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Abstract - -  Zusammenfassung 

Bandwidth and Pebbling. The main results of this paper establish relationships between the bandwidth of 
a graph G - which is the minimum over all layouts of G in a line of the maximum distance between 
images of  adjacent vertices of G - and the ease of  playing various pebble games on G. Three pebble 
games on graphs arc considered: the well-known computational pebble game, the "progressive" (i. c., no 
rccomputation allowed) version of the computational pebble game, both of which are played on directed 
acyclic graphs, and the quite different "breadth-first" pebble game, that is played on undirected graphs. 
We consider two costs of  a play of a pebble game: the minimum number of  pebbles needed to play the 
game on the graph G, and the maximum lifetime of any pebble in the game, i. e., the maximum number of 
moves that any pebble spends on the graph. The first set of  results of  the paper prove that the minimum 
lifetime cost of a play of  either of the second two pebble games on a graph G is precisely the bandwidth of 
G. The second s~t of results establish bounds on the pebble demand of  all three pebble games in terms of 
the bandwidth of the graph being pebbled; for instance, the number of  pebbles needed to pebble a graph 
G of bandwidth k is at most min (2/~ + k + 1, 2 k log21 G I); and, in addition, there arc bandwidth-k 
graphs that require 3 k - 1 pebbles. The third set of results relate the difficulty of  deciding the cost of  
playing a pebble game on a given input graph G to the bandwidth of  G; for instance, the Pebble Demand 
problem for n-vertex graphs of bandwidthf(n)  is in the class NSPACE (f(u)log 2 n); and the Optimal 
Lifetime Problem for either of  the second two pebble games is NP-complete. 

AMS Subject Classifications: 05C99, 68E 10, 94C 15. 

Key words: Bandwidth, graph pebbling. 

Bandweite und Markenspiele.  Die Hauptergebnisse dieser Arbeit ergeben Beziehungcn zwischen der 
,,Bandwidth" eines Graphen G - die alas Minimum ist, tiber alle Projektionen von G auf eine Linie, Yon 
dem maximalen Abstand zwischen Bildern benaehbarter Knoten yon G - und der Leichtigkeit, 
verschiedene ,,Pebble Games" auf G zu spielen. Es werden drei Pebble Games auf Graphen betrachtct: 
das wohlbekannte ,,computational" Pebble Game, die ,,progressive" (d. h. keinc Wiederberechnung 
erlaubt) Version des computational Pebble Game, yon denen beide auf directed acyclic Graphen gespielt 
werden, und das ziemlich verschiedene ,breadth-first" Pebble Game, das auf undirected Graphen 
gespielt wird. Wir betrachten zwei verschiedene Kostcn ftir das Pebble Game: die minimale Anzahl yon 
Pebbles, die man braucht, urn das Pebble Game auf eiuem Graphen G zu spielen, und die maximale 
Lebensdauer eines Pebble in einem Spiel, d. h. die maximale Anzahl yon Ztigen w[thrend denen ein Pebble 
au f  dem Graphen verwcilt. Die erste Gruppe von Hauptergebnisseu in dieser Arbeit zeigt, dag die 
minimalen Lebensdauer-Kosten eines Spielverlaufs in einem tier beiden letzten Pebble Games auf cincm 

* A portion of  this author's research was done while visiting the Department of  Computer Science, 
University of  Toronto, Toronto, Canada; a portion was done while with the Mathematical Sciences 
Department, IBM Research Center, Yorktown Heights, N. Y. ; and a portion was supported by NSF 
Grant MCS-8116522. 

** A portion of  this author's research was supported by NSF grant MCS-79-08919. 



116 A.L. Rosenberg and I. H. Sudborough: 

Graphen genau die Bandwidth von Gist. Die zweite Gruppe yon Ergebnissen stellt obere Schranken auf 
fiir die Anzahl von ben6tigten Pebbles in Abhgngigkeit yon der Bandwidth des betrachteten Graphen, 
z.B. urn einen Graphen G mit Bandwidth k zu pebblen, braucht man h6chstens min(2k2+k+l, 
2 k log2 ] G l) Pebbles; ferner gibt es Graphen G yon Bandwidth k ffir die man 3 k - 1 Pebbles braucht. Die 
dritte Gruppe yon Ergebnissen setzt die Schwierigkeit, die Kosten eines Pebble Game auf einem 
gegebenen input-Graphen G festzustellen, in Beziehung zur Bandwidth von G, z.B. das ,,Pebble 
Demand Problem" fiir Graphen mit n vertices von Bandwidth f(n) ist in der Klasse NSPACE 
(fin) log 2 n); und das ,,Optimal Lifetime Problem" ist ftir jedes der beiden letzten Pebble Games NP- 
vollst~indig. 

1. Introduction 

The purpose of this paper  is to demonstrate  certain intimate relationships between 
two seemingly disparate properties of a graph, its bandwidth and the ease with which 
it can be pebbled. 

The bandwidth of an undirected graph G is the minimum, over all layouts of G in the 
line - that  is, one-to-one mappings 

2: Vertices (G) ~ {1,2, . . . ,  I G I}, 

(I G[ denoting the number  of vertices of G) - of the maximum distance between 
adjacent vertices of G. The bandwidth  of  a graph is impor tant  because of its 
relevance to computat ions  involving sparse matrices [1,2, 17] and because of its 
representing the simplest instance of a variety of graph-embedding problems 
(simplest since the target graph is a line) that  have applications to routing 
computat ions  on fixed-interconnection networks of processors [7] and to finding 
storage representations for data structures [10, 18, 19]. 

Pebble 9ames for graphs originated in the study of problems concerning register 
allocation and space requirements for computat ions  [15, 3]. The basic form of such 
games is the following. One  is given a directed acyclic graph G and an endless supply 
of tokens called "pebbles". One is to play the following one-person game on G: one 
is allowed to pebble any vertex of G whenever all of that  vertex's (directed) 
predecessors are pebbled; and one is allowed to remove a pebble from a vertex 
whenever one wishes. The goal of the game is to pebble (and then remove the pebbles 
from) all of the "sink" vertices of G, i.e., vertices having no successors. The 
traditional measure of the merit of a play of the pebble game is the number  of pebbles 
one uses in a play of the game - the fewer pebbles the better. Pebble games 
represent the most  successful tool yet discovered for studying register-allocation and 
space-requirement problems, as well as a variety of other problems related to such 
basic computat ional  issues as time-space tradeoffs. (See [16] for an excellent 
discussion of the applications of pebbling arguments  as well as a survey of the major  
results obtained via such arguments.) 

There seems on the surface to be little relationship between the notion of  the 
bandwidth  of a graph and the ease of playing any pebble game on the graph. And, 
indeed, it appears that  no tight such relationship exists if one restricts attention to 
the conventional  (number of pebbles used) measure of the merit (or "ease") 
associated with pebble games. (This disclaimer notwithstanding,  T. Lengauer [8] 
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has proved a number of results relating ease of "black/white" graph pebbling and a 
different notion of the width of a graph; and we (Section 3) present results relating 
the ease of pebbling a graph to the bandwidth of the graph itself and to the 
bandwidth of some "expansion" of the graph.) But, there is one measure of the merit 
of a play of a pebble game on a graph, that yields precisely the bandwidth of the 
graph. And the preceding assertion is true for two seemingly unrelated types of 
pebble games, one of which is a variant of the computational pebble game described 
above while the other is a marked departure from the form of such games. The 
measure of merit that characterizes bandwidth in both cases is the lifetime of the 
longest lived pebble in the game, where the lifetime of a pebble p is the number of 
pebbles that are removed from the graph while p resides on the graph. 

The two costs of the computational pebble game, namely, number of pebbles used 
and maximum pebble lifetime, are quite closely related. The number of pebbles 
needed to pebble a directed acyclic graph G is within 1 of the lifetime-cost of some 
"expansion" (a type of homeomorph) of G. Thus the conventional cost of the 
computational pebble game is also related to the bandwidth problem for graphs, 
though in an indirect way. 

One application of the upper bounds we shall give for the pebble demand for 
directed acyclic graphs (dags) of limited bandwidth arises from considering the dags 
as representations of computations. The best result known for the pebble demand of 
an arbitrary fixed-vertex-degree dag is due to Hopcroft, Paul, and Valiant [6]: any 
n-vertex dag can be pebbled using 0 (n/log n) pebbles. Since the pebbles correspond 
to memory registers, their number corresponds to the space requirements of the 
computation represented by the dag. The upper bounds we shall present indicate 
that the O (n/log n) bound can be improved when the dags to be pebbled have limited 
bandwidth. For example, an n-vertex dag of bandwidth 0 (n 1/2) can be pebbled with 
only 0 (///1/2 log n) pebbles. 

The main advantage of having results such as those we are about to present is that 
they afford one different ways of looking at important problems, and they allow one 
to bring the results and techniques from one problem area to another. We illustrate 
this advantage by presenting two results about pebbling that follow from results 
about bandwidth. The first result establishes the difficulty of finding optimal plays of 
our pebble games by citing known results about the difficulty of determining the 
bandwidth of a graph. The second result proves that the lifetime-cost of any play 
of either of our pebble games on an n-reticulated graph (a weak version of 
n-superconcentrator that includes all homeomorphs of side-n grids and side-2 n 
pyramids, for example) grows at least as fast a s  n 1/2. 

The remainder of the paper is organized as follows. Section 2 establishes the 
"equivalence" of the lifetime cost of the progressive computational pebble game on a 
graph and the graph's bandwidth; Section 4 does the same for our new "breadth- 
first" pebble game; Section 3 presents results relating the conventional cost of the 
computational pebble game with graph bandwidth; and Section 5 presents the two 
corollaries of the two equivalences. 
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2. NRA Pebbling and Bandwidth 

Our first pebble game, the NRA (for no recomputation allowed) pebble game is 
played on a connected directed acyclic graph (dag, for short). Its rules are as follows. 

1. No vertex of the "input" dag G ever holds more than one pebble. 

2. No vertex of G is ever pebbled more than once. (This is the "NRA"  clause.) 

3. At each move of the game one does one of the following. 

A. One can place a pebble on any "virgin" (i. e., never before pebbled) vertex of G 
providing that all of that vertex's predecessors contain pebbles. 

B. One can, whenever possible, remove a pebble from a vertex. (Of course, this 
can be done only after all of the vertex's successors have been pebbled.) 

4. The game ends when the last pebble is removed from G. 

The NRA pebble game differs from the traditional computational pebble game in its 
not allowing recomputation, i.e., in Rule 2. 

The lifetime of a pebble in a play of the NRA pebble game is the number of type B 
moves during which the pebble stays on the dag, not counting the move on which it is 
removed. (We assume that a pebble is discarded when it is removed from the dag.) 

A dag-in9 of the undirected graph G is any orienting of the edges of G that results in a 
directed acyclic graph. 

The dag G is k-NRA-pebbleable, k ~ N, if there is a play of the NRA pebble game on 
G in which no pebble has lifetime exceeding k. 

Theorem 1: The undirected graph G has bandwidth k if and only if some dag-ing of G 
is k-NRA-pebbleable. 

Proof: Say first that G has bandwidth k, and let 2 be a bandwidth-k layout of G in the 
line. Consider the dag-ing of G defined by: 

The edge (v, w) of G is directed from v to w just when 2 (v) < 2 (w). 

This method of dag-ing G yields a left-to-right ordering of G's vertices. We risk no 
misunderstanding, therefore, if we refer to the leftmost vertex of G or to the leftmost 
pebble residing on G. 

Let us play the NRA pebble game on this dag as follows. At each move, we remove 
the leftmost pebble from G if possible; if no removal is possible, we pebble the 
leftmost virgin vertex of G. Note first that, because of our method of dag-ing G, the 
described play of the game is a legitimate one (no vertex is pebbled until all of its 
predecessors contain pebbles, and no vertex is pebbled more than once.) Moreover, 
since 2 is a bandwidth-k layout of G, no pebble can sit on the dag for more than k 
type B moves. Thus G is k-NRA-pebbleable. 

Conversely, say that some dag-ing G' of G is k-NRA-pebbleable, and let us focus on a 
play of the NRA pebble game on G' in which no pebble has a lifetime exceeding k. 
Consider the following layout 2 of G in the line: for each vertex v of G' (hence, also of 

G), 2 (v)= the type B move at which v is depebbled. 
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Since every vertex of G' gets pebbled and depebbled precisely once, the mapping 2 is 
well-defined and one-to-one (hence is a layout of G). Since no pebble used in this play 
of the game resides on G' for more than k type B moves, 2 places adjacent vertices of 
G' at most distance k apart in the line: the source end of an edge must contain a 
pebble when the target end is pebbled; and neither pebble can sit for more than k 
type B moves. It follows that G has bandwidth at most k. [] 

We thus have our first characterization of bandwidth in terms of pebbling. 

3. Relationships Between Pebble Demand and Bandwidth 

A. An Indirect Relationship 

There appears intuitively to be some relationship between our notion of the cost of a 
play of the pebble game and the conventional, number of pebbles used, cost. We now 
make explicit an indirect such relationship. 

Let G be an n-vertex directed graph (digraph, for short), let v be a vertex of G, and let 
e I . . . .  , e, be some (maybe all) of the edges leaving v in G. The (e 1 . . . .  , e,)-expansion of 
G is the (n + 1)-vertex digraph obtained by adding to G a new vertex w and an edge 
from v to w, and reallocating the edges incident to v in G so that: 

1. all edges into v in G remain edges into v in G'; 

2. the edges el, . . . ,e,  become edges out of w in G'; 

3. all other edges out of v in G remain edges out of v in G'. 

One can obviously view "selective edge expansion" as an operation on a directed 
graph, defined pictorially by: 

selective edge expansion 

selected selected 
outedges outedges in d es < .  . - -  

other other 
outedges outedges 

The digraph G' is an expansion of the digraph G if G' is obtainable from G by a finite 
sequence of selective edge expansions. The reader can easily extend this notion of 
graph expansion to undirected graphs. 

Say that the dag G has pebble demand k if there is a play of the NRA pebble game on 
G for which no more than k pebbles ever sit on G at any time. Pebble demand is the 
traditional [3, 7, 15, 16] measure of the cost of a play of the computational pebble 
game. 
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Lemma 1: If  the dag G has pebble demand k, then some expansion of G is k-NRA- 
pebbleable. I f  some expansion of G is ( k -  1)-NRA-pebbleable, then G has pebble 
demand at most k. 

Proof: Assume first that some expansion of G is (k-1)-NRA-pebbleable.  That  
expansion, then, has pebble demand at most k, for one of the pebbles residing on the 
graph at any instant must be the last to be removed. But it is easy to verify that the 
pebble demand of a graph can only be increased (by at most 1) by an expansion. It 
follows that G has pebble demand at most k. 

Assume next that G has pebble demand at most k. We shall construct in stages an 
expansion of G that is k-NRA-pebbleable. 

Stage 1 : Replace the endless supply of pebbles used to pebble G by k + 1 infinite 
buckets of colored pebbles, with colors 1,2, ..., k + 1. Play the NRA pebble game on 
G exactly as before, but make sure now that no two pebbles coresident on G at any 
time have the same color. (This is possible by assumption.) 

Stage 2: Modify the play of the NRA pebble game on G by substituting for each 
move the following procedure: 

For l_<i_<k+l:  

if a pebble with color i would have been placed on the graph or removed from the 
graph at this move in the original game, then do the same thing; 
if a pebble with color i would not have been touched at this move in the original 
game, then: 

if a pebble with color i is not on G at this time, then do nothing; 
ifa pebble with color i is on the graph at this time, then replace it with another 
pebble of the same color. 

Stage 3: Proceed as in Stage 2, with one exception: whenever a pebble of color i 
would be "replaced" in Stage 2, instead perform the following actions. (a) Expand 
the current graph G: let v be the vertex on which the pebble in question resides. Let 
e~ . . . .  , e, be those edges leaving v that go to vertices that have never contained a 
pebble. Form the (e~, ..., en)-expansion of G by replacing the vertex v on which the 
pebble in question resides by the chain v ~ w (as in the definition of expansion) with 
the pebble still on v. (b) Place a pebble of an unused color on vertex w (since G has 
pebble demand k, at most k pebbles will be sitting on the current version of G, so the 
desired unused color will exist). (c) Remove the pebble from v. 

Note in this last stage that all successors of v that have already been pebbled remain 
successors of v, and only never-pebbled successors become successors of w. 

Once the modified NRA pebble game is over, one is left with a graph G' which is an 
expansion of G, and which is k-NRA-pebbleable. We relegate the verification of this 
last assertion to the Appendix. [] 

As an immediate consequence of Theorem 1 and Lemma 1, we have: 

Theorem 2: If  the dag G has pebble demand k, then the undirected version of some 
expansion of G has bandwidth at most k. I f  the undirected graph G has bandwidth k, 
then some dag-in 9 of G has pebble demand at most k + 1. 
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Proof: If the dag O has pebble demand k, then by Lemma 1 some expansion of G is 
k-NRA-pebbleable, and so by Theorem 1 the undirected version of this expansion 
has bandwidth k. Conversely, if the undirected graph G has bandwidth k, then by 
Theorem 1, some dag-ing of G is k-NRA-pebbleable, and so, by the beginning of the 
proof of Lemma 1, this dag-ing of G has pebble demand at most k + 1. [] 

Remark" If the rules of the pebble game are modified to allow slidin 9 of pebbles - 
i.e., shifting a pebble from a predecessor of vertex x to vertex x whenever all 
predecessors of x contain pebbles - then the second assertion of Theorem 2 can be 
strengthened to: 

I f  the undirected graph G has bandwidth k, then some dag-ing of G has pebble demand 
at most k. 

Proof Sketch: Let 2 be a bandwidth-k layout of G. Direct the edge that connects x 
and y from x to y just when 2 (x) < 2 (y). The following pebbling strategy for this dag- 
ing of G uses k pebbles. (1) Place pebbles on the leftmost k vertices of G. (2) 
Iteratively, if the leftmost pebbled vertex (call it x) is a predecessor of the leftmost 
unpebbled vertex (call it y), then slide the pebble from x to y; otherwise, delete the 
pebble from x and add a pebble to y. Details are left to the reader. [] 

We turn now to a study of more direct relationships between the pebble demand of a 
graph and the graph's bandwidth. 

B. Direct Relationships 

We now transfer our attention from the NRA pebble game to the conventional game 
(with recomputation allowed). Note that for the NRA game, an upper bound on the 
bandwidth of a digraph gives no upper bound on NRA pebble demand. For 
example, the digraph with vertex set {1,2 . . . .  ,2n} and edges 

(i,i+1) for l_<i_<2n-1 
and 

(i, 2 n - i + l )  for l<_i<_n-1 

(which is the computation graph that arises from a linear recursion) has bandwidth 
2 but NRA pebble demand n + 1. 

In the last subsection we showed that an undirected graph with bandwidth k can 
have its edges directed so that the resulting dag has pebble demand k + 1 (k if we 
allow sliding). In fact, the direction chosen for each edge of G (which is dictated by 
the small-bandwidth layout 2 of G) is such that the resulting dag G' is topologically 
sorted by the layout 2. What happens to pebble demand if we are not allowed to 
choose a happy set of directions for the edges ? In other words, what is the pebble 
demand of an arbitrary dag of bandwidth k ? (The dag G = (V, E) has bandwidth k 
under the layout 2 iff[ 2 (x) - 2 (y)[ _< k for all edges (x, y) of G.) In this subsection, we 
show that the pebble demand of a bandwidth-k dag is bounded above by: 

rain ( 2 k 2 + k + l ,  2klog2t G]). 
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This bound follows from two separate observations we shall verify: (1) If the graph G 
has bandwidth k, then it has pebble demand 2 k +  1 in the so-called black~white 
pebble game. It then follows by a result in [11] that G has pebble demand 2 k 2 + k + 1 
in the conventional (black) pebble game. (2) If G has bandwidth k, then it has pebble 
demand at most 2klogz[GI.  This bound is shown by describing a divide-and- 
conquer algorithm for pebbling a graph. The first result gives the better upper bound 
on pebble demand for graphs with small bandwidth (less than log2LG]). For 
example, if G has 21~ vertices and bandwidth 3, then the first result gives the bound 
22 and the second yields the bound 60. We now verify each of these observations in 
turn. 

We start with a description of the black/white pebbling game and a strategy for 
playing the game. 

The rules for the black/white pebble game on a dag G are as follows. 

1~ No vertex of G ever holds more than one pebble. 

2. At each move of the game one does one of the following. 

A. One can place a black pebble on any vertex v of G provided that all of v's 
predecessors contain pebbles. 

B. One can place a white pebble on any vertex of G. 

C. One can remove a black pebble from any vertex of G. 

D. One can remove a white pebble from any vertex provided that all of its 
predecessors contain pebbles. 

Note that when only black pebbles are used, this game is just the conventional 
computational pebble game (with recomputation allowed). The goal of the 
black/white pebble game, just as of the conventional (black) pebble game, is to place 
a pebble on all of the "sink" vertices of G (not necessarily at the same time) and then 
to remove all of the pebbles from G. 

The dag G has black~white pebble demand k (k e N) if there is a play of the black/white 
pebble game on G for which no more than k black/white pebbles sit on G at any time. 

Let G be an arbitrary dag of bandwidth k, and let the one-to-one function 
2: Vertices (G)--~ { 1,2,. . . ,  [GI} be a bandwidth-k layout of G. We describe now an 
algorithm for pebbling the vertices of G in the black/white pebble game, that never 
leads to more than 2 k + 1 pebbles sitting on the vertices of G at any time. This 
algorithm will demonstrate that bandwidth-k dags have black/white pebble 
demand at most 2 k + 1. 

In fact, our algorithm pebbles the vertices of G in the order given by the layout 2: at 
any given point in the algorithm, pebbles will sit only on vertices 2 -1 (i) . . . . .  
2-1 (i + 2 k), for some positive integer i (1 _< i <1 G [ - 2 k). 

The Algorithm: 

1. Put white pebbles on all of the vertices 2 1(1), . . , 2  1(2k); then replace the 
white pebbles on fl-1 (1) .. . . .  ft.-1 (k) by black pebbles. 
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2. For i= 1 step 1 until n - 2  k do 

begin 

A. add a white pebble to )-1 (i+2k);  

B. replace the white pebble on 2-1 (i + k) by a black pebble; 

C. remove the black pebble from 2-1 (i) 

end 

3. Replace all the white pebbles by black pebbles and then remove all of the black 
pebbles from the graph. 

The correctness of the algorithm is easy to establish. In Step 1 all of the predecessors 
of the vertices 2-1 (1) . . . .  ,2-1 (k) are pebbled; hence the white pebbles can be taken 
off and replaced by black pebbles. In Step (2 B) all of the predecessors of 2-  a (i + k) 
contain pebbles, since the graph has bandwidth k and 2-1 (0 . . . .  ,2-1 (i + 2 k) contain 
pebbles. Finally, in Step 3, all of the white pebbles can be replaced by black pebbles: 
since the graph has bandwidth k, all of the vertices 2 -I  ( n - 2  k+  1), ..., 2 -1 (n) 
contain pebbles, with white pebbles sitting only on vertices 2 -1 ( n - k +  1),..., 
2 -1 (n), and therefore all vertices with white pebbles have all their predecessors 
pebbled. 

Our algorithm pebbles the graph G using at most 2 k + 1 black/white pebbles; 
therefore, G has black/white pebble demand at most 2 k + 1. It follows from a result 
of Meyer auf der Heide [11] that G has black pebble demand at most 2 k2+ k + 1. 
This verifies our first observation: 

Lemma 2: I f  a dag G has bandwidth k, then it has pebble demand at most 2 k 2 + k + 1. 

In order to verify our second observation, we now describe a recursive divide-and- 
conquer algorithm for placing black pebbles on a graph of small bandwidth. The 
goal is, of course, to use as few pebbles as possible. Let G be a dag of bandwidth k; 
and let the one-to-one function 

2: Vertices (G) ~ {1,2,..., I G l} 

be a bandwidth-k layout of G. Let 

B( j , k )={v[ j<2(v)<_j+k-1}  

denote the block of k vertices starting with the vertex 2-1 (j) under the layout 2. The 
algorithm works by pebbling all of the vertices in a block B (], k) at a given time. Note 
-that B (], k) divides the vertices of G into two sets: the set of vertices assigned to 
integers less than j, which we say are to the left of B (j, k), and the set of vertices 
assigned to integers greater than j + k - 1, which we say are to the right of B (], k). 
This division is of consequence since no vertex to the right of B (], k) is adjacent to a 
vertex to the left of B (]', k) (since G has bandwidth k and B (], k) consists of k 
consecutive vertices under the layout 2). This observation underlies our ability to use 
a "divide-and-conquer" strategy to pebble G. 

Let v be a vertex in B (], k) that can receive a pebble by a sequence sl, s2 . . . .  , st of 
pebble-game steps during which no other vertex in B (j, k) receives a new pebble. Let 
w be a vertex to the right of B (], k) that receives a pebble during this sequence, say at 
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step s h. Then the subsequence o- obtained by deleting from sl, s2, ..., s h all steps that 
add a pebble to vertices on the left of B (], k) forms a valid sequence of pebble game 
steps that puts pebbles only on vertices to the right of B (j, k) and culminates in a 
pebble being placed on w. This is so because the addition of pebbles to the left of 
B (j, k) cannot help add a pebble to w - which is to the right ofB (j, k ) -  unless it first 
helps add a pebble to a vertex in B (j, k). However, we know that the sequence ~ does 
not add pebbles to B (j, k). Thus by focussing on B (j, k), we have divided the problem 
of pebbling the graph G into two subproblems: pebbling the vertices to the left of 
B (j, k) and pebbling the vertices to the right of B (], k). I f j  is chosen to be roughly in 
the middle of the portion of the graph currently being pebbled, then we have divided 
the problem of pebbling the graph G into two roughly half-size problems by 
considering B (j, k). We now describe a recursive procedure that implements this 
informal divide-and-conquer pebbling strategy. 

Let PEBBLE (i,j, m,/t) denote a recursive procedure that pebbles all of the vertices in 
B (m, k) of a graph G, by a sequence of steps that never adds a pebble to any vertex v 
of G for which ~. (v) < i or 2 (v) > j  + k - 1 ; i.e., the procedure adds pebbles to B (m, k) 
by steps that do not add pebbles to the left of B (i, k) or to the right of B (j, k). In order 
to implement the desired divide-and-conquer strategy, the procedure PEBBLE 
(i,j, m,/t) will always be invoked with m midway between i andj. When the procedure 
is invoked, some of the vertices in the blocks B (i, k) and B (j, k) may previously have 
been pebbled. 

A pebble will be called a p-pebble, for some p > 1, if it is placed on the graph G during 
a call to the procedure PEBBLE whose last argument/ t  = p, but excluding those 
times during such a call when the procedure is called (recursively) with the last 
argument # = p + l .  This last argument /t is included only for convenience; its 
purpose is simply to differentiate between pebbles placed at different times on the 
vertices of the graph  G. 

Procedure PEBBLE ( i,j, m,/t) 
if l i - j l < _ 2 k  
then place #-pebbles on all possible vertices in 

B (m, k) by steps which add no pebbles to 
vertices v such that 2 (v) < i or )~ (v) > j  + k; 

else begin 

place/t-pebbles on all vertices in B (m, k) 
that have no predecessor; 
p+-(i+m)/2; 
r ~-(]+m)/2; 
flag +-- 1; 

' while flag = 1 do 

beoin 
flag~-0; 
PEBBLE (i, m, p, # + 1); 
PEBBLE (rn,j, r , # +  1); 
PEBBLE (p, r, m,/t); 
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/f a/t-pebble is added to B (m, k) in the 
last step then flag +-- 1 ; 

remove all (/~ + 1)-pebbles from G 

end 

end 
The procedure works as follows. If I i - j  ] _< 2 k, then the vertices in B (m, k) are just 
pebbled directly. Alternatively, if [ i - j t  > 2 k, then PEBBLE (i,j, m, #) initially adds 
pebbles to all vertices in B (m, k) that have no predecessors. At that point, values p 
and r are chosen midway between i and m and midway between m and j, respectively. 
The algorithm then (1) pebbles all of the vertices in B (p, k) that are possible to pebble 
by steps that add no pebbles to the left of B (i, k) or to the right of B (m, k), via a 
recursive call to PEBBLE (i, m, p, # + 1), and (2) pebbles all of the vertices in B (r, k) 
that are possible to pebble by steps that add no pebbles to the left ofB (m, k) or to the 
right of B (j, k), via a recursive call to PEBBLE (re,j, r, # + 1). By design, the number 
of vertices between B (i, k) and B (m, k) and the number of vertices between B (m, k) 
and B (j, k) is (about) one-half of the number of vertices between B (i, k) and B (j, k), so 
the portions of the graph G treated under these two calls to PEBBLE are (about) 
one-half the size of the portion treated by the previous call. When these calls to 
PEBBLE have done their task on the blocks B (p, k) and B (r, k), the algorithm then 
calls the procedure PEBBLE with arguments (p, r, m, #). This invocation adds to 
B (m, k) all pebbles that can be added by a sequence of steps that adds no new pebbles 
to vertices to the left of B (p, k) or to the right of B (r, k). Again, this region of the 
graph, between B (p, k) and B (r, k), is (about) one-half the size of the region between 
B (i, k) and B (j, k). Thus, each of the recursive calls to PEBBLE is for a portion of the 
graph that is (about) one-half the size of the preceding portion. After the new pebbles 
are placed on B (m, k), all the (/~ + 1)-pebbles are removed from the graph. 

To see that the procedure invocation PEBBLE (l, n - k ,  ( n -  k)/2, 1) results in the 
pebbling of all of the vertices of B (m, k), where m = ( n -  k)/2, we can consider the 
following inductive argument. Let v be a vertex in B (m, k) that can be pebbled at 
some point during a play of the pebble game by a sequence of steps that adds no new 
pebbles to a vertex in B (m, k). (There may be already several pebbles on the vertices 
of B (m, k), but during this portion of the play, culminating in a pebble being placed 
on v, no new pebble is added to a vertex in B (m, k).) This pebble can be placed on v 
because pebbles have been placed on predecessors of v. By our hypothesis that no 
new pebbles are added to B (m, k), these predecessors ofv lie either to the left or to the 
right of B (m, k). By an inductive assumption based on the size of the graph, we can 
assume that each call to procedure PEBBLE to pebble a block B in the middle of the 
portion of the graph to the left or to the right of B (m, k) results in the pebbling of all of 
the vertices of B that can be pebbled by a sequence of steps that adds pebbles only to 
the respective regions. Let p be the index of the first vertex in the block to the left of 
B (m, k) and let r be the index of the first vertex in the block to the right of B (m, k). 
Then the call to the procedure PEBBLE with arguments (p, r, m, 2) results in vertex v 
containing a pebble, since each of the predecessors of vertex v are in this region and, 
by the inductive assumption can be pebbled by the procedure PEBBLE. Thus, every 
vertex in B (m, k) is eventually pebbled, since as pebbles are added to B (m, k), each 
vertex can eventually be pebbled without pebbling any other vertex in B (m, k). 
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Let P (t) denote the maximum over all blocks of t consecutive vertices in the graph G 
of the number of pebbles needed to pebble the vertices in that block. If t < 2 k, then 
the algorithm pebbles the vertices in the block directly; therefore, at most 2 k pebbles 
are needed. On the other hand, if t > 2 k, the algorithm pebbles three half-size 
portions and leaves pebbles on the two blocks B (p, k) and B (r, k) when pebbling the 
third portion. Thus, a recurrence relation that bounds the value P (t) is given by: 

P(t )<P( t /2 )+2k ,  if t>2k ,  and 

P(t)<t ,  if t<_2k. 

It follows that P (t) < 2 k log 2 t. The vertices of B (l-n/2], k) can be pebbled by this 
algorithm by calling PEBBLE (1, n, In~2], 1). Any other vertex in the graph can be 
pebbled after all the vertices in B (I-n/2], k) are pebbled by using the PEBBLE routine 
to pebble to the left or right of this block. It follows that 2 k log 2 n pebbles suffice to 
pebble any bandwidth-k n-vertex directed acyclic graph. We have thus proved the 
following. 

Lemma 3: I f  an n-vertex da 9 G has bandwidth k, then it has pebble demand at most 
2 k log2 n. 

Theorem 3: I f  the n-vertex directed acyclic graph G has bandwidth k, then it has 
pebble demand at most min (2 k 2 + k + 1, 2 k log2 n). 

Proof: The theorem follows directly from Lemmas 2 and 3. [] 

To place these upper bounds in perspective, we remark that we have no example of a 
graph of bandwidth k that has pebble demand exceeding 3 k - 1. In Figs. 1 and 2 we 
illustrate graphs that have bandwidths 2 and 3, respectively, and that require 5 and 8 
pebbles, respectively. By extending these constructions we can show that 3 k - 1  
pebbles is a lower bound on the pebble demand of a graph of bandwidth k. There is a 
considerable gap between this lower bound and our upper bound. 

! 
I 

Fig. 1. A graph with bandwidth 2 that requires 5 pebbles 
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Fig, 2. A graph with bandwidth three that requires 8 pebbles 

C. Th.e Difficulty of the Pebble Demand Problem 

Since O (k log2 n) pebbles suffice to pebble an n-vertex graph of bandwidth k, the 
problem of deciding whether p pebbles suffice to pebble a graph with bandwidthf(n) 
can be solved nondeterministically in space f(n)log 2 n: one can "guess" which 
moves to make in the pebble game and keep track of the positions of the pebbles on 
the graph inside the worktape space. Sincef(n) log n pebbles are sufficient, and since 
each pebble's location requires only log n space to record (in binary notation), it 
follows that f(n) log 2 n space is sufficient to solve the Problem. In other words, the 
Pebble Demand Problem restricted to graphs of bandwidth f(n) is in the class 
NSPACE (f(n)log 2 n) ~ 

1 NSPACE (s (n)) is the class of languages accepted by nondeterministic Turing machines that use 
0 (s(n)) space on inputs of length n. 

9 Computing 31/2 
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The Pebble Demand (PD) Problem: 
Input: A directed acyclic graph G and a positive integer k. 

Property: A pebble can be placed on a sink-vertex of G using at most k pebbles. 

To contrast with this containment, it is known that the unrestricted PD-Problem is 
complete for PSPACE 2 [5]; and the problem remains PSPACE complete for so- 
called And/Or graphs [9]. We note that the sliding rule is being used in the pebble 
games of Section C. It is known that this changes pebble demand by at most one [5]. 

The And~Or Pebble Demand (PD) Problem: 
Input: A directed acyclic graph G, a labelling function label: Vertices(G)~ 
{and, or}, and a positive integer k. 

Property: A pebble can be placed on a sink-vertex of G using at most k pebbles. 

The pebble game on an And/Or graph is a natural extension of the pebble game we 
have considered: if a vertex v of G is labelled or, then only one of the predecessors of v 
needs to contain a pebble in order to place a pebble on v; if a vertex v is labelled and, 
then all predecessors of v must contain a pebble in order to place a pebble on v. Let 
AND/OR PD (f(n)) denote the And/Or PD Problem restricted to And/Or graphs G 
of bandwidth f(n), where n is the number of vertices in G. That is, 

AND~OR PD if(n)) 
Input: A linear encoding of a directed acyclic graph G, a labelling function label: 
Vertices (G)-+ {and, or}, and a positive integer k. 

Property: 
(1) The graph G has bandwidth f(I  G ]), under the layout implicit in the linear input 

encoding; and 

(2) a pebble can be placed on a sink-vertex of G using at most k pebbles. 

The algorithm presented previously, to show that 2 k log n pebbles suffice to pebble a 
graph of bandwidth k, also works to show that 2 k log n pebbles suffice to pebble an 
And/Or graph of bandwidth k. Thus, AND/OR PD(f(n))  is in 
NSPACE(f(n) log 2 n). For  a corresponding lower bound we show now that the 
AND/OR PD (f(n)) problem is log space hard for NTISP (poly, f(n))3. 

In order to establish the claimed bound, it will, of course, suffice to reduce a known 
NTISP (poly, f(n))-complete problem to this pebbling problem. For this purpose we 
choose the 3-SATISFIABILITY problem restricted to well-formed formulas of 
bandwidth f(n), denoted by 3-SAT (f(n)) [13] : 

3-SAT(f (n)): 
Input: A well-formed formula (wff) w=Cx C2 ... C,, in 3 CNF. 

2 PSPACE is the class of languages accepted by deterministic Turing machines that use space nO(l) on 
inputs of length n. 

a NTISP (poly, f(n)) is the class of languages accepted by nondeterministic Turing machines that 
simultaneously use time n ~ and space O(f(n)) on inputs of length n. 
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Property: 
(i) The wffw has bandwidth f :  ifa positive or negative instance of a variable occurs 

in clauses Ci and C~, then [ i - j [  <f(m);  and 

(ii) the wffw is satisfiable: there is a truth assignment to the variables of w that 
makes every clause true. 

From a wff w, we shall construct an And/Or graph G w with a goal vertex t and a 
number of pebbles s such that" w is satisfiable iff t can be pebbled with s pebbles. 
Furthermore, the And/Or graph Gw will be shown to have a layout 2 of bandwidth at 
most a constant c times the bandwidth of w, where c is a fixed constant independent 
of the wff w. The reduction from w to an encoding of the And/Or graph Gw under the 
layout 2 can be accomplished in logarithmic space. It will follow that the AND/OR 
PD problem, when restricted to graphs of bandwidth f,  is log space hard for NTISP 
(poly, f (n)). 

Theorem 4: AND~OR PD (f(n)) is log space hard for NTISP (poly, f(n)), for all 
functions f on the natural numbers such that f(n) >>_ log n. 

Proof: The reduction we describe is suggested by the earlier reduction from QBF 
(quantified boolean formulas) to the PEBBLE DEMAND problem described by 
Gilbert, Lengauer, and Tarjan [5]. The SATISFIABILITY problem is, of course, 
the restriction of QBF to the special case when all of the quantifiers are existential. 
The reader should recall that the QBF problem is PSPACE complete and that the 3- 
SATISFIABILITY problem is NP  complete. 

Fig, 3. A 5-Pyramid 

An important building block in our construction is the "pyramid" graph shown in 
Fig. 3, which we abbreviate with a triangle as indicated in the figure. Cook [3] has 
proved that the sink-vertex (or, apex) of a pyramid with k sources (called a k- 
pyramid) has pebble demand precisely k. This fact makes pyramids useful in 
pebbling arguments, as is indicated in the following observation from Gilbert, 
Lengauer, and Tarjan [-5]: 

... A pyramid can be used to lock a pebble on a given vertex for a given time 
interval. This is done by making the vertex the apex of a pyramid which is so large 
that in order to repebble the vertex, so many pebbles have to be taken off the 
graph for use on the pyramid that the results achieved after the vertex was first 
pebbled are lost ... Note also that if any source of a k-pyramid contains a pebble 

9* 
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that cannot be moved, then the apex can be pebbled with k - 1  additional 
pebbles ... 

Let w = C 1 C2 ... C,, be a bandwidth-k wffin 3 CNF. Let x be a variable that occurs 
in w. Let C i and Cj be, respectively, the first and last clauses of w containing instances 
of x (either positive or negative). We term the set [i, j]  = a~f {i, i+  1,...,j} the domain 
of the variable x, denoted domain (x); and we let first (x) denote the integer i. The 
variable x is active for the clause Cp, if p e domain (x). There can be at most 3 k active 
variables for any clause Cp in w, where 1 _< p _< m, since w has bandwidth k and w is in 
3 CNF.  Let x 1, x 2, ..., x,  be an enumeration of the variables in w in the following 
format: the variable y precedes the variable z in the enumeration if either (1) 
first (y) < first (z) or (2) first (y) = first (z) and the (positive or negative) instance of y in 
Cnr~(),) precedes the instance of z in that clause. Then, for any i>_ 1, define the 
successor of the variable xi, denoted SUCCESSOR (x~), by: 

SUCCESSOR (xi) = x j  where j is the largest number > i such that, for all k (i < k <j), 
either 

(a) domain (xi) c~ domain (xk) :~ 0, or 

(b) for some p < i, SUCCESSOR (xp)= x~. 

The And/Or graph G w constructed has m + p  blocks of vertices, where p is the 
maximum number of variables that are active for any clause in w; we have already 
observed that p is at most 3 k. In other words, there is one block of vertices for each 
clause and one for each of the variables that are active in such clauses. The part of a 
block corresponding to a variable x includes four vertices, as shown in Fig. 4. Two 
pebbles placed on this subgraph encode the truth value of x and 2 as illustrated in 
F i g , 4 b - d .  

.~' x '  

G 

' ' ' x '  b x "  

b c d 

Fig.4. a vertices representing a variable; b true confignration; c false configuration; d double false 
configuration 

Fig. 5 illustrates how subgraphs corresponding to separate variables x, 
y = SUCCESSOR (x), and z = SUCCESSOR (y) are connected. This block works as 
follows. Two pebbles are placed on the subgraph corresponding to the variable x to 
represent a truth assignment. These two pebbles remain stationary while pebbles are 
being placed on vertices corresponding to the clauses Cp for which x is active. When 
x is no longer active, the two pebbles are moved upward to the portion of the graph 
corresponding to the variable y. Since y becomes active only after x stops being 
active, the truth assignment for x is no longer required at the time the two pebbles 
are shifted upwards. The role of the vertex D~ is to force at least one of the pebbles 
placed on the portion of the graph corresponding to variable x to remain on either x' 
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or 2' during the time period that x is active: if the pebbles were to be moved so that 
both x and 2 contain pebbles, then these two pebbles could not be moved further up 
this block of the graph without repebbling one of the pyramid graphs we shall 
describe presently. On the other hand, if either 2' or x' contains a pebble when the 
time period for the variable x to be active is over, then Dx can be pebbled (since it is 
an "or" vertex) and the two pebbles can be moved up to 37' and y'. 

�9 ~ ~ 

P( 

, T r  

~'( 

i z  t 

}y 

Iu 

Ix 

xl 

Fig. 5. Portion of block corresponding to variables x, y, and z such that y = SUCCESSOR (x) and 
z = SUCCESSOR (y) 

Pi 

Z Pi-1 ai3 

)~ (._)o;2 U ~'i~ 
Fig. 6. Block of vertices for clause ail +ai2 +ai3. Note that the vertices alk and a'ik occur among the 
variable blocks. Vertex P,-1 is part of the i - l - s t  clause block; P0 is the vertex b, which has no 

predecessors 

Fig. 6 illustrates the block of vertices C~ corresponding to a clause 
C i =(ail  + ai2 + ai3 ). After some s - 3 pebbles are allocated to the blocks correspond- 
ing to the variables, the remaining three pebbles are available to pebble the clause 
blocks. For each literal a~p, 1 < p < 3, there is a fixed pebble on vertex a~p if the literal 
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is true, or on vertex a~p if the literal is false. Thus,  if w = C 1 C2. . .  C~ is satisfied, then 
the clause pyramids  can be pebbled in the order  C'1, C;,  ..., C~,; however,  if some 
clause (a~l + ag2 + a~3) is false, then p~ is the apex of an empty  4-pyramid  and cannot  
be pebbled with three pebbles. 

o r  

a ~5 

i 

Fig. 7. Graph for w=(a+b+c) (d+b+c") (d+~+c) (d+ e +f)  (d+ ~+f). Number of pebbles: 2p+3  =9 

Fig. 7 illustrates the entire construction.  Note  that  b is a vertex with no predecessors 
and that  t is the goal vertex. Our  goal now is to show that  there exists a layout  2 of the 
A nd /Or  graph  G w such that  the bandwidth  is at most  ck, where k is the bandwidth  of 
w and c is a fixed constant.  

Fig. 8- A layout of a 5-pyramid with bandwidth five 
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We observe first that a k-pyramid enjoys a layout of bandwidth k: assign the smallest 
integers to the pyramid's  source vertices, the next smallest integers to the source 
vertices' successors, and so on, level by level; see Fig. 8. It should, perhaps, be noted 
that five pebbles are necessary and sufficient to place a pebble, not only on the apex 
of the 5-pyramid, but also on the chain of vertices 16, 17, 18, ... shown in Fig. 8. 
Thus, a graph consisting of a k-pyramid, a separate (k -1) -pyramid ,  a separate 
(k - 2)-pyramid, ... can be laid out with bandwidth k so that consecutive vertices are 
connected by separate paths to the apexes of the pyramids. This is illustrated for a 5- 
pyramid, 4-pyramid, and a 3-pyramid in Fig. 9. 

Fig. 9. A layout of a 5-pyramid, a 4-pyramid, and a 3-pyramid with bandwidth five so that vertices 
connected to the apexes of the pyramids are consecutive vertices 

As previously stated, there are at most 3 k active variables for any clause of a wff w 
with bandwidth k in 3 CNF.  Thus, there are at most 6 k pyramids necessary for the 
blocks of vertices corresponding to variables. The largest pyramid is of size 6 k + 3. 
As we have seen, all of the pyramids of size 6 k + 3, 6 k + 2, . . . ,  4 can be laid out with 
bandwidth 6 k + 3 so that there are 6 k consecutive vertices that are connected to the 
apexes of these pyramids. Furthermore, we lay out the vertices corresponding to the 
clauses in the same order as the clauses are presented in the wff w, so that all vertices 
corresponding to clause Ci receive smaller integers than those corresponding to 
clause C~ + 1. There are six vertices in each block corresponding to a clause; cf. Fig. 6. 
Assign the vertices corresponding to each variable x to integers between those 
assigned to clauses C i and C i + l ,  where i=  first(x). There are five vertices 
corresponding to a variable x; cf. Fig. 5. Thus, there are at most 21 vertices in the 
block corresponding to a clause C and each of the blocks corresponding to the 
variables that occur in that clause. The only edges connecting a vertex correspond- 
ing to a variable x and a vertex corresponding to a clause C occur when an instance 
(positive or negative) of the variable x appears in the clause C. Therefore, since the 
wffw has bandwidth k, no edge of G w connects vertices that are laid out at a distance 
more than 21 k apart. In particular, a variable-x vertex is assigned an integer 
between those assigned to clause blocks C~ and C~+ 1 and is connected by an edge 
directed to a clause-Cj vertex only if a positive or negative instance of the variable x 
occurs in both clauses C~ and C~. It  follows that I i - J l  -< k and, so, since each clause is 
represented by at most 21 vertices, the edge in the And/Or graph G w connects 
vertices assigned integers at most 21 k apart. []  
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4. BF Pebbling and Bandwidth 

Our  second pebble  game,  the BF (for breadth first) pebble game is played on a 
connected undirected graph.  Its rules are as follows. 

1. N o  vertex of the " inpu t"  graph G ever holds more  than one pebble. 

2. N o  vertex of G is ever pebbled more  than once. 

3. The  moves of the game are as follows. 

Move O. Place some (at least one) pebbles on the vertices of G. 

Move i > 0. If  no pebbles remain on G, then halt;  the game is over. Otherwise,  
remove  some one pebble  f rom G; and place pebbles on some never-before- 
pebbled vertices of G, including at least all those neighbors of the just depebbled 
vertex that have never been pebbled before. 

In  a play of the BF pebble game, i fa  pebble  is deposited on a vertex at  Move  i and is 
removed from the vertex at Move  j, then the lifetime of the pebble  in that  play of the 
game is the integer j - i .  (We assume that  a pebble  is discarded when it is removed 
from the graph.) 

The  graph  G is k-BF-pebbleable, k ~ N, if there is a play of the BF pebble game on G 
in which no pebble  has lifetime exceeding k. 

Theorem 5: The graph G is k-B F-pebbleable if and only if it has bandwidth at most k. 

Proof: Say first that  G has bandwidth  k. Then there is a layout  

).: Vertices (G) ~ { 1, 2 , . . .  I G I } 

such tha t  ] 2 ( v ) -  2 (w) l _< k for all adjacent  vertices v and w of G. Consider,  therefore, 
the following BF pebbl ing strategy for G. 

Move O. Pebble  vertices ) - 1  (1), 2 -1 (2), . . . ,2  -1 (k) of G. 

Move l < i < l  G l - k .  
(a) Remove  the pebble  from vertex ).-1 (i); 
(b) place a pebble  on vertex ,~v -x ( i+k) ;  

Move I G I - k < i < I G I- Remove  the pebble  from vertex ).- 1 (i). 

Since 2 is a bandwidth-k  layout  of G in the line, all successors v of vertex 2 - :  (i) have 
2 (v) __< i + k. Thus Move  i (b) is a legitimate one. A simple induction now proves that  
the indicated strategy is a k-BF-pebbling of G. 

Conversely,  if the graph G is k-BF-pebbleable ,  then there is a (I G [ + D-move BF 
pebble game witnessing this fact. With  this play of the game in mind,  define the 
injection 2 from G into the line by: 

2 (v)= the move  at which vertex v is depebbled.  

Tha t  ;. is well-defined and  one- to-one is a direct consequence of the game rules: 
every vertex of G is pebbled and depebbled exactly once. Tha t  2 is a bandwidth-k  
layout  of G is also easy to see. Note  that  in a k-BF-pebbl ing of G, if the first end of an 
edge of G is pebbled at  Move  i and depebbled at M o v e j  < i + k, then it must  be that  
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the second end of the edge is pebbled at Move r ~ {i, ...,j} and depebbled at Move 
m < r + k; hence, I m - j  [ _< k. But j is the image of the first end under 2, and m is the 
image of the second end. Since we have been considering an arbitrary edge of G, it 
follows that 2 is a bandwidth-(< k) layout of G, as was claimed. [] 

We thus have our second characterization of bandwidth in terms of pebbling. 

5. Applications of the Bandwidth-Pebbling Relationships 

It is always useful to have a number of different views of an important concept, as 
each view tends to bring with it various tools and insights. We cite now three simple 
examples of the benefits of the insights afforded by the results of this paper. 

The first corollary establishes the difficulty of finding optimal plays of either the 
NRA or BF pebble games. 

Corollary 1: Given a graph G and an integer K, the problems of deciding whether or 
not G is k-BF-pebbleable or k-NRA-pebbleable for some k < K are NP-complete. This 
remains true even if G is restricted to be a degree-3 free tree. I f  the integer K is fixed 
(so that the solutions need not be uniform in K), then the problems can be solved in time 
O(IGIK). 
Proof: In the presence of Theorems 1 and 4, the three assertions in the statement of 
the corollary follow, respectively, from results in [14], [4], and [12, 20] concerning 
the difficulty of the bandwidth problem. [] 

Corollary 1 is somewhat interesting in that it shows the complexity of the "lifetime" 
(L) problem for the NRA pebble game to be quite different from the "pebble 
demand" (PD) problem. Specifically, both of the games are NP-complete in general 
(the L result being Corollary 1, and the PD result being proved in [21]). In contrast, 
if one restricts attention to trees, then the L problem is likely to be harder than the 
PD problem, since the former problem remains NP-complete while the latter is 
solvable in polynomial time [16, sect. 8]. 

The second corollary establishes the inherent difficulty of pebbling reticulated 
graphs. 

The graph G is n-reticulated (n ~ N) if G's vertex-set contains two disjoint n-element 
subsets A and B such that, given any k ~< n vertices from A and k vertices from B, 
there is a set of k edge-disjoint paths in G connecting the A-vertices with the B- 
vertices. 

Remarks: (1) Any homeomorph of the side-n grid is (n-1)-reticulated: one could 
choose the first elements of the rows and columns, respectively (ignoring their 
common element), as the sets A and B. (2) By similar reasoning, any homeomorph of 
the side-n pyramid is n/2-reticulated. 

Corollary 2: The lifetime-cost of any play of either the N R A  pebble game or the BF 
pebble game on an n-reticulated graph is ~Q(nl/2). 
Proof: The result will follow from Theorems 1 and 4 once we show that the 
bandwidth of any n-reticulated graph is t2 (nl/2). 
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Let G be n-reticulated. Consider any layout of G in the line. There must be some 
point p on the line such that at least n/2 elements of the set A lie on one side ofp and 
at least n/2 elements of the set B lie on the other side ofp. By G's n-reticulation, there 
are at least n/2 edge-disjoint paths crossing p, hence at least this many distinct edges 
crossing p (where "crossing p" means having one end to the left of p and the other 
end to the right of p). Simple reasoning verifies that these edges must have at least 
(n/2) 1/2 distinct endpoints on one side ofp or the other. It follows that the endpoints 
of at least one of these crossing edges must be distance f2 (n ~/2) apart in the line. [] 

The reader can easily verify (via examples like the side-n pyramid) that Corollary 2 
cannot be strengthened in general. 

The third corollary establishes a criterion for a graph family to have unbounded 
bandwidth. 

The depth-d computation tree is the dag obtained from the depth-d complete binary 
tree by directing all edges toward the root of the tree. A family of graphs F is deep if 
for each integer k s N, some graph G in F contains as a subgraph some expansion of a 
computation tree of depth d > k. 

Corollary 3: I f  the bandwidth-f (n) family of 9raphs F is deep, then 

lira sup f (n) = 0o. 

Proof: The result follows from Theorem 3, once one notes that the proof in [15] that 
depth-d computation trees have pebble demand f2 (d) holds also for any expansions 
of these trees. [] 

It should also be noted that the results in Subsection 3 C indicate the effects of 
placing a restriction on the bandwidths of graphs in the and/or pebble demand 
problem. Specifically, we showed that, when restricted to graphs of bandwidth f(n), 
this problem is in NSPACE if(n) log 2 n) and is log space hard for the class NTISP 
(poly, f(n)). This contrasts with the results of Monien and Sudborough [13] which 
show that several NP-complete problems become log space complete for NTISP 
(poly, f(n)) when restricted to graphs of bandwidth f(n). It remains open whether 
AND/OR PD (f(n)) can be solved in less than f(n) log 2 n space. One avenue to a 
resolution of this problem would be a result indicating that O (f(n)) pebbles are 
sufficient to pebble any bandwidth-f (n) and/or graph, for this would yield the 
corollary that f(n) log n space is sufficient for AND/OR PD (f(n)); but this result has 
eluded us. Another unresolved question is whether the general pebble demand 
problem (as opposed to the and/or version) is log space hard for NTISP (poly, f(n)) 
when restricted to bandwidth-f (n) graphs. 

APPENDIX: Details of the proof of Lemma 1. 

In the proof of Lemma 1, we constructed a graph G' which is an expansion of G, and 
which we claimed to be k-NRA-pebbleable. We now verify this claim. 

Note first that, by keeping track of the process by which G was expanded, one can 
identify each vertex v in G with a directed chain in G' of the form 

t )  - e  W l ---~ . . ---~. W n ; 
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vertices preceding v in G (i. e., with edges entering v) correspond to chains preceding 
v in G', and vertices preceded by v in G correspond to vertices preceded by some 
vertex in v's chain in G'. Let us color the vertices of G' so that the initial vertices in 
our chains are blue, the terminal vertices in our chains are red, and all other vertices 
are white. In a natural and unambiguous way, we can talk about the blue vertex and 
the red vertex in G' corresponding to a given vertex in G. 

Consider the play of the NRA pebble game on G that was used in constructing G'. 
Let us play the game on G' by taking cues from that play of the game on G, as follows. 
The play on G begins with the pebbling of some vertex v in G. Let the play on G' 
begin with the pebbling of the blue vertex corresponding to v in G'. Now, imagine 
that the game on G is being played with pebbles colored 1, ..., k + 1, as described 
earlier. As we did then, let us replace each move in the play on G by a polling of the 
status of the pebbles of the various colors on G, together with new moves reflecting 
the status; this is essentially a repeat of Stage 2 in the construction of G'. Each move 
comprises polling the pebbles of colors 1, ..., k + 1 (at most k of which will be on the 
graph, of course). We shall maintain the following inductive condition. 

If a pebble of color i is to be placed on (resp., removed from) a vertex v of the graph G 
at any move, then at the corresponding polling of color i on G', a pebble can be 
placed on the blue (resp., removed from the red) vertex corresponding to v in G'. 

Clearly, the inductive situation holds at the beginning of play. Assume that we are at 
a given move on G; let us analyze the corresponding move on G'. We poll the various 
colors. I fa  pebble of color i is either placed on or removed from G at this move, then 
by assumption, we can mimic this move on G' using (respectively) a blue or a red 
vertex. If no pebble of color i would be moved (i.e., placed or removed) on G at this 
move, and if no pebble of color i resides on G currently, then color i is ignored at this 
polling. If no pebble of color i would be moved on G at this move, but there is a 
pebble of color i sitting on vertex v of G, then the pebble residing (by inductive 
assumption) on the chain in G' corresponding to v is "advanced" along its chain - 
its successor in the chain is pebbled, and it is depebbled. We must verify (a) that this 
advance is a legal move and (b) that our inductive hypothesis is maintained in the 
face of this advance. (The verification of (b) simultaneously verifies the maintenance 
of the inductive hypothesis when a pebble is placed on a blue vertex.) 

Regarding condition (a), recall that when we constructed G' by means of a sequence 
of selective edge expansions from G, we performed the construction in much the way 
that we are playing the game on G' now: we played the game on G with colored 
pebbles, and we expanded G every time a pebble threatened to sit for too long. Well, 
it was exactly in the situation where we now advance pebble i along its chain that we 
lengthened the chain (and advanced the pebble) in the construction process; hence 
we are sure that when we try to advance the pebble, there is a chain-vertex to 
advance it to. Second, each vertex in a chain has (by definition) a unique 
predecessor; hence, the placing of the pebble that is the first half of advancing is 
legal. Third, when G was expanded at this vertex in the course of constructing G', the 
only outedges that were left incident to the current vertex were those that had been 
pebbled earlier in the play; hence, in G', all of the successors of the current vertex 
must have been pebbled at some earlier time in the play (the chain-successor being 
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the last of these to be pebbled) and so it is legal to remove the pebble from this vertex 
as the second half of advancing.  In  summary,  our advance along the chain was a 
legal move. 

Regarding condi t ion (b), note that  when G was expanded at this vertex in the course 
of construct ing G', all outedges of this vertex that led to virgin vertices were taken 
along as outedges of the vertex that  is the chain-extension of the current  vertex; and 
when G was further expanded at the chain-extension vertex, only still-virgin 
outedges were taken along in the further expansion.  This means  that  the only 
outedges incident  to the chain-extension of the current  vertex are outedges leading 
to vertices that  are pebbled while the chain-extension holds its pebble. It  follows that 
advancing  this pebble along its chain will not  jeopardize any subsequent  pebble 
placements or pebble removals. In  other words, the inductive si tuation is 
mainta ined.  

We see now that  our  play of the N R A  pebble game on G' is a valid one that  uses at 

most  k + 1 pebbles at any time. Moreover,  because of the way we derive our play of 
the game on G' from our original  play on G (i.e., by replacing moves on G by 
pollings-plus-moves on G'), we are assured that  no pebble resides on G' for more 
than k type B moves. In  other words, we have shown that  the graph G' is k-NRA- 
pebbleable.  []  
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