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Abstract - -  Zusammenfassung 

Approximation by Circles. The problem considered is to assign a measure of circularity to a given 
compact set in the plane. The measure adopted is the size of the smallest annulus containing the 
given set. Two different notions of the size of an annulus, that of area and that of difference of 
radii are studied. 

Approximation durch Kreise. Das bier untersuchte Problem ist, einer kompakten Menge in der 
Ebene ein Mag der Kreisf6rmigkeit zuzuschreiben. Als Mag wird die Grfge des kleinsten Kreis- 
tinges gewghlt, der die gegebene Menge enth~ilt. Zwei verschiedene Gr/igenbegriffe ftir den Kreis- 
ring werden untersucht, n~imlich dessen Oberflhche und die Differenz der Radien. 

1. Introduction 

How can one recognize a circle (or circular arc) in the plane? We present a precise 
formulation of this question of pattern recognition, and give some quantitative 
answers in the context of approximation theory. Thus the problem we consider is 
to assign a measure of circularity to a given compact set in the plane. Our 
approach is to determine the best annulus which contains the given set and judge 
the circularity of the given set according to the size of the annulus. Of course, we 
must make precise the sense of "best" and "size" in the preceding sentence. To this 
end let S be a compact set in the plane. We consider two different assignments of 
size to an annulus. The first is the area of the annulus, the second the difference of 
its radii. A notion of size having been fixed we define a best annular approximation 
to S to be any annulus of least size which contains S. It turns out that with 
the criterion of size corresponding to area the problem of best annular approxi- 
mation of S is equivalent to a well-known linear uniform approximation problem. 

This is discussed in the second section. The second notion of size is equivalent to a 
somewhat novel non-linear approximation problem as we see in Section 3. 

The author wishes to thank his colleagues A. J. Hoffman and C. A. Micchelli for 
valuable suggestions. A brief summary of these results appeared in the Proceedings 
of the Symposium on Approximation Theory held in Austin, Texas, January 
18--21, 1976. 
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2. Least Area Approximation 

Given  a compac t  set S in the plane, for any complex n u m b e r  w pu t  

r 2 ( w ) = m a x  I z - w l ;  rl ( w ) = m i n  ] z - w  L, (1) 
z e S  z ~ S  

Clearly, S is contained in the annulus  

rl (w)<_-I z - w  [<r z (w) (2) 
whose area  is 

A (~)= ~ (r~ (w)-r~ (~)). 
If  

inf A (w) = A (wo) (3) 
yr 

then the annulus described by (2) with w = w o is a best  annulus in the sense of a rea  
which contains  S. Its center is w o and  its outer  and inner radii are r z (Wo) and r t (wo) 
respectively. 

N o w  put  f ( x ,  y)=x2+y 2 and let V be the linear space of linear functions 
a x + b y + c. f (x, y) has a best uni form approx ima t ion  out  of V on S. 

Theorem 1: 
S, then 

I f  w o : (Xo, Yo) is the center of a best annulus (in the sense of area) for 

V~ (x' y)=2 x~ x + 2 y~ y - (  x2 + y2 r2 (w~ (w~ (4) 

is a best uniform approximation to f (x, y) on S out of V, and 

M =  II f - V o  [1 = r~ (Wo)-r~ (Wo) 
2 

Conversely' if v o (x, y) = 2 Xo x + 2 yo y + Co is a best uniform approximation to 
f (x, y) on S out of V then wo : (xo, Yo) is the center of a best annulus (in the sense of 
area) for S and if m = [I f -  vo[I, 

r~(Wo)=Co+x2+yZ+M; r~(Wo)=eo+ 2 2 Xo + y o - M ,  
and hence 

r~ (Wo)- r~ (Wo) = 2 M .  

Proof: 
i) Suppose  w o satisfies (3) and r~ (Wo) and r 2 (Wo) are defined by  (1). Consider  v o 
given by (4), then if we put  e o = f - v  o we have for (x, y) ~ S 

_ r~ (wo)-r~ (Wo)< eo (~, y)_< r~ (Wo)-r~ (Wo) 
2 - 2 ' 

and, indeed, M = 11 eo II = ( r  2 (Wo) - r2  (Wo))/2. 

If  there exists v E V such that  e = f -  v satisfies 

r~ (Wo)-r~ (Wo) 
!i e IJ = K <  

2 
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then every point of S lies in the annulus 

- K  <e(x, y )<K 

whose area is 2 n K, which is less than n (r2 z (w o) - r 2 (w0)). 

This contradiction establishes that v 0 is a best approximation to f out of Von S. 

ii) Suppose v o (x, y ) = 2  x 0 x + 2  Yo y+eo is a best approximation to f ( x , y )  on S 
out of V, and e o = f -  v 0 satisfies 

- M  <_e o (x, y)<_M (5) 

for (x ,y)sS .  Note that there must exist points (x 1, Yl); (x2, Y2)~S such that 
eo (xl, yl) = - M  and e o (x2, y2)=M. Every point of S lies in the annulus defined 
by (5) which is centered at (Xo, Yo) has radii 

(Wo)=Co + + y -M; (Wo)=eo+Xo +Yo +M, 
and area 2 n m = n ( r  2 (Wo)-r 2 (Wo)). We claim this must be a best annulus. 
If not, suppose that for all (x, y) ~ S 

r 2 ~ (X - -  h) 2 q- (y - k) 2 _~ R 2 

a n d  R 2 - r 2 < 2  m .  T h e n  

contradicting our assumption that v o is a best approximation, and proving the 
theorem. 

Corollary: Every compact set S has a best annular approximation in the sense 
of area. 

Remark 1: It is clear from the proof of Theorem 1 that there is a one-to-one 
correspondence between best uniform approximations to f on S out of V and best 
annular approximations to S in the sense of area. In particular, then, a best 
annular approximation is unique if, and only if, a best uniform approximation 
to f i s  unique. 

Remark 2: It is shown in Rivlin and Shapiro ' I l l  that if S is a compact convex set in 
the plane a best approximation to x ~ + yZ on S out of V, is 

2 Xo x + 2 Yo Y + (r2/2) - Xo 2 - Y~ 

Where (x o, Yo) is the center of the circle of minimal radius circumscribing S and r 
its radius. Thus for such S, there is a best annular approximation which center 
(Xo, Yo), outer radius r, and inner radius zero. 

The characterization of best uniform approximations out of V can be nea ly 
described in terms of the notion of extremal signature. We recall (cf. Rivlin [2] 
for details) that, in the present context, a signature in S is a continuous function, 
Z, whose domain (called the base of N) is a closed subset of S and whose range 
consists of the values + 1. A signature, Z, is extremal for V if there exist real 
numbers (1 . . . .  , ~s and distinct points Yl . . . .  , y~ of the base of Z such that 

7* 
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sgn (i = X (y~), i = 1, ..., s. 
and 

~ ( i  v (Yi) = 0, all v e V. (6) 
i = 1  

(1, ...,(~ are called weights for ~. I f g e C ( S )  let E ( g ; S ) - - { z e S : l g ( z ) t = ! l  g Jl}. 
Then we quote the characterization theorem. 

Theorem A: A best approximation on S out of V to g ~ V is v*, if and only if, there 
exists an extremal signature, r ,  for V whose base consists of at most four points 
of E (g - v*; S) such that 7, (y) = sgn (g (y) -  v* (y)). 

In view of (6) it is easy to see that there can be no extremal signature for V based 
on less than 3 points. Thus for our purposes only extremal signatures based on 3 
or 4 points are of interest and they must have the configurations schematized in 
Fig. 1. (The sign associated with each point of the base is the sign of the weight 
corresponding to the point, all signs for a given base may be multiplied by - I, of 
course.) 

/ 
/ / /  %\ 
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Fig. 1 

Thus, for example, we can find a best annular approximation to S when S consists 
of 3 or 4 points. 

i) If S consists of 3 collinear points, which may be taken with no loss of generality, 
to be (+ t, 0) and (s, 0) where 0<_s < t, then it is easy to verify that for all u, 
vo (x, y )=u  y+ (s2+ t2)/2 is a best approximation to f ( x ,  y) on S, and so every 
point on the y-axis is the center of a best annular approximation to S. 

The case that S consists of 3 non-collinear points is trivial. 

ii) If S consists of 4 collinear points, which may be taken, with no loss of 
generality, to be (+_ t, 0), (s, 0) and (q, 0) where 0 <_ I q I < s < t, then it is easily seen 
that the situation is exactly the same as that of 3 collinear points. 

iii) If S consists of 4 points, three (but not four) of which are collinear, and the 
collinear points are taken to be ( __ t, 0), and (s, 0) where 0 <_ s < t, and (a, b) is the 
fourth point, then every point (0, u/2) where u satisfies 

a2 + b 2 - t 2  < u b < a 2  + b 2 - s  2 

is the center of a best annular approximation to S. 
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iv) If S consists of 4 points, and one is inside the triangle having the other three as 
vertices, then (cf. Fig. 1 b) the best annular approximation has its center at the 
circumcenter of the triangle, the outer circle of the annulus is the circumcircle of 
the triangle and the inner circle passes through the point inside the triangle. 

v) Finally, if S consists of the four vertices of a convex quadrilateral, then 
(cf. Fig. 1 c) the best annular approximation has a pair of diagonally opposite 
points on both its inner and outer circles. Which pair is on the inner circle and 
which on the outer depends on certain distances between the pairs of points and 
is easily determined. If the points are labeled as in Fig. 1 c, the origin is placed at 
P ,  say, and with obvious notation for the coordinates of the points, if 

c=(x  + + + A3 

where Ai, i=  1, 2, 3, 4 is the area of the triangle obtained from the four points by 
omitting Pi, then if C>0 ,  P2 and P4 are on the inner circle; if C < 0  P2 and P4 
are on the outer circle; and if C=0,  the 4 points are concyclic. In a similar 
fashion, the area of the best annulus can be calculated directly in terms of the 
coordinates of the points by the formula, which reads in the present context, 

C �9 

A = 2 =  
A4" 

Remark: These considerations immediately imply the following geometric fact. 
If S is an oval (boundary of a strictly convex body in the plane), then there is a 
pair of concentric circles of which the inner one lies inside the oval and touches it 
at at least two distinct points and the outer one lies outside the oval and touches it 
at at least two distinct points. The question of what is the most general class of 
closed curves having this property is open. 

3. Least Difference of Radii 

In this section, we retain the notation of Section 2, but here instead of A (w) we 
consider 

r (w) = r 2 (w)-  r 1 (w), (7) 
and if 

inf r (w) = r (Wo), (8) 
W 

we call the annulus described by (2) with w = w  o a best approximation (in the 
uniform sense) to S, and r (wo) its radius. 

A first observation is that a best uniform annular approximation need not exist, as 
is evidently the case if S consists of 3 or more collinear points. In this case r (w) 
tends to zero as w tends to infinity. Indeed, if 

inf r (w) = c~ (9) 

then either there is some sequence of centers {w,} such that 
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r (w,) $ e (10) 

and w n o  ~ as n ~  ~ ,  in which case ~ is a center of an annulus of best uniform 
approximat ion  to S, or [ %  1 1" co as n o o o  for (a subsequence of) every sequence 
of centers satisfying (10). In the latter case we claim that  ~ is the opening of the 
narrowest  strip in the plane containing S. For ,  if S is contained in the strip 

d 1 (0) <_ Re (z e -i0) <_ dz (0) (11) 

with ~ - ( d z - d l )  = 2  e > 0  and the (topological) diameter  of S is D then there is an 
annulus centered at any p d ~ with p > d2+~ +(D2/4 e) containing S and having 
a radius less than e, contradict ing (9). Similarly, if for each 0, 0_< 0 < 2  n, the 
narrowest  strip of the form (11) containing S satisfies d2 (O)-d l  (0)>e ,  then 
given ~ > 0 there exists N (~) such that  for n > N every annulus centered at w, and 
containing S has radius greater than e + e, contradict ing (10). 

If (8) holds and we let G 1 (Wo) be the circle I z - w  o I = r l  (w0) and G z (Wo) be the 
circle I z -  Wo I = r2 (Wo) then we clearly have 

Lemma 1 : I f  w o is the center of a best uniform annular approximation to S then each 
of G 1 and G 2 contains a point of S. 

Suppose now that  S is a finite set of 4 or more  points. 

Lemma 2: I f  w o is the center of a best uniform annular approximation to S then 
either G t c~ S or G 2 c~ S contains more than 1 point. 

Proof: Suppose, the Lemma  false so that, in view of L emma  1, each of G 1 c~ S and 
G 2 c~ S contains exactly one point, say A = G 1 ~ S and B = Gz ~ S. Let  0 denote  
the point  w o. 

B 

_ _  i B  s 

Fig. 2 

i) A is not  on the closed segment 0 B. Choose  P on 0B near 0. Then  ] 0 A I < 10 P l + [ PAl 
and r = I 0 B I - I 0 A I = I 0 P I + I P B L - I 0 A I > I P B I - I P A  [. Thus  by choosing P 
close enough to 0 there is an annulus centered at P containing S (recall that  S is a 
finite set of points) and having radius < r (w0), a contradict ion.  
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ii) A is on the closed segment 0 B = 0 B'. Let P' be near 0 on the line passing through 
0 and perpendicular to Off. Then 

[P 'B ' [<IP 'A  I + I A B ' ] , r = I A B '  [ > I P ' B ' ] - [ P ' A I ,  

and we conclude as in case i). 

Theorem 2: I f  S is a finite set of 4 or more points and w o is the center of a best 
annular approximation to S then each of G 1 and G 2 contains at least 2 points of S. 

Proof: 
i) G2 contains only one point of S, call it D. Then G 1 contains points P1, . - ,  P~ of S 
with k _ 2 .  

a) None of P1, .., Pk is on closed 0D. Choose P on 0D. Then 

J o P r > l o P i l - S P P i l ,  i=1  . . . .  ,k.  

But for i = 1, ..., k 

r= l  OD I-r O Pi ]=l OP I+l P D I - I  OPi I>1PD I-[ P Pi [, 

and we obtain a contradiction in a, by now, familiar fashion. 

b) P1, say, is on 0D. Choose P on 0P~ then 

1 0 P I + I P P ,  I>IOPi I=I  o P l + l P P 1  r, i = 2  . . . .  ,k.  

Now consider the annulus centered at P with inner circle containing P~ and outer 
circle containing D. Its radius is r (Wo) and it contains S when P is close enough 
to 0, thus it is a best annulus for S, but its boundary contains only the points 
P t  and D of S, contradicting Lemma 2. 

ii) The case that Gx has only one point of S leads to a contradiction by a similar 
argument. 

Corollary: I f  S is a finite set of 4 or more points such that 

inf r (w) = a, 
W 

and S is contained within a strip of opening a, then each bounding line of the strip 
contains at least 2 points of S. 

Proof: O 

o 

Fig. 3 



100 T ,  J .  R i v l i n :  

Let L 1 and L 2 be the bounding lines of the strip. Suppose L 1 contains only point 
D of S. Let the perpendicular to L t at D meet L 2 in A. D A may be extended 
sufficiently far to 0 so that the annulus with center at 0, outer circle containing D, 
and inner circle containing A contains S, has radius ~ - -  thus making it a best 
annular approximation to S - -  yet its inner circle contains at most one point of S, 
contradicting Theorem 2. 

Remark: If S is the set consisting of the unit circle [z [=1 and its center, z=0,  
then it is easy to see that a best annulus containing S has radius 1. Among these is 
the annulus centered at wo= I/3 and having radii r 2 (Wo)=4/3 and r 1 (w0)= 1/3. 
For this annulus G 1 contains only one point of S, the origin, and G2 contains only 
one point of S, the point z = - 1. Thus even Lemma 2 fails if we drop the requirement 
that S be a finite set of points. 

In order to say more about arbitrary compact S we relate the problem of best 
uniform annular approximation to a non-linear uniform approximation problem. 

Consider 
F (x, y; h, k, t)= ( (x -h )2+  (y-k)a) i /2-  t. 

The following equivalence is clear. 

Lemma 3: 
#=ra in  max I F (x, y; h, k, t)b= max [F(x,y;h,~,-t)l 

(h, k, t) (x, y) ~ S (x, y) e S 

if, and only if, the annulus centered at #: (h, k) with r 1 (~)=}--# and r 2 (v~)=}-+# 
is a best uniform annular approximation to S. 

Suppose now that (h, ~) is the center of a best annulus with r 1 = t - # ,  r 2 = t + #  
and 0 < rl < r2. Let 

D =  {(x, y) e S:I F (x, y; h, ~, t)l =#}.  

Suppose, further, that (x, y) e D and let q5 (x, y)=(4h (x, y), if2 (x, y), ~b a (x, y)) 
be the vector 

_ _  a F  a F  
s g n F ( x , y ; h , k , t ) - ~ ( x , y ; h , k , t ) ,  sgnF(x,  y;h,k,t)-~-k (x,y;h,k,-t), 

sgn F (x, y;-h,~,-i)~t (x, y; h, k,-[) ). 

Then we have 

Lemma 4: Let p be any unit vector in ~3 then 

max (p, (b (x, y))>0. (12) 
(x, y ) e D  

Proof: Suppose (12) to be false. Then for the vector q 

max (q, q~ (x, y))_< a < 0, 
or, (x, r) ~ o 

(q, 4)(x,y;~,Tc,-[))<6<O, all (x ,y)eD.  
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Now D=D 1 u D 2 where D i c  {z: [ z - ~  I--- r~}, i=  1, 2. 

Let U 1 and U2 be open sets such that: D~c U~ ~ S=  W~, i=  1, 2; 

sup [ z -  # ] < t-< inf [ z -  # [, 
z~W1 z~W2 

there exists e o > 0 such that for 0 < e < ~o 

0 < ~ - < F  (x, y; ~+ ~ q~, ~+e  qz, t-+~ q3), (x, y) ~ Wz, 

0 >  -----~ > F (x, y; h + e  q~, k + e  q2, t--l- e q3), (x, y) ~/471, 
2 -  

I F (x, y; -fi+e q~, ]~+~ qz,-t+t q3)[---#- c5' 

for (x, y) ~ S (W~ ~ W2) for some ~' > 0, and 

(q ,c~(x ,y;~+~q~,k+eqz  , f+eq3))_<6/2<0 , all (x, y)~ W~ ~ W 2. 

Then 

F (x, y; ~tq-e 0 ql, k"}-l?o q2, t-F~o q3) = F  (x, y; h, k, "f) 

+~o (q, c~ (x, y; ~+~ ql, ~+~ q~,-i+8 q3)) 

for (x, y) ~ W2 and some e in [0, so], and 

F (x, y; h + e o ql, k + eo q2, -{+ ~o q3) = F (x, y; h, k, t) 

-~o (q, ~ (x, y; ~+~ q~, ~+~ q~, ~+~ q~)) 

for (x, y) ~ W1 and some ~ in [0, %]. Thus 

[ F (x, y; ~+e  o ql, k+eo q2, }-+eo q3)[-<#+(% ~)/2 

on W~ u W 2, contradicting the definition of #. 

With notation and hypothesis the same as in Lemma 4 we have 
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Lemma 5: I f  (12) holds then there exist points of D, (xl, Yl), ..., (xk, Yk), with 
k < 4 and 

k 
o= Z ~jr yj), i=1,2,3, 

j = l  

where 21 + ... +2k=  1 and 2 j > 0 , j =  1 . . . .  , k. 

Proof: Consider the compact set in •3 

q~ = {(q~l (x, y), ~b 2 (x, y), ~b a (x, y)): (x, y) e O}. 

In order to prove the lemma it suffices to show that the origin (in R 3) is in the 
convex hull of ~ in view of Caratheodory's theorem (cf. Rivlin [2]). But if 
the origin is not in the convex hull of �9 there exists a hyperplane 

h(X,  Y , Z ) = c o + c  1 X + c  2 Y + e  3Z=O 

such that h (0, 0, 0) = Co > 0 and 
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h (r (x, y), (x, y), (x, y))___ O, 
for all (x, y) ~ D; that is for all (x, y) ~ D 

C 1 491 (X, y)-'[-'C 2 492 (X, y)'qt- e3 493 (x, y ) ~  - C o < 0  , 

contradicting (12). 

Lemmas 3, 4 and 5 help establish the following necessary condition for a best 
uniform annular approximation. 

Theorem 3: I f  #:(h,  k) is the center of an annulus which is a best uniform 
approximation to S, with 0 < r  1 (~)<r  2 (#), then there exist a positive integer 
k <_4, positive numbers 21 . . . .  ,2k, distinct points z 1 . . . .  , z k of  S and disjoint subsets 

11 and I 2 of {1 . . . .  , k} such that ] I 2 I+1 11 [=k, 
k 

Z 2 j = l ,  (13) 
j= l  

Y, 2j = ~ 2j, 
j eI1 j eI2 

and 

Z 2j z j -  = Z 2j z j -  | 
J~l rl (~) ~I2 r2 (~) ' 

where l z j -  ~ [= r 1 for j ~ 11 and I z j - ~  l= r 2 for j E 12 . 

(14) 

(15) 

Proof: We need only observe that if 

1Zj-- l~ l =r2 (W), 41 (zj)~-~-(h-- xj)/r2 (w), 492 ( z j )=(k - -  Yj)/r2 (w), 493 (zj) = -- 1; 

and if 

I z j -  # l= r 1 (#), 491 (z j) = - ( h -  xj)/r 1 (w), 49z (z j) = - ( ~ -  yi)/rl (w), 4)3 (z j) = 1. 

Remark: Conditions (13), (14) and (15) have some interesting consequences. We 
must have k > l .  If k = 2  then I1--{1}, lz={2}, say, and 21=22= �89 . Thus 
( z l - ~ ) / r l = ( z 2 - f v ) / r 2  and the points z 1 and z 2 lie on the same ray issuing 
from ~. (This is precisely the situation in the case of the best annular approximation 
described in the Remark following Theorem 2.) k=  3 is impossible, for if k =  3 
then we have, say, 21 +22 =~3 =�89 and 

2~ 1 zl----~w+222 z 2 - #  _ z 3 - w ,  
rt  r l  r2 

a contradiction. Finally, if k = 4 we are led to 11 + t2 = 13 + 14 = �89 and 

2 21 zl ------~# -+ 212 z2 -v~ - 2  2 a z3 -------~-w + 2 2 4 z4-vv ,  
r l  r l  r2 r2 

which has the geometric interpretation that if zl, z> za, h are viewed from # the 
two points of the outer circle and the two points of the inner circle are strictly 
interlaced angle-wise. 



Approximation by Circles 103 

When S consists of 4 points, k = 2  is impossible. For suppose the points are A, 
B, C, D and A and B lie on the same ray issuing from the center, 0, A and D are on the 
inner circle, B and C on the outer. (See Fig. 4.) Consider the annulus of which 

/ \ 

/ c " ~  ~ ~ ' ~  \ 

Fig. 4 

the inner circle contains A and C and the outer circle contains B and D. (See 
Fig. 4.) (Suppose for the moment that A C is not parallel to B D.) The line segment 
AB joins the inner to the outer circle of this new annulus, and since the length 
of a line segment joining the inner to the outer circle of an annulus is minimal, 
if and only if, the segment is radial, the radius of the new annulus is less than 
I ABI  - -  which is impossible (I A BI being the radius of a best annulus) - -  
unless A, B, C, D are collinear, in which case the hypothesis of Theorem 3 is not 
satisfied, in contradiction to our assumption. If A C is parallel to BD (see Fig. 5) 
then S is contained in a strip whose opening is less than ] A B I leading to a contra- 
diction of our assumption that the original annulus was a best approximation to S. 

B 

.~  I /  / 11  '~ 

s / , "  D / 

Fig. 5 
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Thus we have 

Theorem 4: I f  S consists of 4 points the two points of S on the outer circle of an 
annulus of best uniform approximation to S interlace angle-wise with the two points 
of S on the inner circle, as viewed from the center of the annulus. 

Proof: If the 4 points are concyclic the theorem is certainly true. Suppose the 
4 points are not concyclic. An annulus of best uniform approximation has 
2 points on its inner circle and two on its outer circle according to Theorem 2, 
hence the hypothesis of Theorem 3 is in effect, and as we have just seen, k = 4, 
which proves the theorem. 

Remark 1: A set of 4 points can fail to have an annulus of best approximation 
only if the four points are collinear or are the vertices of a (convex) quadrilateral 
with a pair of opposite sides parallel, in view of the Corollary to Theorem 2. For 
example, the points (0, + 1), (+  4, 0) have no annulus of best approximation. 

Remark 2: If one of 4 points is in the convex hull of the other three a best annular 
approximation exists and it is only necessary to consider the 3 annuli determined 
by the 3 pairs of pairs of points. It is easy to see that the "inside" point is on an 
inner circle in each of the three cases. 

Finally, we remark that the interlacing condition in Theorem 4 is not sufficient 
for best annular approximation to 4 points. This can be seen in the case of the 
points (0, 0), (2, 0), (4, 0), (0, 1). The best annular approximation is centered at 
(2,5/2). The annulus centered at (1, -7 /2)  is not best although the interlacing pro- 
perty obtains with respect to  this center. However, the radius r (w) has a local 
minimum at this point. 

References 

[1] Rivlin, T. J., Shapiro, H. S.: A unified approach to certain problems of approximation and 
minimization. SIAM Journal 9, 670--699 (1961). 

[2] Rivlin, T. J." The Chebyshev Polynomials. New York: J. Wiley 1974. 

Dr. T. J. Rivlin 
IBM Research Center 
Yorktown Heights, NY 10598, U.S.A. 


