x) B I 
= + 

dx 2 dx 3 B dx 3 B 

2 b(X) B b d 2 q t ( x ) B t  1[ b 1 d q.~: 
dx 2 B ~ dx 2 B B q= (x)+q.~(x) . (2.11) 

Substituting Eq. (2.1 1) into Eq. (2.8), we have 

d 3 w ( x ) F ~  z l 3 [ z  z ]  
= ~  )d~-s-A_ ~ Z k ~  +~X(~) Z~V~(=),~-~- Zkd" 

~lxz(X' ' )  ~ 3  L!?. . f dx3 f • f - 

zb d LZb zb d 

2 b z B b z  2 t z t z 

IEk 
(2.12) 

Let us write expression (2.12) in a simplified form: 

d3w(x) , ,  . d3z(x) ~ . .  d2q b (x) . b .  , d2q t (x) ,.t, .+ b 
~lxz(X'Z)= dx3 J o t Z ) + T J l t Z ) ' t  ~ JlqtZ)+ dx2 Jlq ~z) qxz(X)fqb(z)+qtz(X)fqt(Z~ 

(2.13) 

where, apart from fo (z~ feb (Z), and fr (z), we have introduced the functions fi (z~ fib (z~ and fiq (z~ whose expressions are 

given in square brackets in formula (2.12) at the respective factors. 
According to Eq. (2.13) and Hooke's law, we obtain the transverse shear strain (as a result of the first iteration) 

Tlzz (x,z) = "~lxz (x,z) _ d3w(x) fo(z)  + d3~(x) fi (z) 4 d2qb (X) f ib(z) 
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d2q t (X) f l ; ( z )  

dx 2 G'k 
b -  - A b ( z )  , . - A ' ( ~ )  

+qx:tx)"--~k +q'=tx) G, t 

d3w(x) -.,- d3z(x) , -  d2qb(x)  b 
-- - -~ q)lk ( ' ) + 7 { P 2 k  t ~ ' ) + - - - - ~ q l l q k  (2) 

d2q t ( x )  t . . , .+ b 
+ dx 2 tPlqk(') q=(x )9~(z )+q t (x )g t ,  tk(z). 

The expression obtained is taken as a basis for continuation of the iterative process. 

(2.14) 

3. Nonclassical lterafive Model o f  Higher Approximations 

The construction of a nonclassical model of higher approximations is regarded as an iterative process, where the shear 

strains obtained as a result of the nth iteration are taken as a basis for the following approximation-- the (m+ 1)th iteration. For this 

purpose, to construct the second iteration, by analogy with the procedure for the first iteration, the following irreversible relations 

are introduced into Eq. (2.14): 

d3w(x) dx(x) d3 ~(i (x) ...~ dx. 2 (x) 

dx 3 dx dx 3 dx (3.1) 

where Z I (x)and Z 2 (x)are the shear functions for the second approximation. The function ~(x)of the first approximation (2.14) is 

not identical to the function ~l (x)of the second one. The hypothesis for shear strains of the model of the second approximation, as a 

result of the first iteration, has the form 

d2q~(x) b . . 
, , = ( x . z ) = ~ ' P , k ( z ) + ~ ' P 2 , ( z ) +  ~2 ~,q~tZ, 

2 t 
dq=(x)  , . . .+  b . x ~ b . . +  t(XDqk(Z) 

+ dx 2 tPlqt(~) q:,.z( )tPqktZ) q,,z 

We introduce a designation generalizing the summands from the tangential load, 

Tiq(x,z)= tp z)+tp k(z  q x)+ tp k(z)+tp~qk(Z q.,=(X). 

(3.2) 

(3.3) 

In addition, summation over the "dummy" (repeated) indices p is assumed. Then, hypothesis (3.2) can be written in the form 

dz 
"~(m-I)x~ ( X,Z ) = - ~  q) pk ( Z ) + ~f (m-I)q ( X,Z )~ 

(3.4) 

where, for the second iteration (m = 2), the "dummy" index p takes the values p = 1, 2. 

Proceeding with the iterative process, we obtain the hypotheses for the shear strains of an arbitrary nda iteration. In this 

ease, the index p takes the values p = 1,...,nt The distribution functions for shear strains over the height of a cross section are defined 

as 

/z~  f ~ l )  ( z )  s z �9 ~S , z  ~ fo,-1)q( ) 
Vpk~ }= G't , vt~-l)qkx J= mG,t , p = l  ..... m, s=b, t .  (3.5) 

Hereinafter, Cp~qk (z)= {1 

The summand of the load-induced shear strains has the form 
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s d 2(p-I) "] s - , 

Y(m-I)q (x, z) = r (z)+ q~o,-q)qt ( z ) ~ J  q~: ix). 

From here on, we assume that p = 1, .... m, r = p, and s = b, t. Summation is performed over the indices p and s. 

(3.6) 

where 

The transverse tangential stresses, corresponding to the hypothesis for shear strains (3.4), are defined by Hooke's law as 

t/Z.(X ) [" d2(t~-l) "1 
Xtm_l)~z (X, Z) = ~ fcw'O (Z)+/fq s (Z)+ f~_,)q ( Z ) ~ ]  q~z (X~ (3.7) 

"" L ax .1 

With account of the hypothesis assumed, the expression for longitudinal displacements takes the form 

u m (x,z)=u(x)-dw~)(z-~: ) - ~  Vp, (z) 

d2(p_l) "] 
- [Vqk(-)  W(p-1)qk( ' )~Jqxz(  )~ 

f ~ 7, "l~lpk("~)=-- ~)pk (Z)d~' YqkCZ)=--fC~;k( 7")d'Z' ~l/(p-I)qk (')=--; ~Cp-I)qk $ (=)d2% 
8: 8: 8: 

The longitudinal strains and normal stresses on an arbitrary nda iteration are given by 

_ _  d2zp (x) , ~"~(x'z)=au(X)ax a2w(x)(z-~ax 2 : ) ~-~ vpk(z) 

s , s d 2(p-I~ dq s(x) 
--IYqk (.)+~l(p_l)qk ( Z ) ~ ]  -~- ', 

(3.8) 

(3.9) 

(3.10) 

(3.11) a,,~(x,z)=Eka,,~(x,z). 
The transverse tangential stresses are obtained according to the procedure described previously, 

zm=" " d3w(x)~" " d3-~3(x)fp(z)+ fqS(Z)+ f~q(z) d~r q~ (3.12) 

Thus, we have obtained the relations of a nonclassical iterative model for the stress-strain state, which take into account the 
transverse shear strains and the direct influence of an external tangential load. All the relations refer m a bar loaded in the main plane 
of stiffness, XCZ. For the XCY plane, these relations have the same form and are obtained by replacing the indices z --~ y. 

Account of tangential loads is of fandamental importance, which significantly contributes to all the model relations--the 
expressions of  displacements, strains, as well as normal and transverse tangential stresses. Along with some complication of  the 
model compared with that presented in [10], this modification expands the class of problems which can he solved on the basis of the 
constructed iterative model for the stress-strain states ofpiecewise homogeneous composite bars. A realization of the model devel- 
oped and the solution of the problem will be presented in Part 2. 
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