
Computing 46, 321 341 (1991) Computing
�9 by Springer-Verlag 1991

Finding Maximum Cliques in Arbitrary and in Special Graphs

L. Babel, Mtinehen

Received September 28, 1990

Abstract - - Zusammenfassung

Finding Maximum Cliques in Arbitrary and in Special Graphs. The classical problem of finding a clique
of largest cardinality in an arbitrary graph is NP-complete. For that reason earlier work diverges into
two directions. The first concerns algorithms solving the problem for arbitrary graphs in reasonable (but
exponential) time, the other restricts to special classes of graphs where polynomial methods can be found.
Here, the two directions are combined in a way. A branch and bound algorithm is developed treating
the general case. Computational experiments on random graphs show that this algorithm compares
favorable to the fastest known method. Furthermore, it consumes only polynomial time for quite a few
graph classes. For some of them no polynomial solution method is given so far.

AMS Subject Classification: O5C35, 68R10

Key words: Maximum clique problem, branch and bound algorithm, polynomial solvable problems.

Bestimmung yon Maximum Cliquen in beliebigen und in speziellen Graphen. Das klassische Problem der
Ermittlung einer Clique grSgter Mfichtigkeit in einem beliebigen Graph ist NP-vollst~indig. Deshalb
teilen sich bisherige Untersuchungen in zwei Richtungen. Die erste beschiiftigt sich mit Algorithmen, die
das Problem fiir beliebige Graphen in verniinftiger (aber exponentieller) Zeit 15sen, die andere beschr[inkt
sich auf spezielle Graphenklassen, fiir die polynomiale Methoden mSglich sind. Hier werden diese beiden
Richtungen kombiniert. Es wird ein Branch and Bound-Algorithmus ffir den allgemeinen Fall entwickelt.
Praktische Rechenexperimente an Zufallsgraphen zeigen, dab dieser Algorithmus dem schnellsten bisher
bekannten Verfahren fiberlegen ist. Darfiberhinaus ben6tigt er nur polynomiale Rechenzeit ftir eine
Vielzahl von Graphenklassen, darunter einige, fiir die noch keine polynomiale LSsungsmethode bekannt
ist.

1. Introduction

Given an undirected graph a clique is defined to be a subgraph with pairwise
adjacent vertices. A maximum clique is a clique of largest cardinality. A set of vertices
is called independent set if there is no edge between any two of these vertices and
vertex cover if every edge of the graph is incident to one of the vertices. Obviously
the problem of finding a maximum clique is equivalent to finding an indepen-
dent set of largest or a vertex cover of smallest cardinality in the complement of the
graph.

There are a lot of important applications of these problems in practice reaching
from computer vision, information retrieval, cluster analysis, classification theory
to signal transmission (see for example I-5], 1-13]-1,15]).

322 L. Babel

The maximum clique problem, one of the classical problems in combinatorial
optimization, is well known to be NP-complete [7]. So the existence of a polynomial
time solution method for arbitrary graphs seems unprobable. For that reason earlier
research has divided into two directions. The first concerns algorithms solving the
problem for arbitrary graphs in reasonable but exponential time. For the most
interesting of them see [13]-[22] . The other direction restricts to special graph
classes as chordal, comparability, circular arc, circle graphs and many others where
polynomial methods can be found [23]-[36]. This situation is not so favorable in
a certain sense. Suppose a greater number of graphs have to be examined for
their maximum cliques. We want to solve the problems efficiently, that means in
polynomial time whenever possible. For this purpose it is necessary to implement
many special algorithms for the different occurring graph classes, furthermore an
algorithm which produces the solution for graphs which do not belong to any of
this classes (often it is not known in advance whether a graph belongs to a certain
class such that expensive tests have to be performed to check this). Naturally, it
would be of great advantage to have a kind of a universal method which covers
both directions. This approach is realized in this paper. We develop an algorithm
which solves the problem very fast for arbitrary graphs and which additionally has
polynomial running time for quite a few graph classes.

The paper is organized as follows. First some basic graphtheoretical definitions and
notations are stated. In section 3 we present the solution method, a branch and
bound algorithm. The main ingredients of this algorithm are an economic way to
compute bounds by colorings of graphs and branching rules that use the informa-
tion of the colorings. After that interesting complexity results of the algorithm are
shown when the input is restricted to graphs with certain properties. Beneath this
theoretical performance results the algorithm also works very well in practice. In
section 5 computational comparisons with the most efficient algorithm known so
far are documented. The new method is considerably faster, especially if very difficult
problems are examined.

2. Graphtheoretical Notation

A graph G = (V,E) is an ordered pair consisting of a finite set V of vertices and a
set of unordered pairs (u, v) of distinct vertices, called edges, n and m denotes the
number of vertices and edges respectively, n is also called cardinality of the graph.
Two vertices u and v are adjacent or neighbours if(u, v) ~ E. N (v) = {u ~ V](v, u) ~ E}
is the neighbourhood, deg(v) = IN(v)[the degree of v. For X _c V let degx(v) =
IN(v) n X[. If e = (u, v) e E then vertex v is said to be incident to edge e. Two edges
are adjacent if they share a common vertex.

= (V, E) with E = {(u, v)](u, v) r E, u, v E V, u ~ v} is the complement of G. G(V') =
(V', E') is an (induced) subgraph of G = (V, E), G(V') c_ G for short, if V' _ V and
E' = {(u,v)[(u,v)eE, u, vE V'}. If H ~ G for a graph H we call G to be H-free,
G' = (V', E') is a partial subgraph of G if V' c_ V and E' _ {(u, v)l(u, v) E E, u, v ~ V' }.

Finding Maximum Cliques in Arbitrary and in Special Graphs 323

A clique or complete graph is defined to be a graph G(CI) ~_ G with (u, v) ~ E for all
u, v ~ Cl. G(C1) is called maximal if there is no clique G(Cl') with Cl ~ Cl' and
maximum if no clique G(CI") exists with [Cl"[> [Cl[. The clique number on(G) denotes
the cardinal i ty of a m a x i m u m clique in G. The vertex set of a g raph is independent
if the complemen t of the g raph is complete.

K r denotes a complete graph, S r a g raph with independent vertex set of cardinali ty
r. K,,~ is a g raph whose vertex set V can be par t i t ioned into sets 1/1, V2, 1/1 u V2 = V,
V 1 u~ V 2 = ~ with [V 11 = r, I V21 = S and (u, v) e E <=~ u e V 1 , v e V 2. A path P, of length
r is a g raph with V = {Vx,V2 v,} and E = {(vl,v2),(v2,v3) (Vr-~,V,)}. V~ and
v, are the endpoints of the path. We write P, = (v~, v2 v,). If addi t ional ly r > 3
and (v,, vl) e E then the g raph is said to be a cycle Cr of length r. Given a graph
Go = (Vo, Eo) with vertices vl v, and disjoint graphs G / = (V/, Ei), i = 1, 2
n, the composition graph G = Go(GI, G2,..., G,) = (V,E) is defined by V = ~7=1 V/,
E = ~ ' = t E w {(u, v)lu �9 V~, v �9 V i, 1 < i < j < n, (vi, Vj) ~. Eo}. G is connected if for
every pair of vertices u, v there exists a pa th with endpoints u and v. The maximal
connected subgraphs of G are called connected components.

3. Branch and Bound Algorithm

3.1. General Branching Scheme and Exhaustive Search Tree

In this subsection we develop a general solut ion scheme for the m a x i m u m clique
problem. I t will be specified later in order to get a powerful method. The resulting
a lgor i thm is a further deve lopment and refinement of the a lgor i thm [2].

Given a g raph G = (V, E) let (v 1, v 2 v,) be any ordering of the vertices of G.
Define Vii := N(vi) c~ {v/+l v,}. Then obviously the following holds:

Lemma 1: I f Cl is the vertex set of a clique in G then Cl ~_ {vi} w Vifor at least one
i ~ {1 ,2 , . . . , n) .

With this fact the m a x i m u m clique p rob lem in a graph of cardinali ty n can be
t ransformed into n p rob lems in graphs G(V/) of cardinali ty at mos t n - i, i = 1,
2 n. Let P(U, Vt) with U t, Vt~_ V, U t c ~ V t = ~ , Vt~ ~ ,~v tN(u) and G(U~)
complete denote the p rob lem MC(G(Vt)): Find a maximum clique in G(Vt). With
U o = ~ and Vo = V the p rob lem P(U o, Vo) corresponds to the original p rob lem
MC(G). The vertices of U t and V t are called fixed and free resp. The structure of this
vertex sets results f rom the

General branching scheme:
Given P (U , Vt) let (v~, v~ v,~t)
be an ordering of the vertices of V~.
F o r i = 1,2 , n tdo

:= u , u

v,, := U(vf) v.'t}

With this rule an exhaustive search tree can be constructed. The p rob lem P(U o, Vo)

324 L. Babel

corresponds to the root. The subproblems created by the branching rule are the
nodes of the tree. P(U~, V~) has nt = I Vtl successors P(Ut,, V~ 1) P(U%, V~.). Notice

that the shape of the tree depends on the choice of the vertex orderings. If V~ =
then no further branching is possible and P(Ut, VO is a leaf of the tree. It's distance
to the root is equal to I U, I. Every leaf with greatest distance corresponds to a
maximum clique. The size of the tree can be estimated from above as follows.

Lemma 2" The number of nodes in the exhaustive search tree with distance at most

kfromtherootisrestrictedbyb(n,k)=~(:).i=o

Proof: The tree has maximal number of nodes if the graph to be examined is
complete. Consider the sets of fixed vertices U t in P(U, Vt). If the distance from
P(Ut, Vt) to the root is equal to i then I Utl = i. The sets Ut of all subproblems of
distance i are distinct. Moreover for every set U _ V of cardinality i there exists a

/ \ U ss owst .tt e.umb o,.odesofdist nce ,s(:)
[]

In order not to build the whole exhaustive search tree (the effort for that would be

0 (i__~0 (:)) = O(2")) bounds for the clique number are computed which allow to

exclude many of the subproblems from further investigation.

3.2. Computing Bounds

A coloring of a graph G = (V, E) is a mapping c: V-~ M ___ N with the property
(u,v) e E=*.c(u) r c(v) for all u, v e V. I fc is surjective and M = {1,2,. . . ,k} then c
is called a k-coloring. The chromatic number z(G) is defined to be the smallest k such
that a k-coloring exists for G. Every z(G)-coloring is an optimal coloring. In a colored
graph all vertices of a maximum clique must have different colors. Therefore, the
well known inequality

~o(G) _< z(G)

holds. The coloring problem, however, is NP-complete as well as the clique problem
[7]. For that reason we turn to approximate colorings, i.e. easily obtainable
colorings with eventually more than z(G) colors. A good working coloring heuristic
is due to Brelaz [4]. In this procedure the vertices of the graph are colored
sequentially with the smallest possible color. The order is established by choosing
in each step a vertex with maximal saturation degree (the saturation degree is defined
to be the number of different colors in the neighbourhood of the vertex). This
method can be extended without increasing complexity to find the connected
components of the graph and to compute simultaneously lower and upper bounds
for the clique number of every component. A detailed specification appears below.

Let cdeg(v) denote the number of colored neighbours, satdeg(v) the saturation degree
and neighbcol(v) a set containing the colors which occur in the neighbourhood of

Finding Maximum Cliques in Arbitrary and in Special Graphs 325

vertex v (consequently satdeg(v) = Ineighbcol(v)[). Further let W be the set of all
uncolored vertices and k a counter for the number of connected components.

Procedure Boundsl (G)
1. For v ~ V do

c(v) := cdeg(v):= satdeg(v):= 0, neighbcol(v):=
W:= V,k := 1
V 1 := CI 1 := ~ , clmax := false

2. X := {v ~ W[satdeg(v) >_ satdeg(w) for all w ~ W}
(,) Choose v* ~ X with cdeg(v*) > cdeg(w) for all w ~ X

If satdeg(v*) = 0 and V ~ W
then z (G (V k)) := max{/~ Nl3v ~ V k with c(v) = i}

D(G(Vk)) := I Clkl
k : = k + 1,
V k := ~ , Cl k := iv*}, clmax := false

else if clmax = false
then if satdeg(v*) = I Clkl

then CI k := Cl k t.3 iv*}

else clmax := true
3. c(v*):= m i n i / e Nli ~ neighbcol(v)}

w : = w - iv*} , v k := v iv*}
For v ~ N(v*) ~ W do

cdeg(v) := cdeg(v) + 1
if c(v*) q~ neighbcol(v)

then neighbcol(v) := neighbcol(v) w {c(v*)}
satdeg(v) := satdeg(v) + 1

4. If W ~ ~ then goto 2.
5. ~(G(Vk)) := max{/~ Nl3v ~ V k with c(v) = i}

c5(G(Vk)) := IClkl
6. ~(G):= maxi~(G(V')) l i e {1,2, . . . ,k})

&(G) := ~(G(V'*)) := maxi&(G(Vi)) l i ~ {1,2 k}}
Cl := Cl i*

Theorem 1: For any graph G the procedure Boundsl produces a maximal complete
subgraph G(CI) and a ~(G)-coloring, consequently a lower bound &(G) = I Cll and an
upper bound ~(G) for the clique number o~(G). I f G is not connected then for every
component G(Vi), i = 1, 2, . . . , k, lower and upper bounds &(G(V/)),)7(G(Fi)) are
obtained.

Proof: If G is connected then k does not change it's value (k = 1). The first vertices
which are colored induce a clique. The vertex set Cl 1 of this clique can be extended
as long as there exists a vertex v* with saturation degree equal to I Cll[(then v* is
adjacent to all vertices in Cll). If there is no such vertex the clique is maximal
and the boolean variable clmax is set 'true'. Obviously the cardinality ~ (G) =
~(G(V 1)) =]Clll of the clique and the number ~(G) = ~(G(V 1)) of used colors are
lower and upper bounds for ~o(G).

326 L. Babel

Let G be disconnected with components G 1 , G k. Due to the selection of v* as a
vertex of maximal saturation degree G is colored component by component. A new
component starts if and only if v* has saturation degree 0. For every component
G i = G(V i) bounds (o(G(Vi)) and ~(G(Vi)) are computed in the way described above.
The largest of this lower resp. upper bounds yield the lower and upper bound for
co(G). []

Theorem 2: Procedure Bounds1 works in time O(m + n).

Proof: Straightforward. []

In order to get sharper lower bounds it is favourable to use a modification of the
above bounding procedure, called Bounds2, which arises if line (,) is replaced by

(**) If clmax = false
then choose v* ~ X with degx(v*) > degx(w) for all w ~ X
else choose v* e X with cdeg(v*) > cdeg(w) for all w e X

In the partially colored graph X contains all uncolored vertices with largest satura-
tion degree. Different from Boundsl where always a vertex v* e X with maximal
degree in the colored subgraph is chosen, here during the clique search v* is a
vertex of maximal degree in G(X). Particularly the modified procedure starts with
a vertex of maximal degree in G. We will talk about extended clique search in contrast
to elementary clique search when using (,).

Theorem 3: Procedure Bounds2 can be implemented to run in time O(m + n).

Proof: The crucial point is the repeated computation of the vertex degrees in G(X).
Build an auxiliary array of possible degrees 1, 2, . . . , min{n - 1, m}. Every number
k in the array is associated with a doubly linked list of vertices of degree k.
Computing the degrees in G and initializing the data structure can be done in
O(m + n). Updating the structure and finding v* (the maximal degree decreases
monotonously) in each step (**) requires effort O(ri) where ri is the number of edges
which are eliminated from G(X) in the i-th iteration. Since ~ rl = m the assertion
follows. []

We have seen that coloring the vertices according to the size of the saturation degree
yields very useful additional information. The connected components together with
lower and upper bounds for the clique number in each of them can be derived with
low effort. Consider now the problem P(Ut, V~). Let Gt := G(Ut u Vt) and G[:=
G(U t u V~i), i = 1, 2 k. The clique number cot and the chromatic number
Zt of G t are given by cot = [Ut[+ co(G(Vt)) and Zt = [Ut[+ z(G(VO) �9 Procedure
Boundsl/2 applied to the graph G(V~) yields

c~(G(Vt)) = max{~(G(Vt')[i ~ {1,.. . ,k}} and

~(G(V~)) = max{~(G(V~*)[i ~ {1,... , k}}

with the connected components G(Vtl), . . . , G(Vt*) of G(Vt). Define ~t := I U, I +
~(G(V,)), ~, := I U, I + ~(G(V~)) and ~[:= I Utl + ;~(a(v~i)), i = 1, 2, . . . , k. Further let
con be best known lower bound for co(G). If ~t > con the global lower bound can be

Finding Maximum Cliques in Arbitrary and in Special Graphs 327

improved to co n := (5 t. If)~t -< cob then we have cot -< Zt -<)~t -< coB and the problem
P(Ut, Vt) is settled. The corresponding graph Gt cannot contain a clique with more
vertices than the currently largest one. Finally if)~t > cob and)~[_< cob for i s I
{1, 2 , . . . , k} the graph Gt can contain a larger clique but G[cannot. Thus when
looking for a max imum clique in Gt we can restrict to G(U~ w V, - U i s i g t i) �9

3.3. Improved Branching Rules

Given P(U, Vt) the general branching scheme produces n t subproblems P(Ut~, Vt).
In the course of the algori thm developed so far every graph G(V~,) has to be colored
by procedure Boundsl/2. This large effort can be reduced by using the information
received in the coloring of G(V 0. If G(Vt) is colored then each of it's subgraphs G(Vt,)
is colored too. One only has to restrict the coloring to the vertices of the subgraphs.
More formally let c: V ~ {1,2 ,k} be a k-coloring of a graph G = (V,E) and
W ___ V. Then c: W--* {1,2, . . . ,k} is called restriction o fc to G(W). Denote c(W) :=
{c(w)lw E W}.

If c is a coloring of G(Vt) using)~(G(Vt)) colors then]c(Vt,)] <)~(G(Vt)). Obviously
)~t avri~ :=]Ut,] +]c(Vt,)[is an upper bound for cot,. It will be called a priori color
bound for G~. The general branching scheme works with any given ordering of the
vertices. If it is chosen in a clever way the bounds ~,prior~ ,,, can be derived without or
only with modest addit ional effort. We present two suitable orderings.

Ordering in reverse sequence of coloring
The vertices of V t are labeled in the chronological order they are colored by v t , . . . ,
v~, v], i.e. v t is colored first, v~ last. Remind the proceeding in Bounds1~2. Step 2, .t
the selection of the vertex colored next is carried out n t times. In the (nt - i + 1)-th

t t i teration the vertices v,~, . . . , vi+ x are colored, all others are uncolored. A vertex
v* = v~ is chosen with maximal saturat ion degree. This value however is just the
number of different colors in G(N(v~) n {v~+l , vtt}), thus I c(V~)l = satdeg(v~). The
following rule results:

Branching rule I:
Given P(U, Vz)let (v,t, v~) be
the coloring order of the vertices of Vt.
For i = 1, 2 , . . . , n t do

~ , := u, ~ {v~}
Vt, := N(v[) c~ {v~+ t v,t}
27, p*i~ :=]UtJ + satdeg(v~)

Ordering according to non increasing colors
Build an order (v[, v ') such that the vertex colors do not increase when moving
from left to right. Part icularly v~ has highest, v t has color 1. Since the coloring nt
method used here assigns every vertex the smallest possible color, v~ is adjacent to
vertices of color 1, 2 c(v~) - 1. All neighbours of this colors (but no one with
greater color) appear to the right of v~ in the order. This shows]c(Vt,)[= e(v~) - 1.
We get:

328 L. Babel

Branching rule II:
Given P(Ut, V 0 let c be a coloring of G(Vt),
(v~ vt~,) a vertex ordering with c(v[) > c(v]), 1 < i < j < n,.
For i = 1, 2 , . . . , ntdo

: = u

~, := U(v[) c~ {v[+l,.. . , v,t}
)~a priori t, := [Ut, l + c(v[) - 1

3.4. Algorithm

We are now able to formulate the branch and bound method.

A l g o r i t h m B B

1. Initialization
1.1 Genera te the roo t P(Uo, Vo) of the search tree with U o := ~ , V o := V and

define the set of active nodes A N :=
1.2 C o m p u t e lower bound ~(G) with clique G(CI), ~(G) =]CI[and set cob :=

~o(G), MCI := e l
1.3 C o m p u t e upper bounds ~o := ~(G) for the graph G and ~ for it 's connected

componen t s G(VJ), j ~ J
1.4 If ~o -< con then goto 5.
1.5 F o r j E 3 do

If ~ < cob then Vo := Vo - Vo j
1.6 Set A N := {P(Uo, Vo) }

2. Subproblem selection
2.1 If A N = ~ then goto 5.
2.2 Choose P(U~, Vt) ~ A N according to the node selection rule and set A N :=

A N - { P (U . Vt)}
2.3 I f~t < cob then goto 2.1

3. Branching
3.1 Genera te the successors P(Ut,, V,,), . . . , P (U t ,, V~) of P(Ut, Vt) in the search

tree according to the branching rule with tla~ a i~riori color bounds ~priori,
i = 1, 2 , nt

4. Bounding
4.1 For all P(Utl , Vtl) with ~t apri~]> (.0 B do

4.1.1 C o m p u t e lower bounds &t, for Gt, with clique G(CI), o3t, = [CI[
If co B < ~t, then set co n := (or, and MCI := Cl

4.1.2 Let G(Vj) , j e J be the connected componen t s of G(Vt)
C o m p u t e upper bounds ;~t, for the graph Gt,
and ~/, for G~, j ~ J

m i n " " ~ a p r i o r i ~ Set 2t, := ~.Zt,, Zt~
4.1.3 If~q, < COB then goto 4.1.6
4.1.4 F o r j ~ J do

If ~ _< con then Vt, := Vt, - Vt{

Finding Maximum Cliques in Arbitrary and in Special Graphs 329

4.1.5 Set AN := AN w {P(Ut,, Vt,)}
4.1.6

4.2 Goto 2.
5. Optimal solution

STOP; cob is the clique number, G(MCl) a maximum clique

Remarks:
The node selection rule states the strategy that determines which node of the search
tree is treated next. For instance one of the most current rules depth first search
and best bound search can be used. From experience the former has advantages
concerning space requirements, the latter concerning running time. If best bound
search is used then step 2.3 can be modified to the stopping criterion

2.3' If ~, < cob then goto 5.

The computation of the bounds is performed by procedure Bounds! or Bounds2.
The corresponding versions of algorithm BB will be denoted by BB1 and BB2 resp.

It is straightforward to modify the algorithm such that all maximum cliques are
discovered.

4. Polynomially Solvable Problems

In the following the search tree 505" belonging to a graph G denotes the set of all
problems P(U,, V~) which are generated if a version of algorithm BB is applied to
G. 5 : : - is the actually examined part of the exhaustive search tree. In particular
5:J- always contains the original problem P(Uo, Vo)= P(~ , V). depth(SeY):=
max {I u, II P(U,, v~) ~ 5:5-} is called depth of the search tree 5:5-. It corresponds to
the greatest distance of a tree node to the root P(Uo, Vo) and can be used as a
measure for the effort of the algorithm. If no branching is necessary for the original
problem then 5:~-- consists of this problem only and depth(S::-) = 0. In general
obviously depth(S~J) ~ {0, 1 co(G)}.

Theorem 4: Suppose algorithm BB1 or BB2 applied to a graph G yields a search tree
5:J- with depth(S:J-) <_ k. Then the time spent to solve MC(G) is restricted by
O(b(n, k).(m + n)).

Proof: The main work in both versions of algorithm BB is the computation of lower
and upper bounds for each subproblem. The procedures Bounds1~2 developed for
this purpose have time complexity O(m + n). All other steps joined with a sub-
problem as node selection, test of the stopping criterion and eventually branching
don't increase this complexity. If the depth of the search tree is at most k then due

toLemma2notmorethanb(n,k)=~(~)subproblemshavetobetreated.i=o []

In this section we state graph classes with search trees of limited depth k (k a
constant). Hence the algorithm produces a maximum clique in polynomial time.

330 L. Babel

Some of this classes are well known and explored but for others no polynomial
solution method is given in the literature so far.

4.1. Elementary Clique Search

Lemma 3: I f G = (V, E) is disjoint union of complete graphs then depth(SPY) = O.

Proof: Let G(V1),..., G(V k) be the connected components of G. Procedure Boundsl
computes both lower bounds &(G(Vi)) and upper bounds ~(G(Vi)) for i = 1 k.
G(V i) is complete, therefore &(G(Vi)) = ~(G(Vi)) = I Vil. From cob = max {(o(G(Vi))[
i = 1 k} and ~o = ~(G) = max{~(G(Vi))[i = 1 k} it follows that Zo = cop.
Thus no branching is performed, the search tree consists of the original problem
P(U o, Vo) only. []

With this fact the following new graph classes with polynomial solvable maximum
clique problem can be deduced.

Theorem fi: Let r E ~, r > 3. I f G has no subgraph Kr - {e) then depth(5~Y) <_
r - 3 .

Proof: A graph G is disjoint union of complete graphs iff it contains no subgraph
P3 = K3 -- {e}. Let r > 3 and G(CI) ~_ G be a clique with J Cl] = r - 3 vertices.
G(OwclN(v)) is Pa-free, otherwise the vertices of Cl together with the vertices
of the P3 would induce a K r - {e}. Let P(Ut, Vt) be a node of the search tree
with]Utl = r - 3. Every subgraph of a Pa-free graph is Pa-free. With G(Vt)
G((]u ~ v, N(u)) and Lemma 3 the assertion follows. []

Particularly a polynomial solution method for the class of diamond-free graphs, i.e.
graphs without subgraphs K 4 - {e} is obtained. This has consequences for line
graphs of bipartite graphs. The line graph L(G) of G is a graph whose vertices
correspond to the edges of G with two vertices of L(G) being adjacent iff the
corresponding edges are adjacent. A graph is bipartite if it contains no cycle of odd
length C2t+1, l > 1.

Theorem 6: For line graphs of bipartite graphs depth(SPJ -) < 1 holds

Proof: Verify that line graphs of bipartite graphs are diamond-free. []

diamond

Figure 1

O

paw

Finding Maximum Cliques in Arbitrary and in Special Graphs 331

A graph G is called complete mul t ipart i te if it's vertex set V can be partitioned into
non empty sets 111 Vt such that (vi, vj) ~ E ~ , 3p, q E { 1 , t}, p ~ q with vi ~ Vp,
vj~ Vq. Obviously ~o(G) = t.

Lemma 4.: I f G is comple te mul t ipart i te then depth(Se~ --) = O.

Proof: Let vl, v2, . . . , vs, 1 < s < t, be pairwise adjacent vertices. W.l.o.g. v~ ~ Vii.
Then ~ = 1 N(vi) = U~=s+a V/. It follows ~5(G) = t with corresponding clique G(CI),
Cl = {vl , . . . , v~}. For the coloring c which is produced simultaneously with the
clique search c(vi) = i, i = 1, 2 t, holds. The vertices v~, j r { 1,. . . , t}, which are
not in the clique and not yet colored, have saturation degree t - 1, since vj ~ Vq has
neighbours of colors 1, . . . , q - 1, q + 1 t, but none of color q. If vj has to be
colored it is assigned c(vj) = q. The saturation degrees of the uncolored vertices
don't change any longer because the vertices from Vq are not adjacent to vj and all
other vertices already have a neighbour of color q. It follows 2(G) = t, together
&(G) = ~(G) and depth(SgJ) = 0. []

Theorem 5 dealt with graphs containing no complete graphs of cardinality r minus
one edge. A result of the same kind can be obtained for graphs without complete
graphs K r missing two adjacent edges. Those forbidden subgraphs will be denoted
by Kr - P3. Obviously K 3 - P3 =/~3- Graphs without K4 - P3 are also known as
paw-free graphs.

Theorem 7: L e t r ~ N, r >_ 3. I f G has no subgraph K~ -- P3 then depth(Sr <_ r - 3.

Proof: A graph is Pa-free iff it is disjoint union of complete graphs. Therefore the
set of fi3-free graphs is identical to the set of complete multipartite graphs. If
G has no subgraph K r - P3 then for every clique G(C1), ICll = r - 3, the com-
mon neighbourhood of the vertices of Cl is ffa-free. The theorem follows with
Lemma 4. []

Lemma 5: F o r biparti te graphs depth(5"~Y) = O.

Proof: Let G (V i) be a connected component of G with [V~I > 2. Then &(G(Vi)) = 2
with corresponding clique G(CI), Cl = {vl,v2}. Vl gets color 1, v 2 color 2. While
G (V ~) is not completely colored, there always exists a vertex of saturation degree 1.
This vertex can be colored with 1 or 2. Suppose a vertex has saturation degree 2.
Then G would contain an odd cycle and would not be bipartite. Therefore
~(G(Vi)) = 2. []

The proof shows that the coloring is optimal for bipartite graphs. Furthermore the
well known characterization of this graphs as graphs with chromatic number at
most 2 becomes evident. Lemma 5 is useful in regard to the study of planar graphs.

A graph has an embedding in the plane if it can be drawn such that no two edges
intersect. Graphs with existing embeddings are said to be planar. An embedding
divides the plane into connected areas, called faces . One of them is not bounded. It
is called outer face. A planar graph is outerplanar if it has an embedding where all
vertices touch the outer face.

332 L. Babel

A series-parallel graph is a partial subgraph of a 2-tree. The set of 2-trees is
recursively defined in the following way. A K 3 is a 2-tree. If G is a 2-tree and (u, v)
an edge of G then the graph which results from G by adding a vertex w and edges
(u, w), (v, w) is a 2-tree.

Lemma 6: I f G is series-parallel then depth(SP g-) <_ 1.

Proof: A graph H' is said to be a subdivision of a graph H if H' is obtained from H
by replacing some edges by paths. It is well known [11] that a graph is series-parallel
iff it has no subdivision of the K~ as a partial subgraph.

Consider the s-wheels K2(K D Cs), s _~ 4 (see Fig. 2(a)). Deleting the edges (u, vi),
i = 4, . . . , s, and replacing the path (v3, v4 G, v:) by the edge (Va, vl) (see (b), (c))
yields a complete graph with four vertices. Thus s-wheels contain a subdivision of
the K 4. As a consequence the subgraph induced by the neighbourhood of any vertex
in G does not contain a K 3 and a cycle C~ of particularly odd length. G(N(v)) is
bipartite for all v G V. With Lemma 5 the assertion follows. []

v 2

V3 0 C~V 4
(a) (b) (c)

Figure 2

Corollary 1: I f G is outerplanar then depth(~'~Y) ~_ 1.

Proof: Outerplanar graphs are series-parallel 1-93. []

Lemma 7" I f G is planar then depth(5~-) <_ 2.

Proof: G is planar iff it has neither a subdivision of the K s nor one of the K3, 3 as
a partial subgraph [3]. Similar to the proof of the previous lemma it can be shown
that the graphs K2(K2, Cs), s _> 4, contain a subdivision of the K 5 (replace vertex u
by two adjacent vertices ul and u2). This implies that G(N(vl) c~ N(vfl) is bipartite
for all pairs of adjacent vertices vi, vj. []

As both K 5 and K3, 3 contain subdivisions of K4, series-parallel graphs are planar
[9]. For planar graphs the well known Eulerian formula m < 3n - 6 holds. Thus
according to Theorem 4 the complexity of algorithm BB1 for series-parallel and
outerplanar graphs is at most O(n2), for planar graphs O(n3). However this results
can be improved substantially.

The computation of bounds for the original problem P(Uo, Vo) requires time
O(m + n) = O(n). The effort for all problems of distance 1 is of O([N(vOI) + ... +

Finding Maximum Cliques in Arbitrary and in Special Graphs 333

O(IN(v.)l) = O(n), since the graph G(Vt) belonging to P(U. Vt), Ut = {vi}, has at
most [g(vi)] vertices and due to planarity o(Ig(v3[) edges. Replacing P(Uo, Vo) by
P(U. V~) shows that all successors of P(U. V~) are treated in time o(Ig(v31) which
summed over all problems of distance 1 gives O(n). It follows:

Theorem 8: Algorithm BB1 solves the maximum clique problem for planar graphs in
O(n).

Hence the algorithm is optimal concerning complexity. Another O(n)-method is
known in literature [34] which lists all maximal cliques and looks for a largest
among them.

In all results for algorithm BB1 achieved so far any of the two branching rules could
be applied. For the remainder of subsection 4.1 we restrict to rule I.

Graphs containing no subgraphs C s, s > 4, are called chordal. They can also be
characterized by the existence of a perfect elimination scheme, i.e. an ordering
(Vl, V 2 On) of the vertices such that the subgraphs induced by N(vi) c~ {v~+l v,}
are complete [6]. Let (v n, v ,_l , . . . , v l) be the order in which the vertices of a chordal
graph are colored by procedure Boundsl.

Proposition: Given vl, vj, vp ~ V, i > j > p, with (v i, Vp) E E and (vl, vj) q~ E, there exists
a vq ~ V, q > j, with (vj, vq) ~ E, (vp, Vq) r E.

Proof: Proceed from the situation c(v,) r O, j < r < n, and c(vr) = O, 1 <_ r < j.
v~ is already colored, vp not yet and v~ is the vertex colored next. If satdeg(vj) >
satdeg(vp) then a vq ~ N(vj) exists with a color c(vq) that does not occur in N(vp).
Consequently Vq 6 N(vp). If satdeg(vj) = satdeg(Vp) then due to the tie breaking rule
cdeg(vj) _> cdeg(v,). Since v i ~ N(vp) and vi r N(vj) there is a vertex vq, c(vq) ~ O,
which is adjacent to vj but not to v,. []

Lemma 8: For a chordal graph the reverse coloring order (v l , . . . , v ,) is a perfect
elimination scheme.

Proof: Considering the proposition it can be argumented in an analogous way as
in the proof of Theorem 4.8 in [-8] where a perfect elimination scheme is constructed
by a lexicographic breadth first search. []

It is obvious that the proposition remains true if the graph is colored by Bounds2.
Thus Lemma 8 holds for both bounding procedures.

Given P(Uo, Vo) the branching rule I produces subproblems P(U. Vt) where Ut =
{vt} and G(V~), t = 1 n, are complete graphs. This shows:

Theorem 9: For chordal graphs depth(5~-) <_ 1 if branching rule I is applied.

The complexity of BB1 for this important class of graphs is O(m. n + n 2) whereas
the best known algorithm is of O(m + n) [35]. Here it should be mentioned that the
presented solution method does not always reach the complexity of eventually
existing special algorithms. This indeed cannot be demanded because we don't have
a method that is constructed for one special class. Rather it shall solve the problem
uniformly fast for all possible graphs.

334 L. Babel

Given a family of intervals of the real line a graph whose vertices represent this
intervals with two vertices being adjacent iff the corresponding intervals intersect
is called an interval graph.

Corollary 2: I f G is an interval graph then depth(Sr <_ 1 with branching rule I.

Proof: Interval graphs are chordal [8]. []

G is a split graph if there exists a partition of the vertex set V into sets V 1, V 2,
V 1 u V 2 = V, V: c~ V 2 = ~ , such that V: induces a clique and V2 is independent.

Corollary 3: I f G is a split graph then depth(SeJ -) < 1 with branching rule I.

Proof: Split graphs can be characterized as graphs without subgraphs Cs, Cs, s > 4
[8]. Thus they are chordal. []

We now introduce an extension of the concept of chordality. For fixed r G N a graph
G is defined to be r-chordal if the subgraph induced by the common neighbourhood
of any r pairwise adjacent vertices is chordal, or equivalently, if G is Kz(Kr, Cs)-free
for all s > 4. Obviously a chordal graph is r-chordal for every r. The 1-chordal
graphs are identical to the graphs without wheels. Examples for 1- and 2-chordal
graphs are series-parallel and planar graphs (see proofs of Lemma 6 and 7). Now
Theorem 9 immediately implies:

Theorem 10: For r-chordal graphs depth(SP g-) <_ r + 1 if branching rule I is applied.
Particularly depth(5'~ --) <_ 2 for graphs without wheels.

A generalization of interval graphs are circular arc graphs. Here the vertices
represent arcs of a circle. Two vertices are adjacent iff the arcs have nonempty
intersection. Every interval graph is a circular arc graph (choose one point to the
left and one to the right of all intervals and bend the part of the axis in between to
a circle), but the converse is not true (C4 is a circular arc but not an interval graph).
A circular arc graph is called Helly circular arc graph if there exists a representation
by arcs where no three arcs cover the whole circle.

Theorem l l : Helly circular arc graphs are 1-chordal.

Proof: Let {Avlv ~ V} be the set of arcs in a representation with the demanded
property. For any v ~ V there is a point Pv on the circle with Pv ~ U,~s~)Au. If the
circle is cut in this point and rolled out on the real axis an interval representation
for G(N(v)) results. This shows that G(N(v)) is an interval graph and consequently
a chordal graph. []

Theorem 12: Line graphs are 2-chordal.

Proof: It is easy to verify that in a line graph the common neighbourhood of any
pair of adjacent vertices induces a Cs-free graph, s _> 4. []

4.2. Extended Clique Search

The versions BB1 and BB2 of algorithm BB differ only in the tie breaking rule used
during the clique search in procedures Bounds1/2. Since this rule has been of no

Finding Maximum Cliques in Arbitrary and in Special Graphs 335

importance in the past subsection (except Lemma 8) all results obtained for BB1
also hold for BB2. If extended clique search is applied then the algorithm is
polynomial for some further graph classes.

Connected graphs without subgraphs C~, s > 3, are called trees. A forest is the
disjoint union of trees. Since forests are bipartite with Lemma 5 dep th (~J -) = 0
holds.

Lemma 9: I f G is the complement of a forest then depth(SCJ -) = O.

Proof: Let Vl be a vertex of maximal degree in G. Since forests contain vertices of
degree at most 1, deg(vl) e {n - 2,n - 1} holds. As a consequence vl is a vertex of
a maximum clique G(MC1)in G. Let {v~ ,vt} ___ MCl. G~ := G(01= 1U(v~))is the
complement of a forest. If v~+a has maximal degree in G~ then by the same argument
as above v , is contained in a maximum clique of Gr This shows that the clique
constructed by the extended clique search is not only maximal but maximum and
oS(G) ---- co(G).

It remains to proof that ~(G) = co(G). The vertices vx, v2 v,~a) of the maxi-
mum clique G(MCI) are colored 1, 2, . . . , co(G). Label the remaining vertices by
v~,~)+~, . . . , v, such that first the vertex not adjacent to vl appears (if it exists) then
the only left vertex not adjacent to v 2 (if it exists) and so on. Due to maximality of
M C l all vertices of V are captured. For co(G) < i <_ n let Vk~ o ~ M C I be the vertex
with smallest index not adjacent to v i. If i < j then k(i) < k(j). Every vertex vi q~ MCI
is assigned a color c(vi) >_ k(i). Suppose v~ is the first vertex with a color greater than
k(j). In the moment of being colored vj is adjacent to a vertex v 1 ~ MCI, c(v,) = k(j).
From c(vl) >_ k(l) and the choice ofvj follows k(1) = k(j) , a contradiction, sincej ~ 1.
Therefore every vertex v i, i > co(G), is colored k(i). The total number of colors used
in G is co(G). []

An immediate consequence of this lemma is:

Theorem 13: Let r ~ ~. I f a graph G has no subgraph Kz(K~, C~) for all s > 3 then
depth(5r <_ r.

In the previous subsection it was stated that line graphs are 2-chordal. Thus
according to Theorem 10 depth(SPJ -) < 3 if branching rule I is applied. For
algorithm BB2 with any of the two branching rules a sharper result can be achieved.

Theorem 14: For line graphs depth(5r -) <_ 2 holds.

Proof: The subgraph induced by the common neighbourhood of any two adjacent
vertices is (7~-free, s >_ 3. This can easily be varified for s = 3, 4. Every C~, s > 6,
contains a C 4, furthermore C5 = C5. Since line graphs are 2-chordal it is also true
for s _> 5. The assertion follows with Theorem 13. []

For split graphs too, the estimation of the size of the search tree given in Corollary
3, d e p t h (5 ~ --) < 1, is valid only for branching rule I. In the following we show that
using extended clique search no branching is performed, thus yielding an O(m + n)-
algorithm.

Theorem 15: I f G is a split graph then depth(5r = O.

336 L. Babel

Proof: Let 1/1, V2 be a partition of V such that 1/1 induce a clique and V 2 is
independent. First we show that for every vertex v of maximal degree there exists a
maximum clique containing v (since subgraphs of split graphs are split graphs again
this implies &(G) = co(G)). Suppose this is not true. Then for every maximum clique
G(MCl) there are vertices ul, u 2 ~ M C I with ui, u 2 r N(v). Due to the partition
v e 1/2 and ui e V1 for at least one i e {1,2} holds. Let ul e Vi. Since N(v) ~_ V1 and
N(u~) ~_ Vi - {ul} it is N(v) ~ N(Ul). u2 is adjacent to ul but not to v, therefore
N(v) c N(ul) in contradiction to the choice of v.

Consider now the coloring. The first co(G) vertices induce a maximum clique and
are colored 1, 2 , co(G). We have to check whether one of the remaining vertices
may be assigned a color greater than co(G). Let u be any vertex of V2 with u r MCI.
Since N (u) c 1"1 the degree of u is smaller than co(G). Hence one color from
{1,2,...,co(G)} is free. There exists at most one vertex v e 1/1 which is not in MCl.
If v has no neighbours in V 2 then deg(v) < co(G) and the situation is the same as for
u. Otherwise let w e N(v) n V2. Obviously w r MCl . Suppose w is colored before v.
Then satdeg(w) > satdeg(v) = co(G) - 1 holds at the moment w is colored, implying
N(w) = 1/'1. This is not possible because 1/1 u {w} would induce a clique with more
than IMCll vertices. Consequently v is colored prior to all it's neighbours in V2 and
is assigned a color not greater than co(G). It follows ~(G) = co(G). []

We are now turning to the class of P4-free graphs, also known as cographs. This
graphs (as well as for instance chordal and bipartite graphs) are perfect, i.e. co(H) =
)~(H) for all H _ G holds. It can be shown [12] that every sequential coloring method
yields an optimal coloring for P4-free graphs. In 1-23] an O(n)-solution method for
the maximum clique problem is presented. Since it seems not possible to proof
polynomiality of algorithm BB we consider P4-free graphs with additional prop-
erties. From them new classes with polynomial solvable maximum clique problem
can be deduced.

Lemma 10: I f G is P4- and S3-free then depth(Se~ -) = O.

Proof: It suffices to show that every vertex v of maximal degree is in a maximum
clique. Then oh(G)= co(G) and with ~(G)= z (G) = co(G) for P4-free graphs the
lemma follows.

Suppose the contrary. Let G(MCI) be a maximum clique and W = V - {v} - N(v)

with I WI = k. T h e n

(i) W ~ M C I holds

Otherwise, there is a w e IV, w r MCI. Due to maximality of M C l vertices ut,
u 2 e MC1 exist with (ul, v) r E and (u2, w) r E. S 3 ~ G implies u I # u 2. Since
G({u l , v ,w}) ~ $3, G({u2,v ,w}) ~ $3 it is (ul,w) e E and (u2, v) e E. But then v, u2,
u~, w induce a path P4.

(ii) A vertex v* e N(v) exists with N(v) u N(v*) r Vand N(v) - {v*} ~ N(v*) - {v}.
Let w e W. Since deg(w) _< deg(v) there are (beneath v) at least k - 1 vertices v2,
v3,. �9 vk ~ N (w). From (i) G(W) is complete, thus v lr W, i = 2 , . . . , k. G({v, vz, . . ., k})
is complete too, otherwise w together with two non adjacent vertices of this graph

Finding Maximum Cliques in Arbitrary and in Special Graphs 337

induce a S 3. If N (v) - {vi} = N(v~) - {v} for i = 2 k then G (M C l - W w
{/3,vz,...,vk}) would be a clique with [MCI[- IW[+ k = IMCl[vertices, thus a
maximum clique containing v. This proves (ii).

Now let/3* be as in (ii) and u r N(v) w N(/3*). From deg(v) _> deg(v*) and N(v) -
{v*} r N(v*) - {v} follows the existence of a vertex u* which is adjacent to v but
not to/3*. G({/3*, u*, u}) r S 3 implies (u, u*) e E. But then the graph induced by v*,
v, u*, u is a P4. Hence the assumption is not true, there is a maximum clique
containing v. []

P4- and S3-free graphs can also be characterized as graphs whose complements are
P4-free bipartite. This follows from/54 = P4, $3 = K3 and the fact that P4- and
K3-free graphs possess no odd cycles.

Theorem 16: Let r ~ N. I f a graph G has no subgraphs K2(Kr, P4) and K2(Kr, Sa) then
depth(SO J-) <_ r.

Proof: Straightforward. []

A graph without subgraph K1, 3 is called claw-free. The maximum clique problem
is NP-complete for this class of graphs [10]. For that reason it is of some interest
to find large subclasses for which the problem is solvable in polynomial time. One
such subclass is attained if additionally to K 1,3 no cycles of odd length and their
complements are allowed [29]. The above theorem yields another class for r = 1,
namely the graphs containing no K1,3 and K2(K1,1~ (also known in literature as
gem).

claw gem

Figure 3

F = K2{$2,C 4)

Lemma l h I f a graph G is P4- and F-free (see Fig. 3) then depth(SeY) = O.

Proof: Let G i be a connected component of G with co(G i) = co(G) and v a vertex of
maximal degree in G i. Suppose no maximum clique exists containing v. Then there
are vertices vl,/32 from a maximum clique G(MCl) ~ G i with vl, /32 ~ N(v). G i is
connected and P4-free. Therefore it contains the subgraph given in Fig. 4(a). Since
deg(/3) > deg(/31) a vertex wl exists which is adjacent to/3 but not to/31- It is (w 1, u) e E
and (wl, v2) r E, otherwise wl,/3, u, v 1 or/3, wl, v2, vl induce a 1~ (see Fig. 4(b)). Since
deg(/3) > deg(u) there is a vertex w 2 with (W2,/3) e E and (w2, u) r E. G({w2, v, u, v 1 })

338 L. Babel

P4 and G({w2,v,u, v2}) =/= P4 implies the existence of edges (wz,vl) and (W2, V2). At
last (w~, wz) ~ E, otherwise wz, v~, u, Wx induce a P4. This construction, however,
results in the graph F, a contradiction.

V V 1 V 2 V W 1 V 1 V 2

U U

(a) (b)

Figure 4

Therefore the maximal clique built in the bounding procedure is maximum,
eS(G i) = oh(G) = co(G). Since G is P4-free,)~(G) = co(G) follows and the lemma is
proved. []

Theorem 17: Let r E N. For graphs without subgraphs Kz(K r, P4) and K2(K ,, F)
dep th(5~ -) <_ r holds.

Proof: Straightforward. []

5. Computational Experience

The presented algorithm has been implemented in PASCAL and extensively tested
on random graphs of varying cardinality n and edge density p (probability of the
existence of an edge). If n is fixed then p can be interpreted as a measure for the
difficulty of a problem. With increasing p the 'hardness' grows. In the following
tables for each pair (n, p) the average values of running time resp. number of nodes
in the search tree of 5 graphs is stated. The problems were run on a CDC Cyber 995.

Table 1. Computational results on random graphs with 100 vertices

edge clique
density number

p co
CPU-time [ms] (number of search tree nodes)

BBI(I) BBI(II) BB2(I) BB2(II)

0.1 4 82 (78) 66 (31) 115 (80) 101 (39)
0.2 5 141 (102) 119 (60) 182 (82) 162 (45)
0.3 6 231 (145) 196 (81) 292 (98) 201 (61)
0.4 8 378 (198) 328 (116) 586 (191) 473 (87)
0.5 9 1287 (759) 794 (252) 1588 (606) 1227 (223)
0.6 11-12 3577 (1602) 2031 (542) 5238 (1195) 3431 (477)
0.7 14-15 10478 (3244) 5406 (1018) 11440 (1662) 7904 (750)
0.8 19-21 47737 (9045) 17691 (2192) 90862 (6382) 34733 (1859)
0.9 29-31 197596 (18199) 28401 (1698) 246309 (6707) 79979 (1752)

Finding Maximum Cliques in Arbitrary and in Special Graphs

Table 2. Computational results on random graphs

339

vertex edge clique
number density number

n p 09
CPU-time [ms] (number of search tree nodes)

BALAS-YU BB

50 0.1 3 29 (8) 14 (6)
0.2 4 41 (24) 24 (20)
0.3 5 57 (36) 30 (20)
0.4 6 82 (53) 42 (24)
0.5 7-8 133 (88) 55 (27)
0.6 8-9 222 (132) 106 (52)
0.7 11 425 (213) 143 (54)
0.8 13-15 1228 (512) 185 (51)
0.9 19-22 3295 (879) 132 (22)

100 0.1 4 120 (38) 66 (31)
0.2 5 190 (66) 119 (60)
0.3 6 324 (128) 196 (81)
0.4 8 630 (254) 328 (116)
0.5 9 1704 (698) 794 (252)
0,6 11-12 5069 (1744) 2031 (542)
0.7 14-15 18987 (5019) 5406 (1018)
0.8 19-21 152089 (29363) 17691 (2192)
0.9 29-31 1726262 (175148) 28401 (1698)

200 0.1 4-5 536 (111) 324 (111)
0.2 6 1079 (291) 669 (192)
0.3 7-8 2702 (872) 1623 (526)
0.4 9-10 9027 (2738) 4779 (1241)
0.5 11 38079 (10567) 17318 (3721)
0.6 13-14 232199 (51895) 87325 (15747)
0.7 18-19 2279269 (367230) 630097 (79734)
0.8 24 - - 10761173 (893158)

300 0.1 5 1363 (238) 880 (196)
0.2 6 3489 (970) 2130 (535)
0.3 8 12415 (3736) 6991 (1953)
0.4 10 54650 (14655) 28492 (6307)
0.5 12-13 353138 (81258) 152195 (29256)
0.6 15-16 3499705 (608089) 1242186 (183454)
0.7 21 - - 16221377 (1521542)

400 0.1 5 2707 (378) 1743 (295)
0.2 6-7 9011 (2677) 5234 (1462)
0.3 8 38864 (10900) 22791 (5662)
0.4 10 219499 (53682) 113352 (24606)
0.5 12-13 2016208 (443262) 831199 (141892)
0.6 16 - - 10043446 (1333978)

500 0.1 5 4663 (565) 2998 (415)
0.2 7 18028 (4603) 10568 (2740)
0.3 8-9 95838 (24824) 57560 (13015)
0.4 10-11 699648 (167462) 327797 (66494)
0.5 14 6234793 (971992) 3082303 (476392)

340 L. Babel

Table 1 gives results for the versions BB1 and BB2 of algori thm BB provided with
both branching rule I and II. The applied node selection rule is depth first search.
Compared to BB 1 the version BB2 generally yields a considerable reduct ion of the
number of nodes in the search tree. However the time addit ionally spent to compute
the vertex degrees (which is necessary to perform extended clique search) outweighs
this advantage. The running time is higher to some extent. Branching rule II is
clearly superior to rule I bo th concerning the size of the search tree and the running
time. In all BB 1 together with rule I I seems to be the mos t efficient version. This
version (in Table 2 denoted by BB for short) was compared to the fastest algori thm
known so far which is due to Balas and Yu [15]. The main idea of their method
is to find large subgraphs (they choose chordal graphs) where the problem is
polynomial ly solvable. Table 2 states the performances for graphs with 50-500
vertices (if the vertex number is larger then only sparse graphs can be treated, but
these problems are not the mos t interesting ones). Fo r running times greater than
3.106 ms we contented with one example. If no entry is made the time limit of
2.2. l0 T ms was exceeded. A m o n g the examples there was none where the running
time of B B is higher than that of BALAS-YU. The quotient of the running times
grows from 1.5 for sparse graphs to about 60 for dense graphs. Similar results hold
for the size of the search trees. Thus especially for difficult problems a remarkable
efficiency improvement is achieved.

References

[1] Babel, L.: Ein Branch and Bound-Verfahren zur LOsung des Maximum Clique Problems. Disserta-
tion, TU Miinchen (1990).

[2] Babel, L., Tinhofer, G.: A branch and bound algorithm for the maximum clique problem. ZOR--
Methods and Models of Operations Research 34, 207-217 (1990).

[3] Berge, C.: Graphs and hypergraphs, Amsterdam: North Holland (1973).
[4] Brelaz, D.: New methods to color the vertices of a graph. Comm. of the A CM 22, 251-256 (1979).
[5] Deo, N.: Graph theory with applications to engineering and computer science. New York: Prentice

Hall (1974).
[6] Fulkerson, D. R., Gross, O. A.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835-855

(1965).
[7] Garey, M. R., Johnson, D. S.: Computers and intractability. Freeman, N. Y. (1979).
[8] Golumbic, M. C.: Algorithmic graph theory and perfect graphs. New York: Academic Press (1980).
[9] Johnson, D. S.: The NP-completeness column: an ongoing guide. J Algorithms 6, 434-451 (1985).

[10] Johnson, D. S.: The NP-completeness column: an ongoing guide. J Algorithms 8, 438-448 (1987).
[11] Wald, J. A., Colbourn, C. J.: Steiner trees, partial 2-trees, and minimum IFI networks. Networks

I3, 159-167 (1983).
[12] de Werra, D.: Heuristics for graph colorings. In: Tinhofer, G., (ed.) Computational graph theory.

Computing Suppl 7, 191 208. Wien New York: Springer (1990).
[-13] Augustson, J. G., Minker, J.: An analysis of some graph theoretical cluster techniques. J. of the

ACM 17, 571-588 (1970).
[14] Balas, E., Samuelsson, H.: A node covering algorithm. Naval Res. Log. Quart. 24, 213-233 (1977).
[15] Balas, E., Yu, C. S.: Finding a maximum clique in an arbitrary graph. SIAM J. Computing 15,

1054-1068 (1986).
[16] Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph. Comm. of the ACM 16, 575-577

(1973).
[17] Friden, C., Hertz, A., de Werra, D.: TABARIS: an exact algorithm based on tabu search for finding

a maximum independent set in a graph. Preprint, ORWP 3 (1989).
[18] Gerhards, L, Lindenberg, W.: Clique detection for nondirected graphs: Two new algorithms.

Computing 21,295-322 (1979).

L. Babel: Finding Maximum Cliques in Arbitrary and in Special Graphs 341

[19] Loukakis, E.: A new backtracking algorithm for generating the family of maximal independent
sets of a graph. Comp. Math. Appl. 9, 583-589 (1983).

[20] Loukakis, E., Tsouros, C.: Determining the number ofinternal stability of a graph. Intern. J. Comp.
Math. 11,207-220 (1982).

[21] Nemhauser, G. L., Trotter, L. E.: Vertex packings: structural properties and algorithms. Math.
Programming 8, 232 248 (1975).

[22] Tarjan, R. E., Trojanowski, A. E.: Finding a maximum independent set. SIAM J. Computing 6,
537-546 (1977).

[23] Corneil, D. G., Perl, Y., Stewart, L. K.: A linear recognition algorithm for cographs. SIAM J.
Computing 14, 929-934 (1985).

[24] Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and
maximum independent set of a chordal graph. SIAM J. Computing 1,180-i87 (1972).

[25] Gavril, F.: Algorithms for a maximum clique and maximum independent set of a circle graph.
Networks 3, 261-273 (1973).

[26] Gavril, F.: Algorithms on circular-arc-graphs. Networks 4, 357-369 (1974).
[27] Golumbic, M. C., Hammer, P. L.: Stability in circular-arc-graphs. J Algorithms 9, 314 320 (1988).
[28] Gupta, U., Lee, D., Leung, J.: Efficient algorithms for interval graphs and circular-arc-graphs.

Networks 12, 459-467 (1982).
[29] Hsu, W.-L., Ikura, Y., Nemhauser, G. L.: A polynomial algorithm for maximum weighted vertex

packings on graphs without long odd cycles. Mathematical Programming 20, 225-232 (1981).
[30] Hsu, W.-L., Nemhauser, G. L.: Algorithms for maximum weight cliques, minimum weighted clique

covers and minimum colorings of claw-free perfect graphs. Ann Discrete Math. 21,357-369 (1984).
[31] Masuda, S., Nakajima, K.: An optimal algorithm for finding a maximum independent set of a

circular-arc-graph. SIAM J. Computing 17, 41 52(1988).
[32] Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Efficient algorithms for finding maxi-

mum cliques of an overlap graph. Networks 20, 157 - 171 (1990).
[33] Minty, G. J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory B 28,

284-304 (1980).
[34] Papadimitriou, C. H., Yannakakis, M.: The clique problem for planar graphs. Inform. Proc. Letters

13, 131-133 (1981).
[35] Rose, D. J., Tarjan, R. E., Lueker, G. S.: Algorithmic aspects of vertex elimination on graphs. SlAM

J: Computing 5, 266-283 (1976).
[36] Rotem, D., Urrutia, J.: Finding maximum cliques in circle graphs. Networks 11,269-278 (1981).

Luitpold Babel
Mathematisches Institut
Technische Universit~it Miinchen
ArcisstraBe 21
D-W-8000 Mfinchen 2
Federal Republic of Germany

