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Abstract m Zusammenfassung 

The Complexity of Comparability Graph Recognition and Coloring. Using the notion of G-decom- 
position introduced in Golumbic [8, 9], we present an implementation of an algorithm which assigns 
a transitive orientation to a comparability graph in O (3 �9 [E[) time and O(]E[) space where 6 is the 
maximum degree of a vertex and I EI is the number of edges. A quotient operation reducing the graph 
in question and preserving G-decomposition and transitive orientability is shown, and efficient 
solutions to a number of NP-complete problems which reduce to polynomial time for comparability 
graphs are discussed. 

Die Komplexit~it der Erkennung und der F~irbung von transitiv orientierbaren Graphen. Wir verwenden 
den in Golumbic [8, 9] eingeftihrten Begriff der G-Zerlegung, um eine Implementierung eines 
Algorithmus anzugeben, der einem transitiv orientierbaren Graphen eine transitive Orientierung 
in Zeit 0(6. ]E 1) und Platz O(I E 1) zuordnet, wobei 6 der maximale Grad eines Knoten und ]E[ 
die Anzahl der Kanten ist. Wir zeigen eine Quotientenoperation, die den betrachteten Graphen 
reduziert und G-Zerlegung und transitive Orientierbarkeit bewahrt, und es werden effiziente L6sun- 
gen einiger NP-vollst~ndiger Probleme diskutiert, die, f'dr transitiv orientierbare Graphen, in 
Polynomzeit 16sbar sind. 

1. Introduction 

In Golumbic [8, 93 the notion of G-decomposition was presented in order to 
describe a new matroid associated with any undirected graph. It was shown that 
the length of a G-decomposition equals the rank of the matroid and that a set 
of representatives, called a scheme, constitutes a basis of the matroid. A new 
characterization of comparability graphs was given including a method for 
Producing a transitive orientation and counting the number of such orienta- 
tions. 

In this paper we move from the strict algebraic setting into an algorithmic 
presentation of these terms. Section 4 discusses the computational complexity 
of recognizing comparability graphs. An implementation is shown for an al- 
gorithm which assigns a transitive orientation in O (3. [E [) time and O ([ E l) 
space where 3 is the maximum degree of a vertex and [El is the number of 
edges. In Section 5 we present a quotient operation which reduces the graph 
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under consideration at each iteration of the algorithm. Section 6 deals with 
efficient solutions to the clique problem, minimum coloring problem, et. al. for 
comparabil i ty graphs. These problems are NP-complete for arbitrary graphs, 
but polynomial solutions can be found for many special classes of graphs by 
exploiting their particular structure. (See Gavril [4] for a similar treatment of 
chordal graphs.) 

2. Definitions 

A graph (V, E) consists of an anti-reflexive binary relation E over a finite set V of 
vertices. The members of E are called arcs or edges and can be thought of as 
ordered pairs of distinct vertices. Thus we are assuming all graphs are loop-free 
and have no multiple edges. We define the relations 

[ a b ~ E - l  ~ b a ~ E ]  and E - - E u  E -1 

respectively. A graph is undirected if E = E - 1. 

An undirected graph (V, E) is called a comparability graph if there exists a graph 
(V, F) such that 

F c ~ F - I = 0 ;  F w F - I = E ;  F2~F 

w h e r e  F 2 = {a C I a b, b c ~. F for some vertex b}. The relation F is a partial ordering 
of V whose comparability relation is precisely E and F is called a transitive 
orientation of E. 

Let (V, E) be an undirected graph. Define the binary relation F on E as follows: 

either a = a', b b' ~ E 
a b F a ' b '  iff 

or b=b', aa '~E .  

The relation F represents a type of local forcing. Since E is anti-reflexive a b F a b, 
however, a b }r b a. The reader should not continue until he is convinced of this 
fact. The reflexive, transitive closure F* of F is an equivalence relation on E and 
hence partitions E into what we shall call the implication classes of E. 

Thus edges a b and c d are in the same implication class if and only if there 
exists a F-chain of edges 

ab=aobo F al b~ F ... F akbk=cd, with k>__0. 

If one considers the graph (E, F) then the implication classes of (V, E) correspond 
to the connected components of (E, F). 

3. Decomposition Algorithm 

Let (V, E) be an undirected graph. 

Initially let i = 1 ~[nd E1 = E. 

Step I: Pick an edge ez from Ez. 

Step II: Enumerate the implication class Bz of E~ containing % 
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Step III: Define E i+ ~ = E i -  Bi. 

Step IV: IfEi+ a =~, let k =  i and STOP; 
otherwise increase i by one and go back to Step I. 

We call E=B~ + B  2 + . . . + B ~  the G-decomposition of E corresponding to the 
scheme [el, e2 . . . . .  ek]. The symbol + is used for the union of disjoint sets. 

Fig. 1. An undirected graph and the transitive orientation generated by the scheme [a c, b c, d c] 

Example: The graph in Fig. 1 has implication classes: 

A 1 = {a b} A~- 1 = {b a} 

A2 = {c d} A~ ~ = {d c} 

A3={ac ,  ad, ae} A f l = { c a ,  da, ea} 

A4={bc ,  bd, be} A21={cb ,  db, eb} 

The scheme [a c, b c, d c] yields a G-decomposition in which B 1 = A3, B 2 = A 4 + A~- 1 
and B a = A~ 1 

In Golumbic [9] we prove the following: 

Theorem l (TRO Theorem): Let (V, E) be an undirected graph with G-decompo- 
sition E = B 1 + B2 "}-"" ~- Bk" 

The following statements are equivalent: 

i) (V, E) is a comparability graph, 

ii) A ~ A - 1 = ~ for all implication classes A of E. 

iii) Bi c~ B~ ~ = O for i= l, 2 . . . . .  k. 

Furthermore, when these conditions hold, Bt + B 2 +. . .  + B k is a transitive orienta- 
tion of E. 

Our algorithm is a modification of that found in [10]. The major improvement 
comes from the observation that under our definition of F, anti-symmetry 
implies transitivity for implication classes and unions thereof. (See Golumbic [9], 
Theorem 2.) This will allow us to reduce the time complexity when ] El<<]  g l 2. 
The reader may verify that an implication class A is either disjoint from or 
identically equal to its reversal A - ~. 

Computing 18/3 14 
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4. Complexity of the Decomposition Algorithm 

A version of the decomposition algorithm in a pseudo-computer language i~ 
presented here to suggest how we may enumerate an implication class. This allows 
us to show that one can find a G-decomposition and test for transitive orientability 
in 0 (6. I E ] ) time and 0 (I E I) space where 3 is the maximum degree of a vertex. 

Let (V, E) be an undirected graph with vertices v~, v 2 . . . .  , v,. In the algorithm 
below we use the function 

I 0 if vi vj 6 E 
CLASS (i,j) = k if vi vj has been assigned to Bg 

- k if v i vj has been assigned to B~- 1 
undefined if v~ v i s E has not yet been assigned 

and I CLASS (i,j)! denotes the absolute value of CLASS (i,j). 

The set E is always assumed to be a collection of ordered pairs and the degree 
d~ of vertex v i is taken to mean the number of edges with vl as first coordinate 
(often called the out-degree). We freely use the identity 

I E I =  ~ di 

in our analysis. ~= 1 

Decomposition Algorithm (alternate version) 

Input: Adjacency sets where j e ADJ (i) if and only if v i v~ ~ E. 

Output: A G-decomposition of the graph given by the final values of CLASS and 
a variable FLAG which is zero if the graph is a comparability graph and one 
otherwise, 

Method: In the k-th-iteration an unexplored edge is placed in B k, (its CLASS is 
changed to k). Every edge placed into B k is explored by adding to B k those 
edges /"-related to it in the graph E k. (Notice that v~ vj ~ E k if and only if 
either L CLASS (i,j)[ equals k or is undefined throughout the k-th-iteration.) 

The variable FLAG is changed from 0 to 1 the first time a B k is found such 
that B k c~ B ;  ~ ~ O. At that point it is known that (V, E) is not a comparability graph 
by Theorem 1. 

The algorithm is as follows: 

begin 
initialize: k +- 0; F L A G  ~-- 0; 
for each edge v~ v~ in E do 

if CLASS (i , j)  is undefined then 
begin 

k~--k+ 1; 
CLASS ( i , j ) + - k ;  CLASS (j, 0 " -  - k ;  
EXPLORE (i,j); 

end; 
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end 
end 
procedure EXPLORE (i, j) : 

for each m e ADJ (/) such that [m q~ ADJ (j) or I CLASS (j, m) 1< k~ do 
if CLASS (i, m) is undefined then 

begin 
CLASS (i, m)~--k; CLASS (m,/)~-- - k ;  
EXPLORE (i, m); 

end 
else 

if CLASS (i, m) = - k then 
begin 

CLASS (i, m)~--k; FLAG~-- 1 ; 
EXPLORE (i, m); 

end; 
end 
for each m e ADJ (j) such that [m q~ ADJ (/) or I CLASS (i, m) I< k] do 

if CLASS (re, j) is undefined then 
begin 

CLASS (m,j)~--k; CLASS (j, m) +- - k ;  
EXPLORE (re, j);  

end 
else 

if CLASS (re, j) = - k then 
begin 

CLASS (m,j)+--k; FLAG~---1; 
EXPLORE (re, j); 

end; 
end 

return 

2.. 1 [ - ~  

4: [If-zt[1: ~13121~ 

=14I 

Fig. 2. An undirected graph, the transitive orientation generated by the scheme [(1, 2), (4, 3)] and 
its data structure after running the algorithm 

14" 
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Complexity analysis: The adjacency sets are stored as linked lists sorted into 
increasing order. The element of the list ADJ (i) represents edge v i vj will have 
4 fields containing respectively, j, CLASS (/,j), pointer to CLASS(j, i) and 
pointer to next element on ADJ (i) [-see Fig. 2]. The storage requirement for 
this data structure is 0 (I E I ), and if sorting the lists is done in 

of the data structure can be accomplished in then the entire initialization 
O (l E l" log 6) time. 

The crucial factor in the analysis of our algorithm is the time required to access 
or assign the CLASS function. Ordinarily finding CLASS (i, m) could take 0 (dl) 
steps by scanning ADJ (i), but if a temporary pointer happened to be in the 
"neighborhood", then a reference to CLASS (i, m) or CLASS (m, i) would take a 
fixed number of steps. Consider the first loop of EXPLORE (i,j). Two temporary 
pointers simultaneously scan ADJ (i) and ADJ (j) looking for values of m which 
satisfy the condition in the for statement. Since the lists are sorted and thanks to 
these neighborly pointers, this loop can be executed in 0 (dl + d j) steps. The second 
loop is done similarly, hence the time complexity of EXPLORE (/,j) is 
o (d,+@ 

In the main program, a temporary pointer scans each adjacency list successively in 
the for loop implying a time complexity of 0 (I El). Finally, the algorithm calls 
EXPLORE once for each edge or its reversal (both if their implication classes are 
not disjoint). Therefore, since 

E (di+d,)=2 ~ d2<26 ~ d,=2(5[E[ 
BivjEE i=1 i=1 

it follows that the time complexity for the entire algorithm (including preproces- 
sing the input) is at most O ((5. I E [). Thus we have proved the following: 

Theorem 2: Comparability graph recognition and finding a transitive orientation 
can be done in 0 ((5. ] E [) time and 0 (I E [) space where (5 is the maximum degree 
of a vertex. 

The algorithm as presented in this section explores the edges in a depth first 
search. Replacing each recursive call EXPLORE (x, y) by placing x y in a queue 
of edges to be explored would change the algorithm to breadth first search. 
Some future application may lead us to prefer one over the other. 

5. A Quotient Theorem for G-Decompositions of a Graph 

In this section we will present a quotient operation reducing the graph under 
consideration at each iteration of the decomposition algorithm by merging certain 
vertices and their adjacent edges. This quotient operation preserves schemes, 
G-decompositions, transitive orientability and the basic structure of the compa- 
rability matroid. 
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Define the following relation on the vertices of a graph (V, E): 

a ~ a' if and only if for all b ~ V, 

[ a b s E . e ~ a ' b E E ]  and [ b a e E ~ b a ' e E ] .  

By the anti-reflexivity of E, we have in addition 

a,-, a' implies a a', a' a r E. 

If a.,~a', then we say that a and a' can be merged. In terms of the adjacency 
matrix of E, two vertices are ~-related iff their corresponding columns are equal 
as well as their corresponding rows. The relation ,-~ is easily seen to be an 
equivalence on V. Thus non-adjacent vertices having identical adjacencies with 
the other vertices of V are equivalent under ~ and can be merged. 

Next we define (P, E), the quotient graph of (V, E). Let P be the set of all 
equivalence classes under ,,, and ~ represent the ~-class containing a e V. For  
any subset A ~ E we define 

A = { a ~  I a b e A } .  (1) 

Notice that ~ ~ ~ .4 does not in general imply that c d e A, however, it is true that 

? t ~ e E ~ a b e E .  

The reader may easily show the following: 

Proposition 3: Let ?t ~, ~ 7t ~ E. Conditions i), ii), and iii) are equivalent and imply 
iv), but not conversely. 

i) ~t g= ~ ~l 

ii) a ~ c and b ,,~ d 

iii) gt = ~ and ~ = ~l 

iv) a b F* c d. 

The next theorem and corollary show that in passing from a graph to its 
quotient, we retain a one-to-one correspondence between their respective impli- 
cation classes, G-decompositions, and transitive orientations. 

Theorem 4: Let ( V, E) be an undirected graph and ( V, E) its quotient graph. 

i) I f  A is an implication class of E, then ~t is an implication class ofF,: 

ii) I f  [e 1 . . . .  ,ek] is a scheme for E with corresponding G-decomposition 
E =  B 1 + B  2 +.._ + ~k, then [el, ..-, ek] is a scheme for F, with corresponding G- 
decomposition E = B 1 + B 2 +. . .  + B k. 

iii) l f  ( V, F) is a transitive orientation of ( V, E), then ( V, F) is a transitive orientation 
of(P,  ~). 

Furthermore, every implication class, scheme, G-decomposition and transitive 
orientation of E is of this form. 

Corollary 5: The number of  implication classes, the length of a scheme or G- 
decomposition and the number of  transitive orientations are all invariant under the 
quotient operation. 



206 M.C. Golumbic: 

Proof: Statement i) follows from ii) by choosing a G~decomposition of E beginning 
with Bt =A. 

(ii) Let Bt + B 2 + . . .  + B k be a G-decomposition orE. We claim that 

a b e B i "~ ~ b e Bi. (2) 
If h b ~ Bi, then h ~ = ~ d for some c d ~ Bi. Hence, a b F* c d by Proposition 3 
and t h u s a  b r The opposite implication follows from (1) proving (2). There- 
fore, E = B~ + B2 +. . -  + B,. 

It remains to be shown that B~ is an implication class of G~ = ~ + . . .  + B~. This 
follows from the claim that 

~ F*, ~ 7 1 ~ a b  F* ~ cd  (3) 

where E i = B~ +. . .  + B k. 

We have the implications 

fi~ Fo, g t ' b ' ~  Ca~ ~'~ F ~  ~'~' and ~ ' , ~ T ) ' r  

by (2), a a', b b' ~ E i 

a b Fe, a' b F~  a' b'. 

Conversely, a b F~, a' b' implies ~ b Fa~ ~' b' using (2). Therefore, claim (3) is 
proved. 

Finally, if A 1 + . . .  + Aa is another G-decomposition of E such that A~ = B~ for each 
i, then by (2) A i = B  i. On the other hand, if/31 + ... +/)k is a G-decomposition 
of E, then it is easily shown that C 1 + . . .  + C k is a G-decomposition of E where 
C i = {a b e E [ a ~ e Di} and that Ci = Di. Thus the correspondence between G- 
decompositions of E and E is one-to-one. 

Obviously, [el, ..., ek] is a scheme for E if and only if [el , - . . ,  ek] is a scheme 
forL 

(iii) Every transitive orientation of a graph must arise from a G-decomposition of 
the graph. Hence, a b ~ F <=> a b ~ P (by (2)). From this the following implications 
hold: 

Fc~ F - I = 0 ~  P ~ P - l = 0  

F - k F - I = E ~  ~ + ~ - I = ~ ,  
and 

f i b , ~ e P  ~ ab,  b c e F  ~ a c ~ F  ~ g t ~ e P .  

This concludes the proof of the theorem. 

Theorem 4 allows one to replace E~ by its quotient at every iteration of the 
decomposition algorithm without affecting the number of transitive orientations 
or the basic structure of the comparability matroid. 

It was discovered in Golumbic [9] that the length of any G-decomposition or 
scheme of a graph (V, E) is an invariant which we denoted by g (E). Theorem 4 
leads us to the following: 
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Corollary 6: Let K n be the complete graph on n vertices. Then g (Kn) = n -  1. 

Proof: Every edge of K,  is its own implication class. Choose an edge a b and 
let B~ ={a  b}. In K , - B ~  we have a~b ,  and the quotient of K~-B1 is precisely 
K,,_ 1. By induction, g ( K , _ 0 = n -  1 so g (Kn)=n. The case n=  1 is trivial. 

The proof of Corollary 6 reveals an interesting property. For distinct vertices 
x and y, if {x} w ADJ (x)= {y} • ADJ (y) in E, then A = {x y} is an implication 
class of E and x ~ y in E -  A. 

6. Cliques and Colorings of Comparability Graphs 

Any acyclic orientation (V, F) of an undirected graph gives a natural partial 
ordering of V where x > y  if there exists a path in F from x to y. A height 
function is then induced on the vertices: h(v)=0 if v is a sink; otherwise, 
h (v)= 1+MAX {h (w) lv w ~ F}. It is an easy exercise to show that the height 
can be assigned in 0 (1F ]) by a recursive depth first search. The function h is a 
valid vertex coloring (adjacent vertices have different colors), but is not neces- 
sarily a minimum coloring. The situation is much better if F is also transitive. 

It is well known that for comparability graphs the size of the largest clique 
and the chromatic number are equal (see [1]). Furthermore, the height function 
of a transitive orientation F is a minimum vertex coloring, and the maximal 
paths of F correspond precisely to the maximal cliques. Therefore, we can sum- 
marize their computational complexity. 

Theorem 7: Given a transitive orientation of a comparability graph (V, E), finding 
a minimum coloring of the vertices and a maximum clique can be done in 0 (1E [) 
time. 

Corollary 8: The clique problem and minimum vertex coloring problem can be 
solved in 0 ((~ . [ E l) time and 0 (I E [) space for comparability graphs. 

The more general weighted clique problem, where each vertex is assigned a 
positive integer weight and a clique whose vertices have largest total weight is to 
be found, is similarly solved for comparability graphs as are many other normally 
NP-complete problems. 

We conclude with an interesting polynomial-time method for finding the size of 
the largest independent set of vertices of a comparability graph. A set of vertices is 
independent if no pair of them is connected by an edge. We transform a transitive 
orientation (V, F) into a transportation network by adding two new vertices s and 
t and edges sx  and y t for each source x and sink y ofF.  Assigning a lower capacity 
of one to each vertex, we initialize a compatible integer-valued flow and call a 
minimum-flow algorithm. The value of the minimum flow will equal the size of 
the smallest covering of the vertices by cliques which in turn will equal the 
size of the largest independent set in the case of comparability graphs (see [1]). 
Such a minimum flow algorithm can certainly run in O (I V]. I E I ) steps although 
this is not optimal in general 
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