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Concepts of fractaYmultifractal dimensions and fractal measure were used to derive the prior 
and posterior probabilities that a small unit cell on a geological map contains one or more 
mineral deposits. This has led to a new version of the weights of evidence technique which 
is proposed for integrating spatial datasets that exhibit nonfractal and fractal patterns to predict 
mineral potential. The method is demonstrated with a case study of gold mineral potential 
estimation in the Iskut River area, northwestern British Columbia. Several geological, geophysi- 
cal, and geochemical patterns (Paleozoic-Mesozoic sedimentary and volcanic elastic rocks; 
buffer zones around the contacts between sedimentary rocks and Mesozoic intrusive rocks; a 
linear magnetic anomaly; and geochemical anomalies for Au and associated elements in 
stream sediments)were integrated with the gold mineral occurrences which have fractal and 
multifractal properties with a box-counting dimension of 1.335 • 0.077 and cluster dimension 
of 1.219.4- 0.037. 

KEY WORDS: Fractal; multifractal; fractal measure; data integration; cluster dimension; GIS; mineral 
potential mapping. 

INTRODUCTION 

Geoscience maps of different types are to be inte- 
grated for target selection in mineral exploration. The 
geologist compares these maps and looks for combina- 
tions of indicators favorable for occurrence of mineral 
deposits of different types. The statistical integration 
of map data often involves the following stages: (1) 
superimposing grid cells of the same shape on a geo- 
logical map; (2) coding relevant geological, geophysi- 
cal, geochemical, and remote sensing features and 
mineral deposit information; and (3) modeling the 
association between the mineral deposits and the geo- 
science variables coded for each cell. Models con- 
structed in this way are then used to predict 
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undiscovered mineral deposits of the same type. The 
results obtained may depend strongly on the definitions 
of the variables used for the calculations and also on 
the arrangement, shapes, and sizes of the cells. In order 
to improve estimation, several types of approaches 
have been made; for example, various types of geosci- 
ence data can be extracted and associated according 
to a geological model locally characterizing the occur- 
rence of mineral deposits (Harris, 1984; McCammon 
and others, 1983; Agterberg, 1989; Harris and Pan, 
1991; Bonham-Carter and Chung, 1983; Bonham-Car- 
ter and Wright, 1989; Cheng, 1985; Cheng and Wang, 
1990). Cell size and shape can be optimized; for exam- 
ple, irregularly shaped polygons, called "unique condi- 
tions" have been used by Agterberg and others (1990). 
These unique conditions represent real spatial objects 
characterized by unique geological conditions. Other 
efforts in this field include those by Cheng (1985), 
Cheng and Wang (1990), and Wang and others (1990) 
who also used geological objects instead of grid cells 
for sampling. In the latter studies, geological objects 
at different scales conceptually corresponding to ore 
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belts, ore fields, and ore deposits, were delineated 
on the geological map using synthesized (geological, 
geochemical, geophysical, and remote sensing) fea- 
tures and the favorability for mineralization and the 
amount of mineral resources were statistically esti- 
mated for each type of object. 

The representation and calculation required for 
quantitative analysis of digitized patterns (points, lines, 
and areas) have been greatly aided by the development 
of geographical information systems (GIS) for the 
treatment of map data (Bonham-Carter, 1994; Bon- 
ham-Carter and others, 1988). In particular, the raster 
data model is available in most of GIS systems, which 
have the functionality to convert vector to raster for- 
mats suitable for data integration on the basis of unit 
cells or pixels. These and other GIS capabilities have 
led to the development of new methods for statistical 
and nonstatistical pattern integration, simulating the 
practice by exploration geologists of superimposing 
maps for delineating favorable areas. For instance, the 
weights of evidence method was proposed and has 
been intensively used for data integration (Agterberg, 
1989, 1992; Agterberg and others, 1993b; Bonham- 
Carter 1994; Bonham-Carter and others, 1988; Cheng 
and others, 1994a). This method can be implemented 
by means of GIS on the basis of a polygon overlay 
map, called the unique conditions map, where each 
polygon represents a unique combination of the classes 
of input maps, although the calculations of the weights 
are performed by defining a fundamental unit area, or 
"unit cell." In addition, knowledge-based or subjective 
techniques have been used, including fuzzy set theory 
(An and others, 1991, 1992; Bonham-Carter, 1994; 
Cheng, 1986; Wright and Bonham-Carter, 1996) and 
the Dempster-Shafer model (Chung and Moon, 1991; 
Chung and Fabbri, 1993; An and others, 1994a, 1994b; 
Wright and Bonham-Carter, 1996). Fractal modeling 
was proposed for dealing with fractal and nonfractal 
patterns (Cheng, 1995; Cheng and others, 1994b). 
Implementation of these methods, especially for data- 
driven or objective models, usually employs measures 
on the map patterns, such as number of points, lengths 
of line segments, and areas of polygons. The required 
prior and conditional probabilities in weights of evi- 
dence modeling are estimated from the number of 
events (mineral deposits) and areas of indicator pat- 
terns. A commonly-used method is to superimpose a 
grid on the map which contains patterns of points, 
lines, and polygons for the features of interest, and 
then to count the number of ceils containing these 
attributes. These numbers, from which the probabilities 

are estimated, depend on the cell size. In addition, it is 
usually assumed that the patterns are randomly located 
with respect to each small unit cell. 

Fractal theory has shown that spatial patterns 
often exhibit non-integer dimension. For fractal pat- 
terns, the concepts of number, length, and area are not 
valid. In addition, as discussed by Cheng and Agterb- 
erg (1995), point patterns may have a spatial distribu- 
tion with multifractal properties. "Ordinary" data 
integration methods can be modified to account for 
fractal properties. The purpose of this paper is to intro- 
duce a new procedure for fractal pattern integration. 
This method is demonstrated with a case study of Au 
mineral potential estimation in the Iskut River map 
sheet, northwestern British Columbia. The method can 
also be used for evaluating impact areas in environ- 
mental studies. 

CHARACTERISTICS OF FRACTAL/ 
MULTIFRACTAL PATTERNS AND 
MEASUREMENTS 

A fractal is a set with Hausdorff-Besicovitch 
dimension differing from its topological dimension 
(Mandelbrot, 1983; Cheng 1995). A classic example 
is the coastline. When a coastline is measured at pro- 
gressively larger scales, its length generally increases 
infinitely. Applied to polygons, lines, and points, the 
ordinary measures of area, length, and number may 
be not valid if these objects are fractals. Figure 1A 
illustrates an artificial spatial object (black area) in a 
square region. The fractal dimension can be deter- 
mined by box-counting as follows. A grid with variable 
cell size e (1/2 to 1/32) is superimposed on the region. 
The number of cells containing the object, denoted as 
N(e), is counted and represented in a log-log plot 
(figure 1B). A straight line fitted to these values has 
an estimated slope of -1.76. The corresponding esti- 
mate of the box-counting dimension is 1.76. In general, 
if the value Na(e)e 2 approaches a finite value for small 
e, it can be taken as the estimated area of nonfractal 
objects; NL(e)e and Ne(e) are comparable measures of 
the length and number of nonfractal line and point 
objects, respectively, For fractal objects, however, N(e) 
satisfies the following power-law relation (Mandel- 
brot, 1983): 

N(e) = Ce -D (1) 
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Figure 1. Artificial example showing fractal pattern and fractal 
measurements. (A) Fractal pattern is represented by black areas. 
Cell size is 1/16; (B) Log-log plot showing relationship between 
number of boxes containing the pattern for cell size �9 (i/2, 1/4, 1/ 
8, 1/16, i/32). Straight line is least-squares fit, giving D = 1.76. 

where 0 - D ----- 2 is the box-counting dimension of 
the fractal pattern and c is a constant. This relation can 
be represented as a linear function on log-log paper: 

Log N(e) = Log c - D Log �9 (2) 

The dimension (D) is a useful measure for fractal 
patterns. Nonfractal geometries with integer dimen- 
sions can be considered as special fractal geometries. 
The constant c in equation 1 is also a measure of the 
geometry. For ordinary geometry c represents area with 
D = 2, length of line with D = 1, or number of points 
with D = 0. For fractals in D-dimensional space it is 
a measure of "size" that satisfies 

c = lim N(e)e n (3) 
e--0 

As a recent development of fractal theory, the concept 
of multifractal modeling has been applied in various 

fields of science for dealing with self-similar measures. 
For describing the characteristics of spatial patterns 
intersected with each cell, instead of using a binary 
measure for describing whether or not the cell contains 
an object, a more general measure can be defined, such 
as percentage of cell area occupied by the object. This 
measure to be denoted as I~(e), depends on cell size 
E. If ~(e) is a multifractal measure, then its partition 
function 

N(e) 
Xq(E) = ~ ~lbq(e) (4) 

i=l 

satisfies the following power-law relation for any 
q(-o0 _< q _< oo) 

Xq(E ) OC iE'r(q) (5) 

where N(r represents the total number of cells con- 
taining the object. The parameter'r(q), called the "mass 
exponent," is a function of q. If  r(q) is a linear function 
of q, the multifractal reduces to a simple fractal; if it 
consists of finite straight line segments the multifractal 
can be called a discrete multifractal; and if  "r(q) is a 
continuous function the multifractal is a continuous 
multifractal (cf. Cheng, 1995). Setting q = 0 in equa- 
tion 5 gives 

X0(e) = N(r oc eT(0) (6) 

for the partition function with box-counting dimension 
De = -'r(0). By setting q = I, q = 2 in equation 5, 
the values of "r(1) and "r(2) can be estimated. These 
parameters can be used for characterizing the spatial 
distribution of the objects (for details see Cheng and 
Agterberg, 1995). In general, -r(1) = 0 which expresses 
that the total "mass" • is independent of r Here 
this approach is used for a point set as follows. 

Suppose a group of points E (mineral occur- 
rences) in an area S C R 2. The total number of  points 
E may or may not be finite. Two cases can be consid- 
ered: (1) the points in S have complete spatial ran- 
domness (CSR), or (2) the points E have a fractal/ 
multifractal spatial distribution with a box-counting 
fractal dimension De and cluster fractal dimension Dc 
= "r(2). Various methods have been developed for 
testing the CSR assumption corresponding to a simple 
Poisson process (Ripley, 1981, 1988; Diggle, 1983; 
Cressie, 1991; Agterberg, 1994). In fractal methods 
(Mandelbrot, 1983; Feder, 1988; Carlson, 1991; Cole- 
man and Pietronero, 1992; Cheng, 1995; Agterberg, 
1994; Agterberg and others, 1993a), both the box- 
counting dimension De and cluster dimension Dc have 
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been used for describing the spatial properties of point 
processes. Multifractal modeling and associated spatial 
statistical methods can also be applied to point pro- 
cesses (Cheng, 1995; Cheng and Agterberg, 1995, sub- 
mitted). Points satisfying a simple Poisson process 
with CSR have De = -a'(0) = 2 and Dc = "r(2) = 
2; otherwise, De = -'c(O) < 2 and Dc = "c(2) < 2 
indicating significant clustering. In order to construct 
a measure to characterize the distribution of points E 
which can be interpreted as a probability we need the 
following additional definitions. 

Assume that a small cell u (without a lose of 
generality u can be taken as rectangular with size r x 
~) is randomly taken from S. Three random variables 
can be defined: (1) the number of cells of size r • �9 
covering the set S, to be denoted as Ns with expected 
value ENs = ISI/~ 2 where ISI is the total area of set S; 
(2) the number of cells containing at least one point, 
denoted as N s, which is a random variable with 
expected value EN~ = N(e); and (3) the number of 
points in an area A C S, denoted as N(A), which is a 
discrete random variable (N(A) = O, 1 . . . . .  n). 

In the case of points with the CSR property, for 
any two sets A C S and B C S which do not intersect 
(A fq B = ~), N(A) and N(B) are independent random 
variables with binomial frequency distributions, e.g., 
for A: 

( Isl) P{N(A) = k} = k k 1 - n -  k (7) 

If n > >  1, equation 7 becomes a Poisson distribution 

P{N(A) = k} ~- (klAI)i e -xtal (8) 
k.t 

where h = nllSI. Therefore, the probability of a small 
cell u containing one or more points is 

P{N(u) ~ 1} 

= 1 - P{N(u).  (9) 

= 0}  

= 1 -  I -  n 

or, from equation 8, 

P{N(u) --> 1} ~ 1 - e -x~2 (10) 

For small r equations 9 and 10 become approximately 

n e2 (11) P{N(u) >-- 1} ~ 

and 

P{N(u) -- 1 } ~ he 2 (12) 

Either one of these two relations, which become identi- 
cal for large n and small r is commonly used to esti- 
mate the probability P{N(u) >- 1 }. It will be shown 
that these relations have to be modified in the case of 
fractal points. 

In order to generalize equations 11 and 12, the 
following relation between the variables Ns, N,, and 
N(u) can be used 

Ns 

N, = ~,  l[N(u3 - 1] (13) 
i=1 

where/Ix] is the characteristic function with/[x] = I, 
if x >- 1; otherwise,/Ix] = 0; ui represents the i-th 
cell of  size e x ~. The mean of N, can be estimated as 
follows (Cheng, 1989, 1995; Cheng and Wang, 1990). 
Writing the probability of Ns as P{Ns = k}, the condi- 
tional mean of N~ given N~ = k is 

E[N, IN, = kl = E /IN(u,) - II 

= kE{ItN(u3 - 1]} = kP{N(u) >-- 1} (14) 

Therefore, 

N(e) = E{EtN,  IN, = k]} = ~ kP[N(u) >-- 1]P{N, = k} 
k 

= EN, P{N(u) >-- 1 } = N(S)P{N(u) >- 1} (15) 

and 

P{N(u) >- 1} =* N(e) (16) 
N(S) 

which is a generalization of equations 11 and 12. This 
is because for small e, setting N(e) ~ n, it follows 
that h = nllSI and equation 16 becomes identical to 
equations 11 and 12. 

For fractal points with box-counting dimension 
Dg with 0 < De --< 2, theoretically, 

N(e) ~ e -D~ (17) 

where N(r increases infinitely as e --> 0. In this case, 
the total number of points (n) in S is infinite. Therefore, 
equations 11 and 12 can be replaced by equation 16. 
In practice, equation 16 holds true only for the limited 
range r e [emin, emax]. It is affected by irregular edges 
for ~ > em~x and by lack of map or computer resolution 
for �9 < er,~n. For example, events may be located so 
close to one another that they cannot be represented 
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separately on a map with a given scale. In general, 
the magnitude of the total number of points does not 
necessarily represent a true property of the spatial dis- 
tribution of the points. Therefore, equation 16 (with �9 
> Cml, for a finite point set E) can be used for estimating 
the probability P{N(u) > I }, and can be rewritten as 

C 2-D P{N(u) >. 1} = i-~e e (18) 

which no longer tends to a finite limit when �9 ---> 0 if 
D e <  2. 

Figure 2 shows the locations of 183 Au mineral 
occurrences in the Iskut River map sheet, northwestern 
British Columbia. It was found that these points satisfy 
a multifractal model (Cheng, 1995; Cheng and Agterb- 
erg, 1995). The moment method of multifractal model- 
ing can be used together with map analysis and spatial 
modeling by GIS. The estimated number of boxes 
containing one or more points is denoted as N(e) and 
the density o f  points per cell with cell size r (2-20 
km) as p~(e). Figure 3 shows values of Xq(e) calculated 
by equation 4 for q = 0 and 2. Straight lines were 
fitted to these values on log-log plots by means of 
least squares. It can be seen that when the cell size is 

too small (<4  km) the values of • depart from the 
straight line model. This is probably because events 
are then located so closely to one another that they 
could not be represented separately on the regional 
map with scale 1:250,000 that was used. For any map, 
if the unit cell is too small, N(e) will asymptotically 
approach a constant value equal to the number of 
events (if this is a finite number). This implies that 
the power-law relation between • and ~ is valid 
only to a minimum r value. In figure 3 the slopes of 
the straight lines fitted to the values of • and r 
(for q = 0 and 2) are ?(0) = - 1.335 - 0.077 and ?(2) 
= 1.219 __. 0.037, respectively, where the uncertainty 
is expressed using the standard deviation (+__s). The 
difference between these values has an absolute value 
2.554 _ 0.085 and is significantly greater than 0. It 
can be concluded that the points satisfy a multifractal 
instead of simple fractal model (cf. Cheng and Agterb- 
erg, 1995). 

FRACTAL PATTERN INTEGRATION 

Suppose that two patterns A and L are associated 
with the event E; for example, A may represent a rock 

i 0 20 km 

56'20' ~ " . .  .~.""  
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Figure 2. Mineral occurrences of gold in the Iskut River map sheet, northwestern British Columbia. 

Locations of 183 Au mineral occurrences represented by black dots. 
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Figure 3. Log-log plots showing the relationships between Xq(e) 
and e according to eq. 4 with ~ (20, 15, 10, 9, 7, 5, and 4 kin). 
Straight lines are least-squares fits. (A) Relationship between Xo(e) 
and e, giving the box-counting dimension -7(0) = - 1.335 -.+ 0.077 
and c = 732 _ 137.5; (B) Relationship between • and e, giving 
§ - 1.219 ~- 0.037. 

type and L a fault in a region while E represents mineral 
deposits of a given type. Let P(E) represent the uncon- 
ditional probability that a unit area contains one or 
more events (E), P(EIA), P(EIL) and P(EIAL) be condi- 
tional probabilities for events occurring on the patterns 
A, L, and the overlap of A and L, respectively. They 
can be estimated using equation 16. Suppose further 
that A, L, E, and the various patterns of overlap of A, 
L, and E, have box-counting dimensions DA, DL, De, 
DaE, Dze, and DaLe which have fractal or nonfractal 
dimensions depending on whether A, L, E, AE, LE, 
and ALE are fractals or nonfractal patterns. Then the 

numbers of cells containing these features can be 
expressed as: 

Na(~) = Cae -~ 

NL(~-) = Cre -~ (19) 

Ne(e) = C ~  -~ 

where ca, cb and ce are constants. Similarly, the 
expected numbers of cells containing A and E, L, and 
E, or A, L, and E are 

NaKe) = CAE~ -~ 

Nur(e) = C t ~  -~ (20) 

NaMe) = Caure -~ 

Therefore, using equation 16 the probabilities are esti- 
mated as: 

P(E) = 

_ CE 2_DE 
1 c , 

P(A) : P(~) : l - c A  ~2-o, 
Cs 

CL e~_oL P(L) = e 2-DL, P(L) = 1 - ~ss (21) 

CLE ~2--DLE 
P(LE) = -~s 

CE F_2-DE; 
Cs 

CA ~2-DA; 
Cs 

C A E  P(ALD = ~ ~2-OaE; 

where c~ = ISI, and the conditional probabilities are: 

= ~ ~OA-OAe; P( EIA ) 

Cur 
P(EIL) = ~ e ~ (22) 

Cee2-oE - C,4ee2-oae 
P(EIT,) = C s -  Cae 2-~ ' 

P(EI / )  = CE4E2-DE- CLE~2-DLE 

C s -  CLe 2-~ 

These relationships between A, L, and E can be summa- 
rized by a (2 • 2 • 2) table of probabilities (table 1). 
Conditional independence of  A and L given E implies: 

P(ALIE) = P(AIE)P(LIE); 

P(ALIE) = P(-AIE)P(LIE) 

P(ALIE) = P(AIE)P(-s (23) 

P(A"ZIE) = P(~IE)P(Y.IE) 
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Table 1. Relationships Between A, L, and E 

E 
L 7. L Z 

A P(ALE) e(A~) P(ALE) P(A-ff"E) 

P('ALE') P(A"-LE) P(AL-E) P(ALE) 

The relations of equation 23 are equivalent to: 

G= = GF-Qe. 
9 

c~ 
DALe = OAF. + Dze - De 

CA-LF- = G e C ~ .  DAZe = Dae + DLe - Dn 
c e  ' 

C~eC Le 
C A L e -  - - ,  D'~ = Dae + DLe -- D~(24) 

Ce 

c ~  = c ~ c ~ .  
C ~ " D~-~= D ~  + D Z e -  DE 

If the assumption of conditional independence of A 
and L holds true, the eight probabilities in the preceding 
table are mutually interrelated by: 

P(ALE) = P(AIE)P(LIE)P(E) 

P(AL-E) = P(AI&~)P(LIE)P(E) (25) 

If odds (O) are used instead of probabilities (P) with 
0 = PI(1 - P), then: 

logeO(EIAL) = W~ + W-~ + logeO(E) 

logeO(EIA) = W~A + W~ + log~O(E) 

log, O(EIA-s = W2 + Big + log,O(E) 

Iog, O(EIAL) = W2 + WE + logeO(E) 

(26) 

These are extensions of Bayes' rule which holds only 
if A and L are conditionally independent. The weights 

�9 fP(AIE)] . f P ( ] I E ) ]  
WTA = tOg'l p(----~j~; w~ = , o g , [ ~ j ~  

�9 fP(LIE)] 1 fP(LIE)]  
W~" = l o g ~ . ~ j ~ ;  W~-= o g ~ j ,  (27) 

satisfy the following expressions: 

I cAe o _Da  ] 

W~" ~ log CA -- cA~2-""""""'--~al 

c 

�9 [cAeCs ~o~-~a~] 
,ogL c- 

CAe - _ ~  -I 

~ log CA - CAEC-OA~ I (28) 

CAe 

- -  log  . ? s  --- CA ' 

It shows that CA = W2 -- W2 (more details about the 
definition of the contrast C can be found in Agterberg 
and others, 1990) decreases as e decreases (CA cc log 
O, because, in general, Dae < De. W + and WA are 
independent of e only if Dae ~ De or if De = 0 for 
a nonfractal point pattern. In this special case, W~A and 
W2 can be calculated using cAe, ce, ca, and Cs. For 
small e and DA = 2, we have the following 
approximation: 

log O(EIA) - W2 + log ~ss e2-DE (29) 

or  

O(EIA) ~ Cae ez-oae (30) 
CA 

Then O(EIA) has a power-law relation with cell size 
with exponent 2 - Dae. 

Standard deviations of the weights ~ and W~ 
can be obtained as follows (cf. Bishop and others, 
1975; Agterberg, 1992): 

1 1 
s2(WD - _ _  + 

NadO NA~O 

1 1 
s2(WA ) - + - -  

N~ae(,) N-i-AdO 
(31) 

which can be rewritten using equations 19 and 20 as: 

s~ ( W~ ) 

G 

(CA -- CAe~~176 -~ 
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s2(W;) 
C s -  C, te 2-~ 

( C ~ - O e  - CAee-o~3(Cs  - Cee2-oe 

-- CA e2-oA q- CAE E2-DA~) (32)  

Both s(W~'A) and s(WXA) decrease as �9 decreases. How- 
ever, the standardized value of C(t(C) = C/s(C)) is 
approximately t(C) ~ e -trz~ which increases as �9 
decreases. Therefore, the optimum cell size e should 
be the smallest possible value for which (a) the power- 
law relations of the fractal patterns hold true, and (b) 
t(C) is as large as possible. 

Table 2. Fractal Measurements for the Binary Patterns, X~ to X4 

Geological features Label D c 

Au mineral occurrences E 1.335 ~ 0.077 732 +-. 137.5 
P-M sedimentary rock X~ 2 2387 
Buffers around contacts X2 2 3144 
Magnetic anomalies X3 2 1 t 28 
Au geoehem, anomalies X4 2 2241 

E&XI 1.246 - 0.047 401 _+ 44.0 
E&X2 1.289 • 0.069 514 _+ 84.8 
E&X3 0.902 - 0.059 124 __. 17.5 
E&X4 1.223 - 0.075 428 ~ 78.0 

Basemap S 2 4754 

Overlap conditions 

GOLD POTENTIAL ESTIMATION FOR THE 
ISKUT RIVER MAP SHEET, 
NORTHWESTERN BRITISH COLUMBIA 

Indicator Patterns and Fractal Characteristics 

The area chosen for this study is the Iskut River 
map sheet (NTSI04B), northwestern British Colum- 
bia. Geological variables were selected by metallo- 
genie considerations and probabilistic approaches 
based on fundamental geological principles of hydro- 
thermal deposit formation, combined with regional 
geochemical, geophysical, and mineral inventory data 
(data from Geological Survey of Canada, 1978, 1988). 
The datasets used for this study consist of (a) geologi- 
cal map (1:250,000); (b) regional geochemical recon- 
naissance data (1:250,000); (e) regional aeromagnetic 
data (1:250,000); and (d) mineral occurrence records 
(B.C. Minfile, 1989). For the present study, the follow- 
ing indicator patterns will be considered: (1)Paleozoic- 
Mesozoic sedimentary and volcanic elastic rocks 
(figure 4A); (2) buffer zones (<10 km) around the 
contacts between Paleozoic-Mesozoic sedimentary 
and volcanic clastic rocks and Mesozoic intrusive 
rocks (quartz diorite, monzonite, monzodiorite, and 
alkali-feldspar porphyry intrusions) (see figure 4B); 
(3) magnetic anomaly lows (<36.9 Nt) (see figure 
4C); and (4) geochemical anomalies for Au (>30 ppb) 
in stream sediments (figure 4D). 

The binary pattern in figure 4A was compiled 
using Voronoi tessellation based on the geological units 
coded for 698 stream sediment stations. Buffer zones 
in figure 4B and binary aero-magnetic patterns in fig- 
ure 4C were delineated and optimized in terms of the 
contrast C = W + - W- (cf. Agterberg, 1989, 1992), 
respectively. Gold anomalies in figure 4D were deline- 

ated by statistical and fractal methods (Cheng, 1995; 
Cheng and others, 1994d, 1995). To use the method 
introduced in this paper for integrating these binary 
patterns (figure 4A-D) with Au mineral occurrences 
(figure 2), the box-counting method for different cell 
sizes (2-20 kin) was used for estimating the fractal 
dimensions and related measures. The estimated 
results for the Au mineral occurrences on the overlaps 
of the binary patterns are shown in figure 5 and the 
estimated fractal measurements are summarized in 
table 2. The binary patterns of figure 4A-D were con- 
sidered to be ordinary nonfractal polygon patterns by 
setting D = 2 and assigning constant measure c to the 
polygon areas. 

Pattern Integration 

The mineral occurrences on each binary pattern 
can be treated as fractal sets (figure 5A-D). The fractal 
measures for these sets as estimated by means of the box- 
counting method become dimensions (D from 0.9023 to 
1.2885) and measures (c from 123.83 to 513.94) which 
are less than the dimension (D = 1.335 _ 0.077), and 
measure (c = 732.46 +__ 137.5)for all occurrences. From 
the estimated values of D and c, the weights (W + and 
W-) and their standard deviations (s(W +) and s(W-)) can 
be calculated for each pattern by equations 28 and 32. 
The results obtained for each binary pattern using cell 
sizes 1, 2, 4, 6, and 8 (km) are shown in tables 3 and 4. 
Generally, the weights (IV + and W-) and their standard 
deviations (s(W § and s(W-)) decrease but the t-values 
increase as cell size decreases. 

For comparison, the ordinary weights of evidence 
method was used to compute the weights for the binary 
patterns. The results for binary rock patterns (figure 



Mineral Potential Estimation 12,5 

20 kan 
| 

3 

7, 

0 c-- 

.7 

~ ~  56 10'- 
130'00 , 

.~*10 
130000 ' 

Figure 4. Indicator patterns (shaded areas) for Ao mineral potential mapping. (A) Paleozoic 
to Mesozoic sedimentary and volcanielastic rocks; (B) Buffer zones around the contacts 
between Paleozoic to Mesozoic rocks in (A) and Mesozoic intrusive rocks (quartz diorite, 
monzonite, monzodiorite, alkali-feldspar porphyry intrusions)(10 km on both sides). Solid 
curves represent contacts; (C) Aeromagnetic anomalies (<39.6 NO delineated by optimizing 
contrast C (cf. Agterberg and others 1990); (D) Geochemical anomalies for Au (>30 ppb) 
in stream sediments delineated by fractal and spatial statistical methods (Cheng and others, 
1994d, 1994e). 
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Table 3. Comparison of Weights for Binary Rock Patterns 
Shown in figure 4a (st = s(W*) and s2 = S(W-)) 

Ordinary weights Fractal weights 

W" sl W- s2 t(C) W* st W- s: 

.58 .12 - . 78  .16 6.65 .53 .41 - .48  .36 

.47 .11 - . 6 9  .15 6.24 .34 .26 - .37  .28 

.42 .10 - . 65  .15 5.94 .21 .16 - .25  .19 

.37 .09 - . 6 0  .14 5.83 .11 .09 - .13  .11 

.36 .09 - . 5 9  .14 5.71 .04 .05 - .05  .06 

t(C) 

1.84 
1.85 
1.84 
1.69 
1.14 

4A) with different unit cells are shown in table 3. It 
can be seen that the weights obtained by means of  the 
ordinary and fractal weights of  evidence methods with 
various unit cells decrease as cell size e decreases. The 
difference between the results obtained by the two 
methods is that the t-values obtained by the fractal 
method increase when �9 > em~n, whereas the t-value 
obtained by the ordinary weights of evidence slightly 
decreases or tends to become constant as the cell unit 
e decreases. The reason for this is that the ordinary 
method assumes De = 0 whereas the fractal method 
uses DE = 1.335. As pointed out before, the optimum 
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Figure 5. Log-log plots showing fractal analysis for mineral occurrences on the binary patterns in figure 4, respectively. Straight lines 
are least-squares fits. Cell sizes used are 20, 15, 10, 9, 7, 5, and 4 km. The estimates of fractal measures (D and c) are shown in table 2. 

Table 4. Weights for Binary Patterns Obtained Using Fractal Method 

X e(km) W* s(W*) W- s(w-) C s(C) t(C) 

Xt 8 0.5342 0.4128 -0.4792 0.3643 1.0134 0.5505 1.8408 
6 0.3370 0.2571 -0.3654 0.2787 0.7024 0.3792 1.8520 
4 0.2136 0.1639 - 0.2517 0.1931 0.4653 0.2533 1.8375 
2 0. ! 090 0.0909 -0.1270 0.1056 0.2360 0.1393 1.6940 
! 0.0440 0.0548 -0.0479 0.0592 0.0920 0.0806 I. 1404 

X2 8 0.3252 0.3169 -0.6550 0.4895 0.9802 0.5832 1.6809 
6 0.2215 0.2171 - 0.5805 0.3669 0.7220 0.4261 1.6942 
4 0.1457 0.1438 -0.3448 0.2486 0.4905 0.2872 1.7078 
2 0.0757 0.0806 - 0.1730 0.1325 0.2487 0.1550 1.6041 
1 0.0304 0.0482 -0.0641 0.0728 0.0946 0.0873 1.0833 

x3 8 
6 0.6343 0.4346 - 0 .  i 834 0.2080 0.8178 0.4818 1.6972 
4 0.2584 0.2382 -0.0778 0.1433 0.3362 0.2780 1.2455 
2 0.0001 0.1405 -0.0000 0.0784 0.0000 0.1608 0.0012 
1 -0.1694 0.0952 0.0443 0.0444 --.2137 0.1051 --2.0330 

X4 8 1.3118 0.8729 -0.7515 0.4195 2.0630 0.9685 2.1305 
6 0.5940 0.3005 -0.5816 0.3106 1.1756 0.4322 2.7202 
4 0.3599 0.1703 -0.4135 0.2091 0.7735 0.2696 2.8691 
2 0.2003 0.0900 -0.2325 0.1110 0.4328 0.1429 3.0277 
1 0.1130 0.0537 -0.1215 0.0612 0.2345 0.0814 2.8806 
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Figure 6. Posterior probability map showing mineral potential for Au in the Iskut River map sheet. The 
results were obtained by using the parameters in figure 5 and tables 3 and 4 for the binary patterns in 
figure 4 obtained using cell sizes 4 km. 

cell size should be the smallest possible value yielding 
(a) power-law relations for all patterns, and (b) maxi- 
mum t-values for the weights. For the present example, 
4 km was chosen as the optimum cell size for comput- 
ing the posterior probability (figure 6). Estimated total 
numbers of Au mineral occurrences for different cell 
sizes are given in the log-log plot of figure 7 which 
shows a power-law relation with exponent D = 1.3643 
___ 0.023 and constant c = 683.899 - 30.4. These 
results are only slightly different from those previously 
obtained in figure 3. 

CONCLUSIONS 

The method introduced in this paper can be 
applied for nonfractal/fractal pattern integration in 
mineral potential estimation, and is relatively straight- 
forward to implement by performing box-counting 
with the aid of GIS. For mineral potential mapping 
based on fractal patterns, such as the pattern of Au 
mineral occurrences in the study area, the results of 
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Figure 7. Log-log plot showing the relationships between the 
estimated total number of mineral occurrences in the study area 
using the approach introduced in this paper and all cell sizes used 
for computation. 
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the es t imated poster ior  probabi l i ty  and the number  of  
minera l  occurrences  in the s tudy area are s ignif icant ly  
re la ted to the value  selected for  the cell  size. 

The  op t imum cel l  s ize r ecommended  is the small-  
est  poss ible  value (4 k m  for the present  example )  y ie ld-  
ing both (a) p o w e r - l a w  relat ions character is t ic  o f  
fractal  patterns, and  (b) m a x i m u m  t-value for  the con-  
trast  C. 

Four  indicator  pat terns  (Paleozoic  to Mesozo ic  
sedimentary  and volcanic  clast ic  rocks,  contacts  
be tween  sedimentary /volcanic  clast ic  and Mesozo ic  
intrusive rocks,  l inear  aeromagnet ic  anomal ies ,  and 
geochemica l  anomal ies  for  A u  in s t ream sediments)  
were  found to be spat ial ly associa ted  with  the spatial  
dis tr ibut ion o f  A u  mineral  occurrences  and these pat- 
terns were integrated for  A u  minera l  potential  
es t imation.  
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