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THE DYNAMIC INTERPOLATION PROBLEM: 
ON R I E M A N N I A N  MANIFOLDS,  LIE GROUPS,  

A N D  SYMMETRIC SPACES 

P. CROUCH, F. SILVA LEITE 

ABSTRACT. We consider the dynamic interpolation problem for non- 
linear control systems modeled by second-order differential equations 
whose configuration space is a Riem~nnlan manifold M. In this prob- 
lem we are given an ordered set of points in M and would like to 
generate a trajectory of the system through the application of suit- 
able control functions, so that the resulting trajectory in configuration 
space interpolates the given set of points. We also impose smoothness 
constraints on the trajectory and typically ask that the trajectory be 
also optimal with respect to some physically interesting cost function. 
Here we are interested in the situation where the trajectory is twice 
continuously differentlable and the Lagrangian in the optimization 
problem is given by the norm squared acceleration along the trajec- 
tory. The special cases where M is a connected and compact Lie 
group or a homogeneous symmetric space are studied in more detail. 

1. INTRODUCTION 

The present work is motivated by the motion planning problem and 
the tracking problem for nonlinear systems. First of all, the trajectories 
are specified in terms of an ordered set of points through which selected 
dynamic variables must pass, together with smooth constraints and some 
performance measure. Then the problem is reduced to determining suitable 
controls which give rise to such trajectories. We call this procedure the "dy- 
namic interpolation problem," a term that first appeared in a series of pa- 
pers related to flight paths of aircraft by Crouch and Jackson [11], [12], [13] 
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and Jackson [21]. In our previous paper [14], we started looking at the dy- 
namic interpolation problem in a more abstract setting, in an attempt to 
understand the geometry of the problem. Here we continue to look at the 
mathematical and control theoretic aspects, using ideas from differential ge- 
ometry and Lie theory. The organization of the paper is as follows. In Sec. 1 
we derive the second variation formulas for a variational problem whose ex- 
tremals turn out to be generalizations of cubic splines to Pdemannian mani- 
folds and which appeared before in Noakes, Heinzinger, and Paden [26] and 
Crouch and Silva Leite [14]. We also exhibit analogues of the Jacobi vector 
fields from the theory of geodesics. Section 2 contains the solution of a varia- 
tional problem which differs from the one considered in the previous section, 
where it contains additional constraints. Using a result due to Nomizu [27], 
in Sec. 3, we simplify the formulas obtained in Secs. 1 and 2 for the special 
situation in which the Riemannian manifold is a connected and compact Lie 
group G. The analogues of cubic splines and of Jacobi fields are then given 
by equations involving the right-invariant vector fields on G. This proce- 
dure is partially repeated in Sec. 5 for Riemannian homogeneous symmetric 
spaces. For the sphere S ~, we present the equation of cubic splines. Finally, 
the last section is devoted to the C2-dynamic interpolation problem for sys- 
tems evolving on connected and compact Lie groups. We show that it is 
possible to solve a number of optimal control problems in the context of the 
variational problems studied in the first part of the paper. These optimal 
control problems can be regarded as particular cases of minimum energy 
problems for systems evolving on general manifolds, by lifting the original 
system evolving on a manifold M to a system evolving on its tangent bundle 
TM.  There are many papers dealing with minimum energy problems for 
systems without a drift term ([2], [5], [18], [21], [31], [33]), The situation in 
which the system has a drift term is not so well studied ([22] is one case). 
Our methods also apply to systems which have a drift term and in which the 
number of controls may be less than the dimension of M. When we consider 
homogeneous symmetric spaces rather than Lie groups, our methods still 
apply to systems with full control. We do not know yet how to handle the 
situation for restricted control systems evolving on homogeneous symmet- 
ric spaces. For systems evolving on the three-dimensional rotation group, 
we present nonlinear differential equations which the optimal controls must 
satisfy. This low-dimensional case has strong connections with applications 
to robotics and the path planning of aircraft [9], [12], [15], [16], [17], [21]. 

2. SECOND VARIATION FORMULAS FOR THE CUBIC SPLINE 
INTERPOLATION ON RIEMANNIAN MANIFOLDS 

Suppose that M is a Riemannian manifold, with Riemannian metric 
/', "). Denote the symmetric connection on M, which is compatible with 
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this metric, by V, and the covariant derivative along a curve t ~ x(t) 
in M by DWt/dt ,  where Wt e Tx(t)M is a vector field along x. Thus, 
by definition, DWt/dt  = (VvW)(x( t ) ) ,  where W is a vector field de- 
fined in the neighborhood of the curve x satisfying W(x(t)) = Wt, and 
V(x(t)) = dx(t)/dt E T=(t)M. To simplify the notation, we sometimes 

Dx dx DJx(t) for D ( DJ-lx(t)  ~, 
w r i t e - ~ -  f o r - ~  and d t ~  ~ \  ~ ,/ j > 2 "  We say t h a t a  

function f defined on a closed interval [a, b] E R is smooth on this interval 
if f is smooth on (a, b) and, in addition, has bounded limits limt_~+ f(k) (t) 
and limt_.b- f(k)(t), where f(k)(t) is the kth jet  of f .  

In [14] we considered the following p r o b l e m  (791): 

P r o b l e m  (7>1). "Find critical values of 

T 
i 

J l ( x ) =  s j \  ~ - -  
D2x(t) \ 

) dr, (1) 
dt z I 

over the class f~ of Cl-paths x on M,  satisfying Xl[T~_t,T~] is smooth, 

x(Ti) = xi, 1 < i < N - 1, (2) 

for a distinct set of points xi E M and fixed times Ti, where 0 = To < T1 < 
�9 .. < TN-1 < TN = T, and, in addition, 

dz dx 
x(O) = xo, x(T) = x~v, ~ - (0 )  = v0, ~-/(T) = VN, (3) 

where vo E Txo M and VN E TZN M are fixed tangent vectors." 

A necessary condition for a curve x to be a critical point for problem (P1) 
was given in [14, Theorem 1]. The same condition for problem (7~1) without 
the interpolating conditions (2) was first derived independently in Noakes 
et al. [26]. We include both results here for the sake of completeness. 

T h e o r e m  2.1 ( C r o u c h  a n d  Si lva Le i t e  [14]). A necessary condition 
for x to be an extremal for problem (7~1) is that x be of class C 2 and 

DzV~ { DV~ ) 
- - - ~ + R \  dt ,Vt V t = 0 ,  t E [ T i - l , T i ] ,  I < i < N ,  (4) 

where Vt = dx(t)/dt and R is the curvature tensor of the connection V on 
M. 

The following p r o b l e m  (7>2) is a simplified version of problem (7>1). 
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P r o b l e m  (7~2). "Find critical values of the cost functional J1, defined 
in (1), over the class ~ of piecewise smooth and Cl-curves �9 on M sat~fying 
xl[t~_l,t~] is smooth for some fixed times t~ satisfying 0 - to < t l  < . . .  < 
t~ = T and 

d~(O) d~(T) -_ vN." (5) 
�9 (0) = x 0 ,  d-'~ = v ~  ~(T) = x~v, T 

T h e o r e m  2.2 (Noakes  et  al. [26]). A necessary condition for �9 to be 
an extremal solution for problem (7~2) /s that ~ be smooth and 

D3Vt+R(-~-~ ,V~)V~=-O,  t E [0,T],  (6) 
d t  3 

where Vt = d~'.(t) 
dt 

Remark 2.3. The functional J1 can be viewed as a special case of the 
functional 

T 

 'dt + dr, 
0 

dx 
The case where the constraint v = dT is ignored and the problem is 

treated as a variational problem on T M  may be viewed as a traditional 
geodesic problem on T M  endowed with the Sasaki metric [30]. However, the 
geodesic extremals of this new problem have a completely different structure 
from the extremals associated with the variational problem treated in this 
paper. See Camarinha et al. [8] for details of the comparison. 

If M -- R"  with the Euclidean inner product, the covariant derivative is 
just  the usual derivative and the curvature tensor is zero. In this case 

T 

J'l(x) = ~ ]l~(t)l[2 d~, 

0 

and the extremals for problems (7~1) or (7~2) satisfy "~" (t) = O, giving the 
usual cubic splines in R n. Solutions of Eqs. (2), (3), and (4) may be viewed 
as "cubic splinee" on a Riemannian manifold. 

In the calculus of variations applied to geodesics, the theory of conjugate 
points is easily derived by evaluating the second variation of the energy func- 
tional at  an extremal (see Milnor [24]). The existence of conjugate points 
along a geodesic is shown to be equivalent to the existence of nontrivial 
Jacobi fields along that  geodesic. We would like to extend his theory to 
the present situation. As a first step we derive below the second variation 
formulas for our problem and obtain the analogue of the Jacobi fields in 
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the theory of geodesics. The theory of conjugate points will appear in a 
forthcoming paper. 

We define the tangent space Txfl to a Cl-path x satisfying (2) and (3) 
to be the vector space of Cl-vector fields t --* Wt along x satisfying W, 
is smooth on the domains [T~-I,Ti], 1 < i < N, WT~ = 0, 0 < i < N,  

D W o  = 0, D W T  = 0. Note that ,  since x is a Cl-curve, it follows that  the 
dt dt 

DW, 
curve t --* ~ in T M  is continuous. Moreover, W E Tx~ is C ~ if and only 

DkWt 
if t -* ~ is continuous, for any k. 

For the class of Cl-curves on M satisfying conditions (2) and (3), we 
introduce two parameter variations ~ : [0,T] x (-~,~)  x (-5,&) -~ M of 
x( t )  = a(t ,  0, 0) which are characterized infinitesimally by the vector space 
Txfl x Txfl, by setting 

cz(t, u l ,  u2) = expx(t)(ulW, I + u2W~) ,  

where W k = Ocz/0uk[,~x=~2= 0 E T~f~, k = 1, 2. These variations satisfy the 
following properties: 

is smooth on each domain [T i - l ,  Ti] x ( -e ,  e) x (-~f, ~f), 1 < i _< N, 

o,  0)  = =Ct), 

(t ,  o ,  0)  = 0uk 
0a 
Ouk(Ti,  O,O) = O, 

D = k 
dt 0uk 
D 0cx D 0a  
d~ Ouk (0, O, O) = - -  

o < t < ~ ,  

O_<t<_T, k= 1,2, 

i = O, 1, . . . , N ,  k = l ,  2, 

is continuous on [O,T], 

dt Ouk (T, O, O) = O, k = 1, 2. 

k = 1, 2, 

To obtain a second variation formula corresponding to our problem (~Pl), 
we have to calculate 

02 I 0u2~1"71 ia~l,~2) 
.U.1~-'~,2 ~---.0 

where ~,~1,u2 (t) - -  ~(t, Ul, u2), and ~(t, 0, 0) - -  x(t) is an extremal of J1, so 
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it satisfies (4) and is of class C 2. 

~ 1  J1 ((:[~1 ,%&2 ) = 
T 

0 D 4 _~o~ul,u2)_~o~ul,u2>dSq_ _ _  o 

o (s) 
N D O 0 I 

To obtain the second derivative with respect to u2 evaluated at ul  = 
u2 = 0 involves the recursive use of the definition of curvature tensor given 

by the formula 

D D D  D D  D 
~ 2 0 ~  07.~10~ul''u2 = ~ ~ 2  0?'1"10tul'u2 nu 

D D 
~ i  (~,I J2,2 (9) 

and also the following identities: 

D D 2 I D2 

D D 3 ] D 3 
__ - __W~ + D (R(W2,  V~)V,) 

Ou2 at3 a,,1,,,2 I~1=~=0 - &3 ~ & 

2 -DVt 
+ a ( w i ,  v,) at ' 

(10) 

+ 

(11) 

together with the fact that  W~, W 2, and x are smooth on [ T i _ l , ~ i ] ,  
(WT k, ----0), 1 < i < N, k = 1,2, and (02a/OulOu2)(Ti,  O,O) = O, i = 
0, 1 , . . .  , N .  We note that  (9) is the definition of curvature tensor as in 
Nomizu [27], which differs from that  in Milnor [24] by a minus sign. Then 
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T 

o~o~ jl(~,,~) = w : , ~  b-#~l,~+ 
|Ul=U~=0 

D 2 0 0 ] 

i•1< D D2 [ \[T~- 
+ - - w L  D ~ -~a~''~'l / I  �9 

0U2 lu1=u~=0 ! IT~x 

To simplify the analysis further, we note that 

D D 4 I 4 2 

[~1~2~-0  

§ D(R(W2, v~)D--~) § R(W~, V, ~D2Vt & tj  "-~ , 
(12) 

and also make use of the following identities for the curvature tensor R and 
its covariant derivative V w R  

R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = O, 
Vw(R(X, Y)Z) = (VwR)(X, Y)Z + R(VwX, Y)Z + 

+ R(X, VwY)Z + R(X, Y)VwZ. (13) 

Taking into account that WTk~ = 0, 1 _< i _< N, % = 1, 2, we obtain after 
many tedious manipulations 

a2 I N-I. D D 2 W~ 2 \ 
- W,1 D 2 W2 

,,,=,~,=o i=i~ ~ re~ 

T 

0 
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where 

K(W, V) = V~,W + (V~zR)(W, V)V + (VwR)(VvV ,  V)V+ 

+R(R(W, V)V, V)V + n(W, V~V)V+ 
+2[(VvR)(VvW, V)V + (VvR)(W, VvV)V + R(V~W, V)V]+ (14) 
+3[(VvR)(W, V)VvV + R(W, V)V2vV + R(W, VvV)VvV] 

+4R(VvW, V)VvV. 
We summarize the result in the following 

T h e o r e m  2.4. I f  x E fl is a critical path for problem 7~z and a is a 
two-parameter variation o/x ,  then 

T 

0 

where K ( W  2, V) is given by (14). 

It is clear that C2-vector fields W E T,l~ such that K(W, V) = 0, 
t E [Ti-t,  Ti ], 1 < i < N play a similar role to the Jacobi vector fields. Note 
that K(W, V) = 0 defines a fourth-order differential equation for W E T,12. 
Clearly, (02/OU2~l)J1 (Otul,u,)lul----u2----0 defines a symmetric bilinear form 
on Txfl, which we denote by B(Wz,W2) .  At this point the symmetry is 
not evident, but we demonstrate this at the end of the section. 

T h e o r e m  2.5. A vector field W 6 T=~2 belongs to the null space of the 
bilinear fo~m B(W1, W 2) if and only if W is of class C 2 and K(W, V) - O, 
t e  [T~_z,T~], 1 < i  < N .  

Proof. Clearly, if W 2 is any vector field of c]~-qs C 2, then for all W z E T=l~ 
the first terms in (15) vanish. If, in addition to that, K ( W  2, V) - O, 
t e [Ti-t,T~], 1 < i < N, then B ( W z , W  2) -- O. Conversely, if 
B ( W  z, W 2) = O, for all W t e T=fl, setting W~ = F( t )K(W 2, V), where 
F(t) > O, t E (Ti-z,Ti), 1 < i <_ N and F(Ti) = (dF/dQ(T~) ---- O, 
1 < i < N, shows that K(W2, V) - O, t e [Ti-I,T/], 1 < i < N. Now, 
setting W~ = F(t)Zt, where ZT, = "(02/Ot2)W~+ - (02 /O t2 )W~-  and 

W~ is a smooth vector field along x(t) with F(Ti) = O, (dF/dt)(Ti) # O, 
1 < i < N -  1, shows that (D2/Ot 2)W~./~ = (02/Ot 2)W~-, 1 < i < N -  1. 

Thus W~ is a C2-vector field. [] 
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For completeness, we now deduce the corresponding formula for the sec- 
ond variation of J i  along a smooth path which is a solution for the simplified 
problem (7)2). From (8) and taking into consideration that W~, 1 <_ i < l - 1  
does not necessarily wni.qh, we get 

~ I /( ~ ~ 
[ D  2 0 ~ 0 [ 

--, ~ - - ~  O~'~x,u2 . - -  + ~ ~ Oua Ot 
~=I Ul=u2=O 

D D 3 [ \ '~ [~7 (16) / 
-\w:, o . 2  MI + 

+ 

I';'tl='l/'2~"~'O / I~i 1 

,(<o oo 
'/.=1 0~i ~ I~_-.~=o 

- -  O - ~ u 2 ~  
0 U l O ~ U i , u ,  , ~ ' ~  // 

U l  = ' u , 2 = O  t~_ 1 " 

The third term in this expression vanishes because the arguments turn out 
to be continuous since z is smooth and W~, k -- 1, 2 are C 1. If, in addition, 
we also use formulas (10), (11), (12), and (13), the following result can be 
deduced from (16). 

T h e o r e m  2.6. I f  �9 is a critical path f o r  problem 7~2 and c~ is a two- 
parameter  variat ion o f ~ wi~h variat ion vector fields W k = O~ / Ou k l ~ ~ =u~ =o , 
k = 1, 2, then 

I l 2 0 2 ~ / D u r l  D W2 D 2W2 \ 

| ~ t l _ - - t t 2 = 0  i = l  ~ - -  u ~  ) 

! T 

where K(W, V) is given by Er (14). 
Again (Oa/Ou1Ou2)J1(a~,,,,~,)]~,,=,,2=o defines a symmetric b~!inear form 

on T~ which we denote by B(W I, W2). Arguing in a similar m~n~er as 
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in the proof of Theorem 2.5, we see that elements of the null space must be 
C 3 and hence smooth. Thus we obtain the following result. 

T h e o r e m  2.7. A vector field W E T ~  belongs to the null space of the 
bilinear form B(W I, W 2) if and only i f W  is smooth and K(W, V) - O, t E 
[ t i - l , t i ] ,  1 < i < I. 

We point out that Theorems 2.1 and 2.5 are also true with larger classes 
of functions consisting of piecewise smooth CLinterpolating functions on M 
satisfying (2) and (3). This can be demonstrated by incorporating both 
classes fl and ~ above and using the methods of Theorems 2.2 and 2.7 in 
the proofs of Theorems 2.1 and 2.5. 

Finally in this section we demonstrate that the bilinear form B ( W  1, W 2) 
is indeed symmetric in the arguments W 1 and W 2. First we note that 

:=,{o, �9  w +_o'w2 = 

T 
d D 1 3 

, ,  

0 
T 

t , \~ " ~  ' / -  ~ ' / )  
0 

After adding this integrand to (W~: K(W~, Vt)) and considerable rearrang- 
ing of terms, one can show that B ( W  1, W ~) may be written as 

T 

-~(w 1, w ~) = f (FI(W:, W2, V~) + F~(W:, W?, ~))e, 
0 

where 

Vl(W I , W 2, V) = ( V ~ W  1 + R(W x , V)V, VI, W ~ + a ( w  ~, v ) v )  + 

+ 2 ( v v v ,  ( R ( w  ~, V ) V v W  1 + R ( w  ~ , V ) V v W  ~ + ~ R ( w  2, V v V ) W l ) ) ,  

F2(W 1, W a, V) = (VvV, (VvR)(W 2, V)W t + (Vw, R)(W 1, V)V). 

It is clear that F1 is symmetric in W ~ and W 2, whereas the symmetry of 
F 2 is not clear. To demonstrate the symmetry we must use the first Bianchi 
identity in the form 

(Vw R)( A, B)C + (Vw R)(C, A)B + (Vw R)(B, C)A = 0 
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and the second Bianchi identity (Hicks [20, p. 95]), for the l-covariant, 
3-contravariant tensor K ( O , A, B, C) = O( R( B , C)A), which states that 

(VwK)(O,A,B,C) + (VcK)(O,A,W,B) + (~7BK)(O,A,C,W) = O, 

which, in turn, yields an equivalent statment in the form 

(Vw R) ( B, C)A + (v ca)(w, B)A + (VBR)(C, W)A = O. 

It follows that 

(Vvn)(w 2, v )  w ~ = (Vv R)(WL v ) w  2 - (Vv R)(W I , W2) V 

and 

thus 

(Vw,  R ) ( w  ~, v ) v  = (Vw~ a ) ( w  ~, v ) v  + C V v a ) ( w  ~, w ~ ) v ;  

( V v R ) ( w  2, V ) W  ~ + (Vw,  R) (W ~ , V ) V  = ( V v R ) ( W  ~, V ) W  2 + 

+ (Vw,  a ) ( W  2, V)V, 

which establishes the symmetry of F2. We can write F2 in the symmetric 
form as 

1 
F~CW ~, W 2, V) =~ <VvV, (Vw, a ) ( W  ~, V)V + (Vw~R)CWL V)V> + 

+ ~(VvV, (Vva)(W 2, V)W ~ + (VvR)(WL V)W~>. 

3. INTERPOLATION ON A RIEMANNIAN MANIFOLD WITH CONSTRAINTS 

We now consider the following p rob lem (7~a) derived from the interpo- 
lation problems treated in Sec. 1 with some additional constraints. 

P r o b l e m  (793). "Find critical values of 

T 

Jl(x)  = ~ j \  dr2 ' dr, (17) 
o 

over the class 12 of Or-paths x on M, satisfying X]ITi_I,T~] is smooth, 

z(T~) = x,, I < i < N - i (18) 

for a distinct set of points xi 6 M and fixed times Ti, where 0 = To < TI < 
�9 -. < TN = T and, in addition, 
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dx dx T 
x(O) = xo, x(T) = xN, -~(O) = vo, -~ (  ) = vN, 

and also 

(19) 

-~-~,Zi(x) = k~, i =  1,...  ,l (l < n), (20) 

for X~, i = 1 , . . . ,  n, linearly independent vector fields in some neighbor- 
hood of x and given constants k~, i = 1 , . . . ,  1." 

To deal with the constraints, we define the one forms wl (X) = (X~, X) 
and the two forms dw~, 1 < i < l, where d is the exterior derivative. We 
may also define tensors Si; Si~_ : T=M --* TxM, by setting 

dmi(X, Y) -- (Si(X), Y) = - (S i (Y) ,  X).  (21) 

Similar problems to 7)a have been dealt with extensively by many authors in 
relation to nonholonomic mechanics and control. See Bloeh and Crouch [4] 
for further information. Constraints also give rise to abnormal extremals 
as solutions of variational problems. These abnormal extremals arise as 
solutions to the variational problem defined by the constraints alone, and are 
the subject of intense interest (see, for example, Agrachev and Sarychev [i], 
Bliss [3], Bryant and I-Isu [7], Montgomery [25], and Sussmann [32]). These 
situations are not of principal concern in the current paper. 

Theorem 3.1. A necessary condition for x E f~ to be a normal e~remal 
for problem (7)3)/s that x is C 2 and there exist smoo~ functions )~(t) such 
that 

/ D ~  V, ~ ~ ~ D3~ 
R + ~,"~, t] -- (22) 

dr3 i =  1 i =  1 

(Vt, Xi)= k~, i = l , . . . , l ,  

f o r t E [ T i - l ,  Ti], i = l , . . . , N .  
Any abnormal e~reraals for the problem (T'a) satisfy the system of equa- 

tions 

l l 

+ = o,  
~=I ~=I (23) 

(Vt, X~) = k~, i =  l,... ,l, 
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where A1,"" , Al are not all identically zero. 

Proof. To obtain the normal extremals, we simply augment the Lagrangian 
in the problem (Pl) by terms 

Using arguments as in Bloch and Crouch [4], the variational procedure ap- 
plied to these terms yields (with variational field W~) 

! ! 

i=l ~-----i 

But since dw~(V~, W~) = (Vv, X~, Wt) - (?w,X~, Vt), using Eq. (21) we es- 
tablish the required Eq. (22) for normal extremals. Equations (23) for the 
abnormal extremals are now simple consequence of their definition. [] 

Note that for normal extremals, differential equations for the Lagrange 
multipliers %s may be obtained by differentiating the constraints three times, 
assuming that the vector fields X1, . - - ,  Xl are linearly independent. From 
Eq. (23) for abnormal extremals, the Lagrange multipliers are determined 
by the equations 

1 1 

l (251 
i=l i=l 

4. INTERPOLATION ON CONNECTED AND COMPACT LIE GROUPS 

In this section we study the variational problems of the previous sections 
for the case where the l%iemanniaa manifold M is a connected and compact 
Lie group. The following theorem is used extensively in what follows. 

T h e o r e m  4.1 (Milnor  [24], Nomizu  [27]). 
(i) Every connected and compact Lie group admits a left-and right-inva- 

riant Riemannian medic  (., .). 
(ii) ff  V denotes the corresponding metric connection and X ,  Y, and Z 

are right-invariant vector fields on G, then 

V x Y  = - I [ y , x ] ,  (26) 

R(X, Y) Z = - 4 [[ X, Y 1, Z 1, (27) 

V n  = 0. (28) 
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If {X1, . . .  ,Xn} is a basis of the Lie algebra s of G and x is a curve on G, 
we may write any smooth vector field l ~  along x as Hit = ~"]~ wi( t )Xi(x( t ) ) ,  
where wi are smooth functions of time. In particular, the velocity vector 
field lit = (dx(t)/dt) = ~ vi( t)Xi(x(t)  ). 

To simplify the notation, we may sometimes use W instead of Wt for 
a vector field along x and also write lZd for ~ i w i ( t ) X i ( x ( t ) )  and W (k) 
for V~v W. If Wt = ~7]iwi(t)Xi(x(t)) and Zt = ~ i z i ( t ) X i ( x ( t ) ) ,  then 
~"~i,j wi( t )z j ( t )[Xi ,  X~ ](x(t)), where [Xi, Xj  ] is the Lie bracket in s  de- 
notes [ Wt, Zt ] .  Using (27) and (28) together with properties of ~7, the next 
result can be easily proven. 

L e m m a  4.2. Let x be any curve on G, V the velocity vector field along 
x, and W any vector field along x. Then 

W (D = W - I [ W , V ] ,  (29) 

1 w~2~=ec-[w,v]-~tw,~,]+~[[w,v],v], (3o~ 

3 [w, ~,]- ~ [w,Y;,]- w~  =~  -~ [r162 v] - 

--' [ [ i~v l .~ ] .v ] .  + ][c*.~J.~] + 

1 1 v],f'], (31) 

w~'~ =~-2[T~, v ] -  3[r ~ ] -  2[w,Y;']- ~ [~  ~] + 

--~ [[I ~, ,1 ~ . ,,] . v] + ~[I * .vl .  v] + 

1 ,9]. 
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If W = V, formulas (29), (30), and (31) reduce to 

V(1) = 12, 
v(~) = 9 + �89 
v(3) =i): +[v, 9] + �88 v]v], 

(33) 

giving the result of Lemma 4.2 in [14]. Lernma 4 in [14] can also be refor- 
mulated in terms of this new notation using (28) and (33) as follows. 

L e m m a  4.3. In the situation of Theorem 4.1, the following two state- 
ments are equivalent for a curve x on G with velocity vector field l/'t: 

(i) dt 4 + R k dr2 ' dt ] " ~  =" O, (34) 

(~) /?, +[ v,,  9,1 - o. (35) 

The next theorem contains the analogue of the Jacobi differential equa- 
tion when M is a connected and compact Lie group. 

T h e o r e m  4.4. In the situation of Theorem 4.1, the differential equation 
K(W, V) = O, where K(W, V) is given by (14) and V satisfies (34), is 
equivalent to the following equation: 

~ - 2 [ ~ , v ] -  3 [ . , ~ ] -  2[w,f] + [[~,vl,v] + 
+ v 1, = 0 

Proof. From (14), taking into consideration that in the present situation 
the eovariemt derivative of the curvature tensor is zero, and using identity 
(27), we get 

1 3 V(2) ] 

This expression can be simplified further by using identities (29) to (32) and 
the Jacobi identity for the Lie bracket. After some tedious calculations, the 
terms with fourth- and fifth-order Lie brackets cancel and the result follows 
by applying (35). [] 
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E x a m p l e  4.5. When G = SO(3) and {X1, X2, X3} is a cyclic basis for 
so(3), i.e., [ Xa, Xo ] = X3, [ Xa, XI ] -- X2, [ X2, X3 ] -- X1, any vector field 
W on SO(3) can be written as W = Y~3i= 1 wi( t )Xi .  If "x" denotes the 
cross product in R 3 and f : (R 3, x) --* so(3) is the Lie algebra isomorphism 
defined by f (u )  = Su, where u = (ul,  u2, u3) T and 

s~ = 

it is well known that u x v 
isomorphism, Eqs. (35) and 

and 

d4w 
dt 4 

0 -u3 u~ ) 
I / ,  3 0 --U 1 , 

--U2 Ul 0 

= S~v and f ( u  x v) = [S~, S.  ]. Using this 
(36) reduce to 

d3v d2v 
dt 3 + v x ~-~ = 0 (37) 

_ _ _  2d3 , _ 2d , 
dt 3 x v -  dt 2 x - ~  dt x - ~ +  

+ x v  x v + 2  x x v = 0 ,  (38) 

respectively, where w = (wl, w2, wa) T and v = (vl, v2, v3) T. Equation (37), 
the equation of a cubic spline in SO(3), appeared in Noakes et al. [26] and 
Jackson [21] for the first time. 

We finally prove the equivalent version of Theorem 3.1 when M is a 
connected and compact Lie group. 

T h e o r e m  4.6. A necessary condition for a curve x on G to be a normal 
extremal for problem (•3) i8 that x is C 2 and 

Vt + [ ~ , ~ -  Z ~ ] -  Z't = 0, t e [ T / -  1,~], i =  1,-.. ,N, 

(V~, Zt) =- 0, (39) 

~ h e ~  V~ = d~(t)dt and Z~ = E ~  ~X~(t)X~(x(t)), .fo," X~, i = 1 , . - -  , ~ ,'/ght- 
invariant vector fields on G. The abnormal extremals satisfy the equations 

2~ + [v~,z~]-o, z~#o,  

(v~, z,~) - o. 
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Proof. In this case, since G is a connected and compact Lie group with 
left-and right-invariant Pdemannian metric, a d X  is skew-symmetric with 
respect to (.,.) [29, p. 114]. That  is, ([X,Y],Z) = - ( [ X , Z ] , Y )  for X , Y ,  
and Z any left invariant vector fields on G. Now rewrite Eqs. (22) and (25) 
using the fact that  in this case 

= = [] 

Note. The equations Zt + [V~, Zt] - 0 are precisely the Eqs. (16) obtained 
by Montgomery [25]. 

5. INTERPOLATION ON SYMMETRIC SPACES 

We refer to Nomizu [27] and Helgason [19] for more details concerning 
Riemonnian symmetric spaces. Let G be a connected Lie group, a an in- 
volutive automorphism of G, and G/K a symmetric homogeneous space 
defined by a. Here we assume that  K is compact so that  one can intro- 
duce a positive-definite Riemannian metric on G/K. In this case, the Lie 
algebra s of G admits a canonical decomposition s = S ~9 A4, where A4 
is the eigenspace for the eigenvalue - 1  of the involutive automorphism of 
the Lie algebra s induced by a and S the Lie algebra of K.  The following 
inclusions hold: 

[s ,  s l  c s ,  [ M , M I  c s ,  [ ,Sl c M .  (40) 

Let r denote the canonical projection of G onto G/K and Xo = ~r(ea), 
where ea  is the identity element in G. Then A4 can be identified with the 
tangent space to G/K at xo. Parallel vector fields play an important  role 
in this section. If Wt is a vector field along a piecewise smooth curve x on 

G/K,  Wt is said to be parallel along x if DWt --- 0. It is well known (see, 
dt 

for instance, Milnor [24]) that  if x0 = x(0) is the initial point of a curve x 
and W E Txo(G/K) is an arbitrary tangent vector to G/K at x0, then there 
exists a unique parallel vector field Wt along x having the value W at x0. 
Hence, if W1, W 2 , . . . ,  W~ is an orthonormal frame at x0, then there exists 
a unique parallel field of orthonormal frames along x which coincides with 
W1,W2, . . .  ,Wn at x0. These vector fields are said to be obtained from 
W1,. . .  , W,~ by parallel displacement along x and will be denoted hereafter 
by W 1 , . . .  , W--,. If Zt = ~']~i zi(t)W~(x(t)) is an arbitrary vector field along 
x, its parallel pullback from xt to xo is the vector Z(t) = ~']~i zi(t)Wi e 
T~o M. 

T h e o r e m  5.1 ( N o m i z u  [27]). Every symmetric homogeneous space 
G/K,  wi~h K compact, admits a Riemannian metric, invariant under the 
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action of G, which induces the canonical affine connection V.  This con- 
nection has trivial torsion tensor and if X ,  Y,  Z are parallel displacements 
along a curve x on G / K  satisfying x(O) = xo, then 

1 "X, (VyY')(Xo) = ~[ Y ] ~  = O, VX, Y e A4, (41) 

(a(X,Y)~)(~0) = -[IX,  Y]s, z ] ~  = -[IX, Y], z] ,  VX, Y , Z  e M ,  
(42) 

Vw(R)  = 0, for any vector field W on G/K.  (43) 

We use the notation introduced in See. 3 for vector fields along a curve x. 
Note that  if x is a curve on G / K  which is a critical path for the functional 
ffl in (1) and X 1 , . . .  ,Xn  an orthonormal frame of parallel vector fields 
along x, then, for any vector field along x, Wt = ~'~=I w~(t)-Xi(x(t)), we 
have 

Wt(~) = L dd~t) xi(x(t) ), (44) 
i=1 , 

We also note tha t  if X, Y, Z are parallel vector fields along a critical path 
x for ,71, then R ( X , Y ) Z  is also a parallel vector field along x. 

L e m m a  5.2. Let x be a curve on G / K  which is a critical path for the 
functional ffl in (1). Assume that x(O) = xo and that 

v, = ~ v,(t)~,(z(t)) 

is the velocity vector field along x for {XI , .  �9 �9 , X,~} the parallel displacement 
along x of a basis {X1, . . .  , X , }  in .tel. Then the following statements are 
equivalent: 

o v, (or, ) 
dt3"+ R~ dt ,V, V,--O, (45) 

V (t) + [ v(t), [ yct), v(t) 1] = 0, (46) 
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where V(t), V(t), and ~/ (t) are the parallel pullbacks from xt to xo of V,, 
~ ,  and V't, respectively. That is, 

v(t) = ~ v, Ct)X,, vct) = ~ 0 , ( t ) x , ,  ~/(t) = ~ ~, (t)x,. 
i i i 

Proof. Using (44) with W, -- Vt, we get 

D3Vt 
dr3 

(D~ ~ 
i j ,k,1 

According to the previous comment, R(Xj,  X k ) ~  is parallel along x, thus 
determined by its value at x0. From (40) and (42), (R(Xj,-Xk)Xz)(xo) = 
-[[Xj,Xk],Xt],  and since X1, . . .  ,Xn are linearly independent, we have 
that  (45) is equivalent to 

~, z , -  ~ ojv~v,[[xj,x~l,x,] =_o, ~= ~,2,... ,~, 
j , k , !  

or  

(z (t) + [ v ( o ,  [VCt), v(t) ]] = o. [] 

Using arguments similar to those in the proof of Lemma 5.2, the analogue 
of the Jacobi equation can also be simplified to give the following result. 

T h e o r e m  5.3. In the situation of Theorem 5.1, the analogue of the Ja- 
cobi differential equation, K(W, V) = O, where K(W, V) is given by (44), 
V = ~'~ vi(t)-Xi, W = ~ wi(t)Xi, is equivalent to the following equation: 

c,) + od, v(,) .  ~ c , ) -  [E ~c,:,,~c,)1, v(,)] - ~.[E ~c,), ~c,)l, vc,)] - 

- 3{ [w(t), vct) ], r ] + [[wct), vct) ], ~(t) ] } -  

- 4 [ [  T)d(t), V(t)], iT(t) ] = O, (47) 

~,h~re vCt) = E ,  v, Ct)X~, vct) = E~ ~(t)X~, a c ,  and simdZarZ~ for wct),  

The next example exhibits the equation of a cubic spline on the sphere 
8 2 . 
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E x a m p l e  5.4. (Cubic  spl ines  o n  t h e  sphere . )  Let x(t) be a curve 
on the two-dimensional sphere S 2, satisfying the conditions of Lemma 5.2. 
The solution V(t) of Eq. (46) can be seen as the velocity vector field of a 
curve 9'(t) in T~o $2 satisfying the initial condition 7(0) = T0. In order to 
obtain a cubic spline x(t) on S 2 starting at xo, we use the notion of parallel 
transport in the following way. 

Suppose that  the tangent plane Txo S= is rolling (without sliding) over 
the sphere S ~, touching S 2 at every instant of time t at the point q,(t). This 
means that  T=oS 2 rotates in R 3 in such a way that  its instantaneous axis 
of rotation is parallel to Txo $2 and perpendicular to V(t). In this case, the 
point of touching of S 2 and Txo $2 draws on S 2 a curve x(t) which is the 
development of q,(t). If R(t) represents such a rotation, then 

=(0 = R(0:o, ~(~) = R(t)V(O, R(0X~ = X~(:(t)). (4s) 

Since the instantaneous axis of rotation of R($) is perpendicular to both 
x(t) and ~(t), we have 

R(t)  = S~(~)• R(0)  = Z, (49) 

where "x" is the cross product in R 3 and Sx(0x~(0 is the skew-symmetric 
matrix associated with x(t) x ~(t), as defined in Example 4.5. Using (48), 
Eq. (49) can be written as 

t~(t) = R(t)S~o• R(o) = z. (5o) 

Now, let xz, x=, and x3 be defined by 

XI(~) ---~ R(~)V(t), ~2(t) = R(t)Y(t), ~3(t) = R(t)Y(t). 
Then, from (46), (48), and (50) we obtain the following set of equations: 

I X= Xl 

~i = -x(xlrxl) + x2 

X'2 ---- --x(xT2 x l  ) -~- ~3 

X3 = - -x (xTx l )  Jr" 2 : I (XTxl )  --  X2(xTl Xl) 

or ,1 o ) 
d Xl --ZTXl 0 1 0 ZZ 

d'~ x2 - -ZTXl  0 0 1 9~ 2 
(51) 
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with constraints 
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�9 T x  = 1, = = = 0 .  ( 5 2 )  

Equation (51) together with constraints (52) give the cubic spline on S 2. 

Note .  This e~ample is worked out in detail in Crouch, Silva Leite, Yah, and 
Br~mnett [10], and the case of constant velocity cubic splines in Brunnett 
and Crouch [6]. 

6. T H E  C2-DYNAMIC INTERPOLATION PROBLEM 

In this section we address the dynamic interpolation problem for non- 
linear control systems. We first specify the trajectory in terms of a dis- 
crete ordered set of points through which the dynamical variables of state 
are forced to pass, and then determine suitable controls which give rise 
to such trajectories. Simultaneously, optimization of a cost function un- 
der some smooth constraints is imbedded in the problem to obtain certain 
desirable geometric properties of the resulting trajectory. In order for the 
problem to be well-posed, controllability is always assumed. We also re- 
quire that the trajectory x be C 2 and satisfy XI[Ti_I,T~I is smooth, where 
0 = To < T1 < . "  < TN = T is an ordered set of fixed times. We start 
with systems evolving on connected and compact Lie groups G and show 
the equivalence between some optimal control problems and the interpo- 
lation variational problems treated in the previous sections. In all that 
follows, xo,  x l , . . .  ,XN is a distinct set of points in G and {X1,. . .  ,Xn} an 
orthonormal basis of right-invariant vector fields on G. We now consider 
the following op t imal  control  p rob l em ~4: 

P r o b l e m  ( 7 ~ 4 ) .  " " 1 Mm~(.)~ fo T k s u b j e c t  t o  

5~(t) ---- E~=I v,($)XiCx(f;)), ~)iCt) = ui(r i ---- 1,-. .  ,k, 

x e G ,  k < ~ i m C = n ,  (X,,X~) = ~,j, 

x(T~)=zi ,  i = l , - - - , N - 1 ,  

x(O) = xo, x ( T )  = X N ,  x (O)  = 'UO, ~ ( T )  = VN." 

The simplified problem, without the interpolation conditions x(T 0 = xl, 
has already appeared in [14]. The extra interpolation conditions do not add 
any additional difficulties. In this case, using Lemma 4.2, we obtain 

k k 

/-----1 i=1 

and 
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T T k 
i [ID2z D2z\ if 

0 0 i=l 

If k = n, the optimal control problem (P4) is clearly equivalent to the 
variational problem (:Pl) in the special situation of a connected and compact 
Lie group. For k < n, it is a particular case of the variational problem (P3) 
with constraints 

, X i ( x  = 0 ,  i = k + l , . . .  ,n. 

Thus, the next result follows from Theorem 4.6. 

T h e o r e m  6.1. The normal extremals of the optimal control problem 
(~1:~4) satisfy the equation 

iYt+[V~,~-Zt]-2t-0, te[Ti-l,T~], i---1,...,N, (53) 

ax(t) a.d = E  =k+l for some smooth where Vt = dt 

t i o ~ A d t ) ,  i = k + l , . . .  ,n. 

Remark 6.2. Note that if k = n, then Zt = 0 and Eq. (53) reduces to 
(35), which is the equation of the extremals for problem (Pl) when M is a 
connected and compact Lie group. 

A more realistic situation occurs when the control system contains a drift 
term. Our methods still apply in this case. Consider the following op t i ma l  
c o n t r o l  p r o b l e m  Ps: 

Problem (Ps). , ,4 , -  t ~wmu(') 5 f[ k 2 )'~i=i ui (t) dt subject to 
= x l ( x ( t ) )  k + ~i=2 v~(t)Xdx(t)) ,  6i(t) = udt) ,  

i =  l , . . .  ,k ,  x E G, 

k < dimG = n, (X~,Xj)  = 5ij, 

x(Ti)=x~,  i = l , - - - , N - 1 ,  

re(O) = xo, x (T)  = XN, ~c(O) = vo, 2(T) = vN." 

D 2x  k . k 
Here - -dr  2 = ~']~i=2v~Xi = ~-~i=2 uiXi .  Thus, the optimal control ( ~ )  is 

equivalent to the variational problem ( ~ )  with constraints 

, X l ( x  = 1  and , X i ( x  = 0 ,  i = k + l , . . . , n ,  
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and the next result follows immediately from Theorem 4.6. 

T h e o r e m  6.3. The normal extremals of the optimal control problem 
(:P5) satisfy the equation 

V't+[Vt, V t - Z t ] - Z t - 0 ,  t e [ T i - l , T ~ ] ,  i = l , . . . , N ,  (54) 

where Vt = dx(t) and Zt = ~1 (t)Xl (X(t))+~-~'~n__k+l)t~ (t)X~ (x(t)), for some 
dt 

functions )~l(t) and )~(t), i = k +  1, . . .  ,n.  

The following example contains all interesting situations for control sys- 
tems evolving on the rotation group SO(3). As in Example 4.5, {X1, X2, X3} 
is the cyclic basis for so(3). The interpolation conditions, as well as the 
boundary conditions, are always assumed to hold and will be omitted here�9 

Example  6.4. 
Case I 

T 
"Minu(.) 1 / ( u 2  + u22 + u2 )dt 

0 

subject to 

~=v lX l ( x )+v2X2(x )A-v3X3(x ) ,  ~i=-u~, i - -  1,2,3." 

The extremals satisfy 

d3v d2v 
dt a + v x ~ - ~ = 0 ,  where 

(Noakes et al. [26], and Jackson [21]). 
Case I I  

v ---- (Vl, v2, v3) T 

T 
,, 1 f ( u 2  

J + dt  
0 

subject to 

= VlXl(x)  -1- v2Z2(x),  ~/I = ul ,  ?)2 = u2." 

The extremals satisfy Eq. (53) in Theorem 6.1 with 

= 

That is, 
I V'I --A3U2 ~--- 0, 

~)'2 +A3Vl = 0, 

~3 -- U1~2 ~- W2~1 -~ 0. 
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,,4,._ I rTu~dt  subject to ~v~u~,(.) ~ Jo 

= Xl (x )  + v2X2(x),  iJ2 = u2." 

The extremals satisfy Eq. (54) in Theorem 6.3 with 

That  is, 

z~ = ~ , ( t )x~(~( t ) )  + ~3(t)Xz(~(t)). 

I v'2 +)~3 = O, 
i l  + ~3v2 = 0, 

i3 - i~2 - ,\iv2 = 0. 

Finally, we consider an o p t i m a l  c on t ro l  p r o b l e m  (:Ps) for a full control 
system evolving on a homogeneous symmetric space M as considered in 
Sec. 4. 

P r o b l e m  (96). ,,u:,vun~(.) ~1 f0r ~25=1 u~(t)dt subject to 

~(t) = ~2;'=i ~( t )~C~Ct)) ,  ~ ( t )  = ~ ( t ) ,  i = 1 , . . .  ,n,  ~ �9 M, 
dim M = n, 

{ X 1 , " "  ,X~}  the parallel displacement along x of an orthonormal 

basis { X z , . . .  , Xn} in T=oM, 

x(Ti) = x~, i = 1 , . . .  , N  - 1, 

x(O) = xo, x(T) = xN, 5c(0) = v0, ~(T) = v jr." 

The following theorem follows immediately from Lemma 5.2. 

T h e o r e m  6.5. The ex~mals  of the problem (7~6) satisfy the equation 

/ ]  (t) + IV(t), [V(t) ,V(t)]l  -- 0, t �9 [Ti - 1,T/l, i = 1 , - . .  ,Y ,  (55) 

where V(t) is the parallel pullback from xt to xo of the velocity vector field 
Vt and similarly for ~r(t) and T] it). 
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