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Abstract - -  Zusammenfassung 

Variable Order Composite Quadrature of Singular and Nearly Singular Integrals. A class of variable order 
composite quadrature formulas for the numerical integration of functions with a singularity in or near 
to the region of integration is introduced. Exponential convergence of the method is shown for all 
integrands in the countably normed space ~a. Numerical examples are presented which demonstrate 
that the asymptotic exponential convergence rates obtained here are sharp and already observed for a 
small number of quadrature points. 
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Zusammengesetzte Quadratur variabler Ordnung fiir singulfire und fastsingul~ire Integrale. Wir stellen 
eine Klasse von zusammengesetzten Quadraturformeln variabler Ordnung vor, die sich zur numerischen 
Integration von Funktionen mit einer Singularit/it im Inneren oder in der N~ihe des Integrationsbereichs 
eignen. Fiir alle Integranden in dem abz~hlbar normierten Raum ~a wird eine exponentielle Konvergenz 
des Verfahrens bewiesen. Numerische Beispiele zeigen, dab die ermittelten asymptotischen exponen- 
tiellen Konvergenzraten scharf sind und schon bei einer kleinen Zahl von Quadraturknoten erreicht 
werden. 

1. Introduction 

In recent years, the numerical quadrature of functions with radial singularities in 
or near to the (two or three dimensional) domain of integration has received much 
attention, primarily due to the increasing use of techniques based on integral 
equations, such as, for example, the boundary element method (BEM) and vortex 
methods, for the solution of complex engineering problems (see, for example, I-6, 7] 
and 1-12] and the references there). In the BEM singular and nearly singular integrals 
arise as diagonal, respectively sub- and superdiagonal elements in the stiffness 
matrices of the discretized boundary integral operators. They also arise when the 
representation formula is evaluated at a point near to, or on the boundary surface. 
Since the integrations are often in local coordinates on curved surfaces in ~3, the 
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integrandsf(x) do not behave like 

f (x)  = ]xl'g(x) 

in the local coordinates x = (x 1, x2) parametrizing the surface where Ixl 2 = x~ + x2~ 
and g(x) is a smooth (analytic) function. This precludes the use of weighted quadra- 
tures, but owing to the general structure of the underlying boundary integral 
operators [13], the integrands have yet enough properties to be treated efficiently 
with several methods (for example, polar coordinates and modified extrapolation, 
see [12]). 

In the case of nearly singular integrals, however, the additional problem arises that 
the location of the singular point (for example, a collocation or nodal point in an 
adjacent boundary element) in the local coordinates of integration is not explicitly 
known. What is usually known (or can be computed with reasonable effort) is the 
point closest to the singular point in the domain of integration. 

Therefore a quadrature scheme is required that can provide highly accurate numeri- 
cal integration based solely on this information, uniformly for integrand classes 
which contain both singular and nearly singular functions alike. 

Two broad groups of techniques for the numerical evaluation of singular and nearly 
singular integrals can be distinguished: semi-analytical and purely numerical tech- 
niques. In the former, the integrands are subject to certain analytic transformations 
(regularizing coordinate transformation, separation into a singular and regular 
part etc.) prior to numerical integration (see, e.g., [6-8]) while in the latter, special 
numerical quadrature techniques, such as weighted quadratures, modified extra- 
polation (see, e.g., [9]) can be found. 

A particular purely numerical technique for integrands with point singularities has 
been recently introduced by Yang and Atkinson [15]. They subdivide the region 
of integration nonuniformly with the size of the subdomains decreasing towards the 
singular point and apply a properly scaled quadrature rule on each subdomain. 
They prove that in this fashion a rate of convergence of O(N -2) can be achieved 
independently of the strength of the singularity (here and throughout this paper, N 
denotes the number of integrand evaluations). This result is closely related to the 
fact that functions with a radial singularity can be optimally approximated by 
piecewise polynomials on a properly graded mesh. 

The approach introduced in the present paper corresponds to what is known in FE 
analysis as h - p version [4], where strongly refined, geometric meshes are com- 
bined with different polynomial degrees--here we combine elementary quadrature 
formulae of varying orders in subdomains the size of which decreases geometrically 
towards the singular point. We prove that this yields exponential convergence of 
order 

O (exp( - bN 1/~,+1))) (1.1) 
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for integrands in the countably normed space ~ where b > 0 is a constant and r 
is the dimension of the region of integration (typically, r = 1, 2, 3). The scheme has 
two parameters, the geometric grading factor a ~ (0, 1) and the slope of the degree 
vector #, which can be used to optimize the constants in the estimate (1.1) for a 
given application. In addition, our convergence proof is sufficiently flexible and the 
class Ma sufficiently large in order to handle multiple singularities, mapped domains 
of integration and also a wide variety of elementary cubature formulae used to 
construct the composite rule leaving room for further optimization of the method. 
In numerical experiments we show that the convergence estimate (1.1) is sharp 
and that, as a rule, # .,~ 1 and 0.1 < a < 0.2 are optimal. The geometrically 
graded subdivisions of the domain of integration thus obtained deviate substantially 
from those generated by adaptive integrators which use selective bisection of sub- 
domains (corresponding to a = 0.5). We also demonstrate numerically the robust- 
ness of the method for nearly singular integrals where the distance of the singular 
point versus the diameter of the integration domain varies from 1 to 10 -6. As 
to the limitations of the method, we show in [14] that for nearly singular potential 
integrals which jump as the source point passes through the surface (as, for example, 
the double layer in classical potential theory), a robust and efficient numerical 
method must incorporate the analytical jump relations of the potential. For such 
integrands (which do not belong uniformly to ~a(f~)), we show with a numerical 
example that  the accuracy of the variable order, composite quadratures intro- 
duced here deteriorates slowly as the source point approaches the domain of 
integration. 

The outline of this paper is as follows: in Section 2 we define notation and the spaces 
used, in particular weighted Sobolev spaces of fractional order and the countably 
normed spaces ~p. Some important examples of integrands belonging to Mp are 
also exhibited. In Section 3 we describe the variable order, composite quadratures 
in the special setting of a unit square in ~2 with the singular point 0 located in the 
origin. In Section 4 we prove for this case the exponential convergence (1.1) of the 
method for arbitrary integrands f e ~p. Section 5 discusses several generalizations 
of the convergence result to other domains, multiple singularities, and dimensions 
other than 2. Section 6 is devoted to numerical examples which show in particular 
the exponential convergence estimate (1.1) to be sharp. 

2. Preliminaries 

2.1 Notation 

By ~r we denote the r dimensional Euclidean space of points x = (xl . . . . .  xr), 
by K = (0,1) r the (open) unit cube in R r and by T =  {x ~ R~]xi > 0, xl + ... + 
x, < 1 } the unit simplex. The Euclidean distance of x to the origin 0 is p = ]xl = 

2 1/2 (x~ + .-" + x~) . The closure of an open, nonempty set t2 c ~ is denoted by 
~,  its boundary ~ \ f 2  by c~I2 and its volume by ]f2J. 
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2.2 Sobolev Spaces 

For every open, polyhedral domain f~ = E' we denote by LP(f2), 1 < p < oo the 
usual spaces of functions f for which Ifl p is integrable. Further, for every nonnega- 
tive integer rn we denote by Hm(f2) the Sobolev space of functions with generalized 
derivatives of order not exceeding m in L2(O) furnished with the norm 

Ilfll2~(~) = ~ IlDkfll2z(o), IIDkfll2~(o) = Y. IID~fll~,~) 
O <_k <<_m I~l=k 

where c~ e N 2 is a multiindex, I~[ = 7~ + ~a + "' "+ ~,, and, as usual 

D~f -  
~t 1 Ctr ~x~ ...Ox, 

We will also write 

[Dmfl 2=  ~ IDYll 2. 
I~l=m 

2.3 The spaces ~((2) 

For a parameter 0 < fl < r/2 and s = K, T we denote by H~'(12) the closure of C~ 
with respect to the weighted norm 

2 2 2 = 
Ifl,~(a) Ilfll.r(o) IDkfl2~+k(x) dx (2.1) 

k=O 

where, for t e ~, the weight is given by ~(x)  = Ixj t. 

The spaces N~(O) consist of functions that are analytic in f2, but possibly singular at 
the origin O. Functions in No(f2) will be characterized by the growth of their 
derivatives, i.e. we require that 

ID~fl2~+k(X)dx < Cz(dy)kk! Vl~l = k ~ No (2.2) 

holds with constants Cf > 0 and dr > 1 which depend only on f, but not on k. Then 
we define 

~a(f2) = { f l f  ~ LI(12) n H'~(f2) Vm ~ No, (2.2) holds}. (2.3) 

These spaces are countably normed spaces [5] and were first introduced in the 
analysis of the h - p finite element method in [-4]. Functions in ~a(t2) are character- 
ized by the best constants Cf and df in (2.2). If O r if, functions in ~a(f2) are analytic 
in ~.  

2.4 Fractional Order Spaces 

For s e E+\N, H~(I2) is defined as interpolation space. More precisely, since 
H~+l(f2) c H~(I2), we may define H~+~ for 0 < 0 < 1 via the K-method of inter- 
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polation [1]: 

= v k  e 

From the interpolation inequality 

1 - o  o 

we find for f e Np(f2) that  

Ilfll~/~+ot~) < Cydkr+~ + O)X/2F(k + 1 + O) Vk e No, 

0 < 0 < 1 .  

(2~4) 

0 < 0 < 1 .  (2.5) 

2.5 Examples of  u e Na(t2) 

2.5.1. Consider f2 = K = (0, 1) and the model family of almost singular integrands 

f,(x) = (x + e) ~, e > 0, - 1 < 2 < 0. (2.6) 

Then we have 

Proposition 2.1. For fl > - 1/2 - 2, f~(x) e ~p(K) for every ~ > 0 and (2.2) holds 
with d: = 2 and with C: = (2(fl + 2) + 1) -1/2. 

Proof." We verify condition (2.2). Since for k e N 

f(k)(x) = 2(2 -- 1). . .(2 -- k + 1)(x + e) ~-k, 

we find 

[f(k)(x)~p+k(X)] <_ (k -- 2)(k - 1 - 2).. .(1 - 2)21x + ~l~-~lxl p-~ 

< (k + 1)!lxl#l x + ~l z 

where we used that  Ixl < Ix + el for 0 < x < 1 and every e > 0. Hence 

fK fo L 1 122k(k')2 IDkflEe~+k(X)dX <_ (k + 1)2(k!) 2 xEta+P) dx <- 2(2 + fl) + 

from where the assertion follows. [] 

2.5.2. Consider f2 = K = (0, 1) 2 and the family 

f~(p) = (~ + p)X e _> 0, - 2  < 2 < 0. (2.7) 

Then we have 

Proposition 2.2. For fl > - 1 - 2, f~(p) ~ ~#(K) uniformly for 0 < e < 1. 

The proof  of this proposit ion is elementary, but lengthy and therefore presented in 
the Appendix. 

The crucial point with both of these examples is that  the one-parameter families f~ 
belong uniformly to ~# (i.e. the constants C: and d: in (2.2) are independent of ~). 
Therefore a quadrature strategy which performs on the class ~p will integrate f~(x) 
regardless of  the particular value of  e, i.e. the explicit location of the singularity is 
not needed. 
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3. A Class of Variable Order Composite Quadratures 

Our  purpose is the numerical evaluation of 

If = ~o f(x) dx 

where 12 = K or t2 = T and f ~ ~a((2). We will present the construction and the 
analysis of the composite quadrature formulas in detail for the case 12 = K c ~2 
and O = (0,0) and elaborate on t'2 = T in Section 5 below. To construct the 
composite formulas, we partition K into a collection K~ of smaller squares where 
b ~ N and 0 < a < 1. To this end, we define 

x ~  ~  x ~ = x ~ = a  "+l-j, l < j _ n +  1, O < a < l ,  (3.1) 
j-1 j Kt,j=(X 1 ,x1) X (0, X~ -1 ) f o r 2 < j < n +  1, 

, j - z  j j -1  j 
K 2 , j - ( x l  ,x l )  x (x2  ,x2) f o r l _ < j _ < n + l ,  (3.2) 

j--1 j K3, j = ( 0 , x {  -x) x ( x  2 ,Xz) f o r 2 < j < n +  1 

and refer to Fig. 1 for an example with n = 3 and a = 0.5. 

A quadrature rule Qf - - ~  w~f(xlj, xzj) on K is of type PI, if its weights wj are 
positive and (xtj, x2j ) e K. It is a rule of total degree p denoted by QV if it is exact 

(o,1) (ij) 

0,3)  

(3,2) (2.2) 

(2.1) (1,~ 

(3.4) 

(2.3) 

(i.3) 

(2,4) 

(1.4) 

(o,o) (1,o) 

Figure 1. Geometric subdivision K] with n = 3 and tr = 0.5 
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for polynomial integrands of total degree p, i.e. the quadrature error Ef  satisfies 

Ef  := I f  - Q P f  =O Vf = Y' coxlx  ~. (3.3) 
O<i,j<p 

Let a family ~ = {Qp}~~ o of PI rules of total degree p on K be given. For a given 
n ~ t~ we associate with the subdomains K~,j ~ K",, i = 1, 2, 3, polynomial degrees 
pj which we collect in the degree vector p and define the composite quadrature rule 
Q"; P by composing properly scaled copies Q,(~ of QP~ ~ ,~ o n  Ki, j of total degree pj 
for j > 2, i.e. 

n + l  3 
Pj  Q";Pf = ~ ~ Q,,jf. (3.4) 

j = 2  i=1  

Remark 3.1. Note that we ignore in (3.4) the contribution from K1,1 so that Q"gpf 
is well defined even if the component rules Qp, require function values at the origin. 

4. Analysis of  the Quadrature Error 

In this section we prove that the composite quadratures (3.4) converge exponentially 
with respect to the number N of integrand evaluations for any f ~ ~p(K). 

Theorem 4.1. Let f ~ ~p(K) for some 0 < fl < 1. Then, for every 0 < a < 1 and a 
linear degree vector p 

with slope 

P i = m a x { 2 , [ J # J +  1} 2 < j < n +  1 (4.1) 

(I - f l ) lna 
# > (4.2) 

In Fmi n 

and Fm~. defined in (4.13) below, there exists a constant b > 0 independent of N such 
that 

f r f ( x ) d x  - Q";P~ <_ C C i e x p ( - b N  1/3) (4.3) 

where C depends on a, fl, I~, df and Cy and d s are the constants in (2.2). 

For the proof of Theorem 4.1 we need several Lemmas. We begin with a classical 
estimate which relates the quadrature error to the pointwise best approximation of 
the integrand by polynomials. 

Lemma 4.1. Let f e C o (if), I2 c W, and let Q be a PI quadrature rule on s which is 
exact of total degree p >_ O. Then 

f a f  dx - Qf < 21t21 I I f -  ~IIL~(O) (4.4) inf 
7t 

where the infimum is taken over all polynomials rc of total degree p. 
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Proof: Define the error functional 

E f  = j" Sdx- 
and observe that En = 0 for all polynomials n of total degree p. Since Q is PI 

]Ef] = I E ( f  - n)l -< [ I f  - rcl dx + ~ w i l ( f  - n)(x/)] 
d t2 i 

Since Q is in particular exact for constants, Y, w~ = It21 and since rc is arbitrary, the 
assertion follows. [] 

The preceding lemma shows that the quadrature error can be controlled by the 
pointwise best approximation of the integrand. For our estimate of the quadrature 
error, we require a result on the approximation of a sufficiently smooth function by 
polynomials from [4, Lemma 4.3]. 

Proposition 4.1. Let  O = (a,b) x (c,d) with h = b - a = d -  c. For every O e 
Hk+3(O) there exists a polynomial n o f  total degree k such that for  every integer s 
satisfying 1 <_ s <_ k and 0 <_ m <_ 2 

[]Dm(t~-rc)l[~2tga)<Ch-2m- (k + s ~ - 2  ~ ( k - s ) !  2m)! (~)2(s+1) . _  

~.[ (~)21{ ~s+l+/@ ~2(62) ~s+l+ll// 2 } 
" ~- s+l"~ l "~ "~ l'~ s+l . (4.5) /=0 UX1 GX2 OX1 GX2 L2(gJ) 

Here the constant C is independent o f  h, k and s. 

Lemma 4.2. Let  [2 c K be as in Proposition 4.1 and 0 < Po = dist(O, s Then for  
every tp e H~+3(K) there exists a polynomial n of  total degree k such that for  0 <_ 
m <_ 2 and any s with l <_ s <_ k 

IlO"(~' - r011~2<~> -< Cpo 2<m+~) F(k+s -+-3 - - - -2m)  IIOII~+,(K) (4.6) 

where C is independent o f  s, k and Po and 

O < 2 <_ h/p o _< A < oo. (4.7) 

Proof: We denote Ixl by p and observe that P/Po > 1 on f2. Thus we get from (4.5) 
that for 1 </~ _< k 

HDm(t~__n) H2a(a)<__Ch_2m ( k - k ) ,  (~)2(~+i) 
(k + 2m)!  - 

{ 2, /=0 2 po2(#+k+l+l) pp+~+l+I s+l l 
axi ax2 

nfl+k+l+l ; 
+ k" -~i L2(~2) 
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Due  to (4.7) we est imate 

C fA \2('+1, (k--]~)' ~ (A/21 _ _  ~-2m-2fl |__l  2 

(A)2( '+1) ( k - ] ~ )  ' ,,~/ 2 
<- Cp~ 2- (k + fc + 2 - 2m)! [[n~§ 

where the constant  C depends on 2, A, but  is independent  of  k,/~ and Po. 

Next,  consider the opera to r  T~9 = Dm(~ - 7r). Then  T: Hg+3(K) --~ L2(~) continu-  
ously and 

/A\2(k+l) 
FI TIIo~+3(K)-~z2~o) -< Cp~ (k + ~: + 2 - 2m)!" 

Fo r  0 < 0 < 1 define s =/~ - 1 + 0 and recall that  

H~+3(K) = (H~+2(K), H~+3(K))o, co. 

Then  T: H~+3(K) ~ L2(s cont inuously  and we find with (2.4) that  

2 (A/2(s+l) F ( k - s + l )  Jl TIIHf3(K)~L2~a) --< Cp~ , . , . /  F(k + s + 3 - 2m)" 

[ ]  

R e m a r k  4.1. If  12 = K i d ~  K~ with j > 2 and 0 < a < 1, (4.7) holds with A = 

( 1  - a)/a and 2 = (1 - a)/(x/~a), since it follows f rom (3.2) that  

J 'a "+2-s for i = 1, 3 
Po = dist(O, Ki,j) = ),w/~a.+2_ j for i = 2 

and  h = hj = o-"+1-i(1 - a). 

P ropos i t ion  4.1 states that  a po lynomia l  rc can be found so that  (4.5) holds simul- 
taneously  for 0 < m < 2. To  control  the quadra tu re  error  it is thus necessary to 
est imate II rp II L ~ )  in terms of lrp I n,-(~) with the Sobolev embedding  theorem where 
care mus t  be taken  to keep the dependence of the constants  on the size of the 
domain  explicit. 

L e m m a  4.3. Let g2 = ( -h i2 ,  hi2) ~ c ~" with 0 < h < 1 and l > r/2 a natural num- 
ber. Then we have for euery tp ~ HI(t2) 

IlOll~.~)--- C Z h2"-'lq'l~,-.~) (4.8) 
O<_m<_l 

where the constant C depends on r, but is independent of h. 

Proof" Denote  by C the open cone 

~g = { x e  R']O < Ixl < h/2,x/Ixl e S }  

where X is the doma in  cut out  of the unit  sphere in W by the positive or tant  
{x ~ W]xi > 0, i =  1 . . . . .  r}. F o r  every x ~ it is then possible to find a cone 
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cg~ ~ 12 with vertex at x which is congruent to ~ Consider next a cut-off function 
)~ s Cg(N ~) such that  

1. Z(x) = 1 for Ix[ < 1, 
2. )~(x) = 0 for Ix[ > 2, 
3. ID=z(x)l < M Vx, le[ < I. 

Define )~(x) := )~(ex) and, for y ~ cgx ~ 12, eh(y) := )~4/h(Y -- X). Then 

{ ;  f o r l y - x l  < h / 4  
eh(y) = if [y -- xl > h/2 

and 

ID~'eh(y)l <_ 41~'lM/h 1~1 if I~l ~ 1. 

Let ~ ~ C~ and x ~ O, y ~ cg~ and set ~ = (y - x)/ly - xl. Then 

~(~) = - e ~ ( x  + ~ ) ~ ( ~  + ~n)l~:~/~ = - I h/~ a ( e ~ ' ) g ~  
J0 a( " 

Integrating by parts I times yields 

_(-1)' 

Taking absolute values and integrating both sides over y ~ Z" we find 

1 fr  ~ t - ' ~ z ~ k ) d Y  I~(x)l GI - (l 1)~ ~,~ 

i.e. 

I ; ~  ") i/2 
1r _< ~2(~-')dY~ Ilehr 

./ 
x 

For  the first factor in the bound (4.9), we find that 

f v ~  z(l-') dy _< Bh2Z-, 
x 

since ~ = I x  - Yl and 2l > r .  We estimate the second factor in (4.9). Since 

Ileh~ll~,(Q) : 

and, from the Leibnitz rule, 

D~(eh~P) = 

Y', ;~  [D'(eh~0)P dx 
o<l~l-<l 

a~#DPehD~-P~ 
o<#<a 

(4.9) 
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where fl < ~ is understood as fli < ~i for i = 1 . . . . .  r, we estimate 

Heh~011~,(o) < C ~ ~ f (D#ehD'-#~)Z dx 
0<lal</ 0<B<a do 

< C ~ ~ M2h-21al r(D'-P~P) 2 dx 
0_<lal_<l 0_<#<a do 

<-CM2 E h-21~l E h21eltlOr@[l~2to) 
0<l~l<l 0<y<~ 

<CM2 ~ h-2, ~ h2MIIO~011~2(o) 
o<_t<_t O_<l~l<t 

<CM2 E h21~lllO~@[l~2to) E h-2' 
O_<H_</ lyl <_t <_l 

<-CM2 Z h2ml~l~m(~)Z h-2'- 
O<m<_l ra<<_t<l 

Using that 0 < h < 1, we find 

Ileh~'ll~,to) < CM 2 ~ h2m-2tl~bl~(a) 
O < m < l  

which Yields the estimate (4.8) for ~k 6 C~~ with a constant C independent of 
h. A density argument completes the proof. [] 

To give the proof of Theorem 4.1, it remains to estimate the error corresponding 
to the omission of the integral over K1,1 (see Remark 3.1). For later use we state a 
r-dimensional version of the estimate required in the proof of Theorem 4.1. 

Lemma 4.4. For n, r ~ N, let KL1 = (O,a~)" for some 0 < a < 1 and K = (0, 1) ~. I f  
f ~ H~(K) for some 0 < fl < r/2, there holds 

o.(r/2-fl)n 
K,., f dx <_ C(r) ~ l l f l i u ~ ( K , . , ) .  (4.10) 

Proof" We estimate (as before, S denotes the domain cut out of unit sphere in R" by 
the positive ortant) 

J K I , 1  1,1 1,1 1,I 

t y ( r t 2 - f ) n  

= C(r) ~ II f IIn~x,,,). [] 

We turn now to the proof of Theorem 4.1. 

Proof" Throughout, the generic constant C may depend on fl, a ~ (0, 1) and on dy, 
but is independent of C I. We proceed in several steps. 
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step 1: F rom the triangle inequality 

IE~'Pf[ = IIf  - Q~'Pfl < + ~, f dx - Q~,~f . 
1,1 j = 2  i = I  i,d 

Using Lemma 4.1 and Lemma 4.4 with r = 2, we find 

0-( l - f l )n  n + l  3 

IE~'Pfl < C c:---xC I + ~ Y', IKz,jI i n f  I I f  - ~IIz,*(K,.j) 
V I - - p  j = 2  i=1 rt 

where the infima are taken over all polynomials  of total degree pj on K~,;. Utilizing 
Lemmas 4.2 and 4.3, we find for 1 _< s < k 

2 

inf IIf - ~rllb.,,.j) <- c Y, h fm-2 inf IID"(f  - 2 rC) IIL~tK,.S) 
m = 0  11: 

(A?,- . r (k-s  + i) 
<-- Cr~ \ 2 J  F(k + s - -  1)IIfII2v~tK) 

where the constant  C depends on o- �9 (0, 1) but is independent  o fs  and k. Using (4.5) 
and 

h, --= x{ - x{ -1 -- cr"+l-;(1 - a) = x{(1 - or) 

we find that  

/A\Zt~+l)F(k -- s + 1) 
inf. I l f -  rc[12-(x,.~,- C(x{ ) - z -2P~5  ) ~ + s - -  1)I[f/12f~(x)" 

step 2: Since f �9 Np(K), we have with (2.5) that  

~,  j,_2_2pfA'~2t~+l)F(k + 1)(s + 3)(r(s  + 4)) 2 
i n f  [ I f -  ~[12~(K i l) < L[X1) k2  ) --S 

. - F ( k  + s - 1) 

X ( C f ) 2 ( d f )  2s+6 . 

We select now k = pj and s = ~JPi with 0 < c 9 < 1 still at our  disposal and obtain 

, / A \ 2 ( s + l )  
inf~ ] I f -  ult2~(r,.j)<- C ( x i ) - 2 - ' ~ P ~ )  O(~tj, Pj)(Cy)2(d.r) 2~+6 

F((1 - a)p + 1)(3 + ctp)(F(4 + ep))2 
O(c~, p) = 

/'((1 + ~)p - 1) 

step 3: For  fixed ~ �9 (0, 1) and p �9 N we claim that  

o(~,p) <_ ~p ~ , ~ f T ~ /  (4.11) 

where the constant  C is independent  of ~ and p. To show (4.11), we recall Stirling's 
formula 

where 
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where ~ indicates p ropor t iona l i ty  up to terms of lower order  in n. With  s = ~p we 
have, as p ~ ~ ,  tha t  

(p - s)!(s + 3)((s + 3)!) 2 
O(ct, p) ,.~ 

(p + s -- 2)! 

((1 -- oOp)(1-~)P+U2e-(1-~)P(3 + o~p)a+ 2aPe-6- 2aP 
((1 + ~)p -- 2)(l+~)P-3/2e -(l+~)p+2 

N o w  

and 

so that  

which proves  (4.11). 

step 4: Define 

~2(( 1 +~)p/2) 

1 (1 + o:)pJ 
e-2 p ~  oe 

(3 + ep)2"(ctp)-2"P = (1 + 3~6('p/3)--* e6 
e P /  

o(~,p) < c y  ~ ~ 1  p-~,(~p)~. 
- \( u  / 

Q := max  
ff 

Then  we have f rom Remark  4.1 that  A _< ~o and 

where 

Since 

p ~ o o  

inf I I f -  ~II~<K,.j, ~ C(x{)-2-2~e2~'~+2(G)2(df)6pJ~ IF(qdr ~j)l z'j 

F(x, a) = (1 + a ) ' + ' ]  \ T J  : [o, o0) x (o, 1) --, ~. 

I K j  = (hi)  2 = ( x { ) 2 ( 1  - a ) 2 ,  

we find for 1 < i < 3 ,2  < j < n + 1 that  

I K j  inf I l f -  ~IIL=tK,.j) ~ C(x{)I-POPf [F(Qds, ~j)lPJCf(dl) 3 . 

step 5 (discussion of F(x ,  e)): Obvious ly  

( 2 ) 2 _ ( l - - z )  1-z 
F z ,Z  ( l + z ) a +  < 1  for 0 < z < l .  

(4.12) 
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Due to (4.12) we have 2/(odf) < 2/3 and therefore 

F~,. := min F(ods, c 0 = F(odl,  cq.i. ) < F(od~, 2/(0d$)) < 1 
~e(O,l) 

where 

(4.13) 

/( ( (31 o ))2)1/2 
0 < ~,,i, = 2/(4 + (~odf)2) 1/2 = 2 4 + max < 1. 

ff 

step 6: Combining the above estimates, we get with (3.1) 

I n+l G (n+l-/)(i-p)'5 IF, Ipjt,,1 "13"~ IE3'Pfl _< CCf d x-a)" + j=2 ~' e j ,  mi,, ,~y, j (4.14) 

where we selected ~j = 7,,i, for 2 < j < n + 1. Next, we choose a linear degree vector 
(4.1) where the slope # satisfies 

# = (1 - fl)ln(a)/ln(Fmi,) + ~ (4.15) 

for some e > 0. Define 

Jo = max{j:  2 < j _< n + 1, LJ#J < 1} 

and set Jo -- 1 if the set is empty. Then, using that d s > 1, 

IE~.Pfl _< c(/~,z)G(dx)3~ ("+""-p) 1 + d " - ~ '  + y'  (LJ~] + 1)S(Fm,.Y" 
"= / = j o + l  

where the curved parentheses depend on e, #, o-, fl and e,a,, but are bounded 
independently of n and Cy since F, nl, < 1 (cf. (4.13)) and Jo < 2/#. Thus we obtain 

I E"g Pf[ < C(a, fl, d:, # )Cfa  (1-#) t,+l). (4.16) 

step 7: We estimate the number N of quadrature points in Q"g p in dependence 
on n. For interpolatory rules, we need at most (pj + 1) 2 points in K~,j. Hence 

,+l 54 
N < 3  ~ ( p j + l )  2 < - + ( n + 1 ) 3 ( #  2 + 6 k t + 1 2 )  

j = l  ]A 

from where we find that 

N 54 
(n + 1) 3 _> 

# z + 6 / z + 1 2  # ( p 2 + 6 / ~ + 1 2 ) .  

Inserting this in (4.16) yields (4.3) and completes the proof. []  

Remark 4.2. Theorem 4.1 holds in particular in the important case a = 0.5, i.e. for 
partitions K] that are obtained by successive bisections which are often generated 
in adaptive integrators. As we will show in the numerical experiments in Section 6 
below, however, the value a = 0.5 is far from optimal for integrands from the class 
~ ( K ) .  

Another important case of Theorem 4.1 occurs when the degree vector is uniform, 
i.e. P2 = P 3  . . . . .  Pn+l = P" 
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Corollary 4.1. For composite quadratures Q"~'P of uniform order p = [#(n + 1)J for 
some I~ > 0 the estimate (4.3) holds without the assumption (4.2). 

Remark 4.3. So far we considered only the case where O e K. In this case (4.16) 
shows that it is essential to let the number n of layers tend to infinity as N increases. 
If the singular point O is located in the exterior of _K, n can be kept fixed and we 
obtain the convergence rate e x p ( - b N  1/2) as mini _<j_<,+l {Pi} ~ oe. 

5. Generalizations 

The exponential convergence result in Theorem 4.1 and its proof admit several 
generalizations, since its main components, a subdivision gX~ of the integration 
domain ~2 that is geometrically graded towards the singular point O and a family 

of PI rules can be constructed in various cases. We consider first the simplex 
r = {(XI,X2)[0 < X 1 "~ 1,0 < X 2 < Xl} C ~2 and 0 = (0,0). With x{ and x~ as in 
(3.1), we define the domains 

7:-1 = { (x l ,xx )10  < x l  < a " , 0  < x2 < x~} 

r j  = { ( x l , x x ) l x {  -~ < x~ < x i , O  < x2 < x{  -~ + x~}  j = 2 . . . . .  n + 1 

The subdivision of T with n + 1 layers is denoted by T2 and Fig. 2 depicts To3.5. In 
particular, the domains Tj for j > 2 are scaled images of the reference domain 

= {(X1,X2)I1 < X t < 2,0 < x2 < xl} .  

for j > 2. In the design of the composite rule Q]'p a family ~ = {Qp'} of rules which 
are exact of total degree Pi on 7 ~ is needed. The following lemma shows how to 
construct such a family from a one dimensional PI family for (0, 1), such as for 
example the Gauss-Legendre family. 

Lemma 5.1. Let f~ = { G p} be a family of one dimensional PI quadratures of degrees 
p = 1, 2 . . . .  on (0, 1) with weights w} p) and knots zl p). Then the family ~ = {Qp} of 
rules which are defined by 

Q ' f  = Z Z w,(Zp+X)w) (p)zi~zp+l'~/'(1 + ~2,+1) ~,) + �9 . z i  , z )  (1 z~p+~)) (5.1) 
t j 

are exact for all polynomials of total degree p on T. 

Proof" The assertion is a consequence of the Duffy transformation 

[] 

Remark 5.1. The transformation (5.2) is known to remove singularities of inte- 
grands which are homogeneous of degree - 1 in Ixl in the sense that the integrand 
on the right hand side of(5.2) is an analytic function of(y1, Y2) on (1, 2) x (0, 1) [12]. 
This, however, is not the case for degrees of homogeneity other than - 1. 
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0,1) 

(o,o) 0,o) 

Figure 2. Geometric subdivision Tfl with n = 3 and a = 0.5 

For  the unit simplex, a proof  quite analogous to that of Theorem 4.1 yields 

Theorem 5.1. Let T c ~2 denote the unit simplex and assume that f ~ ~#(T). Let Q"g p 
denote a composite quadrature rule with the linear degree vector (4.1) corresponding 
to the geometric partition T~" of T with 0 < ~ < 1. Then there exists a constant b > 0 
independent of N such that 

[ . f . r f (x)dx-Q~"f<<_CC:exp(-bN1/3)  (5.3) 

where C depends on a, ~, #, d: and C: and d: are the constants in (2.2). 

We consider next the quadrature of functions f ~ ~#(K) over the unit cube K ~ ~r 
in dimensions other than 2. Once again geometric subdivisions K"~ like the one in 
Fig. 1 can be defined. They consist now of K1,1 and n layers of 2 r - 1 scaled 
hypercubes each. The construction of the composite quadratures Q"g p is based on 
properly scaled, r-fold tensor products of PI rules on (0, 1). 

Many ingredients of the convergence analysis of Theorem 4.1 have already been 
proved for dimensions r # 2. The only genuinely two dimensional result used was 
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Proposition 4.1; provided, an analogous result holds also in dimensions r > 2 (for 
r = 1 this is fairly straightforward to show), we have the following generalization 
of (4.3). 

f K f ( x ) d x  -- Q"dPf < C C r e x p ( - b N  1/~r+1)) < a < 1 , f ~  ~p(K) (5.4) V0 

provided a linear degree vector (4.1) is used. Here the constants C and b depend 
also on the dimension r, but are independent of the number of integrand evalua- 
tions N. 

Remark 5.2. The estimate (5.4) for r = 1 and special integrands f ( x )  = x~'g(x) with 
> 0 and a function g(x) which is analytic in [0, 13 is a straightforward consequence 

of Lemma 4.1 and [10, Theorem 33 as we observed in [11]. Since the class ~p(K), 
however, contains functions of the form f ( x )  = x 'o(x)  with e > - I, (5.4) for r = 1 
already generalizes [10]. 

Remark 5.3. Since our convergence proof used arguments from approximation 
theory, exponential convergence results can also be obtained for curved regions of 
integration f2 and curved subdomains in f2", analogous to what is done in the h - p 
version of the finite element method (see I-4, Part  23 for details and explicit construc- 
tions of analytic domain mappings). 

Remark 5.4. Another generalization of variable order composite quadrature ad- 
dresses integrands which become singular anisotropically along a line, as e.g. 

f ( x l ,  Xz) = x~9(xl ,  Xz) 

where g is a smooth function. Now tensor products of variable order, composite 
quadratures in x~ with high order Gaussian quadrature in x 2 yield again exponen- 
tial convergence. This is true also for integrands in classes Np(g2) with anisotropic 
weight functions ~ - - s ince  the main ideas of the proof are similar and the details 
are lengthy, we will not elaborate on them. 

6. Numerical Examples 

In this section we present numerical examples which show that the exponential 
convergence rate (1.1) is sharp. All computations were done in double precision 
FORTRAN at the IBM Scientific Centre, Heidelberg. 

We consider first the case K = (0, 1) and f = x -1/2 which belongs to ~p(K) for fl > 0 
according to Proposition 2.1. Figure 3 depicts the decadic logarithm of the relative 
quadrature error for the composite quadrature with linear degree vector versus v / N  
for various values of a. According to the estimate (5.4) with r = 1 we expect a linear 
dependence of these quantities. The component rules were obtained from the 
Gauss-Legendre family and the degree vector was again linear with slope # = 1. 
The optimal grading factor o- appears to be very close to 0.15 in accordance with 
the optimal value a = (v/2 - 1) 2 ~ 0.17...  obtained by K. Scherer [10] in a closely 
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Figure 3. logao(IEfl/lIfl ) versus N 1/2 for f(x) = x -x/2 and various a 

related problem of best approximation. We observe that the estimate (5.4) for 
r = 1 is already sharp for small values of N. We considered next examples with 
a two-dimensional integral domain In Fig. 4 we show the relative quadrature error 
for 

: f  fol pl--~dxl dx2 (6.1) 

using the composite rules Q~' p based on a family .~ as in Lemma 5.1 with the family 
(# of Gauss-Legendre rules on (0, 1) and a linear linear degree vector (4.1) with slope 
# = 1. By Proposition 2.2, the integrand belongs to ~p(T) for fl > 1/2. The optimal 
grading parameter a for p = 1 seems to be near a = 0.025. The validity of the error 
estimate (5.3) is apparent already for small values of N. 

So far we considered only integrands of the form singularity times a smooth 
(analytic) function. For  such integrands special, weighted quadratures can be de- 

n,p veloped which will outperform the composite rules Q~ , since their rate of conver- 
gence is governed by the polynomial approximability of the smooth function. 
Theorem 4.1 and its generalizations however, ensure uniform exponential conver- 
gence of the composite quadratures on a family ~ c M~ of integrands. Such families 
arise, for example, in the boundary element method (BEM) where almost singular 
integrals have to be evaluated. Here the singular point is outside in a distance e to 
the domain of integration and one needs a method that is uniformly accurate in 
e. In particular, the exact location of the source point in the integration coordinates 
is, as a rule, not known explicitly. 
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Figure 4. loglo(IEfl/ l l f l  ) versus N 1/3 for f(x) = Ixl -a/2 and various a 

As a model integral, consider the single layer potential integral 

= fx  1 dy (6.2) Ix-yl 

where x = (0,0, e) t and y = (yl,y2,0) t. Note that in local polar coordinates in the 
(Y 1, Y2)-plane 

1 
Ix - Yl - (e2 + p2)-:t/2 e Na(K) if fl > 0 and e = 0. 

According to Theorem 4.1, we expect therefore exponential convergence regardless 
of the value of e. Figure 5 shows the decimal logarithm of the relative quadrature 
error versus N 1/3 for # = 0.5, o- = 0.15 and several values ore. We clearly see that 
for small e the exponential convergence rate exp( -bN ~/3) is attained, whereas for 

= 1.0 the curve seems to bend downward due to the expected convergence rate of 
exp( -bN m) (cf. Remark 4.3). Consequently, the performance of the composite 
quadratures is robust with respect to the distance of the source point to K. 

Finally, to illustrate the limitations of the method, we consider the almost singular 
double layer potential which arises together with (6.2) in the evaluation of the 
representation formula for source points near to the boundary of the domain, i.e. 

IDLe = h'(y) "~  ZYl 3 ( x  - y) dy = sign(e) ~ - 2 arcsin \2x/1[ 1 ~ 2  | +  ~:2j (6.3) 

where x = (0, 0, ~)t, y = (Yl, Ya, 0)' and g(y) = (0, 0, 1) t. This potential exhibits as is 
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Figure 5. loglo(lEfl/llSLel) versus N 1/3 for tr = 0.15 and e = 10 -j, j = 0 ..... 6 

well known, a jump when the source point x passes through the plane x 3 = 0 or, 
equivalently, as e changes sign. In Fig. 6 we display the performance of the composite 
quadratures Q~'p with linear degree vector (4.1), slope # = 1/2 and a = 0.15 for 
various values of e. The family of integrands does not belong uniformly to ~p(K) 
for any 0 < fl < 1 and the performance of the composite quadrature deteriorates 
as the source point approaches the surface. Nevertheless, in a wide range of e the 
results are still acceptable. This is in a sense the best one can expect with a purely 
numerical method~ To obtain here results which are accurate to machine precision, 
one must use series expansions of the potentials and their explicit one-sided jump 
relations which we will investigate in a forthcoming paper [14]. 

7. Appendix 

In this section, we will prove Proposition 2.2. To this end, we must verify (2.2). 

The growth condition (2.2) on the derivatives o f f  s Np(f2) is expressed via deriva- 
tives of f Cartesian coordinates. Occasionally, however, the following alternative 
characterization via derivatives in polar coordinates o f f  is useful. 

Proposition A.1 [2] .  Let  I2 c ~2  and 0 ~ t2. Denote the polar coordinates at 0 by 
(r, O) and, for  c~ ~ Nz o, 
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Figure 6. loglo(lEfl/ll~U'l) vesus N 1/3 for a = 0.15 and e = 10 -j, j = 0 . . . . .  6 

Then (2.2) holds if and only if there exist constants Cs and [ly (possibly different 
from Cf, dr) that are independent of k so that 

(fo I~fl2r2(~+P-~)r dr dO < Cf([II)kk! Vl~l = k e No,  (A.1) 

Since f,(r) = (e + r) x is a radial  function, this p ropos i t ion  shows we mus t  only 
estimate the growth of derivatives with respect to r in order  to prove Proposi t ion 2.2. 

Since 2 < 0 and  

akf~(r) 
ar k - 2 ( 2 -  1 ) ( 2 -  2 ) . . . ( 2 - -  k + 1)(e + r) z-k, 

we have  with ~ = (k, 0) that  

fK f~/4 f x~ r)2(2-k)r2k+2~+l ]~afe(r)[2r2(k+P-az)r dr dO < ((k + 1)!) 2 (e + dr dO 
dO do 

< 4 (k + 1)2(k!)2 f / r2~-2k+2k+2p+l dr 

7~ 2 x+t~+l 
= 4 22 + 2fl + 2 22k(k!)2" 

This is (A.1) with 

dy = 2 and (t~s)z = rc 2 ~+t~+l 
4 2 ( 2 + f l + 1 ) '  

provided that  fl + 2 + 1 > 0. Proposi t ion 2.2 is now a consequence of Proposit ion A.1. 



194 C. Schwab: Variable Order Composite Quadrature of Singular and Nearly Singular Integrals 

Acknowledgements 

This work was performed while the author was a visiting scientist at the IBM Scientific Center in 
Heidelberg, FRG. The excellent environment and working conditions at the center are gratefully 
acknowledged. 

References 

[1] Bergh, I., Lofstr6m, J.: Interpolation spaces. Berlin Heidelberg New York: Springer 1976. 
[2] Babu~ka, I., Guo, B. Q.: Regularity of the solution of elliptic problems with piecewisc analytic data 

I: boundary value problems for linear elliptic equations of second order. SIAM J. Math. Anal. 19 
172-203 (1988). 

[3] Dorr, M.: The approximation theory of the p-version of the finite element method. SIAM J. Num. 
Anal. 21, 1180-1207 (1984). 

[4] Guo, B. Q., Babu~ka, I.: The h - p version of the finite element method. Part I: The basic approxi- 
mation results. Comput. Mech. 1, 21-24 (1986), Part II: General results and applications, ibd. 203- 
220. 

[5] Gelfand, I. M., Shilov, G. E.: Generalized functions, vol. 2. New York: Academic Press 1964. 
[6] Hackbusch, W., Sauter, S.: Evaluation of nearly singular integrals in the boundary element method. 

Computing 52, 139-159 (1994). 
[7] Huang, Q., Cruse, T.: Some notes on singular integral techniques in boundary element analysis. 

Int. J. Num. Meth. Eng. 36, 2643-2659 (1993). 
[8] Kieser, R., Schwab, C., Wendland, W. L.: Numerical evaluation of singular and finite-part surface 

integrals on curved surfaces using symbolic manipulation. Computing 49, 279-301 (1992). 
[9] Lyness, J. N.: Quadrature error functional expansions for the simplex when the integrand function 

has singularities at vertices. Math. Comp. 34, 213-225 (1980). 
[10] Scherer, K.: On optimal global error bounds obtained by scaled local error estimates. Num. Math. 

36, 151-176 (1981). 
[11] Schwab, C.: A note on variable knot, variable order composite quadrature for integrands with 

power singularities. In: Proc. of the NATO ARW on numerical integration, Bergen, Norway 1991 
(Genz, A., Espelid, T., eds.), pp. 343-347. Dordrecht: Kluwer 1992. 

1-12] Schwab, C., Wendland, W. L.: On numerical cubatures of singular surface integrals in boundary 
element methods. Num. Math. 62, 343-369 (1992). 

[13] Schwab, C., Wendland, W. L.: Kernel properties and representations of boundary integral opera- 
tors. Math. Nach. 156, 187-218 (1992). 

1-14] Schwab, C., Wendland, W. L. (in preparation). 
[15] Yang, Y., Atkinson, K.: Numerical integration for multivariable functions with point singularities. 

Technical Report No. 41, Department of Mathematics, Univ. of Iowa, Iowa City, IA 52242, USA, 
June 1993. 

C. Schwab 
Department of Mathematics and Statistics 
University of Maryland 
Baltimore County 
Baltimore, Maryland 21228-5398 
USA 


