
Computing 31, 115-139 (1983) Computing
�9 by Springer-Verlag 1983

Bandwidth and Pebbling

A. L. Rosenberg*, Durham, and I. H. Sudborough**, Evanston

Received February 4, 1982; revised May 24, 1982

Abstract - - Zusammenfassung

Bandwidth and Pebbling. The main results of this paper establish relationships between the bandwidth of
a graph G - which is the minimum over all layouts of G in a line of the maximum distance between
images of adjacent vertices of G - and the ease of playing various pebble games on G. Three pebble
games on graphs arc considered: the well-known computational pebble game, the "progressive" (i. c., no
rccomputation allowed) version of the computational pebble game, both of which are played on directed
acyclic graphs, and the quite different "breadth-first" pebble game, that is played on undirected graphs.
We consider two costs of a play of a pebble game: the minimum number of pebbles needed to play the
game on the graph G, and the maximum lifetime of any pebble in the game, i. e., the maximum number of
moves that any pebble spends on the graph. The first set of results of the paper prove that the minimum
lifetime cost of a play of either of the second two pebble games on a graph G is precisely the bandwidth of
G. The second s~t of results establish bounds on the pebble demand of all three pebble games in terms of
the bandwidth of the graph being pebbled; for instance, the number of pebbles needed to pebble a graph
G of bandwidth k is at most min (2/~ + k + 1, 2 k log21 G I); and, in addition, there arc bandwidth-k
graphs that require 3 k - 1 pebbles. The third set of results relate the difficulty of deciding the cost of
playing a pebble game on a given input graph G to the bandwidth of G; for instance, the Pebble Demand
problem for n-vertex graphs of bandwidthf(n) is in the class NSPACE (f(u)log 2 n); and the Optimal
Lifetime Problem for either of the second two pebble games is NP-complete.

AMS Subject Classifications: 05C99, 68E 10, 94C 15.

Key words: Bandwidth, graph pebbling.

Bandweite und Markenspiele. Die Hauptergebnisse dieser Arbeit ergeben Beziehungcn zwischen der
,,Bandwidth" eines Graphen G - die alas Minimum ist, tiber alle Projektionen von G auf eine Linie, Yon
dem maximalen Abstand zwischen Bildern benaehbarter Knoten yon G - und der Leichtigkeit,
verschiedene ,,Pebble Games" auf G zu spielen. Es werden drei Pebble Games auf Graphen betrachtct:
das wohlbekannte ,,computational" Pebble Game, die ,,progressive" (d. h. keinc Wiederberechnung
erlaubt) Version des computational Pebble Game, yon denen beide auf directed acyclic Graphen gespielt
werden, und das ziemlich verschiedene ,breadth-first" Pebble Game, das auf undirected Graphen
gespielt wird. Wir betrachten zwei verschiedene Kostcn ftir das Pebble Game: die minimale Anzahl yon
Pebbles, die man braucht, urn das Pebble Game auf eiuem Graphen G zu spielen, und die maximale
Lebensdauer eines Pebble in einem Spiel, d. h. die maximale Anzahl yon Ztigen w[thrend denen ein Pebble
au f dem Graphen verwcilt. Die erste Gruppe von Hauptergebnisseu in dieser Arbeit zeigt, dag die
minimalen Lebensdauer-Kosten eines Spielverlaufs in einem tier beiden letzten Pebble Games auf cincm

* A portion of this author's research was done while visiting the Department of Computer Science,
University of Toronto, Toronto, Canada; a portion was done while with the Mathematical Sciences
Department, IBM Research Center, Yorktown Heights, N. Y. ; and a portion was supported by NSF
Grant MCS-8116522.

** A portion of this author's research was supported by NSF grant MCS-79-08919.

116 A.L. Rosenberg and I. H. Sudborough:

Graphen genau die Bandwidth von Gist. Die zweite Gruppe yon Ergebnissen stellt obere Schranken auf
fiir die Anzahl von ben6tigten Pebbles in Abhgngigkeit yon der Bandwidth des betrachteten Graphen,
z.B. urn einen Graphen G mit Bandwidth k zu pebblen, braucht man h6chstens min(2k2+k+l,
2 k log2] G l) Pebbles; ferner gibt es Graphen G yon Bandwidth k ffir die man 3 k - 1 Pebbles braucht. Die
dritte Gruppe yon Ergebnissen setzt die Schwierigkeit, die Kosten eines Pebble Game auf einem
gegebenen input-Graphen G festzustellen, in Beziehung zur Bandwidth von G, z.B. das ,,Pebble
Demand Problem" fiir Graphen mit n vertices von Bandwidth f(n) ist in der Klasse NSPACE
(fin) log 2 n); und das ,,Optimal Lifetime Problem" ist ftir jedes der beiden letzten Pebble Games NP-
vollst~indig.

1. Introduction

The purpose of this paper is to demonstrate certain intimate relationships between
two seemingly disparate properties of a graph, its bandwidth and the ease with which
it can be pebbled.

The bandwidth of an undirected graph G is the minimum, over all layouts of G in the
line - that is, one-to-one mappings

2: Vertices (G) ~ {1,2, . . . , I G I},

(I G[denoting the number of vertices of G) - of the maximum distance between
adjacent vertices of G. The bandwidth of a graph is impor tant because of its
relevance to computat ions involving sparse matrices [1,2, 17] and because of its
representing the simplest instance of a variety of graph-embedding problems
(simplest since the target graph is a line) that have applications to routing
computat ions on fixed-interconnection networks of processors [7] and to finding
storage representations for data structures [10, 18, 19].

Pebble 9ames for graphs originated in the study of problems concerning register
allocation and space requirements for computat ions [15, 3]. The basic form of such
games is the following. One is given a directed acyclic graph G and an endless supply
of tokens called "pebbles". One is to play the following one-person game on G: one
is allowed to pebble any vertex of G whenever all of that vertex's (directed)
predecessors are pebbled; and one is allowed to remove a pebble from a vertex
whenever one wishes. The goal of the game is to pebble (and then remove the pebbles
from) all of the "sink" vertices of G, i.e., vertices having no successors. The
traditional measure of the merit of a play of the pebble game is the number of pebbles
one uses in a play of the game - the fewer pebbles the better. Pebble games
represent the most successful tool yet discovered for studying register-allocation and
space-requirement problems, as well as a variety of other problems related to such
basic computat ional issues as time-space tradeoffs. (See [16] for an excellent
discussion of the applications of pebbling arguments as well as a survey of the major
results obtained via such arguments.)

There seems on the surface to be little relationship between the notion of the
bandwidth of a graph and the ease of playing any pebble game on the graph. And,
indeed, it appears that no tight such relationship exists if one restricts attention to
the conventional (number of pebbles used) measure of the merit (or "ease")
associated with pebble games. (This disclaimer notwithstanding, T. Lengauer [8]

Bandwidth and Pebbling 117

has proved a number of results relating ease of "black/white" graph pebbling and a
different notion of the width of a graph; and we (Section 3) present results relating
the ease of pebbling a graph to the bandwidth of the graph itself and to the
bandwidth of some "expansion" of the graph.) But, there is one measure of the merit
of a play of a pebble game on a graph, that yields precisely the bandwidth of the
graph. And the preceding assertion is true for two seemingly unrelated types of
pebble games, one of which is a variant of the computational pebble game described
above while the other is a marked departure from the form of such games. The
measure of merit that characterizes bandwidth in both cases is the lifetime of the
longest lived pebble in the game, where the lifetime of a pebble p is the number of
pebbles that are removed from the graph while p resides on the graph.

The two costs of the computational pebble game, namely, number of pebbles used
and maximum pebble lifetime, are quite closely related. The number of pebbles
needed to pebble a directed acyclic graph G is within 1 of the lifetime-cost of some
"expansion" (a type of homeomorph) of G. Thus the conventional cost of the
computational pebble game is also related to the bandwidth problem for graphs,
though in an indirect way.

One application of the upper bounds we shall give for the pebble demand for
directed acyclic graphs (dags) of limited bandwidth arises from considering the dags
as representations of computations. The best result known for the pebble demand of
an arbitrary fixed-vertex-degree dag is due to Hopcroft, Paul, and Valiant [6]: any
n-vertex dag can be pebbled using 0 (n/log n) pebbles. Since the pebbles correspond
to memory registers, their number corresponds to the space requirements of the
computation represented by the dag. The upper bounds we shall present indicate
that the O (n/log n) bound can be improved when the dags to be pebbled have limited
bandwidth. For example, an n-vertex dag of bandwidth 0 (n 1/2) can be pebbled with
only 0 (///1/2 log n) pebbles.

The main advantage of having results such as those we are about to present is that
they afford one different ways of looking at important problems, and they allow one
to bring the results and techniques from one problem area to another. We illustrate
this advantage by presenting two results about pebbling that follow from results
about bandwidth. The first result establishes the difficulty of finding optimal plays of
our pebble games by citing known results about the difficulty of determining the
bandwidth of a graph. The second result proves that the lifetime-cost of any play
of either of our pebble games on an n-reticulated graph (a weak version of
n-superconcentrator that includes all homeomorphs of side-n grids and side-2 n
pyramids, for example) grows at least as fast a s n 1/2.

The remainder of the paper is organized as follows. Section 2 establishes the
"equivalence" of the lifetime cost of the progressive computational pebble game on a
graph and the graph's bandwidth; Section 4 does the same for our new "breadth-
first" pebble game; Section 3 presents results relating the conventional cost of the
computational pebble game with graph bandwidth; and Section 5 presents the two
corollaries of the two equivalences.

118 A.L. Rosenberg and I. H. Sudborough:

2. NRA Pebbling and Bandwidth

Our first pebble game, the NRA (for no recomputation allowed) pebble game is
played on a connected directed acyclic graph (dag, for short). Its rules are as follows.

1. No vertex of the "input" dag G ever holds more than one pebble.

2. No vertex of G is ever pebbled more than once. (This is the "NRA" clause.)

3. At each move of the game one does one of the following.

A. One can place a pebble on any "virgin" (i. e., never before pebbled) vertex of G
providing that all of that vertex's predecessors contain pebbles.

B. One can, whenever possible, remove a pebble from a vertex. (Of course, this
can be done only after all of the vertex's successors have been pebbled.)

4. The game ends when the last pebble is removed from G.

The NRA pebble game differs from the traditional computational pebble game in its
not allowing recomputation, i.e., in Rule 2.

The lifetime of a pebble in a play of the NRA pebble game is the number of type B
moves during which the pebble stays on the dag, not counting the move on which it is
removed. (We assume that a pebble is discarded when it is removed from the dag.)

A dag-in9 of the undirected graph G is any orienting of the edges of G that results in a
directed acyclic graph.

The dag G is k-NRA-pebbleable, k ~ N, if there is a play of the NRA pebble game on
G in which no pebble has lifetime exceeding k.

Theorem 1: The undirected graph G has bandwidth k if and only if some dag-ing of G
is k-NRA-pebbleable.

Proof: Say first that G has bandwidth k, and let 2 be a bandwidth-k layout of G in the
line. Consider the dag-ing of G defined by:

The edge (v, w) of G is directed from v to w just when 2 (v) < 2 (w).

This method of dag-ing G yields a left-to-right ordering of G's vertices. We risk no
misunderstanding, therefore, if we refer to the leftmost vertex of G or to the leftmost
pebble residing on G.

Let us play the NRA pebble game on this dag as follows. At each move, we remove
the leftmost pebble from G if possible; if no removal is possible, we pebble the
leftmost virgin vertex of G. Note first that, because of our method of dag-ing G, the
described play of the game is a legitimate one (no vertex is pebbled until all of its
predecessors contain pebbles, and no vertex is pebbled more than once.) Moreover,
since 2 is a bandwidth-k layout of G, no pebble can sit on the dag for more than k
type B moves. Thus G is k-NRA-pebbleable.

Conversely, say that some dag-ing G' of G is k-NRA-pebbleable, and let us focus on a
play of the NRA pebble game on G' in which no pebble has a lifetime exceeding k.
Consider the following layout 2 of G in the line: for each vertex v of G' (hence, also of

G), 2 (v)= the type B move at which v is depebbled.

Bandwidth and Pebbling 119

Since every vertex of G' gets pebbled and depebbled precisely once, the mapping 2 is
well-defined and one-to-one (hence is a layout of G). Since no pebble used in this play
of the game resides on G' for more than k type B moves, 2 places adjacent vertices of
G' at most distance k apart in the line: the source end of an edge must contain a
pebble when the target end is pebbled; and neither pebble can sit for more than k
type B moves. It follows that G has bandwidth at most k. []

We thus have our first characterization of bandwidth in terms of pebbling.

3. Relationships Between Pebble Demand and Bandwidth

A. An Indirect Relationship

There appears intuitively to be some relationship between our notion of the cost of a
play of the pebble game and the conventional, number of pebbles used, cost. We now
make explicit an indirect such relationship.

Let G be an n-vertex directed graph (digraph, for short), let v be a vertex of G, and let
e I , e, be some (maybe all) of the edges leaving v in G. The (e 1 , e,)-expansion of
G is the (n + 1)-vertex digraph obtained by adding to G a new vertex w and an edge
from v to w, and reallocating the edges incident to v in G so that:

1. all edges into v in G remain edges into v in G';

2. the edges el, . . . ,e, become edges out of w in G';

3. all other edges out of v in G remain edges out of v in G'.

One can obviously view "selective edge expansion" as an operation on a directed
graph, defined pictorially by:

selective edge expansion

selected selected
outedges outedges in d es < . . - -

other other
outedges outedges

The digraph G' is an expansion of the digraph G if G' is obtainable from G by a finite
sequence of selective edge expansions. The reader can easily extend this notion of
graph expansion to undirected graphs.

Say that the dag G has pebble demand k if there is a play of the NRA pebble game on
G for which no more than k pebbles ever sit on G at any time. Pebble demand is the
traditional [3, 7, 15, 16] measure of the cost of a play of the computational pebble
game.

120 A.L. Rosenberg and I. H. Sudborough:

Lemma 1: If the dag G has pebble demand k, then some expansion of G is k-NRA-
pebbleable. I f some expansion of G is (k - 1)-NRA-pebbleable, then G has pebble
demand at most k.

Proof: Assume first that some expansion of G is (k-1)-NRA-pebbleable. That
expansion, then, has pebble demand at most k, for one of the pebbles residing on the
graph at any instant must be the last to be removed. But it is easy to verify that the
pebble demand of a graph can only be increased (by at most 1) by an expansion. It
follows that G has pebble demand at most k.

Assume next that G has pebble demand at most k. We shall construct in stages an
expansion of G that is k-NRA-pebbleable.

Stage 1 : Replace the endless supply of pebbles used to pebble G by k + 1 infinite
buckets of colored pebbles, with colors 1,2, ..., k + 1. Play the NRA pebble game on
G exactly as before, but make sure now that no two pebbles coresident on G at any
time have the same color. (This is possible by assumption.)

Stage 2: Modify the play of the NRA pebble game on G by substituting for each
move the following procedure:

For l_<i_<k+l:

if a pebble with color i would have been placed on the graph or removed from the
graph at this move in the original game, then do the same thing;
if a pebble with color i would not have been touched at this move in the original
game, then:

if a pebble with color i is not on G at this time, then do nothing;
ifa pebble with color i is on the graph at this time, then replace it with another
pebble of the same color.

Stage 3: Proceed as in Stage 2, with one exception: whenever a pebble of color i
would be "replaced" in Stage 2, instead perform the following actions. (a) Expand
the current graph G: let v be the vertex on which the pebble in question resides. Let
e~ , e, be those edges leaving v that go to vertices that have never contained a
pebble. Form the (e~, ..., en)-expansion of G by replacing the vertex v on which the
pebble in question resides by the chain v ~ w (as in the definition of expansion) with
the pebble still on v. (b) Place a pebble of an unused color on vertex w (since G has
pebble demand k, at most k pebbles will be sitting on the current version of G, so the
desired unused color will exist). (c) Remove the pebble from v.

Note in this last stage that all successors of v that have already been pebbled remain
successors of v, and only never-pebbled successors become successors of w.

Once the modified NRA pebble game is over, one is left with a graph G' which is an
expansion of G, and which is k-NRA-pebbleable. We relegate the verification of this
last assertion to the Appendix. []

As an immediate consequence of Theorem 1 and Lemma 1, we have:

Theorem 2: If the dag G has pebble demand k, then the undirected version of some
expansion of G has bandwidth at most k. I f the undirected graph G has bandwidth k,
then some dag-in 9 of G has pebble demand at most k + 1.

Bandwidth and Pebbling 121

Proof: If the dag O has pebble demand k, then by Lemma 1 some expansion of G is
k-NRA-pebbleable, and so by Theorem 1 the undirected version of this expansion
has bandwidth k. Conversely, if the undirected graph G has bandwidth k, then by
Theorem 1, some dag-ing of G is k-NRA-pebbleable, and so, by the beginning of the
proof of Lemma 1, this dag-ing of G has pebble demand at most k + 1. []

Remark" If the rules of the pebble game are modified to allow slidin 9 of pebbles -
i.e., shifting a pebble from a predecessor of vertex x to vertex x whenever all
predecessors of x contain pebbles - then the second assertion of Theorem 2 can be
strengthened to:

I f the undirected graph G has bandwidth k, then some dag-ing of G has pebble demand
at most k.

Proof Sketch: Let 2 be a bandwidth-k layout of G. Direct the edge that connects x
and y from x to y just when 2 (x) < 2 (y). The following pebbling strategy for this dag-
ing of G uses k pebbles. (1) Place pebbles on the leftmost k vertices of G. (2)
Iteratively, if the leftmost pebbled vertex (call it x) is a predecessor of the leftmost
unpebbled vertex (call it y), then slide the pebble from x to y; otherwise, delete the
pebble from x and add a pebble to y. Details are left to the reader. []

We turn now to a study of more direct relationships between the pebble demand of a
graph and the graph's bandwidth.

B. Direct Relationships

We now transfer our attention from the NRA pebble game to the conventional game
(with recomputation allowed). Note that for the NRA game, an upper bound on the
bandwidth of a digraph gives no upper bound on NRA pebble demand. For
example, the digraph with vertex set {1,2 ,2n} and edges

(i,i+1) for l_<i_<2n-1
and

(i, 2 n - i + l) for l<_i<_n-1

(which is the computation graph that arises from a linear recursion) has bandwidth
2 but NRA pebble demand n + 1.

In the last subsection we showed that an undirected graph with bandwidth k can
have its edges directed so that the resulting dag has pebble demand k + 1 (k if we
allow sliding). In fact, the direction chosen for each edge of G (which is dictated by
the small-bandwidth layout 2 of G) is such that the resulting dag G' is topologically
sorted by the layout 2. What happens to pebble demand if we are not allowed to
choose a happy set of directions for the edges ? In other words, what is the pebble
demand of an arbitrary dag of bandwidth k ? (The dag G = (V, E) has bandwidth k
under the layout 2 iff[2 (x) - 2 (y)[_< k for all edges (x, y) of G.) In this subsection, we
show that the pebble demand of a bandwidth-k dag is bounded above by:

rain (2 k 2 + k + l , 2klog2t G]).

122 A.L. Rosenberg and I. H. Sudborough:

This bound follows from two separate observations we shall verify: (1) If the graph G
has bandwidth k, then it has pebble demand 2 k + 1 in the so-called black~white
pebble game. It then follows by a result in [11] that G has pebble demand 2 k 2 + k + 1
in the conventional (black) pebble game. (2) If G has bandwidth k, then it has pebble
demand at most 2klogz[GI. This bound is shown by describing a divide-and-
conquer algorithm for pebbling a graph. The first result gives the better upper bound
on pebble demand for graphs with small bandwidth (less than log2LG]). For
example, if G has 21~ vertices and bandwidth 3, then the first result gives the bound
22 and the second yields the bound 60. We now verify each of these observations in
turn.

We start with a description of the black/white pebbling game and a strategy for
playing the game.

The rules for the black/white pebble game on a dag G are as follows.

1~ No vertex of G ever holds more than one pebble.

2. At each move of the game one does one of the following.

A. One can place a black pebble on any vertex v of G provided that all of v's
predecessors contain pebbles.

B. One can place a white pebble on any vertex of G.

C. One can remove a black pebble from any vertex of G.

D. One can remove a white pebble from any vertex provided that all of its
predecessors contain pebbles.

Note that when only black pebbles are used, this game is just the conventional
computational pebble game (with recomputation allowed). The goal of the
black/white pebble game, just as of the conventional (black) pebble game, is to place
a pebble on all of the "sink" vertices of G (not necessarily at the same time) and then
to remove all of the pebbles from G.

The dag G has black~white pebble demand k (k e N) if there is a play of the black/white
pebble game on G for which no more than k black/white pebbles sit on G at any time.

Let G be an arbitrary dag of bandwidth k, and let the one-to-one function
2: Vertices (G)--~ { 1,2,. . . , [GI} be a bandwidth-k layout of G. We describe now an
algorithm for pebbling the vertices of G in the black/white pebble game, that never
leads to more than 2 k + 1 pebbles sitting on the vertices of G at any time. This
algorithm will demonstrate that bandwidth-k dags have black/white pebble
demand at most 2 k + 1.

In fact, our algorithm pebbles the vertices of G in the order given by the layout 2: at
any given point in the algorithm, pebbles will sit only on vertices 2 -1 (i)
2-1 (i + 2 k), for some positive integer i (1 _< i <1 G [- 2 k).

The Algorithm:

1. Put white pebbles on all of the vertices 2 1(1), . . , 2 1(2k); then replace the
white pebbles on fl-1 (1) ft.-1 (k) by black pebbles.

Bandwidth and Pebbling 123

2. For i= 1 step 1 until n - 2 k do

begin

A. add a white pebble to)-1 (i+2k);

B. replace the white pebble on 2-1 (i + k) by a black pebble;

C. remove the black pebble from 2-1 (i)

end

3. Replace all the white pebbles by black pebbles and then remove all of the black
pebbles from the graph.

The correctness of the algorithm is easy to establish. In Step 1 all of the predecessors
of the vertices 2-1 (1) ,2-1 (k) are pebbled; hence the white pebbles can be taken
off and replaced by black pebbles. In Step (2 B) all of the predecessors of 2- a (i + k)
contain pebbles, since the graph has bandwidth k and 2-1 (0 ,2-1 (i + 2 k) contain
pebbles. Finally, in Step 3, all of the white pebbles can be replaced by black pebbles:
since the graph has bandwidth k, all of the vertices 2 -I (n - 2 k+ 1), ..., 2 -1 (n)
contain pebbles, with white pebbles sitting only on vertices 2 -1 (n - k + 1),...,
2 -1 (n), and therefore all vertices with white pebbles have all their predecessors
pebbled.

Our algorithm pebbles the graph G using at most 2 k + 1 black/white pebbles;
therefore, G has black/white pebble demand at most 2 k + 1. It follows from a result
of Meyer auf der Heide [11] that G has black pebble demand at most 2 k2+ k + 1.
This verifies our first observation:

Lemma 2: I f a dag G has bandwidth k, then it has pebble demand at most 2 k 2 + k + 1.

In order to verify our second observation, we now describe a recursive divide-and-
conquer algorithm for placing black pebbles on a graph of small bandwidth. The
goal is, of course, to use as few pebbles as possible. Let G be a dag of bandwidth k;
and let the one-to-one function

2: Vertices (G) ~ {1,2,..., I G l}

be a bandwidth-k layout of G. Let

B(j , k)={v[j<2(v)<_j+k-1}

denote the block of k vertices starting with the vertex 2-1 (j) under the layout 2. The
algorithm works by pebbling all of the vertices in a block B (], k) at a given time. Note
-that B (], k) divides the vertices of G into two sets: the set of vertices assigned to
integers less than j, which we say are to the left of B (j, k), and the set of vertices
assigned to integers greater than j + k - 1, which we say are to the right of B (], k).
This division is of consequence since no vertex to the right of B (], k) is adjacent to a
vertex to the left of B (]', k) (since G has bandwidth k and B (], k) consists of k
consecutive vertices under the layout 2). This observation underlies our ability to use
a "divide-and-conquer" strategy to pebble G.

Let v be a vertex in B (], k) that can receive a pebble by a sequence sl, s2 , st of
pebble-game steps during which no other vertex in B (j, k) receives a new pebble. Let
w be a vertex to the right of B (], k) that receives a pebble during this sequence, say at

124 A.L. Rosenberg and I. H. Sudborough:

step s h. Then the subsequence o- obtained by deleting from sl, s2, ..., s h all steps that
add a pebble to vertices on the left of B (], k) forms a valid sequence of pebble game
steps that puts pebbles only on vertices to the right of B (j, k) and culminates in a
pebble being placed on w. This is so because the addition of pebbles to the left of
B (j, k) cannot help add a pebble to w - which is to the right ofB (j, k) - unless it first
helps add a pebble to a vertex in B (j, k). However, we know that the sequence ~ does
not add pebbles to B (j, k). Thus by focussing on B (j, k), we have divided the problem
of pebbling the graph G into two subproblems: pebbling the vertices to the left of
B (j, k) and pebbling the vertices to the right of B (], k). I f j is chosen to be roughly in
the middle of the portion of the graph currently being pebbled, then we have divided
the problem of pebbling the graph G into two roughly half-size problems by
considering B (j, k). We now describe a recursive procedure that implements this
informal divide-and-conquer pebbling strategy.

Let PEBBLE (i,j, m,/t) denote a recursive procedure that pebbles all of the vertices in
B (m, k) of a graph G, by a sequence of steps that never adds a pebble to any vertex v
of G for which ~. (v) < i or 2 (v) > j + k - 1 ; i.e., the procedure adds pebbles to B (m, k)
by steps that do not add pebbles to the left of B (i, k) or to the right of B (j, k). In order
to implement the desired divide-and-conquer strategy, the procedure PEBBLE
(i,j, m,/t) will always be invoked with m midway between i andj. When the procedure
is invoked, some of the vertices in the blocks B (i, k) and B (j, k) may previously have
been pebbled.

A pebble will be called a p-pebble, for some p > 1, if it is placed on the graph G during
a call to the procedure PEBBLE whose last argument/ t = p, but excluding those
times during such a call when the procedure is called (recursively) with the last
argument # = p + l . This last argument /t is included only for convenience; its
purpose is simply to differentiate between pebbles placed at different times on the
vertices of the graph G.

Procedure PEBBLE (i,j, m,/t)
if l i - j l < _ 2 k
then place #-pebbles on all possible vertices in

B (m, k) by steps which add no pebbles to
vertices v such that 2 (v) < i or)~ (v) > j + k;

else begin

place/t-pebbles on all vertices in B (m, k)
that have no predecessor;
p+-(i+m)/2;
r ~-(]+m)/2;
flag +-- 1;

' while flag = 1 do

beoin
flag~-0;
PEBBLE (i, m, p, # + 1);
PEBBLE (rn,j, r , # + 1);
PEBBLE (p, r, m,/t);

Bandwidth and Pebbling 125

/f a/t-pebble is added to B (m, k) in the
last step then flag +-- 1 ;

remove all (/~ + 1)-pebbles from G

end

end
The procedure works as follows. If I i - j] _< 2 k, then the vertices in B (m, k) are just
pebbled directly. Alternatively, if [i - j t > 2 k, then PEBBLE (i,j, m, #) initially adds
pebbles to all vertices in B (m, k) that have no predecessors. At that point, values p
and r are chosen midway between i and m and midway between m and j, respectively.
The algorithm then (1) pebbles all of the vertices in B (p, k) that are possible to pebble
by steps that add no pebbles to the left of B (i, k) or to the right of B (m, k), via a
recursive call to PEBBLE (i, m, p, # + 1), and (2) pebbles all of the vertices in B (r, k)
that are possible to pebble by steps that add no pebbles to the left ofB (m, k) or to the
right of B (j, k), via a recursive call to PEBBLE (re,j, r, # + 1). By design, the number
of vertices between B (i, k) and B (m, k) and the number of vertices between B (m, k)
and B (j, k) is (about) one-half of the number of vertices between B (i, k) and B (j, k), so
the portions of the graph G treated under these two calls to PEBBLE are (about)
one-half the size of the portion treated by the previous call. When these calls to
PEBBLE have done their task on the blocks B (p, k) and B (r, k), the algorithm then
calls the procedure PEBBLE with arguments (p, r, m, #). This invocation adds to
B (m, k) all pebbles that can be added by a sequence of steps that adds no new pebbles
to vertices to the left of B (p, k) or to the right of B (r, k). Again, this region of the
graph, between B (p, k) and B (r, k), is (about) one-half the size of the region between
B (i, k) and B (j, k). Thus, each of the recursive calls to PEBBLE is for a portion of the
graph that is (about) one-half the size of the preceding portion. After the new pebbles
are placed on B (m, k), all the (/~ + 1)-pebbles are removed from the graph.

To see that the procedure invocation PEBBLE (l, n - k , (n - k)/2, 1) results in the
pebbling of all of the vertices of B (m, k), where m = (n - k)/2, we can consider the
following inductive argument. Let v be a vertex in B (m, k) that can be pebbled at
some point during a play of the pebble game by a sequence of steps that adds no new
pebbles to a vertex in B (m, k). (There may be already several pebbles on the vertices
of B (m, k), but during this portion of the play, culminating in a pebble being placed
on v, no new pebble is added to a vertex in B (m, k).) This pebble can be placed on v
because pebbles have been placed on predecessors of v. By our hypothesis that no
new pebbles are added to B (m, k), these predecessors ofv lie either to the left or to the
right of B (m, k). By an inductive assumption based on the size of the graph, we can
assume that each call to procedure PEBBLE to pebble a block B in the middle of the
portion of the graph to the left or to the right of B (m, k) results in the pebbling of all of
the vertices of B that can be pebbled by a sequence of steps that adds pebbles only to
the respective regions. Let p be the index of the first vertex in the block to the left of
B (m, k) and let r be the index of the first vertex in the block to the right of B (m, k).
Then the call to the procedure PEBBLE with arguments (p, r, m, 2) results in vertex v
containing a pebble, since each of the predecessors of vertex v are in this region and,
by the inductive assumption can be pebbled by the procedure PEBBLE. Thus, every
vertex in B (m, k) is eventually pebbled, since as pebbles are added to B (m, k), each
vertex can eventually be pebbled without pebbling any other vertex in B (m, k).

126 A.L. Rosenberg and I. H.Sudborough:

Let P (t) denote the maximum over all blocks of t consecutive vertices in the graph G
of the number of pebbles needed to pebble the vertices in that block. If t < 2 k, then
the algorithm pebbles the vertices in the block directly; therefore, at most 2 k pebbles
are needed. On the other hand, if t > 2 k, the algorithm pebbles three half-size
portions and leaves pebbles on the two blocks B (p, k) and B (r, k) when pebbling the
third portion. Thus, a recurrence relation that bounds the value P (t) is given by:

P(t)<P(t /2)+2k , if t>2k , and

P(t)<t , if t<_2k.

It follows that P (t) < 2 k log 2 t. The vertices of B (l-n/2], k) can be pebbled by this
algorithm by calling PEBBLE (1, n, In~2], 1). Any other vertex in the graph can be
pebbled after all the vertices in B (I-n/2], k) are pebbled by using the PEBBLE routine
to pebble to the left or right of this block. It follows that 2 k log 2 n pebbles suffice to
pebble any bandwidth-k n-vertex directed acyclic graph. We have thus proved the
following.

Lemma 3: I f an n-vertex da 9 G has bandwidth k, then it has pebble demand at most
2 k log2 n.

Theorem 3: I f the n-vertex directed acyclic graph G has bandwidth k, then it has
pebble demand at most min (2 k 2 + k + 1, 2 k log2 n).

Proof: The theorem follows directly from Lemmas 2 and 3. []

To place these upper bounds in perspective, we remark that we have no example of a
graph of bandwidth k that has pebble demand exceeding 3 k - 1. In Figs. 1 and 2 we
illustrate graphs that have bandwidths 2 and 3, respectively, and that require 5 and 8
pebbles, respectively. By extending these constructions we can show that 3 k - 1
pebbles is a lower bound on the pebble demand of a graph of bandwidth k. There is a
considerable gap between this lower bound and our upper bound.

!
I

Fig. 1. A graph with bandwidth 2 that requires 5 pebbles

Bandwidth and Pebbling 127

Fig, 2. A graph with bandwidth three that requires 8 pebbles

C. Th.e Difficulty of the Pebble Demand Problem

Since O (k log2 n) pebbles suffice to pebble an n-vertex graph of bandwidth k, the
problem of deciding whether p pebbles suffice to pebble a graph with bandwidthf(n)
can be solved nondeterministically in space f(n)log 2 n: one can "guess" which
moves to make in the pebble game and keep track of the positions of the pebbles on
the graph inside the worktape space. Sincef(n) log n pebbles are sufficient, and since
each pebble's location requires only log n space to record (in binary notation), it
follows that f(n) log 2 n space is sufficient to solve the Problem. In other words, the
Pebble Demand Problem restricted to graphs of bandwidth f(n) is in the class
NSPACE (f(n)log 2 n) ~

1 NSPACE (s (n)) is the class of languages accepted by nondeterministic Turing machines that use
0 (s(n)) space on inputs of length n.

9 Computing 31/2

128 A.L. Rosenberg and I. H. Sudborough:

The Pebble Demand (PD) Problem:
Input: A directed acyclic graph G and a positive integer k.

Property: A pebble can be placed on a sink-vertex of G using at most k pebbles.

To contrast with this containment, it is known that the unrestricted PD-Problem is
complete for PSPACE 2 [5]; and the problem remains PSPACE complete for so-
called And/Or graphs [9]. We note that the sliding rule is being used in the pebble
games of Section C. It is known that this changes pebble demand by at most one [5].

The And~Or Pebble Demand (PD) Problem:
Input: A directed acyclic graph G, a labelling function label: Vertices(G)~
{and, or}, and a positive integer k.

Property: A pebble can be placed on a sink-vertex of G using at most k pebbles.

The pebble game on an And/Or graph is a natural extension of the pebble game we
have considered: if a vertex v of G is labelled or, then only one of the predecessors of v
needs to contain a pebble in order to place a pebble on v; if a vertex v is labelled and,
then all predecessors of v must contain a pebble in order to place a pebble on v. Let
AND/OR PD (f(n)) denote the And/Or PD Problem restricted to And/Or graphs G
of bandwidth f(n), where n is the number of vertices in G. That is,

AND~OR PD if(n))
Input: A linear encoding of a directed acyclic graph G, a labelling function label:
Vertices (G)-+ {and, or}, and a positive integer k.

Property:
(1) The graph G has bandwidth f(I G]), under the layout implicit in the linear input

encoding; and

(2) a pebble can be placed on a sink-vertex of G using at most k pebbles.

The algorithm presented previously, to show that 2 k log n pebbles suffice to pebble a
graph of bandwidth k, also works to show that 2 k log n pebbles suffice to pebble an
And/Or graph of bandwidth k. Thus, AND/OR PD(f(n)) is in
NSPACE(f(n) log 2 n). For a corresponding lower bound we show now that the
AND/OR PD (f(n)) problem is log space hard for NTISP (poly, f(n))3.

In order to establish the claimed bound, it will, of course, suffice to reduce a known
NTISP (poly, f(n))-complete problem to this pebbling problem. For this purpose we
choose the 3-SATISFIABILITY problem restricted to well-formed formulas of
bandwidth f(n), denoted by 3-SAT (f(n)) [13] :

3-SAT(f (n)):
Input: A well-formed formula (wff) w=Cx C2 ... C,, in 3 CNF.

2 PSPACE is the class of languages accepted by deterministic Turing machines that use space nO(l) on
inputs of length n.

a NTISP (poly, f(n)) is the class of languages accepted by nondeterministic Turing machines that
simultaneously use time n ~ and space O(f(n)) on inputs of length n.

Bandwidth and Pebbling 129

Property:
(i) The wffw has bandwidth f : ifa positive or negative instance of a variable occurs

in clauses Ci and C~, then [i - j [<f(m); and

(ii) the wffw is satisfiable: there is a truth assignment to the variables of w that
makes every clause true.

From a wff w, we shall construct an And/Or graph G w with a goal vertex t and a
number of pebbles s such that" w is satisfiable iff t can be pebbled with s pebbles.
Furthermore, the And/Or graph Gw will be shown to have a layout 2 of bandwidth at
most a constant c times the bandwidth of w, where c is a fixed constant independent
of the wff w. The reduction from w to an encoding of the And/Or graph Gw under the
layout 2 can be accomplished in logarithmic space. It will follow that the AND/OR
PD problem, when restricted to graphs of bandwidth f, is log space hard for NTISP
(poly, f (n)).

Theorem 4: AND~OR PD (f(n)) is log space hard for NTISP (poly, f(n)), for all
functions f on the natural numbers such that f(n) >>_ log n.

Proof: The reduction we describe is suggested by the earlier reduction from QBF
(quantified boolean formulas) to the PEBBLE DEMAND problem described by
Gilbert, Lengauer, and Tarjan [5]. The SATISFIABILITY problem is, of course,
the restriction of QBF to the special case when all of the quantifiers are existential.
The reader should recall that the QBF problem is PSPACE complete and that the 3-
SATISFIABILITY problem is NP complete.

Fig, 3. A 5-Pyramid

An important building block in our construction is the "pyramid" graph shown in
Fig. 3, which we abbreviate with a triangle as indicated in the figure. Cook [3] has
proved that the sink-vertex (or, apex) of a pyramid with k sources (called a k-
pyramid) has pebble demand precisely k. This fact makes pyramids useful in
pebbling arguments, as is indicated in the following observation from Gilbert,
Lengauer, and Tarjan [-5]:

... A pyramid can be used to lock a pebble on a given vertex for a given time
interval. This is done by making the vertex the apex of a pyramid which is so large
that in order to repebble the vertex, so many pebbles have to be taken off the
graph for use on the pyramid that the results achieved after the vertex was first
pebbled are lost ... Note also that if any source of a k-pyramid contains a pebble

9*

130 A . L . Rosenberg and I. H. Sudborough:

that cannot be moved, then the apex can be pebbled with k - 1 additional
pebbles ...

Let w = C 1 C2 ... C,, be a bandwidth-k wffin 3 CNF. Let x be a variable that occurs
in w. Let C i and Cj be, respectively, the first and last clauses of w containing instances
of x (either positive or negative). We term the set [i, j] = a~f {i, i+ 1,...,j} the domain
of the variable x, denoted domain (x); and we let first (x) denote the integer i. The
variable x is active for the clause Cp, if p e domain (x). There can be at most 3 k active
variables for any clause Cp in w, where 1 _< p _< m, since w has bandwidth k and w is in
3 CNF. Let x 1, x 2, ..., x, be an enumeration of the variables in w in the following
format: the variable y precedes the variable z in the enumeration if either (1)
first (y) < first (z) or (2) first (y) = first (z) and the (positive or negative) instance of y in
Cnr~(),) precedes the instance of z in that clause. Then, for any i>_ 1, define the
successor of the variable xi, denoted SUCCESSOR (x~), by:

SUCCESSOR (xi) = x j where j is the largest number > i such that, for all k (i < k <j),
either

(a) domain (xi) c~ domain (xk) :~ 0, or

(b) for some p < i, SUCCESSOR (xp)= x~.

The And/Or graph G w constructed has m + p blocks of vertices, where p is the
maximum number of variables that are active for any clause in w; we have already
observed that p is at most 3 k. In other words, there is one block of vertices for each
clause and one for each of the variables that are active in such clauses. The part of a
block corresponding to a variable x includes four vertices, as shown in Fig. 4. Two
pebbles placed on this subgraph encode the truth value of x and 2 as illustrated in
F i g , 4 b - d .

.~' x '

G

' ' ' x ' b x "

b c d

Fig.4. a vertices representing a variable; b true confignration; c false configuration; d double false
configuration

Fig. 5 illustrates how subgraphs corresponding to separate variables x,
y = SUCCESSOR (x), and z = SUCCESSOR (y) are connected. This block works as
follows. Two pebbles are placed on the subgraph corresponding to the variable x to
represent a truth assignment. These two pebbles remain stationary while pebbles are
being placed on vertices corresponding to the clauses Cp for which x is active. When
x is no longer active, the two pebbles are moved upward to the portion of the graph
corresponding to the variable y. Since y becomes active only after x stops being
active, the truth assignment for x is no longer required at the time the two pebbles
are shifted upwards. The role of the vertex D~ is to force at least one of the pebbles
placed on the portion of the graph corresponding to variable x to remain on either x'

Bandwidth and Pebbling 131

or 2' during the time period that x is active: if the pebbles were to be moved so that
both x and 2 contain pebbles, then these two pebbles could not be moved further up
this block of the graph without repebbling one of the pyramid graphs we shall
describe presently. On the other hand, if either 2' or x' contains a pebble when the
time period for the variable x to be active is over, then Dx can be pebbled (since it is
an "or" vertex) and the two pebbles can be moved up to 37' and y'.

�9 ~ ~

P(

, T r

~'(

i z t

}y

Iu

Ix

xl

Fig. 5. Portion of block corresponding to variables x, y, and z such that y = SUCCESSOR (x) and
z = SUCCESSOR (y)

Pi

Z Pi-1 ai3

)~ (._)o;2 U ~'i~
Fig. 6. Block of vertices for clause ail +ai2 +ai3. Note that the vertices alk and a'ik occur among the
variable blocks. Vertex P,-1 is part of the i - l - s t clause block; P0 is the vertex b, which has no

predecessors

Fig. 6 illustrates the block of vertices C~ corresponding to a clause
C i =(ail + ai2 + ai3). After some s - 3 pebbles are allocated to the blocks correspond-
ing to the variables, the remaining three pebbles are available to pebble the clause
blocks. For each literal a~p, 1 < p < 3, there is a fixed pebble on vertex a~p if the literal

132 A.L. Rosenberg and I. H. Sudborough:

is true, or on vertex a~p if the literal is false. Thus, if w = C 1 C2. . . C~ is satisfied, then
the clause pyramids can be pebbled in the order C'1, C;, ..., C~,; however, if some
clause (a~l + ag2 + a~3) is false, then p~ is the apex of an empty 4-pyramid and cannot
be pebbled with three pebbles.

o r

a ~5

i

Fig. 7. Graph for w=(a+b+c) (d+b+c") (d+~+c) (d+ e +f) (d+ ~+f). Number of pebbles: 2p+3 =9

Fig. 7 illustrates the entire construction. Note that b is a vertex with no predecessors
and that t is the goal vertex. Our goal now is to show that there exists a layout 2 of the
A nd /Or graph G w such that the bandwidth is at most ck, where k is the bandwidth of
w and c is a fixed constant.

Fig. 8- A layout of a 5-pyramid with bandwidth five

Bandwidth and Pebbling 133

We observe first that a k-pyramid enjoys a layout of bandwidth k: assign the smallest
integers to the pyramid's source vertices, the next smallest integers to the source
vertices' successors, and so on, level by level; see Fig. 8. It should, perhaps, be noted
that five pebbles are necessary and sufficient to place a pebble, not only on the apex
of the 5-pyramid, but also on the chain of vertices 16, 17, 18, ... shown in Fig. 8.
Thus, a graph consisting of a k-pyramid, a separate (k -1) -pyramid , a separate
(k - 2)-pyramid, ... can be laid out with bandwidth k so that consecutive vertices are
connected by separate paths to the apexes of the pyramids. This is illustrated for a 5-
pyramid, 4-pyramid, and a 3-pyramid in Fig. 9.

Fig. 9. A layout of a 5-pyramid, a 4-pyramid, and a 3-pyramid with bandwidth five so that vertices
connected to the apexes of the pyramids are consecutive vertices

As previously stated, there are at most 3 k active variables for any clause of a wff w
with bandwidth k in 3 CNF. Thus, there are at most 6 k pyramids necessary for the
blocks of vertices corresponding to variables. The largest pyramid is of size 6 k + 3.
As we have seen, all of the pyramids of size 6 k + 3, 6 k + 2, . . . , 4 can be laid out with
bandwidth 6 k + 3 so that there are 6 k consecutive vertices that are connected to the
apexes of these pyramids. Furthermore, we lay out the vertices corresponding to the
clauses in the same order as the clauses are presented in the wff w, so that all vertices
corresponding to clause Ci receive smaller integers than those corresponding to
clause C~ + 1. There are six vertices in each block corresponding to a clause; cf. Fig. 6.
Assign the vertices corresponding to each variable x to integers between those
assigned to clauses C i and C i + l , where i= first(x). There are five vertices
corresponding to a variable x; cf. Fig. 5. Thus, there are at most 21 vertices in the
block corresponding to a clause C and each of the blocks corresponding to the
variables that occur in that clause. The only edges connecting a vertex correspond-
ing to a variable x and a vertex corresponding to a clause C occur when an instance
(positive or negative) of the variable x appears in the clause C. Therefore, since the
wffw has bandwidth k, no edge of G w connects vertices that are laid out at a distance
more than 21 k apart. In particular, a variable-x vertex is assigned an integer
between those assigned to clause blocks C~ and C~+ 1 and is connected by an edge
directed to a clause-Cj vertex only if a positive or negative instance of the variable x
occurs in both clauses C~ and C~. It follows that I i - J l -< k and, so, since each clause is
represented by at most 21 vertices, the edge in the And/Or graph G w connects
vertices assigned integers at most 21 k apart. []

134 A.L. Rosenberg and I. H. Sudborough:

4. BF Pebbling and Bandwidth

Our second pebble game, the BF (for breadth first) pebble game is played on a
connected undirected graph. Its rules are as follows.

1. N o vertex of the " inpu t" graph G ever holds more than one pebble.

2. N o vertex of G is ever pebbled more than once.

3. The moves of the game are as follows.

Move O. Place some (at least one) pebbles on the vertices of G.

Move i > 0. If no pebbles remain on G, then halt; the game is over. Otherwise,
remove some one pebble f rom G; and place pebbles on some never-before-
pebbled vertices of G, including at least all those neighbors of the just depebbled
vertex that have never been pebbled before.

In a play of the BF pebble game, i fa pebble is deposited on a vertex at Move i and is
removed from the vertex at Move j, then the lifetime of the pebble in that play of the
game is the integer j - i . (We assume that a pebble is discarded when it is removed
from the graph.)

The graph G is k-BF-pebbleable, k ~ N, if there is a play of the BF pebble game on G
in which no pebble has lifetime exceeding k.

Theorem 5: The graph G is k-B F-pebbleable if and only if it has bandwidth at most k.

Proof: Say first that G has bandwidth k. Then there is a layout

).: Vertices (G) ~ { 1, 2 , . . . I G I }

such tha t] 2 (v) - 2 (w) l _< k for all adjacent vertices v and w of G. Consider, therefore,
the following BF pebbl ing strategy for G.

Move O. Pebble vertices) - 1 (1), 2 -1 (2), . . . ,2 -1 (k) of G.

Move l < i < l G l - k .
(a) Remove the pebble from vertex).-1 (i);
(b) place a pebble on vertex ,~v -x (i+k) ;

Move I G I - k < i < I G I- Remove the pebble from vertex).- 1 (i).

Since 2 is a bandwidth-k layout of G in the line, all successors v of vertex 2 - : (i) have
2 (v) __< i + k. Thus Move i (b) is a legitimate one. A simple induction now proves that
the indicated strategy is a k-BF-pebbling of G.

Conversely, if the graph G is k-BF-pebbleable , then there is a (I G [+ D-move BF
pebble game witnessing this fact. With this play of the game in mind, define the
injection 2 from G into the line by:

2 (v)= the move at which vertex v is depebbled.

Tha t ;. is well-defined and one- to-one is a direct consequence of the game rules:
every vertex of G is pebbled and depebbled exactly once. Tha t 2 is a bandwidth-k
layout of G is also easy to see. Note that in a k-BF-pebbl ing of G, if the first end of an
edge of G is pebbled at Move i and depebbled at M o v e j < i + k, then it must be that

Bandwidth and Pebbling 135

the second end of the edge is pebbled at Move r ~ {i, ...,j} and depebbled at Move
m < r + k; hence, I m - j [_< k. But j is the image of the first end under 2, and m is the
image of the second end. Since we have been considering an arbitrary edge of G, it
follows that 2 is a bandwidth-(< k) layout of G, as was claimed. []

We thus have our second characterization of bandwidth in terms of pebbling.

5. Applications of the Bandwidth-Pebbling Relationships

It is always useful to have a number of different views of an important concept, as
each view tends to bring with it various tools and insights. We cite now three simple
examples of the benefits of the insights afforded by the results of this paper.

The first corollary establishes the difficulty of finding optimal plays of either the
NRA or BF pebble games.

Corollary 1: Given a graph G and an integer K, the problems of deciding whether or
not G is k-BF-pebbleable or k-NRA-pebbleable for some k < K are NP-complete. This
remains true even if G is restricted to be a degree-3 free tree. I f the integer K is fixed
(so that the solutions need not be uniform in K), then the problems can be solved in time
O(IGIK).
Proof: In the presence of Theorems 1 and 4, the three assertions in the statement of
the corollary follow, respectively, from results in [14], [4], and [12, 20] concerning
the difficulty of the bandwidth problem. []

Corollary 1 is somewhat interesting in that it shows the complexity of the "lifetime"
(L) problem for the NRA pebble game to be quite different from the "pebble
demand" (PD) problem. Specifically, both of the games are NP-complete in general
(the L result being Corollary 1, and the PD result being proved in [21]). In contrast,
if one restricts attention to trees, then the L problem is likely to be harder than the
PD problem, since the former problem remains NP-complete while the latter is
solvable in polynomial time [16, sect. 8].

The second corollary establishes the inherent difficulty of pebbling reticulated
graphs.

The graph G is n-reticulated (n ~ N) if G's vertex-set contains two disjoint n-element
subsets A and B such that, given any k ~< n vertices from A and k vertices from B,
there is a set of k edge-disjoint paths in G connecting the A-vertices with the B-
vertices.

Remarks: (1) Any homeomorph of the side-n grid is (n-1)-reticulated: one could
choose the first elements of the rows and columns, respectively (ignoring their
common element), as the sets A and B. (2) By similar reasoning, any homeomorph of
the side-n pyramid is n/2-reticulated.

Corollary 2: The lifetime-cost of any play of either the N R A pebble game or the BF
pebble game on an n-reticulated graph is ~Q(nl/2).
Proof: The result will follow from Theorems 1 and 4 once we show that the
bandwidth of any n-reticulated graph is t2 (nl/2).

136 A.L. Rosenberg and I. H. Sudborough:

Let G be n-reticulated. Consider any layout of G in the line. There must be some
point p on the line such that at least n/2 elements of the set A lie on one side ofp and
at least n/2 elements of the set B lie on the other side ofp. By G's n-reticulation, there
are at least n/2 edge-disjoint paths crossing p, hence at least this many distinct edges
crossing p (where "crossing p" means having one end to the left of p and the other
end to the right of p). Simple reasoning verifies that these edges must have at least
(n/2) 1/2 distinct endpoints on one side ofp or the other. It follows that the endpoints
of at least one of these crossing edges must be distance f2 (n ~/2) apart in the line. []

The reader can easily verify (via examples like the side-n pyramid) that Corollary 2
cannot be strengthened in general.

The third corollary establishes a criterion for a graph family to have unbounded
bandwidth.

The depth-d computation tree is the dag obtained from the depth-d complete binary
tree by directing all edges toward the root of the tree. A family of graphs F is deep if
for each integer k s N, some graph G in F contains as a subgraph some expansion of a
computation tree of depth d > k.

Corollary 3: I f the bandwidth-f (n) family of 9raphs F is deep, then

lira sup f (n) = 0o.

Proof: The result follows from Theorem 3, once one notes that the proof in [15] that
depth-d computation trees have pebble demand f2 (d) holds also for any expansions
of these trees. []

It should also be noted that the results in Subsection 3 C indicate the effects of
placing a restriction on the bandwidths of graphs in the and/or pebble demand
problem. Specifically, we showed that, when restricted to graphs of bandwidth f(n),
this problem is in NSPACE if(n) log 2 n) and is log space hard for the class NTISP
(poly, f(n)). This contrasts with the results of Monien and Sudborough [13] which
show that several NP-complete problems become log space complete for NTISP
(poly, f(n)) when restricted to graphs of bandwidth f(n). It remains open whether
AND/OR PD (f(n)) can be solved in less than f(n) log 2 n space. One avenue to a
resolution of this problem would be a result indicating that O (f(n)) pebbles are
sufficient to pebble any bandwidth-f (n) and/or graph, for this would yield the
corollary that f(n) log n space is sufficient for AND/OR PD (f(n)); but this result has
eluded us. Another unresolved question is whether the general pebble demand
problem (as opposed to the and/or version) is log space hard for NTISP (poly, f(n))
when restricted to bandwidth-f (n) graphs.

APPENDIX: Details of the proof of Lemma 1.

In the proof of Lemma 1, we constructed a graph G' which is an expansion of G, and
which we claimed to be k-NRA-pebbleable. We now verify this claim.

Note first that, by keeping track of the process by which G was expanded, one can
identify each vertex v in G with a directed chain in G' of the form

t) - e W l ---~ . . ---~. W n ;

Bandwidth and Pebbling 137

vertices preceding v in G (i. e., with edges entering v) correspond to chains preceding
v in G', and vertices preceded by v in G correspond to vertices preceded by some
vertex in v's chain in G'. Let us color the vertices of G' so that the initial vertices in
our chains are blue, the terminal vertices in our chains are red, and all other vertices
are white. In a natural and unambiguous way, we can talk about the blue vertex and
the red vertex in G' corresponding to a given vertex in G.

Consider the play of the NRA pebble game on G that was used in constructing G'.
Let us play the game on G' by taking cues from that play of the game on G, as follows.
The play on G begins with the pebbling of some vertex v in G. Let the play on G'
begin with the pebbling of the blue vertex corresponding to v in G'. Now, imagine
that the game on G is being played with pebbles colored 1, ..., k + 1, as described
earlier. As we did then, let us replace each move in the play on G by a polling of the
status of the pebbles of the various colors on G, together with new moves reflecting
the status; this is essentially a repeat of Stage 2 in the construction of G'. Each move
comprises polling the pebbles of colors 1, ..., k + 1 (at most k of which will be on the
graph, of course). We shall maintain the following inductive condition.

If a pebble of color i is to be placed on (resp., removed from) a vertex v of the graph G
at any move, then at the corresponding polling of color i on G', a pebble can be
placed on the blue (resp., removed from the red) vertex corresponding to v in G'.

Clearly, the inductive situation holds at the beginning of play. Assume that we are at
a given move on G; let us analyze the corresponding move on G'. We poll the various
colors. I fa pebble of color i is either placed on or removed from G at this move, then
by assumption, we can mimic this move on G' using (respectively) a blue or a red
vertex. If no pebble of color i would be moved (i.e., placed or removed) on G at this
move, and if no pebble of color i resides on G currently, then color i is ignored at this
polling. If no pebble of color i would be moved on G at this move, but there is a
pebble of color i sitting on vertex v of G, then the pebble residing (by inductive
assumption) on the chain in G' corresponding to v is "advanced" along its chain -
its successor in the chain is pebbled, and it is depebbled. We must verify (a) that this
advance is a legal move and (b) that our inductive hypothesis is maintained in the
face of this advance. (The verification of (b) simultaneously verifies the maintenance
of the inductive hypothesis when a pebble is placed on a blue vertex.)

Regarding condition (a), recall that when we constructed G' by means of a sequence
of selective edge expansions from G, we performed the construction in much the way
that we are playing the game on G' now: we played the game on G with colored
pebbles, and we expanded G every time a pebble threatened to sit for too long. Well,
it was exactly in the situation where we now advance pebble i along its chain that we
lengthened the chain (and advanced the pebble) in the construction process; hence
we are sure that when we try to advance the pebble, there is a chain-vertex to
advance it to. Second, each vertex in a chain has (by definition) a unique
predecessor; hence, the placing of the pebble that is the first half of advancing is
legal. Third, when G was expanded at this vertex in the course of constructing G', the
only outedges that were left incident to the current vertex were those that had been
pebbled earlier in the play; hence, in G', all of the successors of the current vertex
must have been pebbled at some earlier time in the play (the chain-successor being

138 A.L. Rosenberg and I. H. Sudborough:

the last of these to be pebbled) and so it is legal to remove the pebble from this vertex
as the second half of advancing. In summary, our advance along the chain was a
legal move.

Regarding condi t ion (b), note that when G was expanded at this vertex in the course
of construct ing G', all outedges of this vertex that led to virgin vertices were taken
along as outedges of the vertex that is the chain-extension of the current vertex; and
when G was further expanded at the chain-extension vertex, only still-virgin
outedges were taken along in the further expansion. This means that the only
outedges incident to the chain-extension of the current vertex are outedges leading
to vertices that are pebbled while the chain-extension holds its pebble. It follows that
advancing this pebble along its chain will not jeopardize any subsequent pebble
placements or pebble removals. In other words, the inductive si tuation is
mainta ined.

We see now that our play of the N R A pebble game on G' is a valid one that uses at

most k + 1 pebbles at any time. Moreover, because of the way we derive our play of
the game on G' from our original play on G (i.e., by replacing moves on G by
pollings-plus-moves on G'), we are assured that no pebble resides on G' for more
than k type B moves. In other words, we have shown that the graph G' is k-NRA-
pebbleable. []

Acknowledgments

It is a pleasure to thank B. Monien, A. Sherman, S. Berkowitz, and J. Peters for valuable and
stimulating conversations about bandwidth and pebble games, and L. Stockmeyer and an anonymous
referee for valuable suggestions that improved the presentation.

References

[1] Aykuz, F. A., Tuku, S. : An automatic node-relabelling scheme for bandwidth minimization of
stiffness matrices. Amer. Inst. of Aero. and Astro. J. 6, 728-730 (1968).

[2] Chen, K. Y. : Minimizing the bandwidth of sparse symmetric matrices. Computing 11, 27-30
(1973).

[3] Cook, S. A. : An observation on time-space tradeoffs. J. Comp. Syst. Sci. 9, 308-316 (1974).
[4] Garey, M. R., Graham, R. L., Johnson, D. S., Knuth, D. E. : Complexity results for bandwidth

minimization. SIAM J. Appl. Math. 34, 477-495 (1978).
[5] Gilbert, J. R,, Lengauer, T., Tarjan, R. E. : The pebbling problem is complete in polynomial space.

SIAM J. Comput. 9, 513-524 (1980).
[6] Hopcroft, J. E., Paul, W., Valiant, L. G.: On time versus space. J. Assoc. Comput. Mach. 24,

332-337 (1977).
[7] Kung, H. T., Stevenson, D. : A software technique for reducing the routing time on a parallel

computer with a fixed interconnection network. In: High Speed Computer and Algorithm
Optimization, pp. 423-433. New York: Academic Press 1977.

[8] Lengauer, T. : Relationships between pebble games on directed and undirected graphs. Typescript,
1980.

[9] Lingas, A. : A P-space complete problem related to a pebble game. Lecture Notes in Computer
Science 62, pp. 300-321. Berlin-Heidelberg-NewYork: Springer 1978.

[10] Lipton, R. J., Eisenstat, S. C., DeMillo, R. A. : Space and time hierarchies for classes of control
structures and data structures. J. ACM 23, 720-732 (1976).

Bandwidth and Pebbling 139

[11] Meyer auf der Heide, F. : A comparison of two variations of a pebble game on graphs. Theor.
Comp. Sci. 13, 315-322 (1981).

[12] Monien, B., Sudborough, I. H.: Bandwidth problems in graphs. Proc. 1980 Allerton Conf. on
Communication, Control, and Computing 1980, 650-659.

[13] Monien, B., Sudborough, I. H. : Bandwidth constrained NP-complete problems. Proc. 1981 ACM
Symp. on Theory of Computing, Milwaukee, Wisc., pp. 207-217.

[14] Papadimitriou, Ch. H.: The NP-completeness of the bandwidth minimization problem.
Computing 16, 263-270 (1976).

[15] Paterson, M. S., Hewitt, C. E. : Comparative schematology. Proc. Proj. MAC Conf. on Concurrent
Systems and Parallel Computation, 1970, pp. 119-127.

[16] Pippenger, N. : Pebbling. In: Proc. 5th IBM Syrup. on Mathematical Foundations of Computer
Science, 1980.

[17] Rose, D. J. : A graph-theoretic study of the numerical solution of sparse positive definite systems of
linear equations. In: Graph Theory and Computing (Read, R., ed.), pp. 183-217. New York:
Academic Press 1972.

[18] Rosenberg, A. L. : Data encodings and their costs. Acta Inform. 9, 273- 292 (1978).
[19] Rosenberg, A. L., Snyder, L.: Bounds on the costs of data encodings. Math. Syst. Th. 12, 9 - 3 9

(1978).
[20] Saxe, J. B. : Dynamic-programming algorithms for recognizing small-bandwidth graphs in

polynomial time. Carnegie-Mellon Tech. Rpt. CMU-CS-80-102, 1980.
[21] Sethi, R.: Complete register allocation problems. SIAM J. Comput. 4, 226-248 (1975).
[22] Sudborough, I. H. : Pebbling and bandwidth. In : Fundamentals of Computation Theory (Lecture

Notes in Computer Science, Vol. 117), pp. 373 -383. Berlin-Heidelberg-New York: Springer 1981.

A. L. Rosenberg
Department of Computer Science
Duke University
Durham, NC 27706, U.S.A.

I. H. Sudborough
Department of Electrical Engineering
and Computer Science
Northwestern University
Evanston, IL 60201, U.S.A.

