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Summary. Probability models of  branching pro- 
cesses and computer simulations of  these models 
are used to examine stochastic survivorship of  fe- 
male lineages under a variety of  demographic sce- 
narios. A parameter II, defined as the probability of  
survival of  two or more independent lineages over 
G generations, is monitored as a function of  found- 
ing size of  a population, population size at carrying 
capacity, and the frequency distributions of  surviv- 
ing progeny. 

Stochastic lineage extinction can be very rapid 
under certain biologically plausible demographic 
conditions. For stable-sized populations initiated b y  
n females and/or regulated about carrying capacity 
k = n, it is highly probable that within about 4n 
generations all descendants will trace their ances- 
tries to a single founder female. For a given mean 
family size, increased variance decreases lineage 
survivorship. In expanding populations, however, 
lineage extinction is dramatically slowed, and the 
final k value is a far more important determinant 
of II than is the size of  the population at founding. 
The results are discussed in the context of  recent 
empirical observations of  low mitochondrial DNA 
(mtDNA) sequence heterogeneity in humans and 
expected distributions of  asexually transmitted traits 
among sexually reproducing species. 
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Introduction 

Polymorphism in mitochondrial DNA (mtDNA) is 
being increasingly exploited for the study of  genetic 
relat ionships among closely related organisms 
(Brown et al. 1979; Ferris et al. 1981; Adams and 
Rothman 1982; Aquadro and Greenberg 1983; Ar-  
ise et al. 1983; Brown 1983; Lansman et al. 1983a; 
Powell 1983; Templeton 1983). Because mitochon- 
dria appear to be strictly maternally inherited in 
many higher animals (Arise and Lansman 1983; 
Lansman et al. 1983b), mtDNA-generated evolu- 
tionary trees are interpreted as estimates of  matriar- 
chal phylogeny (Arise et al. 1979). If the survivals 
and extinctions of  mtDNA lineages during evolu- 
tion do indeed represent a sorting of asexually trans- 
mitted traits in otherwise sexually reproducing 
species, they can be formally modeled in analogous 
fashion to "male surname evolution" in many hu- 
man societies (Lotka 193 la, b; Chapman et al. 1982). 
In general, the particular demographics of  female 
populations should significantly influence the evo- 
lutionary dynamics of mtDNA lineages. 

This brief article addresses the question, "How 
far back in time might pairs of extant organisms 
have last shared a common female parent?" We 
employ probability models (such as those in Harris, 
1963) and computer simulations to examine sto- 
chastic lineage survivorship under various demo- 
graphic scenarios. Although the approach and re- 
sults should have general applicability, we will focus 
our discussion on a previously published conclusion 
that specifically motivated this report. From an 
analysis of  mtDNA-sequence diversity among hu- 
mans of  diverse racial and geographic origin, Brown 
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(1980) concluded that "the amount of sequence het- 
erogeneity observed, 0.18%, could have been gen- 
erated from a single mating pair that existed 180- 
360 x 10 ~ years ago, suggesting the possibility that 
present-day humans evolved from a small mito- 
chondrially monomorphic population that existed 
at that time." Is this a plausible or necessary sce- 
nario? How small need that population have been 
to be compatible with the empirical observations 
on human mtDNA? 

Methods and Results 

Density- Unregulated Model 

Our models involve only a slight modification of  
the general "branching process" approach used to 
study surname dynamics in human populations and 
evolutionary fates of  newly arising mutants (Hal- 
dane 1927; Fisher 1930; Lotka 1931a, b; Ross 1970; 
Schaffer 1970; Li and Nei 1977; Spiess 1977). For 
a given branching process, a specified distribution 
of family sizes determines probabilities of  loss or 
survival of  a given lineage. For example, when adult 
females produce daughters according to a Poisson 
distribution with mean #, the probability of loss of  
a given female lineage after one nonoverlapping gen- 
eration (or the proportion of  lineages lost from the 
population) is e - .  (Spiess 1977, chapter 13). Through 
the use of  generating functions, probabilities of  loss 
after G generations (pa) can also be determined (Li 
1955; Crow and Kimura 1970; Spiess 1977). In the 
Poisson case, Po = e "(~-'), where x equals the prob- 
ability of loss in the previous generation (po_ 0- 

If  survival and extinction of  different lineages 
occur independently of  one another, as would be 
true for a density-unregulated population, the prob- 

ability of various numbers of lineages surviving 
through G generations can be obtained from the 
approach exemplified in Table 1. Suppose that a 
population is initiated with n unrelated females. The 
first and second terms of  the binomial expansion 
are the probabilities that all except zero or one lin- 
eage, respectively, will be extinct after G genera- 
tions. The sum of all other terms of the expansion 
(II, the probability of  survival of  two or more lin- 
eages) is of special interest. If  II is near one, it is 
very likely that a population founded G generations 
earlier will still carry descendants of two or more 
original founders. Conversely, if  II is near zero, all 
mtDNA-sequence diversity in the population or 
species will almost certainly have arisen less than 
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Fig. 1. Probabil i t ies  o f  surv iva l  o f  two or  m o r e  founding  lin- 
eages th rough  G genera t ions  in popula t ions  ini t ia ted with n fe- 
males  p roduc ing  daughters  according to a Po isson  dis t r ibut ion 
wi th  m e a n  # = 1.0. Solid lines, II; da shed  lines, r 

Table 1. Probabil i t ies  o f  l ineage surv iva l  th rough  G genera t ions  in a popula t ion  ini t iated wi th  n = 4 females,  each p roduc ing  offspring 
according to a Po isson  d is t r ibut ion  wi th  m e a n  # = 1 

B inomia l  expans ion  

S u m  o f  o ther  
G p q p4 4p3q t e rms  (rl) r 

1 0 .3679 0.6321 0.0183 0.1259 0.8558 0 . 8 7 i 8  
2 0 .5315 0.4685 0.0798 0 .2814 0.6338 0 .6925 
5 0 .7319 0.2681 0 .2869 0.4205 0 .2926 0.4103 

10 0.8417 0.1583 0 .5019 0.3775 0.1206 0.2421 
20 0 9 , 2 5  0.0875 0.6933 0.2659 0.0408 0 , 3 3 0  

lOO 0.9807 00193  0.9250 0.0728 0.0022 0.0293 

General  PG = e~_ , - , ,  1 - p , . 1 \~_p.] 
extinct  ex tan t  

p and  q are probabil i t ies  o f  ext inct ion and  survival ,  respectively,  o f  single lineages. The  first and  second t e rms  o f  the  b inomia l  expans ion 
are the  probabil i t ies  tha t  zero or one  lineage, respectively,  su rv ive  to genera t ion  G 
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Fig. 2A and B. Probabilities of survival of 
two or more founding lineages through G gen- 
erations in populations initiated with n fe- 
males producing daughters according to a 
Poisson distribution with means A 1,1 and B 
0.9 

Table 2. Examples of generating functions Pc(X) for various family-size distributions" 

Parametric family Generating function 
of distributions Mean 0~) Variance (v) [po(x)] 

Poisson 

Binomial 

Geometric 

Negative binomial 

L~ (a - l o g # l  q)) 

# # e~X- t) 

np npq (q + px)" 

q q P 
p p~ 1 - qx 

p'rq 
~ q ~  1 ~ ~ q  + 

1 + oL l o d l  - -  p p2 7_ 
q ( x -  1)] 

= The generating function is used to calculate recursively the probability of loss in each generation. Let x equal the probability of loss 
in the previous generation (G - 1). Then pG(x) is the probability of loss in generation G. The probability of loss in the first generation 
is p~(0) 

G generat ions prior.  We generated values o f  I I  for 
large n on a Digital P D P - 1 1 / 3 4 A  compute r ,  using 
the procedure  shown in Table  1. Several weeks o f  
compu te r  t ime  were required for the following 
models  and  s imulat ions.  

Figure 1 plots values  o f  I I  against  G for popu-  
lations founded by  n = 2 -10 ,000  females  and  a Pois-  
son dis t r ibut ion o f  offspring with ~ = 1. U n d e r  these 
condi t ions  stochastic lineage sorting can be very 
rapid. Consider ,  for  example ,  the case for  n = 65. 
I f  G > 200, I I  is less than  0.1, and  it is thus very 
likely that  this popula t ion  would now contain  only 
the descendants  o f  a single founder  female.  On  the 
other  hand,  i f  G < 40, then I I  > 0.9, and  it is very  
likely that  the descendants  o f  at least two founding 
females  are still represented a m o n g  the surviving 
lineages. In general, for the range o f  n examined,  
I I  > 0.9 only for G < ,~0.5n, and  I I  < 0.1 only 
when G > ~ 4 n .  

We can also define a condi t ional  probabi l i ty  clI 

(last co lumn,  Table  1) tha t  two or more  lineages 
survive through G generat ions given that  the pop-  
ulat ion r emains  extant.  Curves  for I I  and  cII are 
generally very s imilar  at higher values  (II  and  cH > 
0.5), but  diverge increasingly at lower values  (Fig. 
1). 

In this dens i ty- independent  mode l  with Poisson 
offspring dis t r ibut ion o f  ~ = 1, mos t  popula t ions  
founded by  small  numbe r s  o f  females  will go extinct 
wi thin  a few generat ions (co lumn o f p  4 values, Table  
1). For  example ,  abou t  92% of  popula t ions  with 
founder  size n = 4 are likely to expire within 100 
generat ions (Table 1), whereas only abou t  1% of  
popula t ions  with n = 250 will be lost within the 
same  t ime  span. However ,  the probabil i t ies  o f  pop-  
ulat ion ext inct ion and  the I I  curves will o f  course 
also be strongly influenced by the family-s ize  dis- 
t r ibutions,  which de te rmine  the popula t ion-s ize  t ra-  
jectories.  Figures 2A and 2B plot  cII curves  for Pois-  
son offspring dis t r ibut ions with means  # = 1.1 and  
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Fig. 3. Probabil i t ies o f  survival  o f  two or more founding l in- 
eages through G generations in populations initiated with n fe- 
males producing daughters according to a negative binomial dis- 
tribution with # = 1.0 and v = 1.3 

0.9, respectively. In the biologically unrealistic sit- 
uat ion in which females cont inual ly produce excess 
surviving progeny (~ > 1.0, indefinitely expanding 
population),  cH values remain  posit ive for any n 
value (Fig. 2A). When females fail to fully replace 
themselves with daughters (~ < 1.0, declining pop-  
ulation), cII values quickly go to zero even for large 
founding n value (Fig. 2B). 

The  Poisson distr ibution is a model  for  counts  
o f  rare events. Some organisms (perhaps many  fish- 
es, amphibians,  etc.) may  mainta in  relatively con- 
stant popula t ion size by producing large numbers  
o f  offspring, o f  which only a small fraction survives. 
Considering survival  as a rare event,  progeny num-  
bers in such populat ions may  follow a Poisson dis- 
t r ibut ion with ~t = 1.0. Other  progeny distributions 
may  be more  realistic elsewhere. For  example,  Ko- 
j ima  and KeUeher (1962) repor ted that  the 1950 
census data for the growing U.S. popula t ion con- 
forms well to a negative b inomial  distribution. The  
approach exemplif ied in Table  1 and Fig. 1 may  be 
generalized to any offspring distribution, p rov ided  
appropriate  generating functions are available for 
recursively calculating PG (Table 2). Figure 3 shows 
curves o f  II for a negative b inomial  offspring dis- 
t r ibut ion with ~z = 1.0 and variance v = 1.3. These 
curves are very  similar in form to those for the 
Poisson situation (Fig. 1). 

One would expect  the variance as well as the 
mean  o f  the progeny distr ibution to influence lin- 
eage survivorship (Schaffer 1970), and Fig. 4 shows 
that this is indeed true. For  a negative b inomial  
distr ibution with a given/z  and n (in this case 1.0 
and 65, respectively), probabili t ies o f  lineage sur- 
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Fig, 4, Probabilities of survival of  two or more founding lin- 
eages through G generations in populations initiated with 65 
females producing daughters according to a negative binomial 
distribution with tt = 1.0 and variances ranging from 1.1 to 20.0 

vival through t ime decrease as v increases, with 
overall  effects on 1I equivalent  to those o f  lowering 
n. For  example,  the II curve for v = 5.0 and n = 65 
is nearly identical to that  for v = 1.3 and n = 20 
(compare Figs. 4 and 3). 

Density-Regulated Models 

In the foregoing models,  because the dynamics  o f  
different lineages are assumed to be independent ,  
most  populat ions init iated with small or modera te  
n values rapidly go extinct, and the only regulation 
o f  popula t ion size is through the constancy o f  the 
mean #. In the following compute r  simulations (by 
J .E .N.) ,  p o p u l a t i o n  size is exp l i c i t ly  r egu la ted  
through t ime about  some specified carrying capacity 
k; the mean  # changes each generation and depends 
on n logistically. Th e  simulations were done with a 
DEC system r a n d o m - n u m b e r  generator  tested by 
several criteria. 

In these simulat ions each popula t ion  is founded 
by n = k unrelated females. In the first generation 
these females are allowed to produce  progeny ac- 
cording to a Poisson dis tr ibut ion with ~ = 1.0. By 
chance, total numbers  o f  daughters will often differ 
f rom k, but  in subsequent  generations popula t ion 
size is buffered as follows: For  any moni to red  n, the 
mean  (and variance) in n u m b er  o f  offspring per fe- 
male for the following generation is calculated by 
# = e(k - ,)/k. Thus  for n < k, # > 1.0, and the pop- 
ulation grows logistically until  n > k (~t < 1.0), at 
which point  the popula t ion  temporar i ly  declines. 
Throughout  the simulations the female lineages ini- 
t iated by the founders are labeled, their  fates are 
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Fig. 5. Solid lines, 11 curves for populations regulated at car- 
rying capacities k; dashed lines, II curves for density-unregulated 
populations initiated with n female founders reproducing ac- 
cording to a Poisson distribution with iz = 1.0; dashed/dotted 
lines, II curves for populations that have grown logistically to 
stable carrying capacity k after founding by n = 4 females 

followed, and the t ime course o f  1I is determined.  
For  each specified k value a total o f  100 simulations 
was run; the 1I values represent the propor t ion  o f  
t imes among these runs that two or more  lineages 
remained  extant  through G generations. 

Results for  computer-s imula ted  populat ions with 
k = 2 -1000  are plotted in Fig. 5. For  compar ison  
the II curves f rom the previous density-unregulated 
models  are also shown. (In the density-regulated 
case, curves o f  cII are not  shown because they are 
very  similar to those o f  H, particularly for large k 
values.) For  a given n = k, the two sets o f  curves 
are very  similar in form and magnitude.  This sug- 
gests that  the results for  densi ty-unregulated pop- 
ulations founded by n females are applicable, to a 
first approximat ion,  to the more  realistic situation 
in which popula t ion size is explicitly regulated 
a round k -- n. 

However ,  regulation by density may  be impor-  
tant  in a species composed  o f  many  spatially isolated 
populat ions each o f  which is buffered against ex- 
t i nc t i on  t h r o u g h  dens i ty  effects  on  p o p u l a t i o n  
growth. Although the diversi ty o f  lineages within 
each popula t ion may  decay rapidly (depending on 
the demographic  parameters ,  as already discussed), 
at least one lineage per extant  popula t ion will be 
retained indefinitely. The  m a x i m u m  age o f  sepa- 
rat ion o f  lineages within a species composed  o f  iso- 
lated populat ions could be no less than the age o f  
the populat ions themselves,  and could be much  old- 
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Fig. 6. Frequency distributions of  probabilities of lineage sur- 
vival through G generations for populations initiated with 10 
females producing daughters according to a Poisson distribution 
with ~ = 1.0 

er. The m a x i m u m  age would be strongly dependent  
on the lineages in t roduced into the populat ions at 
their  t ime o f  founding, which in turn would be a 
function o f  the sorting o f  lineages in the ancestral 
stock (as already modeled).  In such cases the II value 
for the species as a whole could remain larger than 
a considerat ion based solely on composi te  census 
size would suggest. 

Extens ions  of  the M o d e l s  and Simulat ions  

Further  informat ion  can be extracted f rom the 
models.  For  example,  the probabil i ty that any num-  
ber o f  founding lineages remain extant  through G 
generations can readily be calculated f rom addi- 
t ional terms o f  the binomial  expansion (Table 1). 
Figure 6 shows such an example for n = 10 and G 
values ranging f rom 2 to 100. 

The  simulations can also be modif ied to accom- 
moda te  temporal ly  changing demographic  condi- 
tions. One situation that is probably c o m m o n  in 
nature involves a small founding populat ion that  
subsequently grows to a much  higher carrying ca- 
pacity. Results o f  a n u m b e r  o f  compute r  simulations 
o f  such a situation are shown in Fig. 5. Artificial 
populat ions were founded by n = 4 females and al- 
lowed to grow logistically (/~ = e (k - n)/k) to carrying 
capacities ranging f rom 10-1000. (Mean t imes to k, 
measured in generations, ranged from 3.6 for k = 
10 to 10.2 for k = 1000.) The  II curves for these 
condit ions appear  nearly identical to the respective 
curves for the previously discussed density-unreg- 
ulated models  and density-regulated simulations 
with the same n and k values. Evidently,  for a pop-  
ulation that  expands rapidly after establishment,  the 
final k value is a far more  impor tan t  de te rminan t  
o f  II than is the founding n value. This  makes in- 
tuitive sense, because during the expansion phase 
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most mtDNA lineages survive (see Fig. 2), and once 
k is reached, the rate of loss of lineages becomes 
lower as the absolute number of  surviving lineages 
declines. 

Discussion 

The major conclusion to be derived from these 
models and simulations is that stochastic extinction 
o f mtDNA lineages can be very rapid under certain 
plausible demographic conditions. For nonexpand- 
ing populations initiated by n females and/or reg- 
ulated about a carrying capacity k = n, it is highly 
probable that within about 4n generations all de- 
scendants will trace their ancestries to a single fe- 
male founder. The probability that two or more 
founding lineages remain extant (12) is very high only 
when the number of generations (G) since founding 
is less than about 0.5n. However, the plots of II 
versus time are strongly influenced by the particular 
means and variances of family-size distributions and 
by the attendant population-size fluctuations. Dur- 
ing the expansion phase of  a population, the prob- 
ability 12 consistently remains much greater than 
zero; during a contraction phase lineage extinction 
is especially rapid, and II quickly diminishes. 

Although treatments using branching processes 
and generating functions have been used previously 
to examine related population problems (such as 
mean times to loss or fixation of newly arising mu- 
tants), we have introduced the probability II because 
of its clearer relevance to two issues recently raised 
about mtDNA evolution: the rate of  sorting of fe- 
male lineages in ancestors of modern humans; and 
the distribution of mtDNA lineages among related 
species. 

Human  mtDNA Evolution 

The observation of exceptionally low mtDNA-se- 
quence diversity within and among human races led 
Brown (1980) to speculate that all living humans 
may have descended from a single mating pair that 
lived between 180,000 and 360,000 years ago (about 
9000-18,000 generations). Brown went on to pos- 
tulate a severe bottleneck in human population 
numbers--a "small mitochondrially monomorphic 
population." This may have occurred, but the re- 
suits of our models indicate that a dramatic popu- 
lation reduction does not necessarily have to be in- 
voked to account for the human mtDNA data, even 
if all living humans have indeed descended from a 
recent female parent. 

The branching process approach shows that with 
a Poisson offspring distribution of  mean 1.0, a pop- 
ulation founded by n = 15,000 unrelated females 

will yield a value o f l I  ~ 0.5 within 18,000 gener- 
ations. (For a negative binomial offspring distri- 
bution with mean 1.0 and variance 3.0, a population 
o f n  = 45,000 yields II ~ 0.5 in the same time.) In 
other words, under these circumstances our "'Eve" 
could have belonged to a population of  many thou- 
sands or tens of thousands of females, the remainder 
of  whom left no descendants to the present day, due 
simply to the stochastic lineage extinction associ- 
ated with reproduction. The absolute population size 
could have been even larger than this if the variance 
in numbers of surviving progeny was greater. 

Clearly the human population has expanded dra- 
matically since the Pleistocene. However, prior to 
the agricultural revolution that began about 10,000 
years ago, the human population was much smaller, 
and conceivably relatively stable for long periods of  
time (Ehrlich and Ehrlich 1970; Cavalli-Sforza and 
Bodmer 1971). Deevey (1960) and Ehrlich and Ehr- 
lich (1970) suggest a mean population size of  about 
125,000 (perhaps 62,000 females) for the Lower Pa- 
leolithic (roughly 1 million to 300,000 years ago). 
The mtDNA data and results of the branching pro- 
cess models appear compatible with a population 
of  this general order of  magnitude for much of  the 
Middle Paleolithic as well. Probably it was only after 
the more recent expansion of the human population 
that the rate of  loss of mtDNA lineages decreased 
dramatically. 

mtDNA Lineages in Related Species 

The demographically infltienced rates of mtDNA- 
lineage sorting also have important consequences 
for expected patterns ofmtDNA relationships among 
closely related species. We plan a fuller treatment 
of this topic elsewhere, and will limit comments here 
to a few general thoughts. 

If more than about 4n generations have elapsed 
since a given stable-sized species last split from its 
nearest relatives, all mtDNA-sequence divergence 
within it will likely postdate the speciation event, 
and the species will be monophyletic in its matriar- 
chal ancestry. On the other hand, in a derivative 
species less than 0.5n generations old (or for a species 
whose population has expanded since its origin), 
some mtDNA lineages will almost certainly predate 
the separation from ancestral stock. In comparison 
with other extant taxa, the possibility exists for in- 
dividuals or populations within this species to be 
polyphyletic or paraphyletic (Farris 1974; Wiley 
1981). Avise et at. (1983) presented empirical evi- 
dence for just such a situation. The rodent Pero- 
myscus polionotus inhibits the southeastern United 
States, while its close relative P. maniculatus occurs 
throughout most of North America. Restriction en- 
zyme digestion o fmtDNA showed that several high- 
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ly d i f fe rent ia ted  l ineages  were p resen t  in  P. manicu- 
latus, a n d  i m p o r t a n t l y ,  wi th  respect  to P. polionotus, 
P. maniculatus a p p e a r e d  pa raphy le t i c  in  m a t r i a r -  
chal  genealogy.  

Because m t D N A  evo lves  rapid ly ,  it  has p r o v e n  

to be m o s t  useful  for assess ing r e l a t i onsh ips  a m o n g  
c o n s p e c i f i c  p o p u l a t i o n s  a n d  r e c e n t l y  d i v e r g e d  
species. I t  is in  these  recent ly  separa ted  species tha t  
pa t t e rns  o f  p o l y p h y l y  or  p a r a p h y l y  in  m t D N A  are 
m o s t  l ikely. I n  c o n v e n t i o n a l  phy logene t i c  scenar ios ,  

specia t ions  are usual ly  p ic tured  as d i c h o t o m o u s  splits 
l ead ing  to m o n o p h y l e t i c  species. C o n s i d e r a t i o n s  o f  
the  d e m o g r a p h i c  even t s  assoc ia ted  wi th  spec ia t ions  
suggest tha t  wi th  respect  to u n i p a r e n t a l l y  i n h e r i t e d  
t ra i ts  such as m t D N A ,  these  scenar ios  m a y  of ten  be 

incorrec t .  
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