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The reader is expected to be familiar with elements of field valuation theory (see, e.g., [1,3]). By a 

Boolean space we mean a compact totally disconnected space (every Boolean space is homeomorphic to 

the space of maximal ideals of a certain Boolean algebra). The interest in Boolean families of valuation 

rings and their "lift" to algebraic extensions arose as a result of studying the property of being regularly 

closed with respect to a family of valuation rings for fields (see [4], specifically, Theorem 2.2). 

Let F be a field, W a family of valuation rings of F; we call W weakly Boolean if the collection of 

subsets of W of the type V A ~ {Rv[Rv E W, A C Rv}, where A is a finite subset of F, forms a closed-open 

base of a Boolean topology on W. If A = {a}, we write Va instead of V{a }. Note that Va = N vc*i if 
i<k 

A = { a 0 , . . . , a k } ,  i.e., the family of subsets of the type Va forms a subbase of the topology wTth base 

VA, A C F, and is finite. For notational convenience we write VA F in place of 1/~4 and Va F in place of Va, 

when considering different fields. 

T H E O R E M  1. Let W be a weakly Boolean family of valuation rings of a field F,  and F0 >_ F an 

algebraic extension of F;  let Wo ~ {RvolRvo is a valuation ring of F0 such that Rvo n F E W}.  Then 

W0 is a weakly Boolean family of valuation rings of F0. 

First we prove the theorem, assuming that F0 is a Galois extension of F. 

By letting a0 E F~, we show that the set V0 ~ Wo \ V F° is representable as a union of a finite family 

of basic open sets. Let fao = xk + alzk-1 + "'" + ak E F[x] be a minimal polynomial of a0 over F.  

Suppose no, a l , . . . ,  ak_ 1 are all elements from F0 conjugate to ao in F (equivalently, {a0, a l , . . . ,  a k - t }  

are all roots of f~0 in Fo). For any i E I ~ {i[ 1 < i < k, ai # 0}, define 

k i-1 
.1) ( N (Wo \ vFo_,)), where = 1 ;  

j=O aiaj j=l 
aj~O 

~ = { Z l E  c_ { 1 , . . . ,  k - 1}, IEI = k - i}; 

v,* = U i < k; 
Ee£i jeE 

~=vk.  
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Prior to proving tha t  Vo = U v/*, we introduce some definitions. Let f = xk-bal  zk -1  + . . . q -a  k e F[x] 
i6I 

be a uni ta ry  polynomial,  k > 1, and f = I-I (x - hi) a factorization of f in some extension Fo > F of F.  
i<k 

Let v be a certain valuation of F and v0 its arbi trary extension to Fo. Define 

7 o = m i n { v ( a i ) [ i =  1 , . . . , k } ,  M = { i l v ( a i ) = 7 o ,  i =  1 , . . . , k } ,  i o = m i n M ,  i l~,-~-maxM; 

then the following is valid. 

L E M M A  1 (on  r o o t  va lues ) .  1) If 70 < 0, there are exactly io indices i < k such tha t  vo(oq) < 0 
and exact ly  il - io indices i < k such that  vo(c~i) = 0; 

2) i f7o  = 0, then vo(ai)  > 0 for every i < k, and there are exactly il indices i < k such that  (vocal) = 0; 

3) if 7o > 0, then vo(c~i) > 0 for every i < k. 
k 

P r o o f .  Let Si ~ {sis C_ {0, 1 , . . . ,  k - l } ,  Isl = i}, i = 1 , . . . , k ;  s = U si; C~s = II  c~i for s 6 s .  Then 
i=1 iEs 

a i = ( - 1 )  i ~ c~s, i =  1 , . . . , k .  Set so = { i l l<  k, vo(oq) < 0} and assume tha t  s o ¢ O. Then  for any 
sESi 

s 6 S, vo(as0) _< vo(~s) is true; moreover, vo(c~s0) < v0(as) is true for so # s E S such tha t  Is[ _< i~) ~ IsoI . 

This  follows easily from the validity of vo(c~s) = .~ vo(c~i) for s 6 S and from the definition of so. This 
~6s 

in turn implies that  v(ai) = vo(ai) >_ min{vo(C~s)I s E Si} >_ m i n { v o ( ~ ) I s  E S~} --vo(~0) = v(ai, o) and 
v(ai) > v(aVo ) for i < i~; hence i~ = io = m i n M ,  where M = {iiv(ai) = 7o (= min{v(ai)l  i -- 1 , . . . k} )} .  

Moreover, in this case, i.e., when so # O, we have 70 < 0. 

Let Sl = { i l i  < k}, to(hi)  _< 0} and suppose that  sl # 0. Then vo(asl) <_ vo(¢~s) for every s E S and 

vo(c~sl) < vo(C~s) for every s E S such that  Is I > i~ ~--Isll,  s # Sl; hence v(ai~ ) = vo(ai~ ) = rain vo(~s) = 
- -  s6Sill 

Vo(c~Sl) < minv0(crs) < c0(ai) = v(ai) for every i ---- 1 , . . . , k  and v(ail ) < v(ai) for i~ < i < k. This 
-- s6Si -- 

implies i~ = il = m a x M  (M = { i t v (a i )= 70 (= min{v(ai)[i = 1 , . . . , k } ) } ) .  In the present case where 

sl  # 0, we have 70 _< 0. 

Conversely, if sl  = @, i.e., vo(al )  > 0 for all i < k, then v(ai) = vo(ai) >__ min{vo(a~)[s E Si} > 0 and 

7o ~ min{v(al)[i = 1 . . . .  , , k }  > O. 
The conclusions of the lemma follow fi'om the above. 

We apply the l emma to the case under consideration. Let R~ 0 E V/* for some i E I.  Then 

k i=1 

Rv0  ?orl) N( N (w0 \ vF°_l)); 
j=l j--O aiaj 

aj ;~0 

Rvo 6 VaFa..[1 entails vo(aja~ 1) = vo(aj) - vo(ai) >_ O, vo(ai) < vo(aj) for all j = 1, . . . , k ;  so vo(ai) = 

min{vo(aj) l j  = 1 , . . . ,  k}. Rvo E Wo \ vF°_I  implies vo(aiay 1) = vo(ai) - vo(aj) < O, vo(ai) < vo(aj) 
aiaj 

for all j < i. In part icular,  vo(ai) < vo(1) = 0, and so i has the properties of io f rom L e m m a  1 for the 

case f = f ~ 0 .  Further, for the case i < k ,  there exists E E E i s u c h  that  Rvo 6 A V ~  ° , i .e . ,  vo(ch) > 0 
jEE 

for j E E,  and since E E El, IEI = k - i o .  By virtue of Lemma 1, there are exact ly  io roots (~ of the 

polynomial  f~o such that  vo(~) < 0, from which we conclude that  E is precisely the set of all roots a' 

such tha t  vo(~) _> 0, and {JlJ < k, vo(~j) < 0} = { 0 , . . . , k -  1 } \ E .  Since E C_ { 1 , . . . , k -  1}, 0 ~ E 
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and vo(ao) < O, i.e., Rvo E Wo \ V F° = Vo. For the case i = k, vo(a) < 0 for all roots of fao, hence 

vo(ao) < o and e Wo \ ° = Vo. 
We have thus proved that U v/* c_ v0. Assume, on the contrary, that Rvo E Vo; then vo(ao) < 0. 

iEI 
Let io be defined as in Lemma 1 for v0 and f~0, and E .~ {jij  < k, vo(c~i) >_ 0}. Suppose 0 ~ E, and 

by Lemma t {E{ = k - / o ;  then E E gio if io < k. It is also easy to check that io E I, Rvo E r~ 0, and 

R v e  Yi o n ( N v ~  °) c V/o. Thus Vo = U If/* holds. 
jEE iEl 

Up to this point we note that for a E F the set Wo \ V F° can be represented as a union of a finite 

number of basic open sets. Since W is weakly Boolean, W \ V F = U v ~  for appropriate finite An C_ F,  
s<l 

s < I. It is straightforward to verify that Wo \ V F° = U VAF~ too. 
s<l 

It follows from this remark and the equality Vo = U V/* that Wo \ V F° = rvb is representable as a 
iEI 

union of a finite number of open basic sets. Note that this fact readily implies the following more general 

assertion: 

The family B*, consisting of all finite unions of basic open sets, is closed under union, intersection, 

and complementation. 

It is obvious that B* is closed under union and intersection. To check that B* is closed under 

complementation, we should keep in mind the following: 

a) Wo\ 2°:Wo\ n u 
aoEA c~oEA 

h) Wo\ u n(Wo \ 
s<l s<l 

which in view of the relation Wo \ V F° E B*, proved above, validate the present case. 

We proceed to establish that Wo with a given topology is a Hausdorff space. Let Rvo ~ Rv~ o E Wo. If 

Rvo M F ~ Rv~ ° A F, then the facts that W is Hausdorff and that R~ o ¢3 F and R~.~) N F E W imply the 

existence of a E F such that Rv0 n F E V F and R,~ (1 F ~ VaF; whence Rv0 E k~ F° and Rv~ ° ~ V F°. If 

Rvo N F = Rv~ ° M F, then Rvo and Rv~ ° are two distinct valuation rings dominating R~. 0 N F; whence, as is 

well known (see [1, p.18T]), Rvo Y: Rv, o and Rdo < Rvo. If ao ERvo \ Rv~ ), then R~ o E V F°, Rv~ ° ~ V~  ° • 
It remains to establish the compactness of Wo. 

First we prove: 

P r o p o s i t i o n  1. The restriction map ¢ : R~ o ~-, Rv$ n F from Wo to W is continuous and closed-open. 

The continuity of ¢ is evident since ¢ - I (V  F )  = ,'o V A for every finite A _C F. 

Now we check that ¢(VAF0 °) is closed-open in W (Ao is a finite subset of To). Examine the case 

Ao = {~}, ~ 5£ 0. By letting f = x k + al xk-1 + . . .  q- a k E F[x] be a minimal polynonfial of a -1 over F 

• and letting V = n{I, aF i \ V f l  I i = 1 . . . .  , k, a i ¢  0}, we prove that ¢(V F°)  = W \ V. To do this, we must 

use Lemma 1. 

Let Rvo E V F°, i.e., c~ E R~ 0, vo(c~) > 0, and vo(a -1) < 0; then by Lemma 1, there exists 1 < i < k 
_ v, Fo\vFo F F such that v(ai) = vo(ai) < 0, and so Rvo ~ a i \ a~-l , ¢(Rvo) ~. Vdi \ Va~ 1 ~ V, and ¢(Rvo) e W \  V. Thus 

¢(V F° )  C W \ V. Assume, on the contrary, that Rv E W \ V. Since Rv ~ V, for some 1 < i < k we have 
R,, ~ F V F Vdi \ a71 and v(ai) <_ 0; by Lemma 1 vo(/3) <_ 0 holds for a suitable extension vo of the valuation 

v to F and for a certain root fl of f .  There exists an F-automorphism T of F0 such that ( a - l )  ~' = fl, 
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and so for the valuation v~ (v~(a) = vo(a~°)) of Fo extending v, we have v~(a  -1)  _< 0, v~(c 0 > 0, and 

R.o~ e v F°, e(R,Z) = R; ,  n F = n.;  consequently, W \ V C e(V F°) and e(V F° ) = W \ V. 

We turn to the case of an arbitrary basic closed-open set V2 °, A = { a o , . . . ,  an}. Let -ill < Fo be the 

least Galois extension of F containing A. Let k ~ IF1 : F] and G = G(F1/F) = {go = e, g l , - - . , g k - 1 } -  

Define Sn ~ { 1 , . . . , k  + 1} n and 

for ~ = ( s ~ , . . . ,  s p  e s~.  
We show that ¢(V$ °) = 

s t  , S l S 2  ~r~(~--SlS2. . .Sn)  
5.g ~ C~O + (~ 1 "t- O~ 2 + - . - + ~ n  

n e(l/}5°) • Check the inclusion C_. If Rv = e(R~,o) and Rvo E V2 °, then 
5 6 Sn 

R~ o e Vs F° and R~ e ¢(V6 F°) for all $ E Sn; thus Rv E n F0 z(V~ ), and so 
ses~ 

~6Sn 

To prove the inverse we need the following lemma. 

L E M M A  2. Let B be an arbitrary subset of F1, w a valuation of F1 such that  for every ~ E S~, 

there exists j < k such that  w(flgJ) >_ 0 for all fl E B and w(5~ j )  _ 0. Then there exists j < k such that  

w(fl~J) >_ 0 for every fl E B, and w(c~i)~J >_ 0 for all i < n. 

P r o o f .  The  proof follows by induction on n. The case n = 0 is trivial. Let n > 0. Assume that  for 

( n -  1) the lemma is true and its assumptions are satisfied. Then for any ~ E Sn-1 and s E {1 , . . . ,  k +  1}, 

there exists j = js, ,  < k such that  w(SgJ) > 0 for any/3 @ B and w(~Js) >_ 0; hence for every .g E Sn-1,  
~c9j5 there exist so, sl such that 1 < so < sl _< k +  1, and J~,s0 = J~,sl. Set j~ = J~,so = J~,sl" Then w[%,s0) >_ 

z c g j g  ,~ i c g j ~  __ r~9_jg ~ > 0; t~gJs - -  fig_i~ = , "r$'so ~ g ' s l  =g'so - -- 
O, Wt, O$,s l  ) > O, WtO~, so  - S , S l  , _ -~ , so  ~S ,S l  t a g  - -  a n  )gJ$  = (O~n . ( l  - -  a ~  s ( s l  s o ) ) )  9 j g .  

• gJ~' w(6~ j~) 0, since wl%,so) = wt% + (a~s's°)gJ ~) > 0. Consequently, This implies that  wLa n ) _> 0 and >_ ,~gj~ , , c g j $  - 

3j for every $ E Sn-1, there exists j (= j~) < k such that w(yJ)  > 0 for all ~ E B, w(an) >_ O, and 

w(5~ ~) >_ O. Applying the induction hypothesis to the case n - 1 and to B' = B U {an}, we find a j < k 

such that  w(flal) > 0 for all/3 E B, w(o,~ i) >_ 0 and w(af  j )  >_ 0 for i < n, as desired. 

We prove the inverse inclusion n E(v5 F°) c ~(v2o). Let Rv E [7 "rtzF° _ , ~ . ~  ), and let w be an arbitrary 
~6Sn ~6Sn 

extension of v to F 1 (note that. every extension w' of v to E 1 is of the form u/= w 9 for all appropriate 

g E G = G(Ft/F) (u/(a ' )  = .w(c~) for all a' E F1). Then R~ E N implies that ,  for any g E S,~, 
56Sn 

there exists a j < k such that  w(5~ j) > O. Then by Lemma 2, there exists j < k such that  w(af j) > 0 for 

all i < n, and hence for vo extending w 9i to Fo we have Rvo @ V ;  ° and Rv = ~(Rvn). Thus the equality 

¢(V2 °) = ~ ¢(V~ F°) is valid. It follows from this and from the above that  ¢(V2° ) is closed-open. Hence 
6 Sn 

e is open. 

Now we check the closeness o f¢ .  Let ~C_ Wo be closed; then Wo\~5 is open and W o \ O =  U VAi 
iEI 

for a su i t ab l e  family of finite subsets Ai C Fo, i E  I. For a finite Io C [, we let OIo ~- W \  U vAi, 
iE Io 

and note tha t  Io C I 1 __ I entails (I)i0 _D ~i t  D 0.  Since (I'i0 E B* for a finite Io, ~(g2I 0 ) is closed-open. 

Further,  ~ = n { ~ i 0 [ I  o c_ I, Io is finite } and ~(~) = n{e(¢ i0) [ I  o C_ I, to is finite } since the family 

{~I0 [Io C_ I, Io is finite } is directed under the inclusion g?lo n Oil D_ C~ioUi ~. 
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So e(~),  which is an intersection of closed sets, is closed. 

The proposition is proved. 

We proceed to show that the set e - l (Rv)  C Wo is compact for any Rv E W. Let 

U o , 
iEI 

suppose that for a finite Io C I, e-1 (Rv) \ U VAFi ° # 0. If every finite subset 0 • Io C I, assume and 
{EI0 

Blo ~ {BIB C_ U Ai, B N A i  ¢ 0 for a l l i E  I0 and there exists Rv0 E ~-l(Rv) such that vo(fl) < 0 
iEIo 

for all j3 E B}; •I0 is finite and nonempty by assumption. Let 0 ¢ Io C I1 C I and /1 be finite; then 

there exists a map 7rillo : BI1 -'* BIo, defined as lrlllo(B ) ~ B n ( U Ai), where B E BI1. The family 
iElo 

{BIo, ~rIllo[O ¢ Io C I1 C_ I, I1 is finite } is an inverse spectrum of finite nonempty sets, so B ,~ 1LmBI o 
is not empty, and every element B E B can be identified with a subset of F0 such that B n Ai y~ 0 for all 

i E I .  
Choose B E B and show that there exists Rvo E ¢-I(Rv) such that v0(/3) < 0 for all/3 E B. Consider 

the ring R* ~ Rv[/3-1; /3 E B] and its ideal J ~ (m(Rv), fl-1; /3 E B). We show that J ¢ R*, i.e., J 
k 

is a proper ideal. If J = R*, then 1 E J and there exists a representation 1 - mor~ + ~ r*b~ 1, where 
i=l 

mo E m(Rv); r~ E R*, i <_ k, bi E B, l < i < k. Since BIo ~ B A (  U AI) E1310, for any finite I0¢q} 
iEIo 

and B = U Bio there exists a nonempty finite subset Io C_ I such that r o, , k E Rv[/3-1; /3 E BIo] 
loCI 

and b i E BI o for all i = i , . . . , k .  Since Blo E BIo, there exists R~ o E e-l(R~,) such that vo(b) < 0 for all 

b E Bio; then vo(b -1) > 0 for b E BIo, Rv[/3 -1, '~ E BIo] <_ Rvo, so {,no} U {f~--ll/3 E BIo} C_ m(Rvo), 
k 

and hence 1 = ,nor ~ + ~ rVb :1 E m(Rvo), an impossibility. Thus J is a proper ideal and there exists 
i=1 

a valuation ring Rvo of Fo such that Ru0>_ R* and m(R~,o)Cl R* >_ J >_ rn(R~o). This implies that vo 

v, Rvo E e-l(Rv); but Rvo (~ U V~ ° since there exists /3 i E BrhAi for any i E I; vo(/3i) < extends 
iEI 

O, /3i (~ Rvo, Rvo (~ VA F°. This is a contradiction to the fact that e-l(Rv) C_ U v~ (°,.., which proves the 
iEI 

compactness of e -1 (Rv). 
We argue to establish that Wo is compact. Let W0 = U v~F_ °, and suppose that for any finite 

iEI 
I 0 C I, Wo ~£ iEIoU VFAi O, i.e., @io -~ W 0 \iEU 0 V~ 0 ~ ~; further, e(@io ) is closed and nonempty; e(@i0) I-I 

e('~I1) D_ e(@Io N 011) = e('~IouI1) :~ 0; hence, there exists Rv E n{e('~io)]Io C_ I, Io is finite }. By the 

above e - I (Rv)  (C_ W0 = U VAFI °) is compact; hence, there exists a finite I1 C_ I such that e - l ( R v )  c_ 
iEI 

U VA° = Wo\@I~; but then e - l (Rv)~q5 h = 0 and R~ ~ e(qStl) _D N{e(qsio)lI o _C I, /To is finite }. The 
iEh 
contradiction obtained proves the compactness of Wo and the theorem for the case where Fo is a Galois 

extension of F.  

Now we turn to the case where F0 is a separable extension of F. We show that every basic open set 

(A C_ Fo, A is finite) is closed-open. It suffices to prove that the set t/b ~-~ Wo \ VFo ° is open for 

an arbitrary c~oE Fo. Let Rvo E 17o; then a o ~ R v 0 ,  vo(ao) < 0 ,  v0(ao ~) > 0 .  There are k_> 1 and 

a E F such that vo(ao k) = v0(a); vo(a) > 0; Rvo n F E V F \ vF~. Since t~F \ VaF ~ is closed-open in 
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W, V F \ vF1  = O VF for suitable finite sets Bi C F, i < I. We have B i - 
i<l 

R o V=( v 2 )  v , 

We show that  V C_ Let e V, then e entai ls  0 _< = - 

v~)(a); kv/}(O~O 1) _> v•(a); R•, ° E i<l[1 VBFi ° entails R v, = Rv, ° N F e i<lN VFBi = VF \ VFa-I' i.e., V~o(a) = 

v'(a) > 0; whence kv~(Oo 1) > rio(a) > 0, v~(~o 1) > 0, v~(a0) < 0, c~o ~ Rv, o, Rv, ° E Vo. 

Thus Vo is open, and so V F° is closed-open; hence every basic open set V2 ° is closed-open. 

Let F1 be a Galois extension of F, containing F0; then W1 = {RvllRvl is a valuation ring of F1 

such that  Rvl f'l F E W} is a Boolean space. The map d : W1 -'-+ Wo, defined as d(Rvt) "~ Rvl N Fo, is 

continuous and onto. This, in view of the compactness of W1, implies that Wo = e~(I/V1) is compact. The 

compactness of W0 and the existence of a base of topology consisting of closed-open sets entail that  Wo 

is a Boolean space. 

To end the proof of the theorem, we consider the case of a purely inseparable extension /~b of F.  Note 

that W0 and W are homeomorphic in this situation: for every R~ E W, there exists a unique Rvo E Wo 
pk 

such that  R v o N F =  R~,, namely Rvo = {a0la'0 E F0, and there is k > 0 such that a o E Ro}, where 

p = x ( F )  is a characteristic of F, dud V F0 = V:n 0 for any c~ E F0, n > 0. 

If Fo is an arbitrary algebraic extension of F, F1 is a separable closure of F in Fo. Then F0 is purely 

inseparable over F1, and by" the remark above Wo is homeomorphic to W1 = {Rvll&,~ is a valuation ring 

of / '1  such that  R q  C~ F E W}. and ~q is Boolean by the above arguments. 

The theorem is proved. 

A weakly Boolean fatuity of valuations W is called Boolean if the following hold: 

1) for any a, b E F. there exists c = c(a, b) E F such that V F n ~ F  = ~F;  

2) for any a 6 F, there exists a* E F such that W \  V F = Vfi. 

C O R O L L A R Y .  If IV is Boolean, any dosed-open subset of W is of the form vaF for a suitable a E F. 

We show that given the ring R = Rw = CI{R,]Rv E W}, every Boolean family W is amenable to 

reconstruction. 

Recall ([5], p.583) that the integral domain R with 1 is a Pr{ifer ring if and only if, for every maximal 

ideal m < R, the ring of fractions Rm is a valuation ring of F. 

P r o p o s i t i o n  2. If R is a Pr{ifer ring with a field of fractions F,  Fo is an algebraic extension of F, 
and Ro is an integral closure of R in Fo, then Ro is a Prfifer ring with a field of fractions Fo. This is 

excersise 16, p.584 in [5]. For completeness, we give here its proof. 

Let m o be a maximal ideal of R0; then m = m0 N R is a maximal ideal of R. Let R°m be an integral 

closure of Rm in F0. Since Romo is integrally closed and Rm <_ Romo, then R0m _< R0m0; m ° = 

moRomo C'I R°m is a prime ideal of R°m containing mRm; then m ° is a maximal ideal of R°m (since R°m is 

integral over Rm) and (R°)m0 is a valuation ring of F0, containing Rm. But (ROm)mO <_ R0m0, and so 

ROmo is a valuation ring of F0 and Ro is a Pr~ifer ring. 

The Prfifer ring R is said to be regularly Pr{ifer if the factor ring of R with respect to a aacobson 

radical J(R) = N{m[m is a maximal ideal of R} is a regular ring, i.e., for any a E R/J(R),  there exists 

E R/J(R)  such that a2~ = a. 
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P r o p o s i t i o n  3. If W is a Boolean family of valuation rings of a field F, then R = RW = Cl{Rv E W} 

is a regularly Pdifer ring with a field of fractions F,  and {Pv ~ m(Rv) N RIR v E W}  coincides with the 

set of all maximal ideals of R. 

Note that  R \ U{pvlRv E W}  is exactly the set R* of all invertible elements in R. Indeed, if a E R \ 

u{pvlRv e W},  for-every Rv E IV, a -1 e R,v because a ~ m(Rv) ( i fa  e m(Rv), then a E m ( R v ) N R  = Pv); 

consequently, a -1 E n{RvlRv E W} = R, i.e., a is invertible in R. Conversely, if a is invertible in R, then 

a does not lie in any proper ideal, whereas every ideal Pv is proper (1 ~ Pv = m(Rv) N R). 

Now we prove that  if J is a proper ideal of R, there exists Rv E W such that  J < Pv. Assume the 

contrary; then for every Rv E W, there exists av E d \pv .  We can, and do, show that  W = U v F  
R~EW a~l" 

Choose an arbitrary Rv. E W. It  follows then that av E J \ Pv implies av ~ m(Rv),  av 1 E R v ,  and 
F F Rv E V _ I .  In view of the compactness of W, there exist Rvo, . . . ,Rv~ E W such that  W = U V a _ l .  

av i<k i 

Since W i s  Boolean, there are c~o,...,o~k such that W = U v F ;  V F A V ~  = 0 for i < j < k, and 
i<k 

V g C V  F i < k .  
- -  a-l, - -  

vi 

To continue we need the following auxiliary lemma. 

L E M M A  3. Let a,a* E F and W \ V a  F = VaF.. Then a,, .~- a*(a+a*) -1 e R, aa. e R, and 
V F y f  

" -  a _ l .  

Let R y E  V F ; t h e n a E R v ,  v(a) > O, a* ~ Rv, v(a*) < O, v (a+a*)= v(a*), and v ( a . ) =  v(a*(a+ 
a*) -1)  = v(a*)-v(a+a*)  = v (a*) -v (a ' )  = 0. This implies V F C_ VF_I; v(aa.) = v(a)+v(a.)  = v(a) > O. 

(2. 

Let Rv E VS; then v(a*) > O, v(a) < 0; v(a+a*) = v(a) and v(a.) = v(a*(a+a*) -1) = v(a*)-v(a)  > 

O, v(aa.) = v(a) + z(a ) - v(a) = v(a*) >_ O. 
It follows from v(a,.) > 0 that a :  "1 (~ Rv and V SFIV~FI  = (~, i.e., I"F1 C_ W \ V  F = V F ,  Hence 

V F = V F Moreover, for every Rv E W we have v(a.) > O, v(aa.,) > 0; consequently, a., aa. E R. 
a ~ - i  • _ , _ 

Consider an element a ~ avo(Cto). + . . .+ark (c%) . ,  where (oi)~ is constructed from oi, as in Lemma 

3. Since av i E J and (o i). E R for i _< k, a E J .  We show, however, that o is invertible in R. Assume 

the contrary; then a E pu = m(Rv) M R for some Rv E W. Since V F . . . . .  V F. is a partition of W, there 

is a unique i _< k such that  Rv E V. Fo,i. VF C_ V£vilF and V F = V F(c~i)~.l, consequently, v(avi) = 0 and 

v((oq).) = 0. For j 5~ i, j < k, we have Rv ~ V~ = V(Fj):I, (cU)21 (~ Ru, ( a j ) .  E m(Ru), v((og).) > 

O, v(avj) > O, V(avj(aj),,) > 0. Then v(a) = v(ai(cq). + ~ aj(og),.) = v(ai(cri),, ) = 0, and so a f[ m(Rv),  
iCj 

which contradicts the assumption that a E Pv 

ideal J .  This is a contradiction, which proves 

It is straightforward from the above that 

R v E  W. 

Our immediate aim is to show that every 

a maximal ideal containing p~. By the above 

where Rv,Rv,  E W. Since W is Hausdorff, 

By Lemma 3, there exists a .  E R such that 

= m(Rv) N R. Thus a is invertible, but a E d for a proper 

that J < pv for a suitable Rv E W. 
every maximal ideal is of the form Pv for an appropriate 

ideal Pv is maximal. Assume Pv is not maximal and m is 

77, = Pv' for a suitable Rv, E W. Thus we have Pv < Pv', 
there exists a E F such that R~,, E V~ F and Ra ~ V F .  

V F = VF_I, and the relation Rv ~ V F = VF_I implies 

a:  1 ~ Rv, a. E m(Rv) N R = Pv < Pv', a'~l f~ Rv', Rv' f[ VF = vF ,  a contradiction with the choice a ~  1 

of a. Thus every ideal of the form pv is ma~ximal, and so the set of all maximal ideals of R coincides with 

{pvlRv E W}. Hence J(R)  = fq{pvlRv E W}. 
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We argue to establish that R / J ( R )  is a regular ring. Let a E R \ {0}, and for a -1,  let an element 

( a - l ) .  be defined as in Lemma 3. By virtue of this lemma, ( a - l ) . ,  a - l ( a - 1 ) .  E R. We show that 

a ~ a2(a - l (a -1 ) . )  E J(R); a - a2(a- l (a -1) , )  = a(1 - ( a - l ) . )  = a(1 _ a-l+(a-1) * ( a - l )  * ) : a-lq'(a-1) * ' 1  

Let Rv E W. I f a  -1 E R,,  then ( a - l )  * ~ Rv and v(a -1) _> 0, v((a-1) *) < 0, v(a - 1 + ( a - l )  *) : 

v((a-1)  * ) < 0 ,  v((a - l + ( a - 1 ) * )  - 1 ) > 0 ; i f a  -1 ~Rv ,  then ( a - l )  * E R r  and v(a -1)  < 0, v((a-1)  *) > 

O, v(a -1 + ( a - l )  *) -- v(a -1) <: 0, v((a -1)  + (a- l )*)  -1 > 0. Thus for every R,  E W we have 

v((a -1 ÷ (a - l )* )  -1) > 0; then (a -1 + (a- l )*)  -1 E R and (a -1 + (a- l )*)  -1 E M{pv[R, E W )  = J(R) .  

This implies the regularity of R/J (R ) .  

It remains to prove that R is a polyvaluation ring. We show that the equality Rv = Rpv holds for every 

R~ E W. The inclusion Rpv <_ Rv is evident. Assume h E R r ;  then v(a) >>_0, v(a*) < O, v(a ÷ a*) : 
a *  a '~ 

v(a*), v(a--4--~- ) -=-- v(a')  -- v(a W a*) : 0. Since a. -- ~ E R, a. e R \ rn(Rv) =- R \ Pv, but ha. e R 
by Lemma 3, so a = ha .a:  1 E Rpv ; hence R,  <~ Rp, and R,  = Rp~. 

This completes the proof. 

The next proposition demonstrates that Boolean families W contrast with weakly Boolean ones by 

virtue of being closely connected to a ring RW = (3{R, IRv E W}. 

P r o p o s i t i o n  4. If W is a weakly Boolean family of valuation rings of a field F, R = R w  = 

(3{RvIRv E W )  is a Prfifer ring with a field of fractions F such that the set of all maximal ideals coincides 

with {p, (= rn.(R,) N R)IR,  E W}, then W is Boolean. 

First we show that the family consisting of all sets of the type H(b) = V F b E R \ {0) forms a 
. b - l ,  

base of the canonical topology on I:V. It is routine to check that H(a) (1 H(b) = H(ab) for a, b ~ R \ {0}. 

By letting a E F* and B = {bib E R \ { O } ,  H(b) C vaF}, we show that t'~" = U H(b). Assume the 
bEB 

contrary and choose au arbitrary Rv E V a \  U Y(b). Then H(c) M ( W \ ~ F )  ~£ ~ for any c E R \ p v .  
bEB 

Since we have cocl E R \ pc.. H(co) M H(cl)  = H(cocl) for co, c1 E R \ pv, and W \  t~ F is closed, 

( ['1 H ( c ) ) M ( W \ V a  F ) ¢ o .  Let R v, E (  N H(c ) )M(W\VaF) .  I f c E R ,  R v , E H ( c ) = V F 1  implies 
cER\pv cER\pv 

c E R \ p v ;  so ( R \ p v )  C_ ( R \ p v , )  and Pv' C_ Pv; but Pv' is maximal; hence Pv = Pv" On the other hand, 

R,  EVa F, R,, E W \ V  F ,  and R v ¢  R,,. Since R is a polyvaluation ring, Rpv is a valuation ring of 

F; moreover, Rpv _< Rt., Rp~ < R,,. All super-rings of a valuation ring are linearly ordered (see [3]), so 

either R .  < Rv~ or Re  _< R~. Since R.  ¢ R~, this is in conflict with the fact that I,V is Hausdorff. Thus 

VF = U H(b), and so {H(b)lb E R \  {0}) is a base of the canonical topology on W. 
bEB 

Next we prove that for every a E R \ {a), there exists a' E R \ {0} such that H(a') = W \ H(a).  

Let B = {btb E R \ {O}, H(a) (3H(b) = ~), then W -= H(a) U ( U H(b)). Indeed, w \ g ( a )  is 
bEB 

open and W \ H(a) = U{Y(b)Ib E R \ {0}, g(b)  C_ W \ g(a)},  by the above. Note that for any 

A C R \ { 0 } ,  W =  U H(a) implies that the ideal(A) of R generated in R b y  the set A i s n o t  proper. 
aEA 

In fact, if (A) < R, then there exists a maximal ideal m such that (A) < m < R, and m is of 

the form Pv and R,  ¢_ LJ H(a). (The converse also holds: if (A) = R, then W = U H(a).) Since 
aEA aEA 

W = H(a) U ( U  H(b)), ({a) UB)  = R, and unity has representation 1 = roa+ ~ r i b l ,  where ri E 
bEB i=l 

R, i < n; bi E B, i =  1 . . . . .  n. Set a' ~ ~ rib i and show that H(a') = W \  H(a). Let Rv E H(a ') ;  
i=l 

then a' E Pv. It follows from g(a )  MH(bi) = ~ that abi E (3{pv, IR v, E W}, i = 1 , . . . , n ,  so ha' = 
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r (ab ) e n{pv, IR , W}, ha' p,, p,, and Rv H(a), i .e. ,  H(a') C_ W \ H(a). Let 
i=1 
Rv ~ H(a~); then a ~epv ,  1 - a ' ~ p v ; b u t  1 - a / = r 0 a , c o n s e q u e n t l y , r 0 a ~ p v ,  a ~ pv, Rv E H(a), i.e., 
W \ H(a') C Y(a), W \ H(a) C_ H(a'). Thus g(a') = W \ Y(a). 

The arguments above entail that for every a E F*, there exists b E R \ {0} such that V F =- H(b). 
Indeed, V F = U{H(b)lb E R \ {0}, H(b) C vF}.  Since V F is compact, there exist b0, . . . ,  bn E R \ {0} 

such that V F = U g(bl). If b ,~ ( I"I b~)', where the primed symbols signify complementation, it is 
i<n i~n 

immediate that V~ = H(b). Since the family consisting of all sets of the form H(b), where b E R \ {0}, 

is closed under intersection and complementation, and forms a base of the canonical topology on the 

compact (Boolean) space W, every closed-open set in W is of the form H(a) = VF_I, a e r \  {0}, and W 

is a Boolean family of valuation rings of F. The proposition is proved. 

Below we show that Proposition 3 admits inversion. 

P r o p o s i t i o n  5. If R is a regularly Pr/ifer ring with a field of fractions F, then WR ~- {Rmlm is a 

maximal ideal of R} is a Boolean family of valuation rings of F. 

The notation adopted here is the same as in Proposition 4. We show that the family {H(a)la E R\{0)}  

of subsets of WR forms a base of the canonical topology on W R. Let a E F and Rm E vF; then a E Rm 
and there exist b,c E R, c E R \ m such that a = bc-1; hence Rrr, E H(c) = vcF__I, and obviously, 
H(c) C_ V F .  

Verify that the canonical topology is Hausdorff: if m0 # 7hi are maximal ideals of R, then f o r  

a E 7hi \ too, we have Rmo E H(a), Rmz ¢ H(a). 
Check that WR is compact. Suppose WR = U H(a), and let (A) be the ideal of R generated by A. 

aEA 
I f ( A ) # R a n d  rn is a maximal ideal of R such that ( A ) < r n  < R ,  then Rm ¢ U H ( a ) ; s o ( A ) = R a n d  

aEA 
there exists a representation of the form 1 -" ~ riai, where r~ E R. a i e  A; hence IYR -- U H(ai). In 

i<n i<n 
fact, if Rm e WR \ U H(ai), then (a0 , . . . , an )  _.< m and 1 E rn, a contradiction. 

i<n 
It remains to prove that for every a E R \ {0}, there exists a' E R \ {0} such that H(a') = WR \ H(a). 

Since R/J(R)  is regular, there exists b E R such that a - a2b E J(R). Set a I ~- 1 - ab. 
If R m E H(al), then a' ¢ m; aa I e J(R) _< 7n; so a e rn, and Rm ¢. H(a). 
I fRm  ~.H(a'), then a ' E m ,  1 - a ' = a b e m ,  a ~ r n  and Rm e l l ( a ) .  Thus H ( a ' ) = W R \ H ( a ) .  As 

in the proof of Proposition 4, we infer from this that WR is a Boolean family of valuation rings of F.  

Our goal now is to establish the main theorem on a "lift" of Boolean families to algebraic extensions. 

T H E O R E M  2. Let W be a Boolean family of valuation rings of a field F, F0 ~ F an algebraic 

extension of F, Wo ~- {RvoIRvo is a valuation ring of F0 such that Rvo N F  E W}. Then W0 is a Boolean 

family of valuation rings of Fo. 

By Theorem 1 W0 is weakly Boolean. We show that RW0 ~ M{Rv0lRv0 E W0} is an integral 

closure R~°~z of the ring Rw ~- N{RvIRv E W} in F0. Since RW _< Rw 0 and Rwo is integrally closed, 

R~v _< Rw0. If c~ E Rwo \ R~v and f = xn+ a l x n - z + . . .  + an is a minimal polynomial of a over F,  then 

{ h i , . . . ,  an} ~ RW, and hence there exists Rv E W such that {hi . . . . .  an} ~: Rv. For a not integral over 

Rv, there exists Rv o E Wo such that Rvo N F = Rt, and a ~ Rvo, but then a ~ Rwo, a contradiction. 

Since R w  is the Prfifer ring with a field of fractions F by Proposition 3, Rwo = R~v is a polyvaluation 

ring of Fo by Proposition 2. We check whether the assumption of Proposition 4 is valid for the family 

Wo. It suffices to establish that {m(Rv0) n RwolRvo E W0} coincides with the set of all maximal ideals 
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of RWo. Let m 0 be a maximal ideal of Rwo = R~°; then m = rn0 N RW is a maximal ideal of R w  and 

(Rw)m E W; hence (Rwo)mo is a polyvaluation ring dominating (Rw)m,  consequently, (RWo)mo E Wo 

and m0 = m((RWo)mo) N RWo. Conversely, if Rvo E Wo, then m(Rvo) M RW is a maximal ideal, and so 

m(Rvo) (1 Rwo = m(Rvo) M R~ ° is maximal as a prime ideal lying over the maximal ideal in the integral 

extension. By Proposition 4, W0 is a Boolean family of valuation rings of F0. This completes the proof. 

Now we give a few instances of Boolean families of valuation rings. Unfortunately, our a t tempts  to 

find an example of a weakly Boolean family that is not Boolean have as yet been unsuccessful. In going 

through the details of the next proposition, the reader will get some idea about the difficulties impeding 

the construction of such all example. 

P r o p o s i t i o n  6. Let W be weakly Boolean, and suppose that for every a E F*, there exists a unitary 

polynomial with integer coefficients fa(x) • Z[x] \ Z such that f~(o) = 4-1 and fa(a) ~ m(Rv) for any 

R.v • V F .  If, for every Rv • W, the field Fv ~ Rv/m(Rv)  is an algebraic extension of a simple field of 

characteristic Pv :fi 0, then W is Boolean. 

In view of Proposition 4, it suffices to show that the set {pv (= m(Rv) N R)IRv • W}  coincides with 

the set of all maximal ideals of the ring R (= N{RvtRv • W}), and that R is a polyvaluation ring. 

Set a. ~ fa(a) -1 for any a • F*; then a., ha. • R, and V F = v F I .  Indeed, let Rv • W and 

v(a) > 0, i.e., Rv • i.~F Then a:  -1 = fa(a) • Rv \ m(Rv) and v(a: "1) = 0, by the above condition. If 

a ~ Rv, v(a) < 0, then v(a2 "1) = v(fa(a)) = degfa.v(a)  < 0; v(a.) = -degfa .v (a)  > 0; v(aa.) = 

v(a) - degfa • v(a) = -(degfa - 1)v(a) > 0 since degfa > 1. Thus v(a,) > 0 and v(aa,) > 0 for all 

Rv • W; hence, a. ,aa.  • R. Moreover, v(a) > 0 implies v(a= 1) = 0, and v(a) < 0 implies .v(a21) < 0; 
hence, V F = v F 1 .  

a .  

Since, for any a , b • F ' ,  we have V ~ =  vF_,, Vb F = V ,  F and !~; FNVb F =  V v AV.F__I = t'iaF. 
a .  b -1  a :  -1 b. b*) - 1 '  

every basic open set is of the form ~ F  1 for a suitable a • R \ {0}. 

First we show that Rv = Rp, for every Rv • W. The inclusion Rpv < Rv is evident. Let. a • Rv \ {0}; 

t h e n v ( a ) > 0 ,  V(a21) = 0, v ( a . ) = 0 ;  a, ,aa.  • R, a. ~ pv, and a = (aa.)a21 • Rpv ; thus Rv = Rp~. 

Next we prove that every maximal ideal m of R is of the form pv for an appropriate Rv • W. For every 

a • R \  m, VaF_ 1 ¢ O holds. Indeed, if YF1 ---- 0, then a • Pv for all Rv • W, and so a • N{pvlRv • W}. 

At the same time, the maximality of m implies the existence of b • R such that 1 - ab • m; but, 

1 -  ab • Rv \ m(R, ) ,  ( t -  ab) -1 • Rv for all R~ • W (since a,b • R < Rv, a, ab • Pv <_ m(Rv)),  then 

( t - a b )  -1 • R = M{Rv[R, • W} and t =  ( 1 - a b ) - ( 1 - a b )  -1 • m. Contradiction. Thus Y F ¢ 0 for a - 1  
e v e r y a e / ~ \ m ,  andso  ~ V ¢ I  ¢ ~ .  Let R y e  ['1 VF_l, then t ~ \ m C R \ p v  a n d p v < m .  

aER\rn aER\m 
Now we show that the ring of fractions Rm is a valuation ring. Let Rv0 :> R be an arbitrary 

valuation ring of F such that m(Rvo) M R = m. Then Rm < Rvo. Let a • Rvo, vo(a) > 0, and 

vo(fa(a)) > O, vo(a.) = v0(fa(a) -1) _< 0, but a ,  • R _< Rv0 entails vo(a.) >_ 0; thus vo(a.) = 0 and 

a = (aa.)a:  1 • Rm since aa, • R, a. • R \ m ,  and so Rm = Rvo is a valuation ring. The inclusion 

Pv < m implies an inclusion Rvo = Rm < Rp~ = Rv. If Rvo < Rv, the valuation v0 is representable as the 

composition v o ~, where ~ is a nontrivial valuation of Fv. By assumption, however, Fv is an absolutely 

algebraic field of nonzero characteristic, and such fields have no proper valuations. This implies that 

p .  = m, i.e., m • {PvIRv • W}. 

The above arguments also show that Pv is maximal for every R~ • W. Indeed, if m is a maximal ideal 

of R such that  p .  _< m, then Pv = m, as has been proved above. In view of Proposition 4, W is Boolean. 

C O R O L L A R Y .  If W is weakly Boolean and there exists k > 0 such that for any Rv • W the field 
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Fv = Rv /m(Rv)  is finite and IF,] _< k, then W is Boolean, 

Let p be a prime number greater than k and fa(x) ~--- xp-1 + zP--2.+..., + 1 for every a E F*; then all 

assumptions of Proposition 6 are satisfied, and so W is Boolean. 

P r o p o s i t i o n  7. Let W be a finite family of valuations that are mutually incomparable with respect 

to inclusion. Then W is Boolean. 

This, in essence, was established in [2, Sac. 3, Proposition 1]. 

The latter example will be detailed in subsequent papers. Let ~r E F* be an arbitrary element distinct 

from 1. We call the valuation ring Rv of F a ~r-valuation ring, and the corresponding valuation v a 

*r-valuation if v(Tr) is the least positive element in the valuation group Fv. A field F is said to be formally 

~'-adic if there exists at least one ~'-valuation of F.  

Let F be formally ~r-adic and W~r .~- {Rv[Rv is a *r-valuation ring of F}. 

P r o p o s i t i o n  8. The family W~r of all zr-valuation rings of F is Boolean. 

Let R~ ~- n{RvlRv  E W~}. 
Note the following important property. 

0. For e v e r y a E F * ,  l+Tra  2 # O a n d T ( a ) ~ - ~ E R r .  

Let v be an arbitrary ;c-valuation o f F .  If l+,va 2 = 0, then v(,'ra 2) = O, v ( z )+2v(a )  = O, 2v(a - I )  = 

v(Tr), and 0 < v(a -1)  < v(~), which is impossible if v is a ~r-vatuation. 

Further, i fv(a)_> 0, then v(Tra 2) > 0, v ( l + z r a  2) = 0, v(7(a)) = v ( a ) - v ( l + ~ r a  2) = v ( a )  >_ 0; if 

v(a) < 0, then v(Tra 2) = v(Tr) + 2v(a) = (v(~r) + v(a)) + v(a) < v(a) < 0; v(1 + ~ra) 2 = v(Tra 2) < v(a), 

v(7(a)) = v ( a ) - v ( 1  +Tra 2) = v (a ) -v (~ra  2) >_ v ( a ) - v ( a )  = 0. Thus for every Rv E W~r we have 

v(7(a)) > 0, 7(a) ERv.  and 7(a) E R~. 
We establish a number of properties of basic sets of the canonical topology. 

1. For a E F*, let a* --" (~ra)-'. Then V F = I'V~ \ ~F.  

Indeed, R,  E t~ F implies a* E R v ,  v(a*) = -v(~ra) = -v(a)  - r(v) _> 0: v(a) < -v(Tr) < 0, a ¢ R v ,  
Rv ~ t/~F; Rv ~ VaF implies a* ~ R~, v(a*) < 0; v((a*) -~) -- v(,'ra) > 0: r(a) = v(wa) - v(w) > 0 (since 

v(~ra) > 0 and v(w) is the least positive element of / 'v) ,  so Rv E V f .  
2. For any a e F* we have a. = a*(a + a*) -1 e R~ and V F - v F 1 .  

Let Rv e vF ;  then v(a) _> 0, v(a*) < O, v(a+a*) = v(a*); v(a.) = v(a*) -v(a+a*)  = v(a*) -v (a*)  = 0; 
v(a ,  1) = 0, and so Rv E VF_I. 

a ,  

Conversely, let Rv ~ vF;  then Rv E V F ,  v(a*) > O, v(a) < O, v(a + a*) = v(a), v(a.)  = v(a*) - v(a + 

a*) = v ( a * ) -  v ( a ) >  0; consequently, R ,  ¢ V~ 1. This implies that Va F = VF-1;a. moreover, a.  E R~ since 

v(a.) > 0 for all Rv E I4'~. 

3. For any a, b e F*, let 6(a, b) = (a.b.) -1.  Then V f N Vb F = V.~a,b ). 

In fact, V~ F = V F = H(a.) ,  V F = vbF , (~,b.)_l = a , '  = H(b.),  vFNVb F = n (a . )OH(b . )  = H(a .b . )  = V~ F 

V.~a,b ) (see the notation H(a) and the properties of H in the proof of Proposition 4). 

Thus, the family V F ,  a E F*, is closed under finite intersections and complementations, hence under 
finite unions. 

We prove that W~ endowed with canonical topology is Hausdorff. Letting Rv # Rv~ E W~r, we see that 

the inclusion Rv < R v, entails the existence of a E R v, \ Rv; v(a) < 0, vt(a) > 0; v(~ra) < O, v'(Tra) > 0, 

a* = (~ra) -1 E R v  < Rv,; (zca) -1 ERv , ,  v'(a*) > O, but v'(a*) = -vt(~ra) < 0. a contradiction. So 

Rv < Rv, , and if a E Rv \ Rv, , Rv E V F and R v, ~ V F .  

It remains to establish the compactness of W~r. 
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To do this we prove: 

L E M M A  4. If m is a maximal  ideal of R~r, then ~r E m. If Rv >_ R~ is a valuat ion ring of F such 

tha t  m(Rv)  N R~ = m, then Rv E W~. 

Note tha t  (1 + rra) -1 E R~ for every a E P~.  This follows from the fact tha t  if, for any ~r-valuation 

v, a E R v ,  then v(a) >_ 0, v(ra) > 0, v(1 + 7ra) = 0, and v((l  + rra) -1 )  = 0, so (1 + ~ra) -1 ERv .  

If 7r ~ m, then t - r a  E m would be valid for some a E R~r; but (1 - rra) -1  E RTr, hence 1 = 

( 1  - 7ra)(1 - r a )  -1 E m, a contradiction. 

Let Rv > R~r and m(Rv) M R = m. Since 7r E m, v(~r) > O. If v is not a 7r-valuation, then there exists 

a E Rv such tha t  0 < v(a) < v(r ) .  Consider an element 7 ( a - l ) .  By property O, 7(a  - 1 )  E RTr < Rv, so 

v ( 7 ( a - 1 ) )  > 0. On the ot.her hand, v(~a -2 )  = v(w)-2v(a)  = (v(~r)-v(a))-v(a)  > -v (a ) .  If v(1W~ra -2 )  < 

0, then v(1 + 7ra -2)  = v(rra -2)  > -v (a )  and v (7 (a -1 ) )  = v(a -1 )  - v(Tra -2 )  = - v ( a )  - v(:rra - 2 )  < 0. 

But  i f v ( l + T r a  -2) >_ 0, then v ( 7 ( a - l ) )  = - v ( a ) - v ( l + r r a  -2)  _< - v ( a )  < 0. Thus  v(7(a-1))  < O, 

7(a  - 1 )  ~ Rv > Rlr, an impossibility. The  l emma is proved. 

Let W~ = U l/~ F = U VF = U H(a.) .  Consider the ideal (A,)  generated by the set A.  = '  
aEA aEA a*l aEA 

{a.Ia E A}. If  (A,)  is a proper ideal, we let m be a maximal ideal of Rr~ containing (A.) ,  and let 

Rv > R~r be a valuation ring of F such that  m(Rv) M Rr~ = rn. Then, in view of the lemma,  Rv E 

Wr, A .  C m C m(Rv),  and Rv E W~r \ U H ( a . ) ,  a contradiction. 
a. EA. 

Thus  1 E (A.)  and there exist ao . . . .  ,an E A and ro , . . . , rn  E R r  such tha t  1 = ~ ri(ai). .  We 
i<n 

show tha t  ~'V~r = 1.3 g( (a i ) . )  = U v.F If R~r < Rv ~ U H((a i ) . ) ,  (hi). E ,r~(Rv), i < n, but  then 
a i - _ i<n i<n i<n 

t = ~ ri(ai). E m~Rv), a contradiction. We have thus proved the compactness of I/V,~. 
i<1 
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