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Abstract - -  Zusammenfassung 

Explicit, Optimal Stability Functionals and Their Application to Cyclic Discretization Methods. The 
present paper contains a stability concept for discretization methods of a certain, very general class 
9.1l, which is optimal (in the sense of yielding the best general, two-sided error bounds) without being 
more restrictive than any of the classical stability definitions. The optimal stability functional gJh re- 
lated to it depends on the linear part of the discretization operator, and has the important property 
that ~h [6] may be of order q+ 1, i.e. ~h [61 = d)(hq+Z), even if the local error 6 only has order q, 
6 = (9 (hq). This result may be used for the construction of methods with maximum order. Its application 
to linear cyclic methods, for example, furnishes a new approach to the theory of linear M-cyclic 
k-step methods of maximum order. 

Explizite, optimale Stabilitiitsfunktionale und ihre Anwendung anf zyklische Diskretisierungsverfahren. 
Die vorliegende Arbeit enth/ilt eine Stabilit~itsdefinition fiir sehr allgemeine Diskretisierungsverfahren, 
die insofern optimal ist, als sic die besten, zweiseitigen Fehlerschranken ergibt, ohne dabei restriktiver 
zu sein, als die klassischen Stabilitgtsdefinitionen. Das zugeh6rige optimale Stabilitfitsfunktional g~h 
b/ingt in einfacher Weise vom linearen Teil des Diskretisierungsoperators ab und hat die bemerkens- 
werte Eigenschaft, dab ~h [6] die Ordnung (q+ 1) haben kann, d. h. t/' h [6] = (9(hq+l), auch wenn 6 
nur die Ordnung q hat. Notwendige und hinreichende Bedingungen hierfiir werden abgeleitet. Dieses 
Ergebnis ist von praktischer Bedeutung bei der Konstruktion von Verfahren maximaler Konvergenz- 
ordnung. Insbesondere ftihrt seine Anwendung auf lineare zyklische Verfahren zu einer neuen 
Darstellung der Theorie M-zyklischer k-Schrittverfahren und zu ihrem tieferen Verstgndnis. 

I. Introduction 

1.1. In [8], Spijker gives a general theory of the structure of error estimates for 
finite-difference methods, and introduces the concept of "minimal stability func- 
tionals" for operators that define such methods. In this paper we consider the 
question, how to find a minimal stability functional which is optimal, in the 
sense of rendering optimal error bounds. Apparently this amounts to asking for 
a "best" stability concept. 

* J. Heinhold zum 65. Geburtstag gewidmet. 
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For  semilinear operators, Spijker proposes to factorize the linear part A of the 
operator, A=PQ, and to determine a minimal stability functional ~o of P; 
under certain conditions, k~ 0 is also a minimal stability functional of A. For 
special P, it can be obtained explicitly and is given by "Spijker's norm". How- 
ever, for Q'~= I (I: identity), 7Jo does not represent the optimal stability functional 
of A, and the stability concept associated with it (e. g. "stability w.r.t. Spijker's 
norm") is unnecessarily restrictive. In a recent paper [9], Spijker presents optimal 
error bounds with stability functionals that are defined implicitly for a class R 
of methods which covers the same methods as the class 931 considered in this 
contribution. 
We are interested in explicit, optimal stability functionals in order to find those 
methods of our class that yield maximum order bounds for the discretization 
error (i. e. methods with the highest order of convergence). 

1.2. Thus, in this paper, we are less concerned with optimal error bounds as an 
objective of its own, but focus on a transparent representation of them, in order to 
develop criteria for new or more effective methods. Our approach yields an 
explicit representation of the optimal stability functional for discretization me- 
thods of a specific class 9)l. This class is introduced in paragraph 2. It contains 
most of the classical discretization methods for initial value problems of ordinary 
differential equations (O. D.E. s) as well as methods for other problems; thus, 
the limitation to 9J/does not represent a serious restriction. Here, we focus on 
methods for O. D. E. s, including, in particular, cyclic methods. 

Explicit, optimal stability functionals for methods of the class 9J~ are given in 
paragraph 3. They are defined by a norm (definition 3.4) that depends on the 
operator A and generalizes Spijker's norm; but the stability concept related to it 
is less restrictive and more easily handled (particularly in the case of composite 
methods, where stability proofs w4r. t. Spijker's norm may be awkward). 

The advantage of having an explicit expression for the optimal stability functional 
allows us to optimize it over specific methods in 93l. This is done in paragraph 4; 
we show that methods with order of consistency q may converge with order (q + 1) 
if very simple conditions are satisfied. This is important for the construction of 
methods with maximum order. Besides, it also gives a better understanding of 
Spijker's norm, explaining, in particular, why it furnishes high order bounds for 
the discretization error of primitive 1 cyclic methods (see the following example 
(1.2 b)), but not for general cyclic methods of maximal order (such as example 
(1.2 c)). 
The application of our results to cyclic methods in paragraph 5 yields a new 
approach to the theory of linear cyclic methods of maximum order, generalizing 
considerably the results of Donelson and Hansen [3]. 

1.3. Before entering the subject, we shall illustrate it by examples: 

Consider the initial value problem 

y'(x)=f(x,  y(x)), y(a)=1%, x c  [a, b]. (1.1) 

Definition in Stetter [10], p. 316. The notatiorls in this paper are mostly taken from [10]. 



Explicit, Optimal  Stability Functionals and Their Application 235 

To avoid cumbersome notations, our presentation is restricted to the scalar case: 
t/o ~ N, f :  [a, b] x R ~ N ,  without loss of generality. Assume that f satisfies a 
Lipschitz-condition w. r. t. y uniformly for x ~ [a, b]. 

Let (1.1) be solved numerically with one of the following three methods, where 
y* denotes the approximation of y at x = x.i: = a + j  h, j = 0 (1) m with h ~ (0, b -  a], 
m: greatest integer with m h <_ (b - a), f f f  : = f  (x j, y*) 

(a) y * + 2 = y * + 2 h f j * l ;  y*=t/o;  y~=th(h) ;  j = 0 ( 1 ) m - 2  
with 2 ] y (Xl)-~ h (h)[ = (9(h 2) (1.2 a) 

(b) Y'j+1 =y*j+hf2*;  Y*=~o j = 0 ( 1 )  [~-~] (1.2b) 
y*j+ 2= y*j+ l + h f~j+ 2 

(c)  , ,* - , , * ~  Y 2 j + 2 - y 2 j T 3 ( f ~ J + e + 4 f ~ + ! + f ~ )  j = O  (1) [~@] (1.2 c) 
k. _ , ,  + ~ / 5 r  2 j + 3 - - Y 2 j + 2  121, J2 j+3+8f~ j+2- - f~+l )  
Y~=tlo; Y~=~h(h) with l y ( x ~ ) - r  h (h)l= (9(h 4) 

Method (1.2 a) is the 2-step midpoint rule, (1.2 b) is a primitive linear 2-cyclic 
1-step method, and (1.2 c) is a linear 2-cyclic 2-step method due to Donelson/ 
Hansen [3]. 
If a k-step method is stable w. r. t. the norm 

II 6 ]]h:= max I~jl (1.3 a) 
O<_j<_m 

o r  

[]6[[h:= max [~l [+h ~ ]fij[ (1.3b) 
O<_l<_k-1 j = k  

o r  

11 ~ Ilh:----,~ ~ [S l [+h max ~l (t.3 c) 
1=0 k<j<_m l=k  

then there are fixed positive numbers C and h o _< ( b - a )  such that for all j < m 
and all h e (0, ho] we have the following upper bounds for the global discretization 
error 

[Yj--Y*[<--Ci[~llh j----0(1)m (1.4) 

where ~j are the local discretization errors. In general, [cSj 1= (9(hq(J)), and 
q = min q(i) is the order of consistency of the method. In case of method 

O<_j<<_m 
(1.2 a), e.g., we have, for y ~ C 3 [a, b], q - 2  and 

(0  for j = O  
6 j : = ( y ( x l ) - t  h (h)= (9(h 2) for j = l  

L h - 1 [y (x j) - y (x j_ 2) - 2 h f  (xj_ 1, Yj- 1)] = (9 (h 2) for 2 _<j _< m 

(1.3 c) is the Spijker norm; it provides the most refined of the three error bounds 
and yields the most restrictive stability definition. However, in certain cases, 
the stability requirement imposed by this norm is too restrictive. Method (1.2 a), 
for example, is unstable w.r.t, the Spijker norm (see Stetter [10], p. 83). 

In what follows, [. ] always denotes a no rm in W (with s ~ N defined in the context). 



236 P. Albrecht: 

It may happen that the global discretization error obtained with Spijker's norm 
has higher order than that obtained with (t.3 a) or (1.3 b); but this occurs only 
for special cases (see section 4.8.) as for the primitive cyclic method (1.2 b). 

The bound (1.4) for the global discretization error of method (1.2 c), on the other 
hand, has only order 3 in h for all three norms (1.3 a - c )  if y ~ C 5 [a, b]; it is 
well-known, however, that for y e C s [a, b] this method converges with order 4, 
i.e. l Yj-Y* t = g)(hr �9 This raises the question whether another norm exists, which 
furnishes a bound of order 4 - -  if possible a two-sided one - -  without rendering 
the method unstable. In paragraph 3 we propose such a norm as a generalization 
of Spijker's norm. 

2. A-Methods 

2.1. In what follows, we consider the class 9)l of discretization methods of 
the form 

z~=~o(h); z*=Az*_l+h~(Xj_l, Zj*l,Z*;h), j = l ( 1 ) p ,  (2.1) 

where ~] is a real (k,k)-matrix; ~o(h), zjeRk; hs(O, ho]~-(O,b-a), and 
~: [a, b] x Nk x Rk X [0, h0 ]~N g. We always assume that (2.1) has a unique 

* for all he(0, ho]. Methods of this class were first considered in solution zj 
Albrecht [1]. 

2.2. Definition: Methods that can be reduced to the above form (2.1) will be 
called ft-methods, if the following conditions are satisfied: 

(a) there is a constant D >_ 1 such that ]t i]~ it < D for all j ~ N (2.2 a) 

(b) ~ is continuous and satisfies the Lipschitz-condition: 

]~(x,u, vl;h)-~(x, u2, v2;h)L<Kllul-u2[+K2lvl-v2[ (2.2b) 

with constants K 1 ___ 0 and K 2 _> 0 independent of x, h, ui, u2, vl, v2. 

Condition (2.2 a) is satisfied if the eigenvalues of ~] do not exceed 1 in absolute 
value and if eigenvalues of modulus 1 have only linear elementary divisors. The 
matrix ~] as well as the method (2.1) is then said to satisfy the root condition. 
This generalizes Dahlquist's classical stability definition for linear k-step me- 
thods. 

2.3. Obviously all Runge-Kutta methods belong to 93l. To give an idea of the 
variety of other methods that fall into this class consider the following examples. 

Example 1 : Linear k-step methods of the form 

k - 1  k 

Y*+k = -- Z e;y*+z+h Z fi;f(xj+;,y*+;) 
t= o ~= o (2.3) 

y*=th(h), / = 0 ( 1 ) k - I ;  j=O(1)m-k, 

f: [a,b] x N-*N Lipschitz-continuous, are reduced to (2.1) by with y* s ~; 
setting 
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2.4. Example 2: With the above notation, P (E C) ~ E-methods take the form 

Z* (o) .t(o) ~ ,  ,-No) (.. ~ ,  . = ~  ~j_~+h h); z~=(o(h) ;  j = l ( 1 ) p = m - k + l  �9 " ~  ~ , ' ~ ' j -  1 ,  ~ j -  1 ,  

z*(i)=ft * * * h); i l (1 )s  zj_ a +h O(~)(xj_~, Z j _ I ,  Zj (i-- 1); 

Z* = Z* (~); S: number of corrector evaluations. 

Substitution yields 

z*=Az*_~§ z~=(o(h),  j = l ( 1 ) p  

where ~ is composed of ~o) and ~(~) and satisfies the Lipschitz-condition 
(2.2 b). 

Hence, P (E C) ~ E-methods are .,]-methods if their corrector matrix ~] satisfies the 
root  condition. 

2.5. Example 3: Cyclic methods can also be reduced to the form (2.1), which 
simplifies considerably their theoretical treatment as will be seen later. Consider, 
as an example, method (1.2 c); with 

,.,._(y*. _ �9 )., A(O):=(O 1 10). Ao,):=(; 1). ~o(h):=(r/o ) 
-J " I k y j +  1 ' 1 ' r h (h) 

( ) ~o) (x2j ' z~j, * " h ) : - i  0 
z2j+ ~, f~j+ ~ +4 Aj+ t + f ~  ( o ) 

�9 �9 �9 h):= lag 5 f ~ + 3 + S f ~ + z _ f ~ + a  ~(1) (X2j + 1, Z 2 j+  1, Z2 j+ 2 ,  

it takes the form 

z~ = ~0 (h); z~j_ 1 -- A(~ z~j_ 2 + h ~(0) (x2j - 2, Z~j_ 2, Z~j_ 1 ; h) 

z .  _ ~(1) ~, " h  ~(1) * z~j; h). 2j - ~  ~2j--1 / ( X 2 j - l ~ , 7 , 2 j - 1 ,  

Computing 19/3 16 

/ y~ ~ ( o  1 o . . .  o / o  o . o  / 
= ~Nk; A: . . . . . . . . . . . . . . . . . . .  (2.4) 

z7: /YJ+k-2/* / 0 0 0 1 / 
~kY~+k-1) ~,,--0~0 --0~1 --~2 "'" --O~k-1/ 

~h (h) 
~(xj ,  z* ,z*+l ;h) :=  " ~ Rk; (o(h) := " 

/&-2(hal s 
z ~,f (x~+,, yj,+, t,~-, (h)) 

/=0 

In case of a system of n O.D.E.s  we have n equations of the form (2.1) with 
the same A and ~. Of course, they could be written as one equation with a 
(n k, n k)-matrix; however, we intentionally do not make use of this possibility. 

f is Lipschitz-continuous, therefore ~ satisfies the Lipschitz-condition (2.2 b). 
Hence, linear k-step methods are .4-methods if their generating matrix ~] satisfies 
the root condition. 
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w* = (o (h); w*=A wj*_ 1 + h~(xj_ 1, wi*_ 1, wj*'h);, j = 1 (1) p 

satisfies the Lipschitz-condition (2.2 b); hence method (1.2 c) is an A-method 
if A : =  A (1) A (~ satisfies the root condition. 

2.6. Example 4: Also Gragg and Stetter's [5] methods with offstep points can be 
reduced to ~]-methods. Consider, for example, the following 2-stage method 
(which is not cyclic): 

z* = A (~ z *  1 + h 4 (0) (x~_1, z*-i ; h); z~ = (o (h) (2.5 a) 

z* = A (1) ~* + h 4 (1) (x j_ ,, z*, ~*; h), j = 1 (1) p (2.5 b) 
with 

A(~ 0 ; A( ') := 1 ; z*:=|Y]+l l ;z j  := |Y*+a 
^ ,  

\-ao -a :  -ao -a l  -a :  \ / ;+: ]   Yj+2 
0 

4 (0) (x j, z*; h): = 0 
bo f?  + 

0 
~(1) (x j, z*+ 1, z*+ 1; h): = 0 

,b 1 f j* l  + b2 fj* 2 + fi3 fj* 3 + fl J~*: 

j~*: =f()2i, ~*); ~j: off-step point. 
Setting 

a o : = - a o a 2 ;  c q : = - ~  1 a2+ao;  a z : = - ~ z a 2 + a l  

fi0 := - b o  a2; fll :=  -~1  a2+bli  fi2 := --b2 a2+b2 

it can be seen that (2.5 a/b) is identical with the off-step method: 
�9 �9 ^ , , 

--a2 Yj_l--~ti yj_2-ao yj_a +h(~2fj_l +~l fj*- 2 +~ofj*3) 

Y* = -cz2 Yj*I-~zl Y*2 -~o Y*-a-t-h(flaf~*-t-fl2fj*-I +ill fj* 2 + flo fj* 3 + fl J~*) 

From (2.5 a/b) we obtain by substitution the form (2.1): 
, ~ , ^ , * 

(xj_ 1, zj_ 1, zj ; h); z~ =(o  (h) (2.6) zj =A zj_ 1 +h 

with A : = / l  ~) A ~~ and ~: = q~(1)+A(1) r (2.6) is an A-method, if A satisfies the 
root condition, which may be the case no matter whether A (~ and A (I) also 
satisfy it or not (this indicates that the mechanism of increasing the order and 
avoiding the "Dahlquist barrier" is the same for cyclic methods and for methods 
with off-step points). 

2.7. Example 5: Linear multiderivative methods are not A-methods. Consider, 
however, the summed form (see Henrici [6], p, 329) of linear methods for the 
special equation y" = f  (x, y) given by 

k - 2  k 

Y*+k = -  Z 7ty*+t+l+h Z fltFJ+t (2.7) 
/ = 0  �9 / = 0  
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Fj+k=Fj+k_l + h f f f  k; f j*:=f(xj ,  y*); 

F_ 1 : =H ; H : constant (see [6]). 

This multiderivative method is reduced to (2.1) by setting 

0 1 0 ... ( Y*+ I ) 
Z.*:= i 

\Fj+k-I]  

e Rk; 
2 : =  

~, %, z*, Z*§ x ; h):= 

0 0 
0 0 . . . .  0 0 

0 0 0 ... 1 0 
- -~0  --r --cr " - - - 0 r  0 

0 0 0 ... 0 1 

0. ' 

6 e ~k  
~ fll Fj+, 
l=O 

f j ~  

Hence, all methods of the form (2.7) are A-methods if A satisfies the root con- 
dition (as in the previous examples, ~ satisfies the Lipschitz-condition (2.2 b) if 
f is Lipschitz-continuous). 

2.8. The above examples show that the concept of X-methods allows us to treat a 
great variety of different methods in the same theoretical way. In fact, it is not 
easy to indicate widely used methods that are not r A prominent class 
of non-J-methods are the multiderivative methods (see, however, example 5) 
and methods with varying coefficients or varying stepsize. 

Note, that the difference in the treatment of one-step and multistep methods 
vanishes, as all j -methods  are reduced to the one-step form (2.1). As will be seen, 
this notation is very helpful in the formulation of our results, in particular of 
the stability concept proposed in section 3 and the theoretical approach to 
composite (especially cyclic) methods. 

3. An Optimal Stability Functional for A-Methods 

In this paragraph, we present a stability functional for J-methods which permits 
two-sided error bounds and which is optimal in a sense to be defined. 

3.1. For each h e (0, ho] let G h denote the space of the grid functions Z:Ih~ ~k, 
Ih: = {X0, XI ... . .  Xp}, with the norm H" Ilh. Let Tn denote a real functional on Gh. 
We associate the mapping Uh: Gh~ Gh with an A-method by 

{Zo -~o  (h) for j = 0  (3.1) 
Uh[Z](XJ):= h -1 { z j - J z j _ l - h ~ ( x i _ l ,  zj_l, zj;h)} for j = l ( 1 ) p  

3.2. Definition: ([8], [10]): Method (2.1) is called stable with respect to the functio- 
nal T h if there are fixed positive numbers C and h~ ~ (0, ho] such that 

1t z -  z* IL ~ -< c % [~] (3.2) 

16 *- 
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holds for all h ~ (0, hi] and all z, z*, ~ ~ G h satisfying 

U h [z] (x j) = ~j (3.3 a) 

Uh [Z*] (X j) = ~. (3.3 b) 

kU h then is called a stability functional for the method. 
Frequently 7Jh is a norm; therefore, one often uses the expression stable w.r.t. 
the norm ~h, 

Commonly used stability functionals are (cf. (1.3 a--c)) 

7~ [ z ] ' =  max [ z~[ ("maximum norm") (3.4 a) 
O<j<p 

P 
kv~* [z] : = I Zo I + h ~, I zj I (3.4 b) 

j = l  

7~h x [Z] '=  max 41 Zo + h ztl ("Spijker's norm") 3 (3.4 c) 
o<_j<p {. 1 = 1  

3.3. If z denotes the exact solution of a problem under consideration, e.g. (1.1), 
then inequality (3.2) furnishes a bound for the global error due to the local 
discretization errors 6j. If, furthermore, I f  j I= (9(hq~J~), q(J) e N, then q :=  min qO~ 
is called order of consistency of method (2.1). o_<j<__p 

Likewise, the ~j may be interpreted as local perturbations (such as rounding) 
occurring during the calculation of the approximations z*; (3.2) then gives a 
bound for their global effect. Besides, we are interested in two-sided estimates 
of the form 

ct % [~2_< Jl z -z*  II~<_G % r~]. (3.5) 
3.4. Definition: Let G h have the maximum norm I1" I1" defined by (3.4 a)~; then 
a method is called M-stable if it is stable w. r. t. the functional 

J 
7"~[~]:=llwll* w i t h  wj:=MJOoq-h 2 MJ-lfl; (~jeR k. (3.6) 

/ = i  

This functional, depending on a (k, k)-matrix A, will be called M-norm and 
denoted by II ~5 11~. 

~ 

For M = I, 7 jA reduces to Spijker's norm (3.4 c). 

3.5. The practical value of this stability concept depends on the answers to the 
following questions: 

(1) Which methods are A-stable? 
(2) Does an A-norm furnish better error bounds than other norms, e.g. Spijker's 

norm? 
(3) Does it permit two-sided error bounds? 

These questions will be answered in the following sections. 

3 This form of Spijker's no rm is slightly more  refined than (1.3 c). 
4 The transit ion to other no rms  in G h is simple, and indicated in section 3.12. 
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3.6. Theorem: All 7t-methods are .4-stable. 

3.7. Proof: From (3.3 a/b) we have 

zj =A zj_ 1 +h ~ (xj_l, zj_l, zj; h)+h 3j; z o =(o +6o 

* - A z * _ l + h ~ ( x  j_ * z*;h); z~=~0, j = l ( 1 ) p  Zj  - -  1, Z j _  1, 

qj=Aqj_~ +h3j+hej  

q f = z j - z * ;  ej:=~(xj_l,  zj_l, z j ; h ) - ~ ( x  ~* -*'h). x, j - l ~ j - l ~ j  , 

Hence 

where 

By induction: 

qJ= J 6 ~  t = l  71J-tfl +ht~=l ~j-zez 

With (2.2 a/b) we obtain 

(3.7) 

(3.8) 

, j = 0 ( 1 ) p  (3.9) 

J 

Iqjl~lt  6 jl~+hO ~ (gl  Iq~-i I+K2 Iq~l) (3.10) 
1=1 

and for h D K 2 < 1 induction yields: 

(1 + h u) j- J- ,,q O (K 1 + K2) 
I q j l < ~ _ - ~ f f ~ G ( l ,  ~ [l~+hDgl I%1); u : -  (1 -h  D K2) 

(3.11) 
e (b - a) u 

< (I+hDK1) ]l 3 ][h ~ 
- ( 1 - h D K 2 )  

since (l+hu)J<ehJ"<_e (b-a)" and I q o l =  1 6 o l -  < LI ~ lib ~. Hence, (3.2) is satisfied 
for all h ~ (0, hx] with h 1 <(D K2)- 1 

3.8. Theorem 3.6. implies that ~ is a stability functional for A-methods. Thus, 
to have /]-stability we only require (2.2 a/b), which is not more than any 
reasonable other (in particular Dahlquist's) stability concept demands. In view 
of this fact, one may be inclined to doubt whether the stability definition 3.4. 
can furnish better error bounds than the classical concepts for methods of 
practical importance. This, however, is the case, as is illustrated by the following 
simple examples: 

(a) One can show (section 5.2.) that the bound (3.11) obtained with the i]-norm 
(with ~=A(1)A (m) for the global discretization error of method (1.2c) has 
order 4 (whereas the norms (3.4 a--c) only yield the order 3). 

(b) The 2-step midpoint-rule (1.2a)is stable w.r.t, the ~-norm, ~=(01  ~)  

and unstable w. r.t. Spijker's norm. More general: All weakly stable linear k-step 
methods are unstable w.r.t. Spijker's norm; they are stable, however, w.r.t, the 
/]-norm, hence allowing (two-sided) error bounds of the form (3.5). 

However, for Adams-meth0ds where 5 (cf. (2.4)) 

s The a u t h o r  is i n d e b t e d  to one  of the referees for ca l l ing  his a t t en t ion  to this case. 
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 010 

/o  o o ... 1 / (3.12) 

\ 0  0 0 ... 1/ \ d J  

we have ]i 6 i~ I,h = ]1 6 Hh t, as is best seen by writing down explicitly the relation 
(3.6). This explains why the Spijker-norm performs so well for Adams-methods, 
as observed by Stetter ([10], p. 84). 

For the general case, however, the A-norm represents the most natural choice 
for the functional 7~h, as is clearly indicated by (3.9). In fact, as will be seen in 
section 3.10, it is optimal in the following sense: 

3.9. Definition: Let 7Jh be a stability functional of an ~]-method with ~Y'/h 
independent of ~. Then we call 7Jh optimal if the following conditions hold for 
all 6 ~ G h and all h ~ (0, hi] : 

(a) 1[ z - z *  jbh = 7Jh [6]  (3.13 a) 

for all ~ (x, u, v; h) that are independent of u and v. 

(b) For any e >0  exists a 7 > 0  such that 

( l - e )  ~fh [ 6 ] <  I1 z - z *  lib<(1 +e) 7Jh [6] (3.13 b) 

for all ~ with K 1 -I- K 2 < ]). 

3.10. Theorem: Let G h carry the maximum norm; then 7Jh [6] = [I 6 I[~ is optimal 
and permits the following two-sided error bounds for all A-methods: 

C1 It 6 ]l~_< m a x  [ z j - z C f [ ~ . C 2  li 6 I1~ (3.14) 
O<_j<_p 

where h ~ (0, hi], hi <(D K2)- 1 (see section 3.7.) 

C~ = [1 + ( b -  a) V (K 1 + K2)]-  1 
D (K 1 + K2) 

C2=e~b-a)u(1-h D Kz) -I (I +h D K1); u : -  
(1 - h D K2) 

3.11. Proof: (3.13 a) is a consequence of equation (3.9), and (3.13 b) is satisfied if 
(3.14) holds. The right hand side of (3.14) is already proved by (3.11). To prove the 
left hand side we consider (3.9): 

( e ] J 6 o + h ~ 7 t ~ - z 6 z ) = q j - h ~  ~=~ 

116 lib ~<  max [q j [+  max {hD ~ ( K  1 l ql-1 I+K2lq l [ )}  
O<j<p O<j<__p /=1  

< max I q j [ { I + h p D ( K I + K 2 )  } 
o<j<_p 

_< max [qj[ {I +(b-a)  D(K~ +K2) } 
o<_j<_p 

Hence 
C1 II 6 Ii~< max [qjl.  

O<-j<--p 
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3.12. We saw in the previous sections that an optimal stability functional for 
J -methods  is given by the A-norm if Gh carries the maximum norm. A generali- 
zation to other norms in Gh is obviously obtained by considering the functional 

: ^ J 
7~A:=IIW!Ih with w j : = J J 6 o + h  ~ JJ-16z. (3.15) 

1=1 

Substitution of (3.6) by (3.15) generalizes the stability definition 3.4. 

4. Maximum Order Bounds for the Discretization Error 

Having achieved an explicit expression for the optimal stability functional 
7' h [6] = ~g~ [6], we now may optimize it over J to find A-methods with maximum 
order of convergence. As a result, we obtain theorem 4.3. and its corollary 4.7. 
which are of major practical interest for the construction of high order composite 
methods for O.D.E.s, in particular, of cyclic methods, as will be seen in 
paragraph 5. It should be noted, however, that they hold for all types of 
discretization methods which are A-methods; hence, there may be interesting 
other applications. 

4.1. Lemma: Let #1 = 1, #i # 1 (i = 2 (1)k) be the eigenvalues of the (k, k)-matrix A, 
{u (#;), i=  1 (1) k} a normal eigenbasis in Nk, pT # ~  a left-eigenvector of J to the 
eigenvalue #1, i.e. pr 2t = p r  and 

k 

t: = ~ di u (~i). 
i=1 

Then d I = O, if and only if pr t = O. 

The proof is a consequence of pT U (IAi) = 0 for i # 1. 

4.2. It is a remarkable property of the J - n o r m  that ]1 b II~ may have order 
(q + 1) in h, I[b FI ~ = (9 (h q + ~), even if 6j (j = 1 (1) p) only have order q. This is due to 
the following theorem: 

4.3. Theorem: (a) For all h ~ (0, ho] let 6j ~ ~k have the form 

60 = (9 (hq+l), (4.1) 

6j = h q 9 (xj) t + (9 (h q + 2), j = 1 (1) p, (4.2) 

with q ~ N, a constant vector t ~ Nk, and a grid function 9: lh ~ ~. 

(b) Let the eigenvalues of A satisfy 

/~a=l, ]#~1<1, i=2(1)k.  (4.3) 
Then 

II 6 Ii~= (9(ha+l) (4.4) 

if and only if one of the following two conditions holds: 
p T t = 0  where prf f t=pr,  pENk\o .  (4.5a) 
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J 

l~=1 g (xl) <_ c with a constant c > 0 independent of h and j <_p 6 

'k 

4.4. Proof: With (4.1/2) and t =  ~ d i u (Pi) we obtain 
i=1  

[l 6 iL~= max 21J6o+h q+~ ,4J-Zg(xz) Y, diu(#,)+ (9(h q+ 
o<j<_p l = l  i=1  

= max ]Sjhq+*+ (9(hq+l)] 
O <<_ j'< p 

with 

(45b) 

u di ~ .q(x3 ~ Pi,.(I) A r l~l-'u(12i) (4.6/ 
I=1 i=2 l=1 ( r ~ 0  

where Pi,.(l) are polynomials of degree (r i - l ) .  Due to assumption (b) and 
lemma 4.1., Sj is bounded for all he(0,  ho] and all 6 j<<_p if and only if (4.5 a) 
or (4.5 b) holds. 

4~176 Definition: Conditions (4.5 a) and (4.5 b) will be called order conditions. 

4.6. Remarks: (1) The left-eigenveetor pr need not be calculated! (4.5 a) is 
satisfied if the (k, k + 1)-matrix (A - I, t) has rank r = k -  1. 

(2) M. N. Spijker suggested 7 to replace (4.2) by the slightly more general assumption 

3j = h q t (xa) + (9 (h q + t ) .  (4.2)* 

The order conditions (4.5 a/b) then reduce to one condition: 

~ pr t(x 3 <_c. (4.5)* 
1=1 

The proof 4.4. basically remains the same if one considers pT t (X 3 = d 1 (xl) pT U (1). 

(3) In certain cases, assumption (4.3) may" be replaced by the weaker requirement 
(2.2 a). In the case of Spijker's norm, for example, we have A = I and assumption 
(4.3) is not satisfied; yet, 

S,=(,=~ g(x,)) ~=ldiu(#~) 

is bounded, if and only if (4.5 b) holds. 

(4) The order condition (4.5 a) is of greater practical significance than (4.5 b), as 
is seen in paragraph 5. 

Compare theorem 4.3. with Stetter's theorem 5.4.3. in [10], p. 314, which permits 
several essential roots; the results in his paragraph 5.4.2. already point into the 
direction of our results. 

6 No te  tha t  p depends  on h. 

Pr iva te  communica t i on .  
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4.7. The following corollary is a consequence of theorem 3.10.; it states which 
.4-methods with order of consistency q (in the sense of section 3.3.) converge 
with order (q + 1): 

Corollary: Let an A-method and its local discretization errors (5~ satisfy assumptions 
(a) and (b) of theorem 4.3. Then it converges with order (q + 1), and the upper and 
lower bounds (3.14) for the global discretization error also have order (q+ 1), if 
and only if an order condition is satisfied. 

4.8. Note that order condition (4.5 b) is independent ofTt; hence, it indicates the 0nly 
cases where bounds obtained with Spijker's norm have order (q + 1), and corres- 
ponds to Spijker's idea ([7], [8]) of constructing (primitive cyclic) methods with 
order of convergence (q + 1) and stages of order q (see example (1.2b)). 
We shall see in the next section that condition (4.5 a) generalizes considerably 
Donelson and Hansen's approach [3] to cyclic methods of maximum order. 

5. Examples and Applications to Cyclic Methods 

This paragraph contains examples and outlines how to use our results for a new 
approach to cyclic methods with maximum order. 

5.1. Example 1 : In the case of a linear k-step method with order q we have the 
local discretization errors 

~o=Zo-G(h); ~j=hq y<~+l)(xj) t+ (;(h ~+1) j=l  (1)p 

with t=(O,O . . . . .  0, Cq§ Cq+ 1" error constant, and A is the Frobenius 
matrix given in (2.4). Then, pr=(pl,  P2, ..., Pk-1, 1), hence (4.5 a) only holds for 
cq + 1 = 0 whereas (4.5 b), in general, cannot be satisfied. Hence, as could be expected, 
no linear k-step method with order of consistency q converges with order (q + 1). 

5.2. The situation is different, however, for composite methods, as may be seen 
from the following simple example 2: 

Consider the general 2-cyclic 2-step method: 

y.  .,,co) ,,. • ,,. _t,~n(o) ~.  • r* +fi(oO)f2~) (5.1 a) 2 j + 2 ~ " 1  Y 2 j + I T ~ 0  Y2j --*~,/J2 J 2 j + 2 ~ P ' I  3 2 j + 1  

y~j+ • , , ,  •  , , ,  _ /~/R(1) { ,  •  s  • 
3 v ~ ' 1  Y 2 j + 2 " ~ 0  Y 2 j + I - - ' ~ - P ' 2  J E j + 3 - - P 1  ,12j+2"fl(o1)fffj+l) ( 5 . 1 b )  

Y* =t/o; Y~ =t/1 (h) 

with stages of order q(O) resp. q(~). As in section 2.5. both stages can be written 
in the form (2.1). With 

z j: (y j  ~;A(O).=( 0 1 ) ( 0 1 ) = . , q: = nun t~ , q~)) \ Y j + I /  _a(o0) _a(lo) " AO):= _a(ol)_a(11) and - -~o) 

we have 

Z2j- 1 = A(~ Z2j- 2 -}- h ~(0) ( x 2 j  - 2, z2 j -  2, z2 j -  1 ; h) + 

+ ( 0  ~ u(q+l)  hq+l ~ o ~  / ~  (x2j) + r 
\ t~q+l /  
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Z2j =A(1) z2j-l+h~(1)(x2j-l,  z2,/-1, zzl;h)+ 

(0  )y(q+~) (9 (hq+2) ' -~ ,.,(1) (X2j) ha+ 1 + 
\~q + 1 

where c~)+ ~ denotes the error constant of the r th stage, if q(')= q, and c~)+ ~ = 0, 
if q(~)> q, r=0 ,  1. 

With w j: = z2j and ~ : =  ~(~)+ A (~) ~(o) we obtain by substitution: 

wj= A ~1) A (~ wj_ 1 + h ~ (xj_ l, W j -  l, w fi h) + h q+ l y(~+ l) (xj) t + (9 (hq+2), 

j = 1 (1) [~_ t ] ,  
with 

( 0 ) . ~ _ m ( 1 )  ( 0  / /c(~ ) 
t =  (2, :(o, 1 -- O~i 1) .,~(0) " Cq+l \~q+ l  / \~q+ ~q+ 1 

Thus, the 
6j = h a y(q + a) (xj) t + (9 (h a + 1) (5.2) 

have the form (4.2); hence, if (4.3) holds and the starting vector has order 
(q + 1), and if (see remark (1) of section 4.6.): 

rank (A (a) A t~ - I ,  t )= k -  1, (5.3) 

then method (5.1) has order (q + 1). 

Using @ + @ +  1 =0 (due to consistency) it is easily seen that (5.3) holds if 

[1+~(o ~ ~(o) [ ~q + 1 = 0 (5.4) ~(1) o(1) ~q+l 

Method (1.2 c), for example, satisfies this condition. 

Example 2 shows how corollary 4.7. may be used for the construction of compo- 
site methods with maximum order, especially of cyclic methods. In a similar 
manner, one may obtain the following general results (see Albrecht [2]): 

5.3. Theorem: Let  a M-cyclic k-step method have (not necessarily stable) stages 
with order q(r) r = 0 ( 1 ) M - 1 ,  and starting values of  order (q+l) ,  with 
q: - rain q(~). Let  the eigenvalues l~i of  A: = A (~-  2) A(M- 2)... A (1) A(O) satisfy 

O<_r<M-- I 
#2 = 1, ] #i [ < 1, i = 2 (1) k. Then it converges with order (q + 1) for all y e C q + 1 [a, b], 
i fp r  t = 0  (see 4.5 a) where pZ 7t = p t ,  p 4 ~ ,  

t :=C(M-1)+A(M-~)c(M-2)+A(M-1)A(M-2)c (M-a)+. . .+A(M-1) . . .A(1)C ~~ (5.5) 

fl r(r) " ~ T ~ k  c ~) : = (0, O, . . . , . ,  ~q + 1: 

c'~) := error constant of  the r-th stage if q(~)=q, otherwise 0 (5.6) q+l �9 �9 

Note that the method may be stable although its stages are unstable which 
represents the main advantage of composite methods. It is due to the fact that 

may satisfy condition (4.3) although some or all A (~) don't and implies that the 
"Dahlquist barrier" does not hold for composite methods. 
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For M = k, we have the following special case of theorem 5.3.: 

5.4. Theorem: In the case of  linear k-cyclic k-step methods with stages of  order q, 
the order condition (4.5 a) reduces to the requirement (compare with (5.4)): 

• ~(o) .,(o) ~(o) Ao) \ 
7.. 0 U~l " ' "  k - - 2  ~ q + l  \ 
N(1) 1 •  rv(1) r (1 )  l 

det . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  [ 0 (5.7) 
r,,(k -- 2) tv(k -- 2) | -I- r~( k -  2) p(k - 2) / 
~'2 ~ 3  . . . .  ~ / ~ 0  ~ q + l  [ 
~,(k-- 1) rv(k-- 1) r~(k-  1) p ( k -  1) l 
~1  ~ 2  " ' "  ~ k - 1  ~ q + l  / 

where ~I/)(i=O(1)k) denote the coefficients of the j-th stage with ~ ) = 1 ,  
j = 0  (1) k -  1, and c(q'~+ i as in (5.6). 

In the special case q = 2  k - l ,  one may show that ~3) - c2~-c(1 +@), j=0(1) k -  1; 
condition (5.7) then reduces to 

(o) (o) (o) (o) / 
1 + % ~1 ".- ak- 2 (1 + % ) 

(~) (1) (1) (z) 
(Zk-  1 l + a  0 , . .  a k -  3 (1  "J- a 0 ) 

det . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 (5.8) 
~ ( k -  2) rv (k-  2) 1 _1_ rv(k-  2) (1  ..L ~,(k-  2)'~ [ 
~"2 ~'3 " ' "  ~ 0  ~ , •  ] [ 
rv (k -  1) ~,(k - 1) , v ( k -  1) r ~ , . , (k-  1)~ | 
~1  ~"2 " " " ~ ' k -  1 k ~ ~ ~'0 ! / /  

(5.8) represents the general form of three (rather complicated) equations obtained 
for the special cases k = 2, 3, and 4 by Donelson and Hansen [31. 

Finally, it is easy to show [2] that if a linear M-cyclic k-step method satisfies 
an order condition, then any cyclic permutation of its stages also satisfies one. 

5.5. k-cyclic k-step methods with maximum order 2 k have very small stability 
regions, which makes them useless for practical application. Therefore, it is 
m o r e  advisable to employ (5.7) for the construction of methods with order 
< 2 k that have favourable additional properties, e.g. stiff stability (in the sense 
of Gear [4]). 

Example 3: The linear 3-cyclic 3-step method given by (r = 0, 1, 2) 

e(o ~)= - c~i')- c~ ~) - 1; a(f ) = 1 

fl(~)- A- m ~(0 • ~ ~'(~) + 9);; fl(~') = ~  (19 ~g) + 32 a(2~) + 27) (5.9) 

fl(,)_~l i 50~(~)+8~z~')+27); fl(f)=~(cd~~ 2 - - 2 4 ~  1 

with the values 

~ o ) = _ 0 , 9 5 6 ;  a(1)= 1,363; a~2)= 4,591 
~(2~ = -0 ,375;  a(21) = -2 ,659;  ~(22) = -4,1600389843 ... 

is an ~]-method. Its (unstable) stages have order 4 and relation (5.7) is satisfied for 
k=3 ,  q = 4 ;  hence the method converges with order 5. An analysis of its stability 
region R ( H ) , H : = S h ,  shows that it is simply connected and contains 
H I = { H : R e H < - 2 }  and its closure contains H = 0 ;  i.e. the method is stiffly 
stable. This interesting aspect of cyclic methods is investigated in a forthcoming 
paper of Mihet~i6. 
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5.6. As shown in this paragraph, theorem 4.3. is particularly useful for cyclic 
methods; however, it is as well applicable to other composite methods, as is 
indicated by the following example. 

Consider the composite 2-step generalized Nordsieck procedure: 

y,=gyj_l, l+�89 * 

; * - 1  = �89 y]_ 1 "b �89 .P*_ 2 - t - h  ( -  f j*- I -8  fj*_ 1 q-5 fj*_ 2), j=2(1)m.  (5.10) 
�9 -* 

Yo -Yo =rio, Y~ =~1 (h) with I ~ (h ) -y  (x~)[ = (9 (h4). 

With 

* ' -~Y*  ) i ]  " - ! / 1  11) (gfJ*+24fj*- l+3fJ*-z~ 
Z j . - - \ ~ , _  1 , . - -2~ 1 and q~f i=2-~ \_ f .+8f j ._ l+5f j ,_2  j 

* ^ * + h q~j. s] satisfies the root condition and ~ the Lipschitz it reduces to zj = A z i_ 
condition (2.2 b); hence, (5.10) is an i]-method. 

Each of the stages in (5.10) has order of consistency q=3 with the error 
constants c(4~ and c ~ ! = - ~ ,  respectively. As pr=(1, 1) and t=(c(4~ r, 
our order condition prt  = 0 is satisfied hence the method converges with order 
(q+ l )=4 .  

The particular method (5.10) can be obtained by modifying an Adams-Moulton 
method of order 4 (see e.g. Stetter [10], p. 361), thus it is already known to 
have order 4, For general methods of the above type, however, it would be 
difficult to prove the exact order of convergence without theorem 4.3. 

6. Conclusion 

We saw that the possibility to obtain explicit optimal stability functionals led 
to a new stability concept and enabled us to find ~]-methods with maximum 
order bounds and thus of maximum order. Although we only made use of this 
result for the construction of high order (composite) methods for the solution of 
O.D.E.s, it may be interesting to look for applications of theorem 4.3. to other 
discretization methods, particularly for partial differential equations [2]. 

Revising this paper, the author wants to  mention the contribution of R. Skeel [11] 
which in the meantime came to his attention. Skeel also considers methods of 
the class 9J~, and obtains results similar to theorem 3.10. and theorem 4.3. His 
stability functional II [El-1 R II ~, however, seems not to be optimal in the sense 
of definition 3.9. 

The author is grateful to H. Stetter and the referee for valuable suggestions and 
comments, and to M. Mihel6i6 and K. Mika for fruitful discussions. 
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