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Summary. In this paper we argue that the align- 
ment of  sets of  sequences and the construction of  
phyletic trees cannot be treated separately. The con- 
cept of  'good alignment' is meaningless without ref- 
erence to a phyletic tree, and the construction of  
phyletic trees presupposes alignment of  the se- 
quences. 

We propose an integrated method that generates 
both an alignment of  a set of  sequences and a phy- 
letic tree. In this method a putative tree is used to 
align the sequences and the alignment obtained is 
used to adjust the tree; this process is iterated. As 
a demonstration we apply the method to the analysis 
of the evolution of  5S rRNA sequences in prokary- 
otes. 
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-- Matrix methods -- Internode sequences -- Ho- 
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1. Introduction 

There is a bootstrapping problem in all non-super- 
vised pattern recognition procedures (e.g., cluster 
analysis): to assess the similarity (relationship) of  
objects, one has to assess the correspondence and 
similarity of  parts of  the objects (characters). Most 
procedures simply assume that the assessment of  
the characters has been done prior to the analysis; 
they start with a set of  characters and character 
weights (including scaling of  characters). It appears, 
however, that in, for example, taxonomic practice 
character selection is done implicitly on the basis 
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of  a prior assessment of  the similarity of  the objects 
(Leenhouts 1968; Hogeweg 1976). Therefore, it 
seems useful to include this mutual dependence ex- 
plicitly in non-supervised pattern recognition pro- 
cedures. To this end, we introduced iterative char- 
acter weighting into numerical taxonomy (Hogeweg 
1976). Although the correspondence of  characters 
(i.e., homology) is not assessed by this method, the 
relative weighting of  the characters is adjusted on 
the basis of  a classification generated using previous, 
initially equal character weights. Thus, noisy (and 
inconsistent) characters are filtered out and the clas- 
sification is sharpened up and allows oligothetic 
characterisation of  clusters (Hogeweg and Hesper 
1981). This method was introduced to improve phe- 
netic classifications, but can be seen as bridging the 
gap between phenet ic  and phylet ic  (character  
weighting) methods (McNeill 1978). 

Along the same lines, we introduce in this paper 
an iterative method for the construction of  phyletic 
trees that are based on molecular sequence data. In 
the case of  molecular sequences, assessment of  the 
homology of  characters takes the form of  the align- 
ment of  sequences. The method presented here goes 
an important step further than the previous one in 
that the homology of  characters (here, alignment of  
sequences) does not have to be assessed prior to the 
analysis. Starting with a set of  unaligned sequences, 
it generates an alignment of  the sequences as well 
as a phyletic tree; like the previous method it does 
so in an iterative way. 

2. The Alignment of Molecular Sequences 

In the course of  evolution not only base changes, 
but also insertions and deletions of  bases (sub-se- 
quences, amino acids), occur. Therefore, sets of  se- 
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quences to be compared in phyletic studies have to 
be 'aligned,' i.e., correspondence of positions has to 
be established. 

Satisfactory algorithms exist for the alignment of  
pairs of  sequences (Needleman and Wunsch 1970; 
Sellars 1974; Waterman et al. 1976; Smith et al. 
1981). These algorithms use some measure of  max- 
imal matching (or minimal difference) as an optim- 
isation criterion, and insert gaps into the sequences 
to optimise for that criterion. The set of  choices for 
the assessment of  maximal matching is identical to 
that used for the assessment of  the similarity of  
aligned sequences in phyletic tree construction. In 
addition a choice has to be made regarding the in- 
cidence of  deletions/insertions: The algorithms use 
a "penalty' or 'bias" factor to inhibit too frequent 
gap formation. Using the fact that insertion/deletion 
events involve sub-sequences rather than single bas- 
es, Needleman and Wunsch (1970) originally used 
a penalty for such events irrespective of  the length 
of  the sub-sequence involved. Contrarily, Sellars 
(1974) originally used only the length of  the inserted 
sequences in the penalthy; longer sequences do after 
all change the molecule more (as assessed in most 
similarity calculations). The distinction between the 
two approaches is related to the question: Is mu- 
tation or selection the limiting factor in sequence 
divergence? Smith et at. (1981) showed that the two 
algorithms are equivalent when generalised so as to 
use both a penalty for the insertion/deletion event 
and a penalty based on length, i.e., 

bias = X,Y 

where X is the penalty for the insertion/deletion 
event and Y the additional penalty for each gap 
position. X and Y can be 0; when Y = 0 the short- 
hand notation bias = X is used. The choice of  X 
and Y is largely a matter of  taste. 

A problem in using the pairwise alignment al- 
gorithms is that they produce many different align- 
ments with the same optimality value. For example, 
the localisation of  gaps is not determined uniquely 
and can vary over at least the stretch where no 
matches occur (for all or none matchings). 

However, most algorithms for the construction 
of  phyletic trees based on molecular sequences use 
as primary data sets of  aligned sequences, and there 
is no practical method for obtaining such alignments 
(the pairwise method is in principle extendible, but 
for more than two sequences the required computer 
time/space becomes excessive). Thus, in practice the 
sets of  sequences are 'mind-aligned,' using algo- 
rithmic pairwise alignments only as guidelines, be- 
cause pairwise alignments give incompatible results. 
Secondary structure can also be considered in con- 
structing such alignments. This practice can, how- 

ever, reveal convergence in function rather than 
common ancestry. 

The alignment of  sets of  sequences is crucial for 
the results of  phyletic studies based on such align- 
ments, even more so than the similarity measure or 
tree construction algorithm used (see Fitch and Ya- 
sunobu 1974). Therefore, alternative alignments and 
their consequences for the similarity relations should 
be considered in the study of the evolution of  a set 
of  sequences. For this, one needs an automatic 
method for generating 'interesting' alignments in a 
flexible way using explicit criteria. 'Mind-mediated'  
methods are not suited for this, because minds tend 
to get stuck in a previously recognised pattern and 
never confine themselves to a set of  explicit criteria, 
but use implicit information, which renders impos- 
sible an evaluation relative to internal and external 
criteria. 

3. Phyletie Tree Construction Algorithms 

3.1. Tree Construction 

Many different algorithms have been proposed for 
the construction ofphyletic trees. We shall mention 
only some points that are important for our inte- 
grated method of  tree construction and alignment 
of  sets of  sequences. 

Most algorithms try in some sense to minimise 
mutational cost along the branches of  a tree. Given 
a criterion for minimal cost, a tree topology can be 
evaluated relative to this criterion. Thus, one ap- 
proach is exhaustive search: generate all possible 
tree topologies and choose the best one. The number 
of alternative topologies is too large to make this 
method practical (for more than eight compared 
sequences). Thus, one must resort to non-optimal 
tree-generating heuristics. These methods fall into 
two classes: matrix methods and character-based 
methods. The former use as primary data a trian- 
gular matrix of  pairwise overall similarities (gen- 
erally, but not necessarily, computed from an item- 
versus-character matrix), whereas the latter work 
with the item-versus-character matrix and consider 
trees of  character (in case of  sequences, nucleotides 
or amino acids) mutations and their compatibility, 
and sometimes generate ' internode' (ancestral) se- 
quences. Matrix methods are the simpler of  the two 
and are therefore used most often in practical ap- 
plications, even by authors who themselves have 
proposed character-based methods (e.g., Dayhoff 
1976). In fact, matrix methods do not need a global 
alignment of  the set of  sequences, but only pairwise 
alignments, because pairwise similarities are used. 
Character-based methods do need global alignment, 
since this is necessary for the construction of  the 
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character-based trees. As mentioned above, no al- 
gorithms exist for the construction of the global 
alignment of sets of sequences. For this reason the 
method we propose for obtaining such an alignment 
uses matrix methods for the construction of trees. 
However, consistent behaviour of characters in their 
mutational history is used in evaluating the tree and 
in constructing the alignment; the consistency of a 
subset of the characters can be optimised by a char- 
acter-weighting scheme. 

3.2. Representation of  Trees 

Phyletic trees and phenetic trees (dendrograms) rep- 
resent different things: The former represent hy- 
pothesised ancestral relations and the latter simi- 
larity between groups of objects. Nevertheless, the 
same algorithms, or closely related ones, can be 
used to construct either of them. It is therefore an- 
noying that the representational conventions have 
exaggerated the gap between these types of results. 
We shall use a representation that can serve both 
purposes, a "cumulogram'. Cumulograms use the 
convention of  parallel branches and horizontally ex- 
tended nodes, as in dendrograms (thus minimising 
the unwarranted suggestions about divergence that 
plague attempts to draw more 'lifelike' trees), but 
represent the similarity between groups of objects 
cumulatively from node to node instead of on one 
scale measured from the top of  the dendrogram. In 
this way nodes can be interpreted as ancestral ob- 
jects if and only if one is so inclined, and differential 
rates of divergence (evolution) can be represented 
(see Figs. 1, 2, 4). 

4. An Integrated Method for the Alignment of Sets 
of Sequences and the Construction of Phyletic Trees 

4.1. Outline o f  the Method 

The following considerations led us to formulate an 
integrated method for the alignment of  sequences 
and the construction of phyletic trees: 

1. The concept of 'good alignment" seems to be 
meaningless without reference to ancestry: an align- 
ment hypothesises evolutionary events (insertions, 
deletions) that happened at some point of diver- 
gence. 

2. The criteria for alignment and tree construc- 
tion are closely related, both being based in some 
way on maximal matching. Alternative schemes for 
measuring maximal matching apply in both con- 
texts. 

3. Pairwise alignments are feasible (Section 2). 
4. Pairwise alignments suffice for tree construc- 

tion when matrix methods are used (Section 3). 

5. Phyletic trees produced by matrix methods are 
binary trees. 

6. Alignments of similar sequences are the most 
reliable. 

7. Internode sequences can be constructed that 
represent the ancestral sequences of the branches 
that they join (Section 3). 

Thus, it seems good heuristically to reduce the 
problem of aligning sets of sequences to a series of 
successive pairwise al ignments that  follow the 
branches of a hypothesised (phyletic) tree [this was 
previously suggested by Fitch and Yasunobu (1974)] 
and to optimise the tree and the alignment itera- 
tively by using the previous tree (alignment) to con- 
struct the next alignment (tree). 

Such a heuristic method takes the following form: 
1. All pairs of  sequences are aligned indepen- 

dently; the match value obtained in the first step of  
the alignment procedure is used (possibly after a 
transformation, e.g., to correct for backward mu- 
tations) as the similarity value. In this way an N • 
N similarity matrix is constructed. 

2. This similarity matrix is used for the construc- 
tion of the first phyletic tree (which is then, however, 
based on an incompatible alignment of the se- 
quences). Any matrix method can be used in this 
step, although it is advisable not to use a method 
that enters very dissimilar sequences 'high in the 
tree' (i.e. near the leaves), which would imply a very 
rapid change in that particular sequence after a re- 
cent splitting off. 

3. The sequences are successively pairwise- 
aligned, following the branches of the tree, and in- 
ternode sequences are constructed. First the two se- 
quences are taken that are most similar in the tree, 
since their alignment is most reliable. An internode 
sequence is constructed as follows: (a) if two posi- 
tions of the aligned sequences contain the same base 
(amino acid) it is placed in the new sequence; or (b) 
if not, the decision about which base (amino acid) 
to enter is postponed. If  a sequence is joined to an 
internode, it is aligned to that internode. The prob- 
lem of  aligning sets of sequences is reduced to that 
of aligning pairs of sequences by assuming that the 
relative alignments of the sequences that diverged 
later in evolution are fixed, since they evolved from 
the ancestral sequence. At 'open" positions of an 
internode sequence (i.e. positions for which no de- 
cision was made) the similarity calculation used in 
the alignment algorithm backtracks to the higher 
sequences (internodes) and uses the highest simi- 
larity value available. From the thus aligned se- 
quences/internodes a new internode is constructed 
in the same way as before. At the open positions 
the algorithm backtracks to the higher nodes; if a 
corresponding base (amino acid) is found, it is placed 
into the new sequence and intermediate internode 
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sequences: apparently (on the hypothesis of  mini- 
mal mutations) this base (amino acid) was the one 
common to the sequences until they diverged in 
various directions. I f  there are several common bas- 
es (amino acids), as can happen when two "unde- 
cided" internodes are joined, the decision is again 
postponed until there is a best choice. This local 
backtracking method of  internode determination 
gives a minimal mutation solution if a binary sim- 
ilarity criterion is used. Otherwise it gives a solution 
close to the minimal solution for nucleotides, be- 
cause only limited backtracking is possible, there 
being only four bases and a gap. In the case of  amino 
acids, only binary similarity can be used. Other in- 
ternode-generating algorithms can be substituted, 
however. 

4. Thus, a consistent alignment of  the entire set 
of  sequences (consistent in the sense that one and 
the same set of  insertions/deletions is used for each 
pairwise comparison of  sequences) is obtained by 
making N pairwise alignments and by constructing 
internode sequences. 

5. The number of  mutations along the branches 
is calculated and the tree is plotted with these branch 
lengths (the topology is not changed). 

6. The mutational frequency at each position of 
the aligned sequences is calculated. These frequen- 
cies can be used as character weights, e.g.,: 

W i = N i / ( M  i + 1) 

where Wi is the weight at the i-th position, N i the 
number of  different nucleotides (amino acids) oc- 
curring at that position and Mi the number of  mu- 
tations (along the branches of  the tree) occurring at 
that position. 

7. The aligned sequences are used in the next 
round of  the iterative procedure. A similarity matrix 
is calculated from them (possibly using character 
weights); this similarity matrix is based on a con- 
sistent alignment, whereas the first one was not. 

8. The process is repeated from step 2 until con- 
vergence or until some stopping rule is satisfied. 

Thus a series of  phyletic tree estimates and cor- 
responding alignments is produced. Each of  them 
can be evaluated on the basis of  various internal 
and external criteria. Internal criteria could include, 
for example, the number of mutations and the pro- 
fuseness of  gap formation. External criteria could 
include phyletic trees based on other data about the 
same species and secondary structures of  the se- 
quences under consideration (including the gener- 
ated internode sequences). 

4.2. Annotations to the Method 

The scheme outlined above involves the same prob- 
lems as those inherent in pairwise alignments of  
sequences and matrix methods of  phyletic tree con- 

struction. Accepting these difficulties, we have yet 
another problem. As mentioned, the pairwise align- 
ment algorithms do not produce a unique solution. 
Several alignments are equivalent in the sense that 
the same number of  gaps is formed and the same 
overall similarity is obtained. Such alternative so- 
lutions are not equivalent when more nodes are en- 
tered. Nevertheless, the proposed algorithm re- 
quires that a choice be made before the next node 
is considered. This type of  difficulty always occurs 
when local strategies are used to attain a global goal 
(as is the case for most phyletic tree construction 
algorithms). This does not hold for locally equiva- 
lent solutions only; the globally optimal solution 
may require locally suboptimal solutions. This fact 
has often been used to criticise such local methods. 
However, the opposite argument can also be put 
forward: global optimisation has as a drawback that 
locally non-optimal solutions are generated, where- 
as the data warrant more detail locally than globally 
(Hogeweg 1976b). Nevertheless, in the present case 
it seems necessary to allow limited a posteriori cor- 
rection of  the arbitrary choice of  the positions of  the 
gaps formed in the pairwise alignment. This is be- 
cause the alignment algorithms treat two different 
evolutionary processes in the same way. Insertions 
of  bases (amino acids) are incorporated as insertions 
of  gaps into the opposite sequence. One supposed 
insertion should not lead to several gaps inserted in 
different positions; this could happen if a correction 
were not made. Therefore, when a gap is formed in 
aligning two sequences it is swapped so as to match 
an open gap (i.e. a gap accessible by the backtrack- 
ing algorithm) if such a gap occurs in the region of  
arbitrary choice. Note, moreover, that the alignment 
algorithms have to be adjusted also to allow for the 
existence of  gaps in the sequences to be aligned. 
When a gap is formed opposite an existing gap the 
penalty based on the length of  the gap should be 
zero (i.e. bias = X, 0). 

The method is likely to 'postpone' the inclusion 
of  differences inherent in the data set since it max- 
imises the similarity near the leaves of  the tree first, 
both with respect to the alignment and with respect 
to overall similarity (in most tree construction al- 
gorithms). Thus the branch lengths obtained will be 
biased towards short branches near the 'leaves' and 
long branches near the "root'; this structure hypoth- 
esises relatively recent divergence of  similar species 
and relatively early divergence of  groups of  dissim- 
ilar species. From an evolutionary point of  view this 
bias is reasonable if we assume that early diverged 
lineages might have become extinct, i.e. that the 
relatively large internode distances near the root of  
the tree include 'missing nodes' of  extinct lineages. 
Whether this assumption can cover quantitatively 
the bias induced by the algorithm should be studied 
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by simulation experiments. It is interesting to note 
that this bias conforms to the optimisation of  a clas- 
sification: classes are maximally separated (Hoge- 
weg 1976, Hogeweg and Hesper 1981). In our case 
this optimisation is a side effect of  a method for 
minimising mutational cost. 

4.3 Implementation of the Method 

The method outlined above has been implemented 
as part of  BIOPAT, a program system for bioinfor- 
matic pattern analysis (Hogeweg and Hesper 1972) 
in which pattern recognition methods can be inte- 
grated to provide a maximal heuristic benefit. The 
method was implemented by adding just one pro- 
gram (for step 3 of  the iteration) to the system. Thus, 
in fact, it is the outline of  the method that has been 
implemented rather than one particular specifica- 
tion of  it, since it can be used in combination with 
a wide variety of  methods for tree construction, rep- 
resentation and evaluation. So far we have used 
mainly the following set of  criteria in our research: 

1. A binary similarity criterion of  bases/amino 
acids was used [i.e., the same (1) or not the same (0)] 
for the alignment and the calculation of  the simi- 
larity matrix for tree construction. Thus we included 
a minimum of  assumptions. 

2. Maximum match value, as obtained in the 
alignment algorithm (i.e. including the penalty used 
there for gap formation), was used without trans- 
formation in the similarity matrix. In this way the 
alignment algorithm can be considerably speeded 
up, since only the first step is needed and the back- 
tracking to construct the actual alignment can be 
omitted. Therefore, no match matrix has to be con- 
structed and no search is necessary when we work 
in a few arrays containing maximum column and 
cumulative row values. 

3. A relatively high gap penalty (=5) was used 
in the alignments for the calculation of  the first sim- 
ilarity matrix; thus fewer incompatibilities arise and 
the most similar sequences found contain few gaps, 
both of  which factors are beneficial to the method. 

4. Trees were constructed mainly by two differ- 
ent methods: 

(a) Group averaging (=UPGMA of  Sneath and 
Sokal 1973); this method assumes equal mu- 
tation rates; it has been hailed as a very good 
criterion for phyletic tree construction (Tateno 
et al. 1982; Nei et al. 1983), although it was 
originally introduced as a criterion for phenetic 
classification. Because the similarity between 
clusters is calculated as the average similarity 
of  all object pairs, it uses more information 
(see also Cornish-Bowden 1983) and is there- 
fore less sensitive to 'aberrant'  sequences than 

are methods based on the comparison of  "most 
recent ancestors" (e.g., median averages, the 
modified Fitch criterion and methods based on 
common ancestor construction). In the itera- 
tion we used most recent ancestors (to a vari- 
able depth, dependent on the variability of  the 
base under consideration). The combination of  
the alignment algorithm and tree construction 
based on group averages generates trees that 
represent compromises between the advan- 
tages and disadvantages of  these approaches: 
a limited amount  of  unequal mutation rate is 
allowed in a tree in which the overall similarity 
of  evolutionary lines is optimised. 

(b) Present-day ancestor method (Klotz et al. 1979, 
1981; Blanken et al. 1982): This method as- 
sumes that there is a tree topology in the data 
and, if  this assumption is warranted, it finds 
the correct tree toplogy, notwithstanding vari- 
able mutation rates. To this end the pairwise 
distances are converted to correct for their 
shared distance from a hypothesised common 
ancestor. Any node can be chosen as a com- 
mon ancestor. If  an arbitrary node is chosen 
the result is an unrooted tree. By choosing either 
a very distant node or a node known to be of  
separate lineage, one obtains a rooting that is 
acceptable for our method, which desires sim- 
ilar sequences to be joined first. The method 
is sensitive to the peculiarities of  the chosen 
ancestor because the global data transforma- 
tion is relative to the ancestor. In our iterative 
method this sensitivity is decreased because of  
the local optimisation of  the alignment, which 
is dependent on the generated tree but not on 
the structure of  the common ancestor. 

5. Character weighting was not used in the ex- 
periments reported here. 

5. Behaviour of the Method: 5S rRNA 
Sequences of Prokaryotes 

5.1. Introduction 

Sankoff et al. (1982) studied the phylogenetic rela- 
tionships among 5S rRNA sequences of  19 prokary- 
otes. They argued that for real evolutionary prob- 
lems one need not resort to non-optimal search 
algorithms, because usually enough prior informa- 
tion is available to reduce the problem to one of  
finding the best tree composed of  at most eight pre- 
viously established subtrees; the minimal mutation 
tree can then be found by exhaustive search. Ac- 
cordingly, they used in their study four preassigned 
subtrees (Bacilli, including Lactobacillus and Clos- 
tridium; the Enterobacteria; chloroplasts and Ana- 
cystis; and Halobacter and Thermus aquaticus) and 
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three ' loose'  species (Mycobacter, Rhodospirillum 
and Streptomyces) in an exhaust ive search. All pos- 
sible trees were evaluated with respect to minimal  
mutat ional  cost (using values o f  0.45 for transitions, 
0.77 for t ransversion and 1 for base/gap differences). 
The  results for the eight best trees differed by less 
than three mutat ions.  Sankoff  et al. also used their  
evaluat ion criterion to compare  their  results with 
previously proposed trees, using their  own align- 
ment  and choice o f  sequences. 

For  these studies Sankoffe t  al. used an al ignment 
o f  the sequences that  was justified as a reconcil iat ion 
o f  previously published al ignments and based on 
secondary-structure considerations.  Thus,  in trying 
to avoid  non-opt imal  methods  o f  tree construct ion 
they nevertheless relied on a not  entirely known 
me thod  for alignment,  al though the results depend 
just  as crucially on the al ignment  as on the tree 
construct ion algorithm. 

We used their  set o f  sequences to study the be- 
hav iour  o f  the integrated me thod  o f  tree construc- 
t ion and al ignment  proposed here. 

5.2. Calculation o f  
an Initial Pairwise D&tance Matrix 

For  the calculation o f  the initial pairwise distance 
matr ix  we used a relatively high penal ty for inser- 
t ion/dele t ion events and no penalty for the length 
o f  the gaps, i.e., bias = 5,0 (in Figs. 1, 2, 4 indicated 
as bias = 5). This  was done  to ensure that  sequences 
considered first in the al ignment  (i.e. the most  sim- 
ilar sequences) were easy to align (i.e. contain few 
gaps; see Section 4.3). 

5.3. Tree Construction by Group Averaging 

The  initial tree (Fig. 1 a) generated by  group aver- 
aging f rom the pairwise distances has little meri t  
with respect to the number  o f  mutat ions;  it gives 
437 mutat ions,  compared  with the 423 computed  
by our  algori thm for the opt imal  tree o f  Sankoff  et 
al. (1982) using their  alignment.  Treewise al ignment  
was done using a penal ty for gap format ion  o f  the 
form bias = X,Y (X penalty for the event,  Y penal ty 
for length); Y = 1 was chosen in all cases because 
the length o f  the insert ion or delet ion shows up as 
that  ma ny  mutat ions;  X was varied in the repor ted  
experiments  between 0.5 and 3.0. 

The  results for bias = 1,1 are shown in Fig. 1. 
The  first i terat ion step immedia te ly  gives a large 
improvement :  the n u m b e r  o f  muta t ions  reduces to 
424 and the tree topology changes so that  the rel- 
at ively dissimilar sequences o f  Clostridium, Strep- 
tomyces and Rhodospirillum, which did not  show 
clear affinities in the initial tree, are jo ined  to the 
same groups as the ones used or generated by San- 

koff  et al. However ,  the tree topology differs f rom 
theirs; in particular, Mycobacter, a very aberrant  
species wherever  it is placed, clusters with Thermus 
aquaticus and is close to Halobacter, an Archeae- 
bacter ium. Another  difference is that the Bacilli and 
Enterobacteria are relatively close, whereas they were 
remote  in the tree o fSankof f e t  al. However ,  in view 
of  the n u m b er  o f  mutat ions,  this generated tree can- 
not  be discarded. Cont inued iteration stabilises when 
the tree shown in Fig. lc  is reached, which has 427 
muta t ions  and is therefore somewhat  less opt imal  
than the previous  one. The  difference is in the rel- 
ative posit ion o f  Streptomyces and Clostridium: al- 
though in the al ignment generated on the previous  
tree, the fo rmer  is more  similar to the Bacilli s.s. 
than the latter is, its p lacement  according to this 
similarity generates a less opt imal  al ignment  (be- 
cause o f  local peculiarities o f  the sequences). 

For  bias = 2,1 the same stable tree is obtained; 
the numbers  o f  muta t ions  are 441 and 436 for the 
initial and stable tree, respectively, but  the align- 
ment  has the meri t  o f  having formed fewer gaps: 
the table o f  sequences has length 127, as compared  
to 132 for both  the bias = 1,1 al ignment and the 
al ignment of  Sankoff  et al., and resembles the align- 
ment  proposed  by Hor i  and Osawa (1979). This  tree 
is also stable for bias = 0.5,1 (number  o f  mutat ions,  
416; expansion to length 142), but  is not  obta ined 
starting f rom the initial tree, because the liberal in- 
sertion o f  gaps moulds  the generated al ignment  to 
this tree [at the expense o f  much  expansion (length = 
143); there are 431 mutations].  Therefore  the tree 
changes only slightly during the i teration and con- 
verges to a tree with 429 mutat ions,  many  more  
than for the stable tree obta ined with a larger event  
penalty. 

For  bias = 3,1 no decrease in expansion is ob- 
tained relative to bias = 2,1, bu t  there are more  mu- 
tations: gap insert ion is pos tponed for too long. 

5.4. Tree Generation by 
the Present-Day Ancestor Method 

5.4.1. Ancestor: Halobacterium cutirubrum. I f  the 
only Archeaebacter ium is chosen as the ancestor,  
the 'correct '  rooting should be obtained.  The  gen- 
erated tree conforms to the tree o fSankof f e t  al. with 
respect to the relatedness o f  the Enterobacter ia  with 
the chloroplast  group, and to the stable tree gener- 
ated by group averaging with respect to the posit ion 
o f  Mycobacter. Rhodospirillum and Streptomyces 
are in termediate  between the chloroplast /Entero-  
bacteria group and the Bacilli. I terating (while align- 
ing with bias = 1,1) gives the tree shown in Fig. 2: 
Anacystis and Rhodospirillum are on the Entero- 
bacteria branch and the chloroplasts are seen as being 
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relatively primitive. The tree has 423 mutations and 
a length expansion to 132, i.e. it is again of  a similar 
optimality. However, it is not stable: Streptomyces 
has slipped down ~t~ near the root of  the tree at the 
expense of  more mutationsV and a larger expansion. 

5.4.2. Ancestor." Mycobacterium smegmatis. My- 
cobacterium smegmatis is clearly a very dissimilar 
member of  the data set. We experimented with it 
as present-day ancestor because its position varies 
in the various tree proposals discussed here and in 
the literature (e.g., Schwartz and Dayhoff 1978; Fox 
et al. 1980; Kuntzel et al. 1981). We again used 
bias = 1,1 as the penalty for gap formation. The 
iteration resulted in a long sequence of  different trees 
which finally stabilised after 11 steps. Again it was 
the second to last iteration which was best with 
respect to the number of  mutations and the gap 
expansion, with 415 mutations and length = 132. 
The iteration stabilised at 418 mutations and 
length = 133. Surprisingly, the number of  mutations 
did not change monotonically (see Fig. 3), and 
showed a second opt imum after six iteration steps 
(number of  mutations, 416, length = 131). The ini- 
tial tree, the two optimal trees, the worst tree and 
the stable tree are shown in Fig. 4. The initial tree 
and the optimal tree are similar in overall topology, 
but differ with respect to the detailed structure of  
some of  the groups: the optimal tree 'corrects mis- 
takes' that arose due to peculiarities of  the present- 
day ancestor (see Section 3). The Bacilli and the 
chloroplast group cluster together, whereas the En- 
terobacteria, being relatively similar to Mycobac- 
terium, are nearer the root of  the tree. Halobacter 
and Thermus aquaticus are also near the root of  the 
tree. The final tree and the intermediate optimal tree 
differ from these trees in that they show a close 
relationship among the Bacilli s.s. (without Clostri- 
dium, Streptomyces and the Enterobacteria). 

As an example of  the generated alignments, the 
one based on the most optimal tree is shown in Fig. 
5. We note the following points. (1) The gaps at 
position 34 and at positions 74/75 are present in all 
alignments. Even ifMycobacter and Halobacter are 
not in each other's ancestry neighbourhood (i.e., the 
alignment algorithm cannot backtrack to the other 
species), they have an insertion at an identical po- 
sition (here 74/75). In fact, it is unlikely for two 
independent events to occur at homologous posi- 
tions, and therefore a close relationship between 
these species seems likely. (2) Unlike our algorithm, 
many published alignments favor multiple inser- 
tions at identical positions in distantly related 
species. This results in tidy-looking alignments, but 
does not seem to be defendable in terms of  evolu- 
tionary processes. (3) Many insertions/deletions oc- 
cur in stacking regions. Corresponding hairpins do 

4 5 0 . 0 0  
1 

Fig. 3. Number  of mutations for the successive trees generated 
by the present-day ancestor method (ancestor = Mycobacter); cycle 
number  increases from top to bottom (see also Fig. 4) 

not always occur at fully homologous positions [e.g., 
the GC-rich second hairpin around positions 102- 
114 (cf. Fox and Woese, 1975)]. 

The use of  non-homologous bases to produce ho- 
mologous helices seems at first sight an ugly feature 
of  the alignment. However, it points out an inter- 
esting fact: it may be 'easier' to conserve secondary 
structure by using non-homologous bases, since there 
are more possibilities for correction if such shifts 
are allowed. Several other observations support this 
idea. For one, minimal-energy foldings of  homol- 
ogous mRNAs have been shown to be similar but 
to use clearly non-homologous sub-sequences to at- 
tain this similarity (D. A. M. Konings et al., manu- 
script in preparation). For another, secondary-struc- 
ture properties of  amino acids [e.g., 'Chou Fasman 
parameters' (Chou and Fasman 1978)] do not clus- 
ter amino acids in groups resembling the ones formed 
by mutation frequencies as published by Dayhoff 
(1976) or McLachlan (1971). In contrast, such prop- 
erties of  amino acids as volume and hydrophobicity 
correlate strongly with mutation frequencies. From 
this we conclude that apparently non-local proper- 
ties are involved and that non-homologous stretches 
may be used to maintain secondary structure through 
evolution. 

5.5. Initiation on an A Priori Tree 

The method can be used starting with an arbitrary 
tree. Using the optimal tree proposed by Sankoffet 
al. (1982) we can evaluate both that tree and our 
method. 

As mentioned, the number of  mutations in their 
alignment relative to this tree is 423 (length = 132) 
as calculated by our binary criterion. When we align 
the sequences on this tree using our method we ob- 
tain 416 mutations (length = 135) for bias--  1,1. 
The branch lengths obtained from this alignment 
differ from the lengths obtained from their align- 
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Fig. 5. Alignment generated on the most parsimonous tree 
(cy = 10; Fig. 4d) of  the ancestor = Mycobacter iteration. Po- 
sitions that vary in one sequence only are marked and boxed. 
Top: Alignment of  present-day sequences. Bottam: Alignment of 
generated internode sequences 

ment in that they exaggerate the main conclusions 
o f  their study: Mycobacter is closer to the Entero- 
bacteria, and the Enterobacteria and the Bacilli dif- 
fer more severely. This is caused by one o f  the fea- 
tures o f  the method  ment ioned  in Section 2.3: 
inherent differences are entered later in the align- 
ment.  Iteration on this al ignment using group av- 
eraging stabilises after the first step; the tree topology 
is not  changed but the rooting is: the Enterobacteria 
(including Mycobacter) are remote from the other 
groups and determine the root. However,  the dif- 
ferent rooting results in 421 mutat ions  and a length 
expansion to 134. 

5.6. Conclusions 

Comparing the different analyses we conclude the 
following: 

1. Bacilli s.s. and Enterobacteria s.s. are similar, 
either by c o m m o n  descent or by convergence.  

2. Mycobacter is remote but relatively similar to 
Thermus aquaticus and/or  to the Enterobacteria. 

3. Streptomyces and Clostridium are dissimilar 
to Mycobacter and fairly similar to Halobacter, in 
this respect they resemble the chloroplasts and An- 
acystis (and Rhodospirillum). They are, moreover,  
similar to the Bacilli. Rhodospirillum is similar to 
the chloroplasts and Anacystis but also has features 
in c o m m o n  with Streptomyces and Clostridium. 

4. In none  o f  the analyses was an affinity found 
among Mycobacter and Streptomyces and the Bacilli 
as occurs in, for example,  the trees proposed by Fox 
et al. (1980).  

Thus,  if  we recognise the affinity o f  Mycobacter 
and the Enterobacteria as well as the affinity o f  Clos- 
tridium, Streptomyces and the Bacilli, accepting the 
implied unequal mutat ion rates, the Enterobacteria 
s.1. and Bacilli s.1. become remote, and the similarity 
o f  the Bacilli s.s. and Enterobacteria s.s. must  be 
attributed to convergence.  Alternatively,  if  the re- 
moteness  o f  these species is taken as an indication 
o f  their early divergence, the Enterobacteria and Ba- 
cilli turn out to result from a late divergence. 

Finally, we conclude that the generation o f  alter- 
native alignments/trees gives more insight into evo-  
lutionary processes than does the early insertion of  
"reasonable' assumptions.  We think such insight is 
more important than the production o f  one defin- 
itive tree. 



6. Discussion and Conclusions 

In this paper we have proposed an integrated ap- 
proach to the alignment of  sets of  sequences and the 
construction of  phyletic trees. We think that it is 
meaningless to consider each of  these problems in 
isolation. Alignment of  sequences boils down to hy- 
pothesising insertion/deletion events in the course 
of  evolutionary divergence; to hypothesise these 
events prior to and independently of  phyletic tree 
construction therefore seems inappropriate. More- 
over, to start evolutionary tree construction after 
hypothesising these (often considered major) evo- 
lutionary events seems to be begging the question. 
It is satisfying to find that the recognition of  this 
interdependence has led to the development of  a 
practical method for generating alignments of  sets 
of  sequences. 

Several open questions remain about the perfor- 
mance of  the method; for example, it is not clear 
that a convergent, stable alignment/tree always ex- 
ists (or is reached); we have not yet found a case in 
which one does not. Therefore, the stopping crite- 
rion of the algorithm should check for the recurrence 
of identical tree topology to detect cycling. Cycling 
may occur when the alignment of  a sequence C to 
a pair of  other sequences A and B results in a higher 
similarity between A and C than between A and B, 
whereas the alignment of  the pair A and C, followed 
by the alignment of  B to this pair gives an alignment 
in which B is closer to A than C is. Indeed, we have 
found that alignment of  a sequence to a set of  ho- 
mologous sequences often produces better results 
than the alignment of  the sequence to any member 
of this set; this can be exploited to find homologies 
between distantly related sequences that have at- 
tained different functions: pairwise alignment will 
pick up spurious similarities, whereas alignment to 
a set will pick up consistent homologies (P. Hogeweg 
et al., manuscript in preparation). 

We do not know whether the derived trees are 
the maximally parsimonous trees for the generated 
alignments, although we suspect them to be among 
the few most parsimonous trees because of  the use 
of  a parsimony criterion in the alignment step of  the 
iteration. Moreover, among these trees they are the 
ones that also possess a high average within-lineage 
similarity not used in parsimony criteria. For ex- 
ample, sequences that share rare properties but do 
not occur in adjacent nodes of  a tree will, by such 
average similarity criteria, be preferentially grouped 
into one lineage, whereas maximum parsimony cri- 
teria cannot use this information (compare Cornish- 
Bowden 1983). We think that such overall similarity 
should be considered, because it is likely that some 
sequence changes can be tolerated (in the biological 
sense) within a set of  similar sequences, but not in 
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all contexts (e.g., because of  secondary-structure 
constraints). This argument is in our view so strong 
that we prefer matrix methods using overall simi- 
larity to maximum parsimony methods even in cases 
in which no alignment problems exist (if there are 
alignment problems, we have no choice), e.g. in 
non-sequence data. In non-sequence data the ar- 
gument holds even more strongly, because context 
constraints then include regulatory constraints. 

These open questions (i.e. about convergence and 
parsimony properties of  the results) should be stud- 
ied using computer simulations, which should in- 
clude not only variable mutation rates between se- 
q u e n c e s  but also, more  impor tan t ly ,  var iable  
mutation rates within sequences. Moreover, ideally 
the sequences should be subjected to non-local con- 
straints on their composition, e.g. a folding pattern. 

Whatever the outcome of  such studies will be, we 
conclude that the proposed method, with the criteria 
used, is as good as the 'mind-mediated methods'  
used previously for alignment. It generates align- 
ment/tree pairs with about the same number of mu- 
tations, the same gap expansion and the same num- 
ber of  gap-generating events (insertions/deletions) 
as the various tree-generating methods (including 
exhaustive search) produce on the a priori align- 
ments. In addition to the ease of  use of  the proposed 
method and its generation of reproducible results, 
it is superior to previous methods in the following 
respects: 

1. It recognises and uses the mutual interdepen- 
dence of  tree generation and alignment of  sequences 
(assessment of  homology). 

2. It can generate different alignment/phyletic tree 
pairs by a change of  parameters and is not restricted 
to an implicit arbitrary choice for either the tree 
construction or the alignment. 

3. It does not use (implicitly or explicitly) exter- 
nal criteria for the construction of  either the align- 
ment or the tree (except those involved in the choice 
of  the various criteria). 

4. It can therefore be used to evaluate its internal 
criteria (parameters). (See, for example, the discus- 
sion of  the value of  the gap penalty). 

5. It can also be evaluated relative to external 
knowledge (which is not implicitly used), e.g., sec- 
ondary-structure considerations. 

6. Evaluation of  different tree proposals can be 
done without bias caused by the alignment, because 
the method includes the generation of  the alignment 
of  the sequences. Of  course, as in all other tree- 
generation methods (including exhaustive search), 
the results remain biased relative to the set of  se- 
quences (species) used in the analysis. 

We conclude that to use non-optimal methods 
optimally one should exploit their flexibility and 
explicitness. This should result in the consideration 
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o f  a v a r i e t y  o f  t rees  a n d  a l i g n m e n t s  i n s t ead  o f  j u s t  

o n e  t ree  w h i c h  is the  bes t  o n e  u n d e r  a ce r t a in  con-  

s t r i c ted  de f i n i t i on  o f  the  un ive r se .  
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