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F R A C T U R E  TOUGHNESS C H A R A C T E R I S T I C S  O F  L A M I N A T E D  

C O M P O S I T E S  

V. V. Bolotin, K. S. Bolotina, 
V. P. Radin, and V. N. Shchugorev 

Parameters characterizing the resistance of laminated composites to interlaminar fracture are discussed. The 
properffes of the specific interlaminar fracture work, i.e., the amount of  work spent on the formation of a unit 
of new surface of interlaminar crack, were examined. Taking account of the anisotropy of the material, 
work may be characterized using a matrix. Upon change in the direction of crack growth, the matrix elements 
are transformed similarly to the components of a symmetrical second rank tensor. An interpretation is offered 
for the matrix elements. The proposed theoretical model was in accord with our experimental results. 

The properties of most composite materials have highly pronounced anisotropy [1]. This is true in regard to their 
fracture toughness. The load parameters and active generalized forces (stress rate coefficients, s~ain energy release rate and 
J integral) depend on the direction of crack propagation. Thus, the J integral for two cases of interlaminar crack growth in a 
unidirectional composite, namely, along and transverse to the fibers, differs significantly (Fig. I). This extends entirely to the 
fracture toughness indices of the material independently of whether they are given in stress rate coefficients or other terms. 

Let us examine the specific interlaminar fracture work for laminated composites, i.e., the work spent to form a unit 
of new surface of an interlaminar crack. Experiments to determine this term are relatively simple. Thus, relative to tear fracture 
(mode I), testing rectangular samples with a prior interlaminar notch for stripping is sufficient. The specific fracture work is 
defined as the relative work increment AW of the loading force to the increment of crack area AA. This term is necessary, for 
example, in predicting surface delamination in composite structures [2-6]. 

Let us study closed delamination in a composite plate upon compression in the plane of the plate. Let us assume for 
simplicity that the delamination boundary is smooth and that it is given in polar coordinates (Fig. 2). The specific interlaminar 
fracture work 7 varies along the delamination perimeter as a function of polar angle ~o. However, in its physical sense, this 
term should depend on the direction, in which delamination progresses at each point of the contour. It would seem that small 
increments in the delamination dimensions occur due to displacements of the contour points in the direction of the external 
normal n to the contour. For example, if the composite is reinforced unidirectionally by fibers along the x-axis, then work 3' 
depends on angle 0, which is formed by the normal with file x-axis (see Fig. 2). When ~o = e = 0, interlaminar fracture occurs 
as schematically represented in Fig. la, while fracture occurs as shown in Fig. Ib when ~o = 0 -- Ir/2. The specific 
interiaminar fracture work in the case of intermediate angles lies between the maximum (when 0 = 0) and minimal values 
(when 0 = ~r/2). 

Hence, the specific fracture work is a type of tensor quantity. At first glance, this is not in accord with the usual 
concept of work as a scalar quantity. However, these values are taken for a fixed direction of crack propagation. The fracture 
areas in Figs. la and b are equal but the work spent on crack formation is quite different. The reason for this behavior lies 
in the comple~ fractographic pattern, which entails multiple cracking, damage to the matrix and matrix--fiber boundary, and 
pulling and tearing of the fibers. 

We would expect that the specific fracture work is a type of tensor quantity even if it is limited by one type of fracture, 
in particular, interlaminar tear. Since the fracture work in the isotropic case is characterized by a single scalar term, it is 
reasonable to assume that it will be a second rank tensor in the anisotropic case. Until now neither theoretical nor experimental 
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Fig. 1. Fracture in Mode I of a unidimensional fiber 
composite upon crack propagation along (a) and across the 
fibers Co). 

X 

Fig. 2. Delamination in a laminated composite plate under 
compression. 

data were available, which could support or disprove this hypothesis. The properties of the specific fracture work as a 
geometrical object may prove more complicated. This may be seen if we examine the properties of the corresponding load 
parameters. Thus, the load velocity coefficients t'or an orthotropic linear medium are related to the elastic constants of this 
medium by quite complicated equations. In turn, the elastic constants are components of some fourth rank tensor or are 
expressed through these components. Thus, the term 7 given by the following matrix 

Y=f' 1 o) ~,7=1 7= ' 

will be designated only conditionally as the specific fracture work tensor, assuming that upon rotation of the crack front, 
matrix (1) is transformed according to the transformation rules of a second rank symmetrical tensor onto planes x], x 2. I f  the 
starting values are given along the major axes, 

y = ( y ,  O )  
o ~,, ' ( 2 )  

the specific fracture work for a crack, whose front is inclined at angle O, is def'mcd as 

Ye = 7~ c os2 0 + 1'= sin= e;  tie = s m  20 .  (3) 
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Fig. 3. Interlaminar fracture of a composite: a, b) along the major 
axes of tensor 3"; c, d) in an oblique direction. 

In this case, 3"I > 3'2, while the nondiagonal values for angles 0 and 0 + +r/2 are designated as 712 ~- 3'21 = -7/0. The minus 
sign before 710 is necessary for simplification of the sign law. There is nothing unusual in the introduction of this sign rule: we 
need only recall the analogous situation with moments of inertia in the tensor representation of such moments. 

The question arises as to the physical significance of matrices (1) and (2). It is natural to assume that the Neumann 
principle is applicable to the specific fracture work (as to any other physical term). Thus, if the composite has orthogonal 
symmetry axes in plane xl, x 2, the major values of tensor 3" in this case coincide with the generally accepted values (Fig. 3a, 
b), while the value of 3'0 determined using the first formula in Eqs. (3) coincides with 3"I when 0 = 0 and with 3"2 when 
0 = ~-/2. In both cases,  ~/0 = 0. 

In order to clarify the physical significance of the nondiagonal elements of matrix (2) or, equivalently, the si+tmificance 
of 70 in the second formula in Eqs. (3), let us examine an example. Let interlaminar fracture of a composite occur in a direction 
not coinciding with the symmetry axes. The crack front in this case will be displaced "obliquely," i.e., with deviation from 
the direction of the tear toward the directions with least resistance to fracture. For example, if a fiat rectangular sample with 
" o b l i q u e "  fiber orientation is subjected to tear in the direction of an axis, the fracture area will consist of two parts. One part 
will correspond to frontal displacement of the crack, while the second will correspond to rotation of the front toward the 
direction of least resistance at some angle A~ (Fig. 3c, d). If angle 0 measured from major axis 1 is positive, then the front 
rotation A~ will also be positive. Counter-clockwise angles are usually considered positive (Fig. 3c). When 0 < O, we thus 
obtain A~ < 0 (Fig. 3d). 

It is more difficult to relate the newly formed areas with the total interlaminar fracture work. The work spent on the 
frontal displacement of the crack is clearly equal to 3"b~n, where b is the sample width and An is the frontal component of the 
displacement. The area bat/2 remains, where At = bran A~, which is the displacement of the crack due to its deviation from 
the frontal direction. The corresponding fracture work is proportional to ~obmn A~/2. This value will be positive both when 
0 > 0 and 0 < 0 due to the simultaneous change in signs of ~/0 and A~P. Thus, it is possible to explain the variable sign nature 
of the nondiagonal elements of matrix (1). 

The value of the coefficient in the expression for work in the formation of the triangular fracture region remains not 
entirely clear. The case of very strong anisotropy may serve as the leading concept. Let 3'1 > > 3'2 and 0 ,= ~-/4. 

Then, Eqs. (3) give 3"0 ~ 1/0 " 3"1/2. Assuming that AW = 70bAn + ~0bAt, we fred that AW = (Tt/2)AA. Here, 
AA = b(An + At/2), i.e., the area of the trapezoid corresponding to the newly formed delarnination, while 3"1/2 has the 
significance of the specific fracture work in "oblique" tear. Then, we assume that 

A W  --. ('r, An. + I ~,, I A t / ~ )  b. 

Experiments were carried out to check the applicability of these assumptions. It would be simplest to check the first 
formula in Eq. (3). This requires only tear testing of a samples with major axes oriented differently to the sample axis and, 
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Fig. 4. Scheme for testing for "oblique" 
interlaminar tear in the opening mode. 
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Fig. 5. Comparison of the experimental and calculated values of the 

elements of the specific fracture work tensor for a textile/epoxy 
composite: a) diagonal elements and b) nondiagonal elements. 

thus, to the tear direction using a two-arm scheme (Fig. 4). The second formula in Figs. (3) along with Eq. (4) may be used 
to check the interpretation of the nondiagonal elements. More precisely, the following equation may be checked 

7~ - 72 sin 20 = ~ - (Tt cos? 0 + 72 sin 2 O) 2An 
2 At 

Here, 71 and 72 are found by tear testing in the direction of the major axes, while AW, An, and At are found by tear testing 
also in the "oblique" direction. 

Textile/epoxy composite samples were tested made from linen-woven fiberglass and epoxy resin. The samples were 

prepared by cutting from one plate at different angles 0 < 0 < f]2,  where 0 is measured from the direction of the weft. Upon 
tear in the direction of the weft, the fracture work 71 = 320 Jim 2. In the direction of the base, 3'2 ~ 80 Jim 2. The dependence 
of the specific fracture work on 0 is shown in Fig. 5. Four or five samples were tested for each angle. The scatter of the values 
found for 7o and 70 is rather large. The scatter intervals are sh6wn in Fig. 5. The solid lines were calculated using Eqs. (3). 
The agreement may be considered satisfactory if we consider that fracture in mode 1 could not be achieved in its pure form 
in the testing. The mixed nature of the fracture introduces an additional effect, which is not taken into account in Eqs. (3). 

Analogous results for SVM unidirectional organic plastic are given in Fig. 6. Strips of this composite were adhered 
by metal bases, together with which they were subjected to interlaminar tear using a two-arm scheme. For the first major 

direction (along the fibers), we obtained the mean value 71 = 1.45 k//m 2. For the second major direction 72 = 0.77 kJ/m 2. 
Figure 6 indicates that the calculated and experimental results are in accord here better than in the case of the textile/epoxy 
composite. 

In many cases, the crack propagates in the direction of the external normal to the initial contour despite the anisotropy 
of the specific fracture work. Let the delamination boundary S be smooth (see Fig. 2). We designate the element of length of 
the contour ds and the variation of the external normal to the contour 8n and obtain 

= -~.r,(e) Sn as, (5) 
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Fig. 6. Comparison of the experimental and calculated values of the specific 

fracture work tensor for a unidirectional Kevlar/epoxy composite: a) diagonal 
elements and b) nondiagonal elements. 
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Fig. 7. Elliptical delaminations: a) variation of the dimensions and 
b) growth of elongated delaminatious. 

where 7o(0) is determined using Eqs. (3). The integration is carried out over the entire delamination contour, in particular, in 
polar coordinates: 

k 

0 (6) 

where ~r(v~) is a variation of the polar radius corresponding to the increment of the normal in the direction 0(7). In special 

cases, suitable curvilinear coordinates or another paramelzical form should be used instead of polar coordinates for giving the 
delamination contour, 

We shall show how to calculate the generalized resistance force for elliptical delamination in the composite. Let us 
examine delamination with semiaxes a and b having given the coordinates of its boundary through parametrical angle a,  i.e., 

x = cos a,  y = sin a (Fig. 7a). Then, the elemental boundary length ds and slope 0 of the external normal to the boundary 
is given by the following equations 

d8 = (a" sin s a + b 2 cos= a) s/2' ~ 0 = k ta  (x. (7) 

Here, k = a/b. Let us take the equality 
(a  + 8a) cos ( a  + ~ )  ~ x + 8n cos O; 

(b + 8b) sin (a + r~) - y + ~n sin 9, 

(8) 
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Fig. 8. Dimensionless generalized resistance forces for elliptical 
delaminations: 1-4) r a, 1'.4') r b at 3"2/3"t -- 0.25 (1, 19, 0.5 (2, 2'),  2 
(3, 3'), 4 (4, 4'). 

where 8a and 8b are variations of the semiaxis lengths, &x is a variation of the parametrical angle corresponding m variation 
of the boundary in the direction of  the external normal. We use Eqs. (8) to find that the variation of the length of the normal 
is 

b cos  ~ ~ 8 a  + a s in  2 a 8b 
8n= 

(a '  s in  2 a + b = cos ~ a)  Ira" (9) 

Let us substitute Eqs. (7) and (9) into general Eq. (5) for virtual fracture work and fred the generalized resistance force 
. / I  

F. = 4b [ ?[O(a)] cos 2 (z da; 
0 

(10) 

t/a 

r ,  = 4a ~ ~[e(a)] sin" = da.  
0 

In particular if the axes of the ellipse are directed along the major axes of tensor 3"jk, i.e., 7(0) ---- 71COS 2 0 + 72sin 2 O, 
Fxls. (10) take the form 

x/Z 

o I +k:tg ~a ; 

X/2 

r. = 4 a  I (71 + 7~/rl tg a a )  a in'  a d a  
o 1 +  k'a tga a 

(11) 

The integrals in Eqs. (11) are calculated elementarily: 

F.  = ~b [71 (2k + 1) + u ~a [71 + u  (k + 2)] (12) 
( k + l f  , r b =  ( k + l )  z " 

Let us examine several special cases. Let 3"1 -- 72 -- 7, i.e., the material is transverse-isotopic. Then, we arrive at 
the following formulas [2] 

F, = n7 b; F~ = n7 a. (13) 

If 3't ;~ 3'2 but the ellipse has a highly oblate form, approximate evaluations may readiiy by obtained using Eqs. (12). Thus, 
when a < < b 

F, m ~71b, rb ~ nTta. 
(14) 
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This implies that when 71 and 72 have the same order, I' a >> I" b, while delamination grows (when all other conditions are 

equal) in the Ox-direction. The fracture work in this case is determined mainly by the resistance of the composite to splitting 

along this axis. On the other hand, when a > > b, we f'md the following approximations 

Fj ~ ~'~=b; Fb = ny2a. (I 5) 

Resistance to crack propagation mainly depends on the specific fracture work along the Oy-axis, while delamination proceeds 

in the direction of this axis. On the whole, Eqs. (14) and (15) show that the delamination patterns, whose form is quite 

noncircular, have a tendency to grow toward a circular form (if, of course, the values of the specific fracture work along the 

two major axes have the same order). This conclusion is illustrated in Fig. 7b. 

The results of our calculations using Eqs. (12) are shown in Fig. 8, in which Pa/ra 0 and Pb/rb ~ are given as functions 

of dimensionless parameters k = a/b and 72/'Y1. Here, Pa~ ffi #,ylb and Fb ~ ffi ~/2a. Curves I, 2, 3, and 4 were plotted for 
Fa/Pa ~ when 72171 ---- 0.25, 0.5, 2, and 4, while curves I ' - -4 '  were plotted for rb/rb0 at the same values of 72171. If 
72171 ---- I, then r a = r O and I" b ffi rb O, which corresponds to Eqs. (13). 

These results concern tear fracture (mode I). An analogous model may he developed for modes II and Ill, for example, 

for delamination by the action of shear forces. The situation is complicated in the case of fracture through mixed modes. If 

a crack propagates between two orthotropic layers with the same properties and the same orientation, the specific fracture work 

matrix will take the following form 

e,' e,;I 

e,,I le,;, e, ,l 
u (16) 

The remaining elements of this matrix are zero and become non-zero if the properties of adjacent layers are different or the 
layers are differently oriented. Similar difficulties arise in calculating the energy release rates when the crack front moves along 
the boundary between two homogeneous elastic layers [7]. Additional difficulties arise in composite materials due to the 
complex fractographic pattern of interlaminar cracking. There is cause to expect that some of the zero vacancies in matrix (16) 

should be occupied for a complete description of fracture of the boundary of two layers with different properties. 

The present work was carried out with partial support of the Russian Fund for Basic Research (Grant No. 

93-013-16486). 
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