BOOLEAN FAMILIES OF VALUATION RINGS
Yu. L. Ershov UDC 510.4

The reader is expected to be familiar with elements of field valuation theory (see, e.g., [1,3]). By a
Boolean space we mean a compact totally disconnected space (every Boolean space is homeomorphic to
the space of maximal ideals of a certain Boolean algebra). The interest in Boolean families of valuation
rings and their "lift” to algebraic extensions arose as a result of studying the property of being regularly
closed with respect to a family of valuation rings for fields (see [4], specifically, Theorem 2.2).

Let F be a field, W a family of valuation rings of F; we call W weakly Boolean if the collection of
subsets of W of the type V4 == {R,|Ry, € W, A € Ry}, where A is a finite subset of F', forms a closed-open

base of a Boolean topology on W. If A = {a}, we write V; instead of Vj,;. Note that Vo = [ Vg, if
i<k

A = {ag,...,a;}, i.e., the family of subsets of the type V; forms a subbase of the topology with base

Va, AC F, and is finite. For notational convenience we write Vf in place of V4 and VaF in place of V,, -

when considering different fields.

THEOREM 1. Let W be a weakly Boolean family of valuation rings of a field F', and Fy > F an
algebraic extension of F; let Wp = {Ry,|Ry, is a valuation ring of Fy such that R,y N F € W}. Then
Wy is a weakly Boolean family of valuation rings of Fg.

First we prove the theorem, assuming that Fy is a Galois extension of F.

By letting ag € F§, we show that the set Vp = Wy \ Vof‘;o is representable as a union of a finite family
of basic open sets. Let fo, = ¥ + a1z 1 + ...+ a; € Flz] be a minimal polynomial of ag over F.
Suppose ag, a1, ...,a5_1 are all elements from Fy conjugate to ag in F (equivalently, {ag,@1,...,04_1}
are all roots of fu, in Fp). For any i € I = {i|]l <i <k, a; # 0}, define

k i1
- F F —
Vi= (V.0 )0 () (Wo\V0_,), where ao = 1;
jm=1 74 j=0 i
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Prior to proving that Vo = |J V/*, we introduce some definitions. Let f = b +a1ekb 1+ .. +ay € Flz]
i€l
be a unitary polynomial, k > 1, and f = [] (z — ;) a factorization of f in some extension Fy > F of F.
i<k
Let » be a certain valuation of F and vg its arbitrary extension to Fp. Define

yo = min{v(a;)li=1,...,k}, M= {i|lv(a;) =70, i=1,...,k}, io=minM, i = maxM;

then the following is valid.

LEMMA 1 (on root values). 1) If 45 < 0, there are exactly 4o indices i < k such that vo(e;) < 0
and exactly i; — ig indices i < k such that vo(a;) = 0;

2) if yo0 = 0, then vg(a;) > 0 for every i < k, and there are exactly 4; indices ¢ < k such that (vpa;) = 0;

3) if 49 > 0, then vg(a;) > 0 for every i < k.

k
Proof. Let S; = {s|s C {0,1,...,k—1}, |s| =i}, i=1,...,k;s = | s;; as = [[ «; for s € S. Then
i=1 i€s
a; = (—l)i . o, i=1,..., k. Set so = {i|li < k, vo(a;) < 0} and assume that sy # 0. Then for any
3€S;

s € S, vo(asy) < vo(as) is true; moreover, vo(as,) < vo(as) is true for sg # s € S such that |s| < i = [so].

This follows easily from the validity of vo(as) = 3 vo{e;) for s € S and from the definition of sg. This

i€s
in turn implies that v(a;) = vo(a;) > min{ve(as)|s € S;} > min{vg(as)|s € .5'1»6} = vo(asy) = ”(ai{)) and
v(a;) > v(ai6) for 1 < 1(); hence i = ig = min M, where M = {i|v(a;) = 70 (= min{v(a;)|i = 1,...k})}.
Moreover, in this case, i.e., when sg # @, we have v < 0.
Let sy = {ili < k}, vo(a;) < 0} and suppose that sy # 0. Then vo(as,) < vo(as) for every s € S and
vo(as;) < vo(as) for every s € S such that [s| > #] = [s1], s # s1; hence v(aill) = uo(aifl) = Iélén volas) =
8 .t

1
vo(as; ) < ;2}5{1 vo(as) < vola;) = v(a;) for every i = 1,...,k and 'v(ai/l) < v(a;) for if < i < k. This
1

implies #§ = i1 = maxM (M = {ijv(a;) = 70 (= min{v(a;)|[i = 1,...,k})}). In the present case where
s1 # 0, we have v9 < 0.

Conversely, if s; = 0, i.e., vo(1) > 0 for all i < k, then v(a;) = vo(a;) > min{vo{as)|s € S;} > 0 and
vo = min{v(e;)|i=1,...,,k} > 0.

The conclusions of the lemma follow from the above.

We apply the lemma to the case under consideration. Let Ry, € V;* for some i € I. Then

k =1
E E
Ry € Vi= (V20 Mo\ V21
=1 aja; =0 aia;

aj¢0

Ry, € Vja_l entails vo(ajai—l) = vo(aj) — vo(a;) > 0, vo(a;) < vola;) for all j = 1,...,k; so vo(a;) =
%4

min{vo(a;)[j = 1,....k}. Ryy € Wo \ VfZTI implies vo(a,'aj_1 = wo(a;) — vo(a;) < 0, wvo(a;) < vo(ay)

for all j < i. In particular, vp(a;) < vo(l) = 0, and so ¢ has the properties of iy from Lemma 1 for the

case f = faqy. Further, for the case i < k, there exists E € &; such that R,y € ) Vol,jo, ie., vo(a;) >0
j€E

for j € E, and since F € &;, |E| = k — ip. By virtue of Lemma 1, there are exactly iy roots « of the

polynomial f,, such that vp(a) < 0, from which we conclude that E is precisely the set of all roots a

such that vg(a) > 0, and {j|j < k,vo(e;) < 0} = {0,...,k—=1}\ E. Since E C {1,...,k=1}, 0¢ E
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and vp(ag) < 0, ie., Ry, € Wo \ ch';)o = Vp. For the case i = k, vg(a) < 0 for all roots of fu,, hence
vo(ap) < 0 and Ry € Wo \ VI = Vp.

We have thus proved that [J V;* C Vp. Assume, on the contrary, that Ry, € Vp; then wo(eg) < 0.
Let g be defined as in Lemmazellfor vo and foq, and E = {j|j < k, vo(a;) > 0}. Suppose 0 € E, and
by Lemma 1 |E| = k — ig; then F € &, if o < k. It is also easy to check that ig € I, Ry, € Vj,, and
Ry € Viy () Va?) C Vii. Thus Vo = {J V;* holds.

JEE i€l

Up to this point we note that for a € F the set Wy \ VaFD can be represented as a union of a finite

number of basic open sets. Since W is weakly Boolean, W'\ VGF = {()} V/f: for appropriate finite A; C F,
3

s <l It is straightforward to verify that Wy \ V.@,F0 ={ V‘f:g too.
s<i

It follows from this remark and the equality Vo = |J V;* that Wy \ Vf;,o = Vp is representable as a
€]

union of a finite number of open basic sets. Note that theis fact readily implies the following more general
assertion:

The family B*, consisting of all finite unions of basic open sets, is closed under union, intersection,
and complementation.

It is obvious that B* is closed under union and intersection. To check that B* is closed under

complementation, we should keep in mind the following:

Fi
a) Wo\Vil=wo\ N Vo= U (o \ VL)
ap€A ag€EA

F
b) Wo\ U V% = N (Wo\ V),
s<i s<ld )

which in view of the relation Wy \ ‘/LFOO € B*, proved above, validate the present case.

We proceed to establish that Wy with a given topology is a Hausdorff space. Let Ry, # R"'6 e Wp. If
Ry NF # Rv{) N F, then the facts that ¥ is Hausdorff and that Ry, N F and RU,{} NF e W imply the
existence of a € F such that R,y N F € VaF and RU{) NF¢ V;F; whence Ry, € L’},FO and R"B -4 VaFo. If
RyyNF = R”6 N F, then Ry, and R% are two distinct valuation rings dominating R., N F'; whence, as is
well known (see [1, p.187]), Ry, £ Rv6 and R% < Ryg- I ag € Ry \Rv{), then Ry, € VGIZO’ Rvé ¢ VGF(;O.

It remains to establish the compactness of Wp.

First we prove:

Proposition 1. The restriction map € : Ryy = Ryy N F from Wy to W is continuous and closed-open.

The continuity of ¢ is evident since 5‘1(V£) = VA0 for every finite AC F.

Now we check that 6(Vji3) is closed-open in W (Ap is a finite subset of Fp). Examine the case
Ag = {a}, a # 0. By letting f = ¥ + a;z*~1 + ... + a; € F[z] be a minimal polynomial of a1 over F

.and letting V = r‘l{VaI;\Vf:ﬁ i=1,...,k, a; # 0}, we prove that e(VfO) = W\ V. To do this, we must
use Lemma 1. '

Let Ry, € VO,FO, le., a € Ryy, vp(a) >0, and vo{a™1) < 0; then by Lemma 1, there exists 1 <i <k
such that v(a;) = vo(a;) < 0, and so Ry, ¢ vafO\va‘iol, €(Rup) € VE\VE, DV, and e(Ryg) € W\V. Thus

i :

E(cho) C W\ V. Assume, on the contrary, that R, € W\ V. Since R, € V, for some 1 < i < k we have
R, ¢ Vf \ If;}:l and v{a;) < 0; by Lemma 1 v5(8) < 0 holds for a suitable extension vg of the valuation
i

v to F and for a certain root B of f. There exists an F-automorphism ¢ of Fy such that (a™!)¥ = 3,
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and so for the valuation v (v§(a) = vo(a®)) of Fy extending v, we have vy (a™1) < 0, v¥(a) > 0, and

Rug € Vfo, E(Rug) = Rug N F = R,; consequently, W\ V C E(Vfo) and E(VO,FO) =W\V.

We turn to the case of an arbitrary basic closed-open set Vfo, A ={ag,...,an}. Let F} < Fy be the
least Galois extension of F containing A. Let k= [Fy : Fland G =GR /F)={go=¢€, g1,---,9k—1}-
Define Sp == {1,...,k+ 1}™ and

fs=ag+oy' +a3t? +.. + ags(””?"-sni

for 3=1{(s1,...,5,) € Sp.
We show that e(Vfu) =N e(ng‘}). Check the inclusion C. If R, = ¢(Ryy) and Ry, € Vfo, then

Ry € V;;O and R, € e:(V;jO) for all 5§ € Sp; thus Ry € [) 5(V5§0)y and so
? seSs,
F F
eV € [ e(Vs0):
§E5,

To prove the inverse we need the following lemma.

LEMMA 2. Let B be an arbitrary subset of F}, w a valuation of F} such that for every 5§ € S,
there exists j < k such that w(8%) >0 for all # € B and w(égj) > 0. Then there exists j < k such that
w(B9) > 0 for every 8 € B, and w(a;)% >0 for all i < n.

Proof. The proof follows by induction on n. The case n = 0 is trivial. Let n > 0. Assume that for
(n—1) the lemma is true and its assumptions are satisfied. Then for any §€ S,—1 and s € {1,..., k+1},
there exists j = js , < k such that w(8%) > 0 for any # € B and w(égfs) > 0; hence for every 5 € S,,—1,

there exist sg, s3 such that 1 <sp < 51 <k+1, and js,s55 = js,5,- Set j5s = Jjs.sp = Js,s,. Then w(égf'sgo) >

0, w(ég{sil) > 0, w(ég,’fe _ 6;’:—1) > 0; 6?;’50 _ 62‘,-551 _ (azg'so _ 025-31)51]-5 = (aZ¥%0 . (1 - a?(sl—so)))yjs,
This implies that w(ai°) > 0 and w(égﬁ) > 0, since w(ég,’:o) = w(égﬁ +(af¥%0)9i5) > 0. Consequently,
for every § € Sp..1, there exists j (= js) < k such that w(8%) > 0 for all 8 € B, w(aij) > 0, and
w(63%) > 0. Applying the induction hypothesis to the case n — 1 and to B’ = BU {a,}, we find a j < k

such that w(8%) > 0 for all 3 € B, w(a¥) >0 and w(afj) > 0 for i < n, as desired.

We prove the inverse inclusion ) E(V;TG) - 5(V§°). Let R, € [} V;fo), and let w be an arbitrary
5€Sn s€Sn
extension of v to Fy (note that every extension w’ of v to Fj is of the form w’ = w9 for an appropriate
g €G=GF/F) (v'(a)=w(a?d) for all a € Fy). Then Ry, € () 6(1/:5?) implies that, for any § € Sy,
5€5n
there exists a j < k such that w(&?’) > 0. Then by Lemma 2, there exists j < k such that w(af’) >0 for

all # < n, and hence for vy extending w9 to Fy we have Ry, € VAF % and Ry = €(Ry,). Thus the equality

E(VAFO) =N £(V§§0) is valid. It follows from this and from the above that E(Vfo) is closed-open. Hence
5€Sn
€ is open.

Now we check the closeness of £. Let & C Wy be closed; then Wy \ @ is open and W\ @ = |J Vg,
el

for a suitable family of finite subsets 4; C Fo, ¢ € I. For a finite Iy C I, we let &, = WA\ U Va,,
icly

and note that Ip C I; C I entails ®&;, D @7, 2 ®. Since 7, € B* for a finite Iy, €(®y,) is closed-open.

Further, @ = N{®y|lo C I, Ip is finite } and ¢(®) = N{e(®yy)|lo C I, Ip is finite } since the family

{®1,1lo € I, Io is finite } is directed under the inclusion &7, N @7 2 Pyur,-
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So e(®), which is an intersection of closed sets, is closed.
The proposition is proved.
We proceed to show that the set e71(R,) C Wy is compact for any R, € W. Let

e R € Y VAL,
i€l
and suppose that for a finite Iy C I, e71(Ry) \ U V:;O # 0. If every finite subset @ # Iy C I, assume
1, = {BIB C U A;y, BNA; #0forallie ;:I:;)lld there exists Ry, € €™1(Ry) such that vo(8) < 0
for all § € B}; }g: is finite and nonempty by assumption. Let § # I; C I; C I and I} be finite; then

there exists a map =y, j, : By, — By, defined as 77, ,(B) = BN( |J A;), where B € By,. The family
i€lp

{Bry, 11,10 # Ip C I, C I, I is finite } is an inverse spectrum of finite nonempty sets, so B = li{_n By,
is not empty, and every element B € B can be identified with a subset of Fy such that BN A; # @ for all
iel.

Choose B € B and show that there exists Ry, € £~1(R,) such that vg(f) < 0 for all B € B. Consider
the ring R* = R,[6~1; B € B] and its ideal J = (m(Ry), B~'; B € B). We show that J # R e, J
is a proper ideal. If J = R*, then 1 € J and there exists a representation 1 = mgrg + Z r1b; 1 where
mo € m(Ry); r€R*, i<k, bjeB, 1<i<k Since By =Bn(J 4)€ By, for any finite Io # 0

iely
and B = |J By, there exists a nonempty finite subset Iy C I such that rg,... 7} € R,87Y; B € Bp,]
IyCrI
and b; € By, for all i = 1,..., k. Since By, € By, there exists Ry; € e~ Y(Ry) such that vp(b) < 0 for all

b € By, then vo(b™1) > 0 for b € By, R,67Y, B € Bp,] € Ryy. so {mo} U {8713 € By} € m(Ryy),
and hence 1 = mgry + Z "‘b"1 € m(Ry,), an impossibility. Thus J is a proper ideal and there exists

a valuation ring Ry, of Fg such that R,y > R* and m(Ry) N R™ > J > m{Ryy). This implies that v
extends v, Ry, € ¢~ 1(R,); but Ry, ¢ U Vi 0 since there exists 3; € BN A; for any ¢ € I, vwo(f;) <

0, B; & Rygy Ryy & V:Aio. This is a contradxctlon to the fact that e"1(R,) C U vio et which proves the
el

compactness of e1(R,).

We argue to establish that Wy is compact. Let Wy = |J V _0, and suppose that for any finite
(134

L CI Wo# U V/f;o, ie, ®p = Wo\ |J Vj;o # @; further, £(®p,) is closed and nonempty; e(®7,) N
i€lp i€l
&(®r) 2 (21, N ®1,) = e(®,ur,) # 0 hence, there exists Ry € N{e(®,)|Ip C I,Ip is finite }. By the

above e71(R,) (C Wy = U Vfo) is compact; hence, there exists a finite I; C I such that e"1(R,) C

GL% V4 0 = Wo\ @;;; but then e Y (R,)N®, =0 and R, & &(®1,) 2 N{e(®1)ldo C I, I is finite }. The
1
conltradlcmon obtained proves the compactness of Wy and the theorem for the case where Fy is a Galois
extension of F'.
Now we turn to the case where Fy is a separable extension of F. We show that every basic open set
G (A C Fp, A is finite) is closed-open. It suffices to prove that the set Vo = Wp \ V ag 18 open for
an arbltrary ag € Fy. Let Ry, € Vp; then apg & Ry, vo(ap) < 0, vo(aol) > 0. There are £ > 1 and
a € F such that vo(ao”k) = vo(a); wo(a) >0; Ry, NF eV VaFl Since V,F' \ VF1 is closed-open in
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W, VuF \ VaF_1 = L(Jl Vé’: for suitable finite sets B; C F, i <. We have
1

. F F
Ruev =V
i<i

We show that V C V5. Let R% € V, then Rv{] e v entails 0 < vg(agka'l) = kv{)(aal) -

(oka)-1
vp(a); kv(')(aal) > vj(a); R% € ﬂl Vg:.o entails R, = RU‘;) NFe QI ng’ = VF\ Valil, ie., vp(a) =
1< )

v'(a) > 0; whence kv(’)(aal) > v()(a)_> 0, vh(agt) >0, vh(ag) <0, ap ¢ R”S’ R“6 e W.

Thus Vp is open, and so ch';o is closed-open; hence every basic open set Vfo is closed-open.

Let Fy be a Galois extension of F, containing Fp; then Wy = {Ry |Ry,; is a valuation ring of Fy
such that R, N F € W} is a Boolean space. The map ¢’ : Wy — Wy, defined as ¢/(Ry,) = Ry, N Fo, is
continuous and onto. This, in view of the compactness of Wy, implies that Wy = ¢/(W1) is compact. The
compactness of Wy and the existence of a base of topology consisting of closed-open sets entail that Wy
is a Boolean space.

To end the proof of the theorem, we consider the case of a purely inseparable extension Fy of F'. Note
that Wy and W are homeomorphic in this situation: for every R, € W, there exists a unique f,, € Wp

such that Ry, N F = R,, namely Ry, = {aglag € Fp, and there is k > 0 such that agk & R,}, where
p = x(F) is a characteristic of F, and VQFO = V::? for any @ € Fg, n > 0.

If Fy is an arbitrary algebraic extension of F, Fj is a separable closure of F in Fy. Then Fp is purely
inseparable over Fi, and by the remark above Wy is homeomorphic to Wy = {R,|Ry, is a valuation ring
of Fy such that R, N F € {1}, and ¥y is Boolean by the above arguments.

The theorem is proved.

A weakly Boolean family of valuations W is called Boolean if the following hold:

1) for any a,b € F. there exists ¢ = c(a,b) € F such that VI n VbF =VvF,

2) for any a € F, there exists a* € F such that W\ Vap = Va{:.

COROLLARY. If 11" is Boolean, any closed-open subset of W is of the form VaF for a suitable ¢ € F.

We show that given the ring B = Ry = N{R,|R, € W}, every Boolean family ¥ is amenable to
reconstruction.

Recall ([5], p-583) that the integral domain R with 1 is a Priifer ring if and only if, for every maximal
ideal m < R, the ring of fractions Ry, is a valuation ring of F.

Proposition 2. If R is a Prifer ring with a field of fractions F, Fp is an algebraic extension of F',
and Hp is an integral closure of R in Fp, then Rp is a Priifer ring with a field of fractions Fp. This is
excersise 16, p.584 in [5]. For completeness, we give here its proof.

Let mg be a maximal ideal of Rg; then m = mp N K is a maximal ideal of R. Let R% be an integral
closure of Ry, in Fy. Since Rop, is integrally closed and Ry, < Romg, then RS < Romg; md =

0 is a maximal ideal of RS, (since R, is

moRomg N RY, is a prime ideal of RY, containing mRy,; then m
integral over Ry,) and (R%)mo is a valuation ring of Fy, containing R,,. But (R(,)n)mo < Romg, and so
Rom, is a valuation ring of Fy and Ry is a Priifer ring.

The Priifer ring R is said to be regularly Priifer if the factor ring of R with respect to a Jacobson
radical J(R) = N{mm is a maximal ideal of R} is a regular ring, i.e., for any @ € R/J(R), there exists

b€ R/J(R) such that a%b = a.
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Proposition 3. If W is a Boolean family of valuation rings of a field F, then R = Ry =N{R, € W}
is a regularly Priifer ring with a field of fractions F, and {py, == m(R,) N R|R, € W} coincides with the
set of all maximal ideals of R.

Note that R\ U{p,|R, € W} is exactly the set R* of all invertible elements in R. Indeed, if a € R\
U{py|Ry € W}, for-every R, € W, a~! € R, because a & m(R,) (if a € m(Ry), then a € m(R,)NR = py);
consequently, a1 € N{R,|R, € W} = R, i.e., a is invertible in R. Conversely, if a is invertible in R, then
a does not lie in any proper ideal, whereas every ideal p, is proper (1 € p, = m(Ry) N R).

Now we prove that if J is a proper ideal of R, there exists R, € W such that J < p,. Assume the

contrary; then for every R, € W, there exists a, € J \ p,. We can, and do, show that W = |J Vf_'_ 1
RUEW v
Choose an arbitrary R, € W. It follows then that a, € J \ p, implies ay, & m(Ry), a;l € Ry, and

R, € Valir In view of the compactness of W, there exist Ryg,..., Ry, € W such that W = U Va‘l
v i<k i
Since W is Boolean, there are ag,...,a; such that W = | chg; V(f; N V(f; =0 fori<j<k, and
i<k

To contmue we need the following auxiliary lemma.

LEMMA 3. Let a,a* € F and W\ VJ = VL. Then a. = ¢*(a+a*)"! € R, aa. € R, and

VF =yF
a a—1"

Let Ry € VI thena € Ry, v(a) >0, a* ¢ Ry, v(a*) <0, v(a+a*)=v(a*), and v(as) = v(a*(a+

a*)™Y) = v(a*)—v(a+a) = v(a*)—v(a*) = 0. This implies VI C VE |5 v(aa.) = v(a)+v(as) = v(a) > 0.
a¥

Let R, € VQI:; then v(a*) > 0, v(a) < 0; v(a+a*) = v(a) and v(a.) = v(a*(a+a*)"1) = v(a*)—v(a) >
0, v{aay) = v(a) +v(a*) —v(e) = v(e*) > 0.

It follows from w(a.) > 0 that a7! ¢ R, and VEnVE | =0, ie. Vaf_l C WA\VE = V. Hence

aﬁ *

VaF = VaF_l. Moreover, for every R, € W we have v(ax)} > 0, v(aa,) > 0; consequently, ax, aax € R.

Consider an element @ = ay(ao)s + ... + @y, (ag)«, where (o)« is constructed from o;, as in Lemma
3. Since ay; € J and (a;). € R for i < k, a € J. We show, however, that a is invertible in R. Assume
the contrary; then a € p, = m{R,)N R for some R, € W. Since VGI';, ..., VE is a partition of W, there

Vo

is a unique ¢ < k such that R, € VF VF - VFI and VF = V(F) 1, consequently, v(ay;) = 0 and
Qg lx

v({a;)«) = 0. For j #4, j <k, we have R, € V2 V(F yob (aj),, ¢ Ry, (o))« € m(Ry), v((a;j)«) >
0, v(ay;) 2 0, v(ay;(a;)x) > 0. Then v(a) = v(a (az)*+ ; aj(a;)«) = v(a;(a;)«) = 0, and so a & m(Ry),
1

which contradicts the assumption that a € p, = m{R,) N R. Thus a is invertible, but a € J for a proper
ideal J. This is a contradiction, which proves that J < p, for a suitable R, € W¥.

It is straightforward from the above that every maximal ideal is of the form p, for an appropriate
R, eW.

Our immediate aim is to show that every ideal p, is maximal. Assume p, is not maximal and m is
a maximal ideal containing p,. By the above m = p, for a suitable R € W. Thus we have p, < p,,
where R,, R, € W. Since W is Hausdorff, there exists a € F such that R, € VaF and R, ¢ VaF .
By Lemma 3, there exists a. € R such that V} = VF;I, and the relation R, ¢ VF = Vap_l implies

a;' ¢ Ry, a.€ m(R,)NR=p, <py, a:'¢ Ry, R g vE 1= = VF, a contradiction with the choice
of a. Thus every ideal of the form p, is maximal, and so the set of all maximal ideals of R coincides with
{pu|Ry € W}. Hence J(R) = N{py|Ry € W}.
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We argue to establish that R/J(R) is a regular ring. Let a € R\ {0}, and for a™!, let an element
(a71)« be defined as in Lemma 3. By virtue of this lemma, (a~1)., a~!(a~1). € R. We show that
a= (@M@, € J(R) a—aX(a (@ M)) = o1 - (7)) = all - ) = ke
Let R, € W. If a”! € Ry, then (a™1)* ¢ R, and v(a™}) > 0, v((a™!)*) <0, wv(a™!+ (a71)) =
v((@™1)*) <0, (a1 + (a1)*)"1) > 0; if a= ¢ Ry, then (a~1)* € Ry and v(a™) < 0, v((a~1)*) >
0, v(@a!+ (@ 1)) = v@l) <0, v((a~l)+(a~1)*)"! > 0. Thus for every R, € W we have
v((@™! + (a=1)*)71) > 0; then (a7 + (¢ 1)*)~! € R and (a™! + (a~1)*)"! € N{py|Ry € W} = J(R).
This implies the regularity of R/J(R).

It remains to prove that R is a polyvaluation ring. We show that the equality R, = Rp, holds for every
R, eW. The inclusion Rp, < R, is evident. Assume a¢ € Ry; then v(a) > 0, v(e¢*) <0, v(a+a*)=
v(a*), ( )_v(a —v(a + a*) = 0. Since a,.:a—_‘:_;a;ER, ax € R\ m(Ry) = R\ Py, but aa, € R
by Lemma 3 soa= aa,.a,,‘1 € Rp,; hence Ry < Rp, and Ry = R,

This completes the proof.

The next proposition demonstrates that Boolean families W contrast with weakly Boolean ones by
virtue of being closely connected to a ring Ryy = N{Ry|R, € W}.

Proposition 4. If W is a weakly Boolean family of valuation rings of a field F, R = Ry =
N{Ry|Ry € W} is a Priifer ring with a field of fractions F such that the set of all maximal ideals coincides
with {py, (= m(R,)N R)|R, € W}, then W is Boolean.

First we show that the family consisting of all sets of the type H(b) = Vb 1, be R\ {0} forms a
base of the canonical topology on . It is routine to check that H(a) N H(b) = H(ab) for a,b € R\ {0}.

By letting @ € F* and B = {b]b € R\ {0}, H(b) C VI'}, we show that V}' = |J H(b). Assume the
beB

contrary and choose an arbitrary R, € Vo \ |J H(b). Then H(c)N(W\V,F) # 0 for any ¢ € R\ p,.
beB

Since we have cgey € R\ py. H{co) N H(cy) = H(cgey) for co,c1 € R\ py, and W\ VaF is closed,

(N HNNWAVI)#£0. Let Ry e( ) HE@)NW\VF). fce R R, € H(c) = VE, implies
CER\pu CGR\I’U
¢ € R\ py; so (R\ py) C (R\py) and p, C py; but p,s is maximal; hence p, = p,s. On the other hand,

R,eVFE, R, e Ww\VF, and R, # R,. Since R is a polyvaluation ring, Ry, is a valuation ring of
F; moreover, Ry, < Ry, Rp, < R,. All super-rings of a valuation ring are linearly ordered (see {3]), so
either Ry, < Ry or R, < R,. Since R, # R, this is in conflict with the fact that 1V is Hausdorff. Thus
= bUB H(b), and so {H(b)}b € R\ {0}} is a base of the canonical topology on W.
€

Next we prove that for every a € R\ {a}, there exists a’ € R\ {0} such that H(a') = W\ H(a).
Let B = {blb € R\ {0}, H(a) N H(b) = 0}, then W = H(a) U ( U H(b)). Indeed, W \ H(a) is
open and W \ H(a) = U{H(b)]b € R\ {0}, H(b) C W\ H(a)}, by the above. Note that for any
AC R\{0}, W= | H(a) implies that the ideal (A) of R generated in R by the set A is not proper.

a€A
In fact, if (A) < R, then there exists a maximal ideal m such that (4) < m < R, and m is of
the form p, and R, ¢ |J H(a). (The converse also holds: if (A) = R, then W = |J H(a).) Since

acd acA
n
W = H(a)U (U H(b), ({a} UB) = R, and unity has representation 1 = roa + Y r;b;, where r; €
beB i=1
R, i<n; b;€B, i=1,...,n. Set o/ = ¥ r;b; and show that H(a’) = W\ H(a). Let R, € H(d');
=1
then o’ € p,. It follows from H(a) N H(b ) = 0 that ab; € N{py|R, € W}, ..., so aa’ =
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Z ri(ab;) € N{py|Ry € W}, ad’ € py, a € py, and R, & H(a), ie, H(a') C W \ H(a). Let

Ru ¢ H(a’); then a’ € p,, 1 —a’ & py; but 1 —a’ = roa, consequently, roa € py, a € py, Ry € H(a), i€
W\ H(a'") C H(a), W\ H(a) C H(a'). Thus H(a') = W\ H(a).

The arguments above entail that for every a € F*, there exists b € R\ {0} such that VF' = H(b).
Indeed, VF = U{H(b)|b € R\ {0}, H(b) C VF). Since VF is compact, there exist by, ...,bn € R\ {0}
such that VI = U H(b;). If b= (]] b}), where the primed symbols signify complementation, it is

% an

immediate that VF H(b). Since the famxly consisting of all sets of the form H(b), where b € R\ {0},
is closed under intersection and complementation, and forms a base of the canonical topology on the
compact {Boolean) space W, every closed-open set in W is of the form H{a) = _1, aer\ {0}, and W
is a Boolean family of valuation rings of F. The proposition is proved.

Below we show that Proposition 3 admits inversion.

Proposition 5. If R is a regularly Prifer ring with a field of fractions F, then Wgp = {Ry|m is a
maximal ideal of R} is a Boolean family of valuation rings of F.

The notation adopted here is the same as in Proposition 4. We show that the family {H{a)la € R\{0}}
of subsets of Wg forms a base of the canonical topology on Wg. Let « € F and Rm 6 VF ; then a € Ry,
and there exist b,c € R, ¢ € R \ m such that a = bc™!; hence R, € H(c) = _1, and obviously,
H(c)C VF.

Verify that the canonical topology is Hausdorff: if mg # m; are maximal ideals of R, then for
a € my \ mg, we have Ryp € H(a), Rm,; € H(a).

Check that Wg is compact. Suppose Wg = U H{a), and let {A4) be the ideal of R generated by A.

If (A) # R and m is a maximal ideal of R such that (AY<m< R, then Ry, ¢ U H{a); so {A) = R and

there exists a representation of the form 1 = §_ rja;, where r; € R. 0; € 4; hence Wgp = |J H(a;). In
i<n i<n

fact, if Rm € Wr\ | H(a;), then (ao,. ..,an) < m and 1 € m, a contradiction.
i<n

It remains to prove that for every a € R\ {0}, there exists «’ € R\ {0} such that H(a') = Wg\ H(a).
Since R/J(R) is regular, there exists b € R such that a — a?b € J(R). Set o/ = 1 — ab.

If Ry € H(d'), then o’ € m; aad’ € J(R) < m; s0 a € m, and Ry, & H(a).

If R, & H(a'), then o’ €m, 1 —a’ =abg m, a ¢ m and Ry, € H(a). Thus H(a') = Wgr\ H(a). As
in the proof of Proposition 4, we infer from this that Wg is a Boolean family of valuation rings of F.

Our goal now is to establish the main theorem on a "lift” of Boolean families to algebraic extensions.

THEOREM 2. Let W be a Boolean family of valuation rings of a field F, Fy > F an algebraic
extension of F, Wy = {Ryy|Ry, is a valuation ring of Fp such that R,;NF € W}. Then Wy is a Boolean
family of valuation rings of Fp.

By Theorem 1 Wp is weakly Boolean. We show that Ry, = N{Ry|Ry, € Wo} is an integral
closure R%, of the ring Rw = N{Ry|R, € W} in Fp. Since Ry < Ry, and Ry, is integrally closed,
R?,V < Rw,. f a € Ry, \Rgv and f = z"+a;2" '+ ...+ a, is a minimal polynomial of a over F, then
{a1,...,a,} € Rw, and hence there exists R, € W such that {ay,....an} € R,. For a not integral over
Ry, there exists Ry, € Wy such that Ry, N F = R, and o € Ry, but then o ¢ Rw,, a contradiction.

Since Ry is the Priifer ring with a field of fractions F' by Proposition 3, Ry, = R?,V is a polyvaluation
ring of Fy by Proposition 2. We check whether the assumption of Proposition 4 is valid for the family
Wo. It suffices to establish that {m(Ry,) N Ryw,|Ry, € Wo} coincides with the set of all maximal ideals
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of Ry,. Let mg be a maximal ideal of Ry, = R?V; then m = mg N Ry is 2 maximal ideal of Ry and
(Bw)m € W; hence (Ryy,)m, is a polyvaluation ring dominating (R )m, consequently, (Rwy)m, € Wo
and mg = m((Rw,)my) N Ry, Conversely, if Ryy € Wo, then m(Ry;) N Ryy is a maximal ideal, and so
m(Ryy) N Ry, = m(Ryy) N RY, is maximal as a prime ideal lying over the maximal ideal in the integral
extension. By Proposition 4, Wy is a Boolean family of valuation rings of Fy. This completes the proof.

Now we give a few instances of Boolean families of valuation rings. Unfortunately, our attempts to
find an example of a weakly Boolean family that is not Boolean have as yet been unsuccessful. In going
through the details of the next proposition, the reader will get some idea about the difficulties impeding
the construction of such an example.

Proposition 6. Let W be weakly Boolean, and suppose that for every a € F*, there exists a unitary
polynomial with integer coefficients fo(z) € Z[z]\ Z such that f;(0) = £1 and f,{a) € m(R,) for any
R, € Vap. If, for every R, € W, the field F, = R,/m(R,) is an algebraic extension of a simple field of
characteristic p, # 0, then W is Boolean.

In view of Proposition 4, it suffices to show that the set {p, (= m(R,) N R)|R, € W} coincides with
the set of all maximal ideals of the ring R (= N{R,|R, € W}), and that R is a polyvaluation ring.

Set a. = fy(a)”! for any a € F*; then ax, aa. € R, and VF = Valil. Indeed, let B, € W and

v(a) > 0, ie, R, € VF. Then aZ! = fi(a) € Ry \ m(R,) and v(al') = 0, by the above condition. If
a & Ry, v(a) < 0, then v(al?l) = v(fo(a)) = degfs - v(a) < 0; v(a.) = —degf, -v{a) > 0; v(aa.) =
v(a) — degfs - v(a) = —(degfa — 1)v(a) > 0 since degf, > 1. Thus v(a.) > 0 and v(aa.) > 0 for all
Ry, € W; hence, a.,aa. € R. Moreover, v(a) > 0 implies v(ag* ) =0, and v(e) < 0 implies ‘v(a;'l) < 0;
hence, VF: Vlil

Since, for any a,b € F*, we have Vf = VFI, V}} = VéF1 and VI n VF VF1 N V 1= V

every basic open set is of the form I/a_ for a sultabie a € R\ {0}.

First we show that R, = R, for every R, € W. The inclusion R,, < R, is evident. Let a € R, \ {0};
then v(a) > 0, V(a:l) =0, v(a.)=0; av,a0, € R, . &€ py, and a¢ = (aa,.‘)a:1 € Rp,; thus R, = Rp,,.

Next we prove that every maximal ideal m of R is of the form p, for an appropriate R, € W. For every
a € R\'m, V::l # 0 holds. Indeed, if Vf;l =0, then a € p, for all R, € IV, and so a € N{py|R, € W}.
At the same time, the maximality of m implies the existence of ¥ € R such that 1 — ab € m; but
1—-ab € R,\m(Ry), (1—ab)~! € R, for all R, € W (since a,b € R < Ry, a,ab € p, < m(Ry)), then
(1-ab)"'e R=n{RJR, e W}and 1 = (1 —ab)-(1 ~ ab)"1 € m. Contradiction. Thus VF} # 0 for

every a € R\ m, andso () Vlil#@ Let Ry € () V 1, then R\ m C R\ p, and p, < m.
aER\m 2€R\m
Now we show that the ring of fractions Rmy is a valuation ring. Let R,; > R be an arbitrary

valuation ring of F such that m(R,y) " R = m. Then Rm < Ry,. Let @ € Ryy, vo(a) > 0, and
vg(fa(a)) > 0, vo(as) = vo(fala)™!) < 0, but a. € R < Ry, entails vp{as) > 0; thus vg(ax) = 0 and
a = (aas)a;! € R, since aa. € R, a. € R\'m, and s0 Ry = Ry, is a valuation ring. The inclusion

a&l}*) 1

pv < m implies an inclusion Ryg = Bm < Rp, = Ry. If Ryy < Ry, the valuation vg is representable as the
composition v o 4, where T is a nontrivial valuation of F,. By assumption, however, F, is an absolutely
algebraic field of nonzero characteristic, and such fields have no proper valuations. This implies that
pv =m, ie, m € {p,|R, € W}.

The above arguments also show that p, is maximal for every R, € W. Indeed, if m is a maximal ideal
of R such that p, < m, then p, = m, as has been proved above. In view of Proposition 4, W is Boolean.

COROLLARY. If W is weakly Boolean and there exists £ > 0 such that for any R, € W the field
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F, = Ry,/m(Ry) is finite and |F,] < k, then W is Boolean.
Let p be a prime number greater than k and f,(z) = 2P~V 4 2P~%2 4 41 for every a € F*; then all
assumptions of Proposition 6 are satisfied, and so W is Boolean.

Proposition 7. Let W be a finite family of valuations that are mutually incomparable with respect
to inclusion. Then W is Boolean.

This, in essence, was established in [2, Sec. 3, Proposition 1].

The latter example will be detailed in subsequent papers. Let # € F* be an arbitrary element distinct
from 1. We call the valuation ring Ry of F' a w-valuation ring, and the corresponding valuation v a
m-valuation if v(7) is the least positive element in the valuation group I'y. A field F is said to be formally
m-adic if there exists at least one w-valuation of F.

Let F be formally m-adic and W, = {R,|R, is a n-valuation ring of F}.

Proposition 8. The family W, of all m-valuation rings of F' is Boolean.

Let Ry = N{Ry|Ry € Wi}.

Note the following important property.

0. For every a € F*, 1+ 7a® # 0 and 7(a) = w € Ry.

Let v be an arbitrary m-valuation of F. If 1+ 7a? = 0, then v(ma?) = 0, v(7)+2v(a) =0, 2v(a”!) =
v(7), and 0 < v(a™1) < v(w), which is impossible if v is a r-valuation.

Further, if v(a) > 0, then v(ra®) > 0, v(1+ 7a?) =0, v(y(a)) = v(a) — v(1 + 7a?) = v(a) > 0; if
v(a) < 0, then v(ma?) = v(w) + 2v0(a) = (v(7) + v(a)) + v(a) < v(a) < 0; v(1 + 7a)? = v(ra?) < v(a),
v(y(a)) = v(a) — v(l + ma?) = v(a) - v(ma?) > v(a) — v(a) = 0. Thus for every R, € Wy we have
v(y(a)) 2 0, 7(a) € Ry. and 7(a) € R

We establish a number of properties of basic sets of the canonical topology.

1. For a € F*, let a* = (wa)~!. Then VE = W, \ VF.

Indeed, R, € Valf implies a* € Ry, v(a*) = —v(wa) = —v(a) — v(7) > 0: v{a) < —v{7) <0, a & Ry,
R, ¢VF, R, ¢ Va}: implies a* € Ry, v(a*) < 0; v((a*)™!) = v(ra) > 0: v(a) = v(wa) — v(7) > 0 (since
v(wa) > 0 and v(7) is the least positive element of I}), so R, € V,F

2. For any @ € F* we have a. = a*(a+a*)"! € Ry and VF = Vf;l.

Let Ry € V.I'; then v(a) > 0, v(a*) < 0, v(a+a*) = v(a™); v(au) = v(a*)—v(a+a*) = v(a*)—v(a*) = 0;
v(ay1) =0, and so R, € V

Conversely, let R, ¢ Va ; then R, e VE ol v( *}2 0, v(a) <0, v(a + a*) = v(a), v{ax) = v(e*) — v(a +

a*) = v(a*) — v(a) > 0; consequently, R, ¢ V¥ ot This implies that V.F = VF 1; moreover, ax € Ry since
v(ax) > 0 for all R, € W,.
3. For any a,b € F*, let §(a,b) = (axbs)~1. Then VF nVF = Vian):

In fact, VF = VaF—I = H(a.), VbF = be':l = H(b.), VFanF H{ax)NH(by) = H(axb« )—- (ax b,..)‘l =

V&fa,b) (see the notation H(a) and the properties of H in the proof of Proposition 4).

Thus, the family VGF , a € F'*, is closed under finite intersections and complementations, hence under
finite unions.

We prove that Wy endowed with canonical topology is Hausdorff. Letting R, # R, € Wi, we see that
the inclusion R, < R, entails the existence of a € Ry \ Ry; v(a) < 0, v/(a) > 0; v(ma) < 0, v/(7a) > 0,
a* = (ma)™! € Ry, < R,; (7a)™! € Ry, v'(a*) > 0, but v/(¢*) = —v/(wa) < 0. a contradiction. So
R,<Ry,andifa€ R,\ Ry, Ry € VF and R, ¢ VF.

It remains to establish the compactness of W;.
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To do this we prove:

LEMMA. 4. If m is a2 maximal ideal of Ry, then # € m. If Ry, > Rr is a valuation ring of F' such
that m(R,) N Ry = m, then R, € W,.

Note that (1+ ma)~! € R, for every a € Ry. This follows from the fact that if, for any m-valuation
v, a € Ry, then 'v(a) >0, v(ra) > 0, v(l + 7a) =0, and v((1 + 7a)"1) =0, so (1 + 7a)~! € R,.

If # ¢ m, then 1 — ma € m would be valid for some a € Ry; but (1 — 7a)™} € Ry, hence 1 =
(1 — wa)(1 — ma)~! € m, a contradiction.

Let Ry > Ry and m(R,) N R = m. Since 7 € m, v(wx) > 0. If v is not a m-valuation, then there exists
a € Ry such that 0 < v(a) < v(r). Consider an element y(a~!). By property 0, y(a~1) € Ry < Ry, so
v(y(a~1)) > 0. On the other hand, v(ra~2) = v(7)—2v(a) = (v(7)—v(a))~v(a) > —v(a). If v(1+ma~2) <
0, then v(1 + ma~?) = v(ra™2%) > —v(a) and v(v(a™!)) = v(a™!) - v(7a~2) = —v(a) — v(ra~2?) < 0.
But if v(1 + ma™2) > 0, then v(y(a~1)) = —v(a) — v(1 + ma~%) < —v(a) < 0. Thus v(y(a~1)) < O,
v(a~1) & R, > Ry, an impossibility. The lemma is proved.

Let Wr = U VF = U VE, = U H(a.). Consider the ideal (A.) generated by the set A, =
aEA acd4 % acA
{a.la € A}. If (A.) is a proper ideal, we let m be a maximal ideal of R, containing (A4.), and let

Ry 2 Ry be a valuation ring of F such that m(R,) N Rx = m. Then, in view of the lemma, R, €
Wr, Ax ©m Cm(R,). and Ry € W\ | H{as), a contradiction.

a;EA*
Thus 1 € (Ay) and there exist ag,...,an € 4 and rg,...,75 € Ry such that 1 = 3 ri{a;)«. We
i<n
show that W, = |J H{(a;}«) = U Va};. If Rr < Ry € |J H{{ai)«), (ai}« € m(Ry), i < n, but then
t<n i<n i<n
1= 3" ri(a;)« € m{R,). a contradiction. We have thus proved the compactness of W.
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