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Abstract — Zusammenfassung

A Numerical Method for Solving Parabolic Equations With Opposite Orientations. The solution of
parabolic control problems is characterized by a system of two equations parabolic with respect
to opposite orientations. In this paper a fast iterative method for solving such problems is
proposed. )

Ein numerisches Verfahren zur Liosung parabolischer Differentialgleichungen mit entgegengesetzter
Orientierung. Die Ldsung parabolischer Kontrollprobleme wird durch ein System von zwei Diffe-
rentialgleichungen charakterisiert, die beziiglich entgegenlaufender Richtungen parabolisch sind.
In diesem Beitrag wird ein schnelles Iterationsverfahren zur Losung derartiger Probleme vor-
geschlagen.

1. Introduction

The boundary value problem for a system of two parabolic equations with
opposite orientations is formulated and discussed in Chapter 2. Such problems,
e.g., arise from control problems governed by parabolic differential equations.
An important tool of solving this problem is the decoupling technique of Chapter 3.
We describe decoupling and GauB-Seidel iteration in Chapter 4, since elements
of both processes are included in our iteration method.

While decoupling is a direct method requiring much computational work, GauB-
Seidel iterations are simply performed but in general do not converge. Introducing
a partition of the time interval we apply GauB-Seidel iterations for local problems.
For the connection of the local solutions we need auxiliary matrices that are
related to those of the decoupling method. However, there is an important
difference between the decoupling and our method. The former requires an exact
computation of the matrices, whereas for the latter only approximate matrices are
necessary.

The scheme of this method is explained in Chapter 5. For finding suitable initial
and final values the rest of Chapter 5 prepares an expansion which is valid for a
local application of GauB3-Seidel iteration.

0010-485X/78/0020/0229/$ 02.40



230 W. Hackbusch:

In Chapter 6 auxiliary operators are constructed that allow us to complete the
algorithm. The Theorem shows that the rate of convergence is as fast as desired
provided that the partition is fine enough. Formulating the algorithm for the
discrete case, we investigate in Chapter 7 how the computational work can be
reduced.

Numerical examples are reported in Chapter 8.

2. The Problem

Let L(t) denote an elliptic differential operator of second order defined on
Hic H?*(Q)', Q<=R’, r>1, with coefficients depending on te [0, 7]. The homo-
geneous boundary values are assumed to be incorporated into the subset Hz of
the Sobolev space H?(Q). E.g, ue Hi=HZ(Q) = closure of H?(Q)-functions
with support in Q is used for Dirichlet boundary values u|,,=0.

Consider the system

d

S Y O=LOyO-DOpO+f() (2.1a)
4 (0O<t<T; y(1), p(t) e Hp).

<, PO=-L*OpO-EQy©+g () (2.1b)

L*(¢) is the adjoint operator of L (¢); D(t) and E (t) are bounded operators of
L, (£) into L, (Q); f(t) and g (f) belong to L, (Q). D, E, f,g are assumed to be
Holder continuous with respect to ¢ (cf. [5]).

In addition, initial and final values are prescribed for t=0and t=T,
y(0)=B, p(0)+b,, (2.2a)

p(D=Ary(D+ar, (2.2b)

where by, are L, (Q), while B, and Ay are bounded operators of L, (Q) into
L, ().

In the sequel we assume that D, E, A, B, are self-adjoint, e.g., these operators
may represent multiplication by a real-valued function. Nevertheless, the following
considerations hold for arbitrary D, E, A, B, and for any elliptic operators
Ly, L,(L;#L%) instead of L, L*, if the existence of a solution of (2.1,2.2) is
ensured. Moreover, each equation in (2.1) may represent a parabolic system of
vector functions y, p.

The existence of a solution of (2.1, 2.2) requires additional assumptions. E.g., an
unique solution exists if A7, — B, D and E are positive {or negative) semi-definite.
These properties are fulfilled for all systems arising from optimal control problems
of systems governed by a parabolic equation dy/di=L () y+B)u()+f
(u: control) (cf. Lions [8, 9] or [ 5]).

! For the notation of H™ (), HZ (Q) cf. [9]. Q is assumed to be sufficiently smooth. Otherwise, the
spaces H? () and L, () are to be replaced by H* (@) and H ™ ().
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Another problem leading to (2.1,2.2) is the periodic parabolic equation
dufdt=Lu+f, u(0)=u(2 1) (cf. [5]). In this case a unique solution exists if
L =L*is negative definite.

3. Decoupling of the System
As known from ordinary differential equations (cf, e.g, Taufer [13]), the
boundary value problem of type (2.1, 2.2) can be decoupled by introducing new
unknowns which are solutions of initial value problems. Seeking operators
A(t), B(t): L, (Q)— L, {Q) and functions a (t), b (t) € L, (Q) satisfying
p()=A@) y(O)+a(®), yO=B()pO+b(®) 0<t<T), (3.1

we obtain evolution equations for A4, B, a, b (cf. Da Prato [3], Temam [14], [5]):

%z—(L*A+AL)+ADA—E, A(D)=Aqy, (3.2)
dB

~=BL*+LB-D+BEB, B(0) =B,, (3.3)
da «

G =—(L*~AD)atg—Af, a(7) =ar, (34
db

—=(L+BE)b+f~By, b(0) =b,, (3.5)

where Ay, By, ar, by, D, E, f, g, L, L* are the coefficients of (2.1, 2.2).

Let U(t,s) (0<s<t<T) be the solution operator (fundamental solution) of
dy/dt=L(t) y,i.e.y®)=U (t,5) y(s) or

%U(t,s)=L(t) Ut,s), Us,)=1 (0<s<t<T) (3.6)
(cf. e.g. Ladas and Lakshmikantham [6]). Using the properties of U (t, s) we are
able to construct the solutions 4, B of the operator Riccati equations (3.2, 3.3) by
means of a nonlinear Volterra integral equation (cf. [5]). The solution B(t) is
bounded in some interval [0, t,] (t,>0). For positive ¢ the operator B (t) maps
L, (Q) into H and is strongly differentiable. Furthermore, 4 (f) and B (¢) are self-
adjoint.

In the sequel we assume
SupT{H AQLIBOLIT-AOBOI k<o (1= ln@-ne)  G7)

0<t<
Therefore, the solution of (2.1, 2.2) can be represented by

yO=U-BOAGI ' bO+BOa@®] pO=I-40OBO] " [a)+A@O)b®)].
(3.8)
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If A7, —B,, D, E are positive semi-definite (cf. Chapter 2), then A4 () and — B(t)
are positive semi-definite and uniformly bounded for all t< 7 (t>0 resp.).
Moreover, |[I—AB] ' | <1+ A| | B| holds (cf. [5]).

4. Usual Numerical Methods

In the case of control problems, where (2.1,2.2) corresponds to a variational
problem, special numerical methods are applicable (e.g., compare Leroy [7],
Casti and Ljung [17).

The decoupling technigue can be used in several ways. We may start with a
discretization of (2.1,2.2). Then the system of difference equations admits a
decoupling into initial value problems analogous to the treatment of the differential
equation in Chapter 3 (cf. Nedelec [11]). The operators A (), B(t) (0<t< T) are
to be replaced by (N x N)-matrices A4, (t), B, (t) (t/4t integer), where h=(4t, Q,)
indicates the “time-step” At and the grid Q,<Q used for the discretization of
(2.1,2.2). N is the number of grid points belonging to Q,. If, e. g., a regular grid of
step size Ax is chosen, N is proportional to Ax™"(r: Q< R"). After computing
and storing A4, (t) and q, (¢) for t="T, T—At,...,0, we are able to solve the dis-
cretized initial value problem (2.1 a, 2.2 a) by eliminating p, (=4, y,+ a,). Because
of the Riccati type the computation of 4, or B, involves a multiplication of full
matrices. Thus, the computational work amounts to const- At~ 1. Ax 3",

For a second approach one may discretize (2.1 a, 2.2 a) as well as (3.2, 3.4). Then
py 1s obtained by p,= A4, v, +a,.

The method we propose will need auxiliary matrices, too. But we want to use
these matrices only for generating a fast iteration method. Therefore, only
approximations of these matrices are needed. This fact can be utilized for reducing
the computational work. Our method includes elements of the decoupling
technique as well as an application of the following iteration.

The Gaufi-Seidel iteration method requires no matrix operations. We start with
some y° (¢) and integrate in some discretized form

d

P pr—Ey l4+g  (u=1), (4.1)
d
—d—t-y“=Ly"~Dp“+f m=1) (4.2)

for the initial data
pr(D)=Ay y#_l {D+ar, y*(0)=B, p* (0)+by

(cf. Miellou [10], Leroy [7]).
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5. GauB-Seidel Iteration

The very simple iteration (4.1,4.2) converges only if the coupling of p and y
(by A, By, D, E) is weak enough. This is ensured if the t-interval is small enough
and if the initial and final data are prescribed in a suitable form. Therefore, we
introduce a partition 4:={0=t,<t,<...<t,=T} (n>1) of [0, T] and write
|A|:=max (t,—t,_q)

Analogously to the multiple shooting method for ordinary two-point boundary
value problems (cf. Stoer and Bulirsch [12]), we may solve (4.1,4.2) in all
intervals [t,_,,t,} for some initial and final data at ¢, (0 <v<n). The solution is
discontinuous at t,. Therefore, we have to compute a correction which can be
obtained from the residuals by means of decoupling operators (or matrices resp.).
Assume that approximate values of these matrices are known. Then we may pro-
ceed as follows: In a primary iteration the initial and final data at ¢, (1<v<n) are
improved, while during a secondary iteration (4.1, 4.2) is applied.

We reject the method sketched above because of the two stacked iterations. The
desired iteration method should be of the following form:

1. Choose any starting function y° (¢), e.g., y° ({)=0;

2. for v=n, n—1,...,1 solve (4.1) in [¢,_,,t,] with a
suitable final value p* (t,)=p%;

3. for v=1,2,...,n solve (4.2) in [¢,_,,t,] with a suit-
able initial value y* (t,_)=y%;

(5.1)

4. goto2.;

where pY, 3* are to be chosen in such a manner that all information obtained
from the previous steps are included.

In the remaining part of this paragraph the GauB-Seidel iterations will be
analysed. Without loss of generality consider the homogeneous equations (4.1,
4.2) restricted to the first subinterval [¢,, t,]:

%n“=—L* —Eptl nt () =7 (u=1), (5.2)
d _
- =Ln"-Dx n(t)=n* (ux1). (5.3)
The solutions 7* (£) and #* () depend linearly on #° and 7%, ##* (1 <y < p):
7 () =0 (£) ﬁ“+§i (O O T+ By, O 7)+7, O n°  (Lo<t<ty). (5.4)

A similar expansion holds for #* (¢). Using the solution operator U (¢, s) of (3.6), we
construct integral operators a, § by

am @)= flU(S,t)*E(S)ﬂ(S)dS: Bm@O=~ [ U@s)D ) n(s)ds.
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Then the coefficients of (5.4) are
a, =@ B U (t, )%, By=aBaP U, k), v,=B0 B "
Thus, the leading terms 2 of n* (¢,) and n* (¢,) are
T (to)=UF T+ EN I+ F AT I+ (u=2), (5.5a)
)=+ D L+ F i+ (u=2), (5.5b)
where

U=U (ty, to),

D=G%=— f Ut;,s)D(s) Uty s)*ds,
56
E=6%= [ U(s,to)* E(s) U(s, to)ds,

F=— | U(t,sD(s)U(o,9*E(0)Ulo,to)dods.

to<s<o<ty

The convergence of (5.2, 5.3) for fixed 7*=7", #*=7#" follows from the estimates
o, 1| <(Kp Kl Kg* Tt (8 ~10)*5 1l By s Il v, | S K K™ KEH (8, —16)**7 1 (5.7)
ift; —to<1/(J/ Kp Ky Ky) (cf. [5]). Kp, K and Ky, are bounds for D, E and U.

6. Determination of Initial and Final Data

In (5.6) the operators %, &, &, % are constructed for the first interval [tg, t,].
Generally we denote the operators corresponding to [t,_;,t,1 by %,, 2,,€,, %,
(1<v<n).

Note: It is convenient to compute U ,, D, &, F, by

U, =1, dU@)de=L{t)U ), %, =%t,),

Z(t,_)=0, dD2W)dt=L )P O)+2Z W) L*t)—-D 1), 2, =91,),
F(t,_)=0, dF O)/dt=LO)F O+2D O ENOU(t), F,.=F (L),

& (t,)=0, d&@Wdt=—Lt)*¢@)—-EQLWO—E(), &,:=6(t,- ).

The equations for U, @, F can be solved simultaneously.

6.1)

Let A,:= A, and B, be the operators appearing in (2.2). The auxiliary operators
A,, B,, ¢c,, d, (1 <v<n) are defined recursively by

Cv:(%v_l"g;v)* (I_Av @\7)_1> dv:(o”v+‘jat\') (I_Bv—l éav)*l,

6.2
Av—1:gv+chv(aZlv+37v): B\r:@v+devfl(aZlv+yv)>::' ( )

2 The restriction to three leading terms is arbitrary. Taking into account more terms we improve
the rate of convergence, but the method would require more complicated formulae in Chapter 6.
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Lemma (cf. [3]): A,, B, (0<v<n) are self-adjoint. A, and B, differ from A(t,)
and B (t,) by 0 (] 412). Moreover
Cop=Cyt+1Cyra--- Cp (Vgp)a dvp:dv dV*l dp+1 (VZ.D) (63)

vp

approximate the solution operators of (3.4), (3.5) by the same order. Since
2,=0(]41) and £,=0(]4}) hold, c, and d, are well-defined for a sufficiently
fine partition A (or if A,, —9,, — B,, &, are semi-definite).

At the intermediate values ¢, additional transition conditions are to be fulfilled:
=B, D), +0==B,P)i,—0s P=A V)i, r0=P—A W10 (1<v<n).  (64)

(6.4) ensures continuity if I—A, B, is a bijection. This holds by (3.7) and the
previous Lemma, if | 4 is small enough (or if A4, and — B, are semi-definite).

In (5.1) the functions 7, p* are introduced. The magnitudes >

S=pt (o +0) - FF (PP,
‘ézi)v +é()v (jjv_yl\t 1)

are to be thought of as values of y*, p* at t=t,_, t, improved by the knowledge of

the history of the iterative process. We define the residuals

=yt (t,—0)+F, (-7,
=+, (p‘”1 pY),

Roy=py  —ph— A, (A1 -7, ﬁv—i?vﬂ P-4, 00T (L=<,
S‘\L':y\ y\+1_B ( prl) Su_‘“—\x+1 Bv(!‘)‘i*—‘i)‘\i) (1§V<”)‘

Theorem: The iteration (5.1) with

n v—1
p’i(tv)=i7’$:=p’$_l+(1—AVBV)‘1{ Y. G, RO+RI+4, Z d,, S5~ 1}, (6.5a)
p=0

p=v+1

v-2 "
y‘\ﬁ (tv—l)zyv::ylé_1+(1—8v~l "élv-*l)A1 {z dv—l,p S;)L+S‘$~1+Bv-—1 Z cv—l,p Rﬁ}

p=0 p=y
(6.5b)
vields the estimates
max | p—p () <0 (1 41%) max {j y* 2@, | P2 O1, 1 y* 7> 1},
0<t<T (6.6)
max | py—y(t,-) [ <0([ 4] )Om‘aj’r{llp" O Iy 2O R0

The rate of convergence is at least proportional to | A|°°:

Iyt =yt DI <K, * (u=0), | pi—p ()| <K, s* F{u=1), s<K, | 4195 (6.7)

Proof: (6.6) is obtained by reordering the right-hand sides of (6.5), applying (5.5)
and estimating by (5.7). (6.7) follows from (6.6), (5.4) and (5.7) (cf. [5]).

3 Define y; ! =p? =0, since these values are additional starting values.
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7. Application of the Method in the Discretized Form

In Chapter 6 the iteration method was considered for the differential equation
itself. Now we discretize (2.1,2.2) by the implicit scheme using a step size At
and a grid Q, =, both indicated by h=(4t, Q,). The intermediate values ¢, of the
partition 4 must be multiples of A¢. For each subinterval the analysis of the
discretized version of (5.2} proves an expansion corresponding to (5.5) with
U,, 2,, 8,, F, replaced by some (N x N)-matrices %, D> Epys Fyy (for N cf.
Chapter 4). The further auxiliary matrices ¢,,, dy,, Ay, By, are constructed
analogously to (6.2). In many cases the following Note applies.

Note: If the coefficients L, D, E of (2.1) are time-independent and if the partition
4 is equidistant, then %,,,, 2,,,, &,, and Z,, do not depend on v. Z,,,= %,,=0holds
for D=0, whereas E =0 implies §,,=%,,=0.

In the following we want to reduce the computational work. Contrary to the
decoupling method mentioned in Chapter 4, the iteration (5.1) tends to the
discrete solution of (2.1, 2.2), which is independent of perturbations of %,,, 2,
etc. Therefore, we look for approximate matrices #,,, ... that are easier to compute
and which result in almost the same rate of convergence.

A first possibility is the application of a larger step size At=s- At (x>1, t,/A¢
integers) for the numerical integration of (6.1). Let L, (¢) be a difference analogue
of L(t). I—At L,(t) is assumed to be invertible. Then %,,, Z,,, &y, F,, may be
defined by

@h (tv— 1> tv‘l)zL 027}1 (t+ Z L, tv—l)z(I_Z t Lh (t))_ ! @h (t> tv— 1)’

- ~ (7.1a)
JZlhv: = %h (tva tv* 1)’

(S

n{ty- 1. t,21)=0,

WAt )=(I—4t L, ®)"* (D, (t. t,_)— At D, ©) (I = At L, (*)"}, (7.1b)
hv::gh (tw ty—1)s

w6, 1)=0,8,(t—At,1)=(I— At L, (t)*)"* (&, (t, )+ At E, () (I — At L, (1)) %,

ho =Cn (ty—15 L) (7.1¢)

ST

Sa Oy

ﬁh ([\'~ 1> tV* 1):0’
Fp+An i, )=(I—=At L,0)" (F, (.t )+ At Tyt )V E 0, (L1, ),
eO/%hv:Zg;:h (tv: rv~1)‘

where E,, D, denote approximations of the operators E, D. Again (7.1 a, b, ¢) are
to be solved simultaneously.

The most work arises from the product &, E, %, of two full matrices appearing
in (7.1d). (E, is assumed to be diagonal.) Consider %, 8,, where J, approximates
the Dirac function for P € Q. The function %, , is concentrated in a small neigh-
bourhood of P if | 4| or the coefficients of the differential operator L are small.
Expecting similar properties for %, and 2,, we may omit all entries corresponding
to points P, Q € @, with | P—Q | > p,, for suitable p,. Thus, %, and &, involved in
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(7.1 d) become sparse matrices. For r=1 these matrices are band matrices. In any
case the work for computing 9, E, %, is reduced.

Now consider the opposite case and assume that d, is smoothed out by
applying %,. Recalling that the computational work is proportional to 4t~}
Ax73" (cf. Chapter 4), the replacement of Q, by a coarser spatial grid Q;<Q,
seems promising. Therefore, we introduce two mappings ¢ and . By ¢ the
Q;-grid functions are interpolated on Q,, while iy maps functions defined on Q,
into functions defined on Q;. Furthermore, ¢ - ¢ =Iisassumed. f Q;=Q, c 2=(0,1)
are equidistant grids we may, e.g., define by truncation of the trigonometric
interpolating polynomial, whereas ¢ describes the trigonometric interpolation
in Q,.

By means of ¢ (M):=¢ M v, matrices M corresponding to Qj are mapped into
Q,-matrices. Moreover, the “interpolation” ¢ is multiplicative: ¢ (M; M,)=
=¢ (M,)d(M,). Let %;,, P, etc, denote the results of (7.1) for h=(41, ;).
Formally* we define %,,:=¢(#3,), etc. The above assumption implies that the
matrices %,,, ... have good approximations belonging to the subspace range (¢).

In order to analyse this situation, we consider a model problem. Let Q;<Q,<Q
be as mentioned above in the example for ¢, . Furthermore, the grid functions
(sin g umAx),—y, . n(Ax=1/(N+1), 1<y <N)are assumed to be eigenfunctions
of the discretized version of (2.1, 2.2). Then Fourier analysis gives the following
result. The difference of the eigenvalues of %,, and %3, is very small for small
wave numbers y. Since the first N eigenvalues of %5, and %,,:= ¢ (¥3,) coincide,
,, is a good approximation of %,, with respect to the first part of their spectra.
By our assumption the remaining components of the Fourier expansion are
diminished by the difference equation itself, provided that the coupling coefficients
D and E are not extremely large.

Finally we touch upon nonlinear problems. E.g., if we apply Newton’s method,
a sequence of linear problems has to be solved. The auxiliary matrices %, ...
are to be computed for each step of Newton’s method (primary iteration).
However, since we need only approximate values %,,, ..., we may use the same
matrices for several iteration steps. As soon as the convergence rate of the
secondary iteration becomes too slow, the auxiliary matrices are to be computed
again.

8. Numerical Examples

Two one-dimensional examples are added to give an idea of the rate of con-
vergence. The first example has also been computed by Nedelec [11]:

400 \ 0x
By=0, Ap=1, T=1.

Q=(0,1), H=Hj}(Q), L(t)=—1~— <i)2, D()=1 or 100, E(t)=0,

# The right-hand sides of (6.5) can be expressed without using %,,, ... explicitly. Only %;,, ... and
@, ¥ and ¢ oy are necessary.

16 Computing 20/3
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f> 9, ay and b, are such that

satisfy (2.1), (2.2). The grid sizes are At=

y (t)=sin (n xm/E—l/-;’—x(x—n, p(t)=—

40

3
V@

1 1 . .
—— and 4x=—. The iteration starts

20

sin (7 x) exp (ﬂ>

400

with u”=0. The CPU time® ¢, is needed for one iteration, i.e. for the integration
of pand y from T to 0 and 0 to 7, respectively, without calculating the initial
values (6.5). tp corresponds to the CPU time of the preprocessing phase, while z.
denotes the time that is necessary for the computation of the initial values (6.5)
during one iteration. Therefore, the numerical solution of the problem by v
iterations requires the time t, +v(f-+1¢,). The time for the evaluation of the
coefficients of the differential equations is not taken into account. The number
of intervals is n=1.

Table 1. First example (6 yW =y —y®=1 |, d pW=| p¥ —p®~D | w: maximal band width)

D 1 1 1 100 100
discretization parameters
At 1/40 1/4 1/4 1/40 1/4
Ax 1/20 1/20 1/10 1/20 1/20
w 18 10 4 18 16
maximum norm of corrections
U o y(u) P p(u) S5 y(n) S p(u) S5 y(u) S p(u) E) y(u) S p(u) S y(n) S p(u)
1 56(—1) 5.6(—1) 5.6(—1) 1.1(=-2) 1.1(-2)
7.0(~1) 7.0(-1) 70(-1 46(+1) 4.6(+1)
5 7.5(-2) 7.7(-2) 7.7(~2) 48(—1) 48(—1)
74(-2) 7.6(—2) 7.6(—2) 46 (+1) 47(+1)
3 31 (=95 34(-4) 3.6(—4) 29(-4) 29(-3)
2.6(—5) 3.0(—4) 29(—4) 28(—2) 28(=1)
4 1L.5(=7) 8.8(—6) 2.1(=3) 1.8(-17) 1.8(=95)
6.6(—8) 5.6(—6) 54(—6) 1.7(=5) L7(—3)
5 1.1(-9) 36(-7) 3.6(—6) 8.0(—9) 8.6(—17)
1.8(-7) 8.0(-7) L7(=7) 1.8(—5)
additional computational work
ity 11 18 0.5 ! 11 2.2
te/ty 0.11 0.10 i 0.10 0.11 0.10

¢

The first and fourth columns of Table 1 correspond to At=41t, Ax=Ax. There-
fore, the respective ratio t,/t, is similar to that of the decoupling method.

> The computations were performed on the CDC computer Cyber 72 of the Rechenzentrum der
Universitit zu Koln.
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Table 1 shows that the computational amount of the preprocessing phase can
greatly be reduced by a suitable choice of At and Ax preserving fast con-
vergence.

Because of E (t)=0, the expansions (5.5 a, b) consist of at most two terms. For
the second example both coefficients D and E do not vanish:

2
Q=(0,1), Hi=HZ(Q), L(t)=(%) , D(t)=10, E(t)=1, By=A;=1, T=4.

f, g, ar and b, correspond to the solution y=p=x (1—x). The parameters of the

discretization are A t=i, A x=»1-. The first column of Table 2 is obtained for

80 20
~ ~ ~ ~ 1
n=1, At=At, Ax=A4x, while the second uses n=1, 4 t:E’ A4 x=Z.
Table 2. Second example
Y fie 4/80, Ax=1/20 At=4/40, Ax=1/4
PN B B B P R N P U PN
1 42(~1) if%: B 42(~1) 22 E: B
2 2.0(—1) 20(_2) 20(-1) 49(_2)
3 3.6(-2) 79(_3) 45(-2) 11(-2
4 72(-3) 16(_%) 1.0(=2) 25(-3)
5 14(=3) 30(—4 23(=3) 64
6 2.7(~4) 59(%) 5.1(—4) 13 (-4
7 53(=5) 12(5 1.1(—4) 28(_9)
8 1.0(~5) 23(-8) 25(=5) 63(26)
9 2.0(-6) : 5.7(—6) '
-+
to/t 65 12
telty 0.13 J 0.04

~ 1 . .
0 by Ax=z corresponds to the interpolation of

(19 x 19)-matrices by (3 x 3)-matrices. Table 2 shows that nearly the same results
are obtained with very much less computational work of the preprocessing
phase.

The replacement of Ax=
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