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A P P L I C A T I O N S  OF T H E  M E T H O D  OF B A R R I E R S  
II .  S O M E  S I N G U L A R L Y  P E R T U R B E D  P R O B L E M S  

V. G. SUSHKO AND N. KH. ROZOV 

ABSTRACT. The method of barriers is used to justify asymptotic rep- 
resentations of solutions of two-point boundary value problems for 
singularly perturbed quasilinear equations of the second and the third 
order. This paper is a continuation of [1]. 

1. In constructing and justifying solutions of singularly perturbed prob- 
lems asymptotic with respect to the parameter, there frequently occur sit- 
uations in which the most actively used methods of obtaining estimates, 
such as the method of successive approximations, the maximum principle, 
and the like, turn out to be unacceptable because the problem has singu- 
larities. In these situations it becomes necessary to apply the methods of 
proofs which are based only on using such properties and relations between 
the input data of the problem that are close to or even coincide with the 
conditions necessary and sufficient for the existence of its solution. In con- 
sidering boundary value problems, the method of barrier functions and that 
of differential inequalities are exactly such tools. 

The idea of using differential inequalities in investigating solutions of ini- 
tial and boundary value problems originates from the method of a priori 
estimates developed in the works by S.N. Bernstein [2] and S.A, Chapligin 
[3]. This method was realized in the paper by M. Nagumo [4] who showed 
the connection between the fulfillment of certain inequalities and the exis- 
tence of a solution of the corresponding boundary value problem, obtained 
in a number of papers also by other researchers [5]-[12]. Starting from 
the work by N.I. Brish [13], differential inequalities have been actively used 
in investigating solutions of singularly perturbed boundary value problems 
and in constructing their asymptotic representations. The most consistent 
and complete application of this method to singularly perturbed problems 
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can be found in the monograph [14]. Some aspects of the application of 
the method of differential inequalities to the so-called bisingular boundary 
value problems are treated in [15]-[16]. 

2. Let us consider the boundary value problem 

=0, (0,1), (1) 

x(0) = Ao, x(i) = Bo, (2) 

where ~ > 0 is a fixed small parameter, the functions p(t) and h(t, x) as 
functions of the variable t may have, on the interval (0, I), a finite number of 
first kind discontinuity points t -- tr, r = l,m, while on each set [tr, tr+1] x 
R, r --- 0,rn, to ~ 0, tm§ -- i, these functions, defined completely at 
the endpoints of the corresponding intervals with respect to continuity, are 
infinitely differentiable. The function p(t) may have on the interval (0, 1) 
a finite number of zeros ~ = t ~ k -- 1, n, not coinciding with the points 
t = tr, and, what is more, may vanish identically on a finite number of 
some subintervals of (0, I). Moreover, the inequalities ~ o h~(tk, x) _> ho > 0, 
k -- 1,n, are fulfilled for all Ix[ < co and the function h(t,x) satisfies 
the conditions of Theorems 3 and 4 from [16]. Note that with the above- 
mentioned properties of the functions p(t), h(t, x), the methods of [14], 
the use of which enables one to make a conclusion on the existence and 
some properties of solutions of the boundary value problem (1), (2), are 
inapplicable in a straightforward manner. 

In stating the results concerning problem (1), (2), in order to simplify the 
formulations we shall limit ourselves to the case in which, on the interval 
(0, 1), there are one zero t o of the function p(t) and one point ti of the first 
kind of discontinuity with respect to the variable t of the functions p(t), 
hC t, x), ti ~= t ~ It appears that the singularities of solutions of the consid- 
ered problem and, accordingly, the kind of asymptotic representations for 
the considered solutions depend essentially on the manner in which the signs 
of p(t) alternate on subintervals obtained as a result of dividing the interval 
C0, 1) by the points t l , t  ~ Generally speaking, the problem of defining a 
solution of the degenerate equation, to which the solution of the original 
problem tends for e ~ 0, t E (0, 1)\{tl}, is formulated differently according 
to each sign alternation variant. 

One can easily ascertain that under the above conditions there are 16 
variants of the mutual arrangement of the points tx, t o and of alternation 
of the signs of the function p(t) on the respective subintervals of (0, 1). In 
that ca~e a function, which is the limiting one when s ~ 0 for the solution 
of problem C1), (2), is, for t ~ tl, a solution of the corresponding degenerate 
equation 

pCt)y'+ hCt, y) = 0, t E CO, 1)\{tl}. C3) 
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To single out the unique (discontinuous, in the general case, for t -- t l )  curve 
from the set of integral curves y = yi t) of equation i 3) on the intervals i 0, t l) ,  
(tl ,  1), it is necessary to introduce additional conditions at the points t = 0, 
t = t l ,  t = 1. It appears that  for the above-mentioned 16 variants there are 
10 different cases of the collection of additional conditions which are used 
to obtain the unique solution of equation (3) which for e --* 0 is the limiting 
one for the solution of problem (1), (2). 

Before we proceed to formulating the main results on asymptotic rep- 
resentations of solutions of problem il) ,  (2), we shall give the sufficient 
conditions for equation (3) to be solvable. 

T h e o r e m  1. Let the function p(t) vanish at a unique point t o o.f the 
interval (a, b). Let h(t ~ O) O, ' o = hx( t l , x )  >_ ho > 0 for (t ,x)  e [a,b] x R. 
Let, finally, the functions pit), hit  , x) be infinitely differentiable for  ( t, x) e 
[a, b] x R. Then the following statements are true: 

- i f  (t - t~ < o for t then on the se ent [a, b] there e sts 
the unique solution of  equation (3) satisfying the given Dirichlet boundary 
conditions at both ends of the segment; 

- - i f  (t - t~ > 0 for t ~ t ~ then on the segment [a, b] there exists a 
unique solution of equation (3); 

- - i f  p(t) > 0 (resp., p(t) < O) for t ~ t ~ then on the segment [a, b] there 
exists a unique solution of equation (3) satisfying the Dirichlet boundary 
condition at the left-hand (resp., right-hand) end of  the segment. 

All the above-mentioned solutions belong to the space C~[a, b], where • is 
the largest natural number satisfying the inequality 

t 0 vp'(t ~ + hxi t l ,0  ) > 0. (4) 

T h e o r e m  2. Let the conditions of Theorem 1 be fulfilled on the segment 
[a, b] and, in addition to this, the functions p(t), hit,  x) be infinitely differ- 
entiable .for i t, z) E [c, d] x R, where c < a, d > b. Let p(t) = 0 for  t = t ~ 
and let there exist barrier functions ai t ) ,  Bit) such that the inequalities 

[p(t)a'(t) + hi t, a)] signpit  ) < 0, 

[pit)if(t) + hit, B)] signp(t) :> 0 

hold .for t E [c, a] U [b, d]. Then all the statements of  Theorem I are valid on 
the segment It, d]. 

For the proofs of Theorems 1 and 2, see [16]. 

Remark 1. It will be assumed that  the conditions of Theorems 1 and 2 
are fulfilled for some a > 0, b < 1, a < t o < b on each of the segments into 
which the segment [0,1] is divided by the point t l .  
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In what follows, to characterize each of the above-mentioned variants of 
alternation of the signs of the function p(t) and of the mutual arrangement  
of the points tl ,  t o we shall use a collection of symbols of the form 

(tl~ tl ,  + , - ,  +),  

which in our case means that  hi~ < tl and the function p(t) is positive on 
the intervals C0,t ~ and (hi, 1) and negative on the interval (t~ The  
notation [z] ~ z(ti + O) - z(t - 0) will also be used. 

We have 

T h e o r e m  3. The function Z.o(t), which is the limitin9 one as ~ ---+ 0 for 
the solution of prublem (1), (2), /s ,  for t ~ tl, a unique solution of eqllation 
(3) satisfFing the following conditions: 

Case Variant Conditions; 

1 (t ~ t l ,  +, - ,  +)  zo(O) = Ao, [~o1 = [~G] = o; 
2 (tl,  t ~ - ,  + ,  - )  ~o(1) : Bo, [~o1 : [~GI = o; 
3 (t ~ t , ,  - ,  - ,  + ) ,  (h~, t ~ - ,  + ,  + )  [~o] = [ ~ l  = o; 
4 (t ~ tl ,  - ,  +,  +) ,  (t , ,  tT, - ,  - ,  +)  [zo] = o,  
5 (t ~ tl ,  +,  +, +) ,  (tl, tot, +, +, +)  xo(0) = Ao, [zo] = 0; 

6 (t~ tl ,  +, - ,  - ) ,  ( t l , t~  - )  zo(O)=Ao,[zo]=O, zo(1)=Bo; 

7 (t ~ tl ,  +,  +,  - ) ,  (tl, tot, +, - ,  - )  zo(0) = Ao, zo(1) = Bo; 

8 (tot, t t ,  , , - ) ,  (tl, tot, - , - , - )  [zo] = 0, zo(1) = Bo;  

9 (t ~ t~, - ,  +,  - )  zo(1)  = Bo; 
lo  (t~, t ~ +,  - ,  +)  zo(0) = Ao. 

Moreover, in the first three cases the function zo(t) ezists only if the addi- 
tional condition below is fulfilled: 

Condit ion A.  A system of equations 

p(tl - O)bl + h(tl - O,/;2) = 0, 
(5) 

p(tl + O)bl + h(tl + O, b2) = 0 

has a unique solution with respect to the unknowns bx, b2. 

In the case where Condition A is not fulfilled, then, in general, there  is 
rio function which is limiting as E --+ 0 for the solution of problem (1), (2). 

Tha t  the statement of Theorem 3 is valid follows from Theorems 1 and 2. 

3. An asymptotic representation of the solution of problem (1), (2) in 
the general case is of the form 

N 

z,<Ct, e) = ~ ~" [:~,,(t) + ~,,(tl~) + z,,((1 - t ) l e )  + 
I i = 0  
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+ ,~,,((h - if)/~) + ~,,,((if - tl)/~)], (8) 

where the number N satisfies the condition 2N _< v - 2 (see inequality 
(4)), zn(t) are u - 2n-times continuously differentiable functions for t ~: tl 
which are uniformly bounded together with their derivatives, while the other 
functions in (6) are infinitely differentiable for non-negative values of the 
argument, are identically zero for negative values of the argument, and tend, 
together with all their derivatives, to zero as the argument tends to infinity. 
Functions xn(t), n _> 0, make the asymptotic representation (6) approach 
the solution of problem (I), (2) everywhere except some neighborhoods of 
the points t = 0, t -- tl, if = I. Note that the function x0(if) satisfies 
equation (31 and certain additional conditions in accordance with one of 
the cases mentioned in Theorem 3. The functions yn(t/,  zn(pl,  un(~), vn(zT) 
are defined as solutions of differential equations of second order which for 
n _> 1 are linear and have constant coefficients. Depending on the specific 
considered case some of these functions are identically zero for any n _> 0. 
For example, in case 6 representation (6 / contains only the functions xn(t) 
and Vn(rl) when t o < tl .  In that  case functions V~(H) are such that  Vo(H) -- 0, 
while for n >__ I they are solutions of the problems 

vn" - pCh + 0)v'~ = ~(H), H > 0, (7) 

v'(o) ~' = -[ ~-I], (8) 

where the functions @n(H) are defined by the procedure typical of the method 
of small perturbations with the aid of well-known recurrent formulas. For 
n >_ 1 the functions xn(t) are defined as solutions of the equation 

pCt)x'~ + h~(t, xoCt))x~ = f~(t),  t ~ (o, t l )u  (it,1), (9) 

satisfying the additional conditions 

x~(0) = ~ ( 1 )  = 0, [ ~ ]  = - ~ ( 0 ) ;  (10) 

as above, functions fn( t )  are defined here by the standard procedure using 
well-known recurrent formulas. As follows from [15], problems (91, (10) are 
always solvable and their solutions are u - 2n times continuously differen- 
tiable for if 9& t l .  

One can easily ascertain that  the difference w u (t, ~) = x( t ,  ~) - z ~  (t, ~) 
satisfies the equation 

1 

- p ( t ) %  - ~ .  / h'~(~, x .  + 0 ~ . ) d 0  = L u ~  ---- w N ~ 

0 

= ~ # ~ . ( t , ~ ) ,  if ~ h ,  (11) 
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and the additional conditions 

lO~t(0,~)=0 , w~v( l i~)=/n l~  N+I, [WN]=0 , 

[W:] = m2~ N, I ~  (r, ~)I -< m3, 

where mr,  mi,  m3 are constants. 
In a similar manner one can also define the coefficients of asymptot ic  

representations in the other cases mentioned in Theorem 3. 

T h e o r e m  4. For representation (6) we have the estimate 

Iw. (t, e)l + elw L (t, e) l -< Me N+I, (12) 

where the constant M does not depend on ~. 

Proof of Case 6. Estimate (11) is proved using the method of barrier func- 
tions. The continuous functions 

~ (t, ~) = =~ (t, ~) + ~ (t, ~ ) ~ + l ,  

where the %, (t, r function is to be defined, wil l  be considered as corre- 
sponding to the lower and the upper barrier function, respectively. We 
shall construct the function 7~ (t, e) as the sum of two terms 

~,, (t, ~) = ~,.,, (t, ~) + ~"t.,: ( ( t  - t~) /~) .  

We shall define the function "y.,, (t, ~) as a solution of the problem 

p(t)7~,, + h ' ( t ,  xo(t)) 'y. , ,  = r,,, t ~ CO, t , )  U (t , ,  1), 
%,,,(0,~) = Mr, %,,, (1,~) = M~, 

7N., ( t l  - 0, e) - 7N., ( t l  + 0, e) = cMa, 

where m, Mr, M2, M3 are some constants not depending on e. As follows 
from [15], the function %r is defined uniquely. We shall define the 
function %,.2 (1/) as a solution of the problem 

" - p(t + 0)7"a  = 0 for T/> 0, 7.v.2 (~/) = 0 for ~} < 0, "/N.2 
7~., (0) ---- M4. 

It is obvious that  the function 7,~ (t, s) is continuous for t E (0, 1). By  choos- 
ing the constant M4 sufficiently large, we succeed in fulfilling the inequality 

~"  ( t ,  + o, ~) - ~ (~l ~ o, ~) > o. 

Moreover, the function %, (t, e) will be positive for t E (0, 1) provided that  
the constant M4 is chosen sufficiently large. Thus for the appropriately cho- 
sen constants m, M1, M2, M3, M4 and sufficiently small values of e > 0 the 
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functions c~ N (t, e), fin (t, ~) will be the lower and the upper barrier function, 
respectively. Therefore there exists a solution x = z(t,~) of problem (1), 
(2) for which the inequalities 

are fulfilled. 
Now let us estimate the derivative of w N (t, ~). Consider the auxiliary 

function VN(t,~ ) = exp(--AOt)WN(t,e), where Ao is some constant. This 
function satisfies the equation 

L1v, --~C + [2~A0- p(~)]v~ + [~A0 ~ -p(t)Ao- 

I 

[ + e  )d0]vN = t (13) 
~f 

0 

and the additional conditions 

V N (0, ~) = 0, v N (i, ~) -- m4~ N+I exp(-Aot), 

[VN] = O, [v'] = ms~ Nexp( -Ao t ) .  

For t < tl the function 

ON (t, ~) = eN Ms exp(--M) + v N (t, ~), 

where A = const, satisfies the equation 

: + 

1 

- /h'(t,x N + OwN)dS]}eYMsexp(M)+ eNr (14) 

0 

Choose Ao such that the coefficient of v N (~, ~) in expression (13) is nega- 
tive for t < t~ Next, choose A such that the expression in the braces on 
the right-hand side of (14) is positive. Finally, choose Ms by the requirement 
that the entire right-hand side of (14) is positive. 

Let t < A -I < t~ Obviously, the function ~N(t,~) cannot have a 
maximum positive value for o < t < A. Increasing, if necessary, the constant 
Ms, we obtain the inequality ~N(0,~) > ~N(A-I,6). Therefore, when t = 0, 
the function ~ = ~,, (t, ~) has maximum value for the segment [0, A -I] and 
hence ~;" (0, ~) s 0. We thus have the estimate 

%,' (0,~) _< ~NMs _< ~N-~Ms. 
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In a similar manner one can derive an estimate for ~/N (0, e) from below. 
Integrating now the left- and right-hand sides of (11) from 0 to 1, we easily 
obtain the second part of estimate (12). 

4. Let us consider the boundary value problems for the equations of 
third order 

L~= = ~2x"  + 6r(~)=" - [p(t)=' + h(t, x)] = 0, t e C0,1), ( i s )  

�9 (0) = A0, ='(0) = A , ,  ='(1) = BI ,  (16) 

where pCt), h(t ,x) are the same as in problem (1), (2), while the function 
rCt ) may have a discontinuity of the first kind for t = tl and, being defined 
at the end points of [0,tl], [tl, 1] with respect to continuity, is infinitely 
differentiable on these segments. To simplify our further discussion, it will 
be assumed that r(t) may change sign only at the points t ~ tl, taking into 
account that the one-sided limiting values of this function at the points 
t = 0, t = tl, t = 1 differ from zero. 

Under these conditions we have 128 variants of the mutual arrangement 
of the points tl t ~ and alternation of signs of the functions rCt), p(t) on 
the respective segments of (0, 1). The upper and lower barrier functions, 
uniformly bounded with respect to the parameter e, can be constructed 
for 75 variants, of which 21 contain an infinite number of pairs of barrier 
functions uniformly bounded with respect to the parameter e. Note that 
different pairs of barrier functions confine different solutions of problem 
(15), (16). Generally speaking, for e --+ 0 these solutions have different 
limiting functions which, for t ~ tl, satisfy equation (3) and some additional 
conditions at the points t = 0, t = tl, t = 1. The remaining 53 variants 
do not allow us, generally speaking, to construct barrier function bounded 
uniformly with respect to 6. 

To illustrate the properties of solutions of the problem under consid- 
eration and the peculiar features of construction of respective asymptotic 
representations we shall consider one concrete variant. The other variants 
are considered similarly. 

Let tl < t~ the function r(t) be negative on the segment [0, 1], and the 
function p(t) be positive for t E (0, ti e) and negative on the interval (t ~ 1). 
An asymptotic representation of problem (15), (16) will be constructed in 
the form 

N 

�9 .,, ( t ,  ~) = ~ ~" [~,,(t) + y,,C,~t/~) + ~,, (~(~, - t)/~) + 
k.=O 

+ ~  (~(t - ~ , ) /~)  + ~ (~(1 - t)/~)" + ~ (~(1 - t ) / e ) ,  (lZ) 

where all functions with a quickly changing argument for e --+ 0 possess 
the same properties as analogous functions described in constructing an 
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asymptotic representation of a solution of problem (I), (2). Note that A,/~, 
u are the positive roots of the equations A2-r(O)A-p(O) = 0, p2_r(tl -O)l~- 
p(tl--O) = O, u2-r(tl-i-O)v-p(tlq-O) = 0, respectively, while ~ and a are the 
roots of the equation p2 _ r (1)p-p(1)  = 0 (both these roots are positive for 
the variant under consideration). The coefficients of representation (17) are 
to be constructed so that for t ~ tl the function z H (ta) satisfies, to within 
values of order O(eN), equation (15) and conditions (16), and so that for 
all t E (0, 1) the function z~ ( t, e) is continuous and possesses derivatives of 
first and second orders. 

The function Zo(t) is one of the solutions of equation (3). It should be 
chosen so that it is continuous and continuously diiferentiable for t E C 0,1) 
and satisfies the conditions zo(0) = Ao, xo(1) = Bo, where B0 is some 
constant. 

Functions zm(t), m _~ 1, are defined as solutions of equation (9) for 
t ~ t l ,  satisfying the conditions xm(0) = 0, zm(1) = bin, where bm are 
some constants. Other functions from representation (17) are defined as 
solutions of linear ordinary differential equations of third order with con- 
stant coemcients. All these functions are defined so that zm(t, ~) satisfies 
the above-formulated conditions. Due to the restrictions imposed on the 
functions r(t), p(t), hi t, z), such a construction is possible for any m ~_ 1. 

Note that with the above approach the functions y~(r), zk(~), ~k(T/) are 
defined uniquely, but to find constants B0, b~, v~(0), w,~(0), m _> 0 we 
have only one condition, namely the right-hand boundary condition of (16), 
and therefore representation (17) describes a whole family of asymptotic 
representations. Assuming that the above-mentioned constants are defined, 
let us prove 

T h e o r e m  5. Let the function r(t) have a discontinuity of the first kind 
at one point t = tl at most, and let it be infinitely differentiable on each 
of the segments [0,tl], It1, 1] and not change sign on the intervals (O, tl),  
(tl,t~ (t ~ 1). Let the conditions of Theorems 1 and 2 and Remark 1 be 
fulfilled. Then in the neighborhood of each function x N (t, e) from family 
(17) there is a solution x(t ,e)  of problem (15), (16) where the estimate 

Iz(t,e) - z Ct, e) I <_. M~ N+I ( 1 8 )  

holds, where the constant M does not depend on e. 

Proof. The theorem will be proved using the theorem on barrier functions 
[16]. It should be noted in advance that for all t E [0, 1] the function 
xN( t ,e  ) is COntinuous, exactly satisfies the boundary conditons (16), for 
t ~ tl satisfies the equation 

Lcz. = eN~b~ i t, 6) (19) 
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and for t = tl the first and second derivatives ofz N (t, 6) have discontinuities 
and z~,(t, + 0, 6) - z" (t~ - 0, 6) = 6N.., z" (t~ + 0,6) - z~ (it - 0,6) = 
6N-IcN, where a~, c~, r remain bounded as 6 --* 0. 

Let x ,  Ct, e) = exp[z~(t - ti)/6] for t _< 0, xN(t,6) = exp(x( t l  - 016] for 
t _> 0, where the constants d, x are chosen so that  the function 

~ (t, 6) = x~  (t, 6) + 6 N + l x .  (t, 6) 

is continuous together with its derivatives of first and second orders. Barrier 
functions will be constructed in the form 

act,  6) = y~ (t, 6) - 6N~Ct) = y .  (t, 6) - rct ,  6), 
~(t ,  6) = y~ (t, 6) + rct,  6), 

where 7(t)  is to be defined. Let t2 be a minimum and t3 a maximum 
value of the variable t such that hi(tl ,xo(t2)) = hi(t3, xo(ta) ) = ho and 
hi(t2, xo(t2)) >_ ho for all t E [t2, t3]. However, if the inequality hi( t  , a:o(t) >_ 
ho holds for t E [0, t3] or t E It2, 1], then we will accordingly set t2 = 0, 
t3 = 1. Let 

= inf p(t). g = s u p l h ' ( t ,  x0(t))l ,  vo Io,~l 
[o,1] 

On the segment [0, tl] the function 7(t) will be constructed as a solution of 
the problem 

PoT' - H7 = Ml(t), 7(0) = 70, 
where Ml(t)  is some positive function with a positive derivative, 70 > 0. 
Obviously, 7 (0  > 0, 7 '(t)  > 0 for t e [0, tl]. For t E [tl, t2] the function 7 ( 0  
will be defined as a solution of the problem 

PoT' - H 7  =. M2(t), 7(t l)  = 7(tl  - 0), 

where M2(t) is a positive function, Mm(tl) = Ml(t l) .  It will be assumed 
that  M~(tl) >_ m~(tl).  It is obvious that  7(t) > 0, 7'(t) > O. 

On the segment It1, t ~ the function will be sought for as a solution of the 
problem 

p(t)7' + h'-(t, xo(t))7 = Ma(t), 7(t2) = 7(t2 - 0), 

where Ma(t) is a positive function such that 

Ma(t2) = p(t2 + 0)[M2(t2) + H7(t~)] /Po + hoT(t2). 

With such a choice of the value of M3(t2) the function 7(t) will be continuous 
together with the first derivative for t = t2. If, in ~ddition, 

t 

MaCt) = hICt, xo(t))M3(t2)/ho+ [hi(t, xo(t))] 2 / g ( r )  [hi(v, XO(~'))] 
t3 
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where g(t) is an arbitrary positive function, then q,'(t) > 0 for t _> t2. 
It is easy to verify that if the value of g(t2) is stuCficiently large, then the 
inequality 

~"( t2  - 0) - ~"( t2  + 0) > 0 

will be ftdfilled. 
In a similar manner we define the function "r(t) on the segment It ~ 1]. It 

is not difficult to define this function so that it is continuous for t = t ~ 
We can easily ascertain that with the function ^/(t) thus defined, a(t, e), 

~(t, e) will respectively be the lower and the upper function of the prob- 
lem under consideration. Therefore the solution of this problem exists and 
estimate (18) holds for it. 

By a similar reasoning one can prove estimates of the nearness for deriva- 
tives of the solutions considered. Note that because functions yk(t) (for 
t e [t ~ 1]) and values vk(0), wk(0) are given ambiguously, the solution of 
problem (15), (16) is defined nonuniquely. O 
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