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Abstract - -  Zusammenfassung 

A Numerical Method for Solving Parabolic Equations With Opposite Orientations. The solution of 
parabolic control problems is characterized by a system of two equations parabolic with respect 
to opposite orientations. In this paper a fast iterative method for solving such problems is 
proposed. 

Ein nnmerisches Verfahren zur LiJsung parabolischer Differentialgleichungen mit entgegengesetzter 
Orientierung. Die L6sung parabolischer Kontrollprobleme wird durch ein System yon zwei Diffe- 
rentialgleichungen charakterisiert, die beztiglich entgegenlaufender Richtungen parabolisch sind. 
In diesem Beitrag wird ein schnelles Iterationsverfahren zur L6sung derartiger Probleme vor- 
geschlagen. 

1. Introduction 

The boundary value problem for a system of two parabolic equations with 
opposite orientations is formulated and discussed in Chapter 2. Such problems, 
e.g., arise from control problems governed by parabolic differential equations. 
An important tool of solving this problem is the decoupling technique of Chapter 3. 
We describe decoupling and Gaug-Seidel iteration in Chapter 4, since elements 
of both processes are included in our iteration method. 

While decoupling is a direct method requiring much computational work, Gaul3- 
Seidel iterations are simply performed but in general do not converge. Introducing 
a partition of the time interval we apply Gaul3-Seidel iterations for local problems. 
For the connection of the local solutions we need auxiliary matrices that are 
related to those of the decoupling method. However, there is an important 
difference between the decoupling and our method. The former requires an exact 
computation of the matrices, whereas for the latter only approximate matrices are 
necessary. 

The scheme of this method is explained in Chapter 5. For finding suitable initial 
and final values the rest of Chapter 5 prepares an expansion which is valid for a 
local application of Gaul3-Seidel iteration. 
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In Chapter 6 auxiliary operators are constructed that allow us to complete the 
algorithm. The Theorem shows that the rate of convergence is as fast as desired 
provided that the partition is fine enough. Formulating the algorithm for the 
discrete case, we investigate in Chapter 7 how the computational work can be 
reduced. 

Numerical examples are reported in Chapter 8. 

2. The Problem 

Let L (t) denote an elliptic differential operator of second order defined on 
H 2 c H ;  (0) 1, ~2cN r, r > l ,  with coefficients depending on t e  [0, 7]. The homo- 
geneous boundary values are assumed to be incorporated into the subset H 2 of 
the Sobolev space H 2 ((2). E.g., u~H2B=H~ (f2)= closure of H 2 (f2)-functions 
with support in ~2 is used for Dirichlet boundary values u]o ~ = O. 

Consider the system 

d 
dt y ( t )=L (t) y ( t ) - D  (t) p (t)+ f ( t )  (2.1 a) 

d (0 < t < T; y (t), p (t) 

d t p (t) = - L* (t) p ( t ) -  E (t) Y (t) + g (t) (2.1 b) 

L* (t) is the adjoint operator of L (t); D (t) and E (t) are bounded operators of 
L 2 ((2) into L 2 (f2); f ( t )  and g (t) belong to L 2 ((2). D, E , f , g  are assumed to be 
H61der continuous with respect to t (cf. [5]). 

In addition, initial and final values are prescribed for t = 0 and t = T, 

y (0) -- B 0 p (0) + bo, (2.2 a) 

p ( T ) = A T y ( T ) + a T ,  (2.2 b) 

where b0, a T ~ L 2 ( ~ ) ,  while B o and A T a r e  bounded operators of L 2 (O) into 
(n). 

In the sequel we assume that D, E, AT, B 0 are self-adjoint, e.g., these operators 
may represent multiplication by a real-valued function. Nevertheless, the following 
considerations hold for arbitrary D,E, AT, B o and for any elliptic operators 
LI, L 2 ( L I ~ L * )  instead of L, L*, if the existence of a solution of (2.1, 2.2) is 
ensured. Moreover, each equation in (2.1) may represent a parabolic system of 
vector functions y, p. 

The existence of a solution of (2.1, 2.2) requires additional assumptions. E.g., an 
unique solution exists if AT, --Bo, D and E are positive (or negative) semi-definite. 
These properties are fulfilled for all systems arising from optimal control problems 
of systems governed by a parabolic equation d y / d t = L ( t ) y + B ( t ) u ( t ) + f  
(u: control) (cf. Lions [8, 9] or [5]). 

1 For  the no ta t ion  of H "  (~2), H~ (~) cf. [9]. ~2 is a s sum ed  to be sufficiently smooth .  Otherwise,  the 
spaces H 2 (~2) and  L 2 (~2) are to be replaced by H 1 (~2) and  H -1 (~2). 
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Another problem leading to (2.1,2.2) is the periodic parabolic equation 
d u / d t = L u + f ,  u(0 )=u(2  7) (cf. [5]). In this case a unique solution exists if 
L = L* is negative definite. 

3. D e e o u p l i n g  o f  the S y s t e m  

As known from ordinary differential equations (cf., e.g., Taufer [13]), the 
boundary value problem of type (2.1, 2.2) can be decoupled by introducing new 
unknowns which are solutions of initial value problems. Seeking operators 
A (t), B (t): L2 (f2) --, L2 ((2) and functions a (t), b (t) e L2 (f2) satisfying 

p ( t ) = A ( t ) y ( t ) + a ( t ) ,  y ( t ) = B ( t ) p ( t ) + b ( t )  (O<_t<_T), (3.1) 

we obtain evolution 

dA 

dt 

equations for A, B, a, b (cf. Da Prato [3], Temam [14], [5]): 

- ( L * A + A L ) + A D A - E ,  A (T )=Ar ,  (3.2) 

dB 
- B L * + L B - D + B E B ,  B(0) =Bo,  (3.3) 

dt 

da 

dt  
- ( L * - A D ) a + g - A f ,  a(7)  =a T, (3.4) 

db 
dt =(L + B E) b+ f - B g, b(0) =bo,  (3.5) 

where AT, B o, aT, bo, D, E, f , 9, L, L* are the coefficients of (2.1, 2.2). 

Let U (t, s) (0 < s < t < 7) be the solution operator 
dy/d t = L (t) y, i.e. y (t) = U (t, s) y (s) or 

d 
- -  U (t, s) = L (t) U (t, s), U (s, s) = I (0 _< s _< t_< 7) 
dt 

(fundamental solution) of 

(3.6) 

(cf. e.g. Ladas and Lakshmikantham [6]). Using the properties of U (t, s) we are 
able to construct the solutions A, B of the operator Riccati equations (3.2, 3.3) by 
means of a nonlinear Volterra integral equation (cf. [5]). The solution B (t) is 
bounded in some interval [0, to] (t o > 0). For positive t the operator B (t) maps 
L 2 (f2) into H~ and is strongly differentiable. Furthermore, A (t) and B (t) are self- 
adjoint. 

In the sequel we assume 

sup {ll A(t)ll, II B(t)[I, I I [ I -A( t )B( t ) ]  -1 ][}<oo (N" ][=[l" [[L2(e)-~L2(a)). (3.7) 
O<_t<_T 

Therefore, the solution of (2.1, 2.2) can be represented by 

y (t) = [I - -  B (t) A (t)] - 1 [b (t) + B (t) a (t)], p (t) = [I - A (t) B (t)] - i [a (t) + A (t) b (t)]. 

(3.8) 
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If AT, - B o ,  D, E are positive semi-definite (cf. Chapter 2), then A (t) and - B  (t) 
are positive semi-definite and uniformly bounded for all t_< T ( t>0 resp.). 
Moreover, [I [ I - A B ]  -1 II _<1+ il A [[ IIB I[ holds (cf. [5J). 

4. Usual Numerical Methods 

In the case of control problems, where (2.1, 2.2) corresponds to a variational 
problem, special numerical methods are applicable (e.g., compare Leroy [7], 
Casti and Ljung [1]). 

The decouplin 9 technique can be used in several ways. We may start with a 
discretization of (2.1, 2.2). Then the system of difference equations admits a 
decoupling into initial value problems analogous to the treatment of the differential 
equation in Chapter 3 (cf. Nedelec [11]). The operators A (t), B (t) (0 < t <  T) are 
to be replaced by (N x N)-matrices A h (t), B h (t) (t/At integer), where h=(A t, f2h) 
indicates the "time-step" A t and the grid (2 h ~ 2  used for the discretization of 
(2.1, 2.2). N is the number of grid points belonging to f2 h. If, e.g., a regular grid of 
step size A x is chosen, N is proportional to A x -r (r:f2 c Re). After computing 
and storing A h (t) and a h (t) for t = T, T - A  t, ..., 0, we are able to solve the dis- 
cretized initial value problem (2.1 a, 2.2 a) by eliminating Ph ( = A h  Yh Jr- ah). Because 
of the Riccati type the computation of A h or Bh involves a multiplication of full 
matrices. Thus, the computational work amounts to const. A t -1 .  A x -a~. 

For a second approach one may discretize (2.1 a, 2.2 a) as well as (3.2, 3.4). Then 
Ph is obtained by Ph = Ah Yh + ah" 

The method we propose will need auxiliary matrices, too. But we want to use 
these matrices only for generating a fast iteration method. Therefore, only 
approximations of these matrices are needed. This fact can be utilized for reducing 
the computational work. Our method includes elements of the decoupling 
technique as well as an application of the following iteration. 

The Gaufi-SeideI iteration method requires no matrix operations. We start with 
some yO (t) and integrate in some discretized form 

d 
dt P " = - L * p " - E Y " - I + g  (#_>l), (4.1) 

d 
- - y U = L y U - D p U + f  (#>1) (4.2) 
dt 

for the initial data 

p. (T )=AT y , - i  (T)+aT, yU(0)=Bo pu(O)+bo 

(cf. Miellou [10], Leroy [7]). 
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5. Gaufl-Seidel Iteration 

The very simple iteration (4.1, 4.2) converges only if the coupling of p and y 
(by A T, Bo, D, E) is weak enough. This is ensured if the t-interval is small enough 
and if the initial and final data are prescribed in a suitable form. Therefore, we 
introduce a partition A : = {0 = to < tl < . . .  < t, = T} (n > 1) of [0, T] and write 
I A l: = max (tv - tv_ 1). 

v 

Analogously to the multiple shooting method for ordinary two-point boundary 
value problems (of. Stoer and Bulirsch [12]), we may solve (4.1,4.2) in all 
intervals [t~_ 1, t~] for some initial and final data at t~ (0 _< v _< n). The solution is 
discontinuous at tv. Therefore, we have to compute a correction which can be 
obtained from the residuals by means of decoupling operators (or matrices resp.). 
Assume that approximate values of  these matrices are known. Then we may pro- 
ceed as follows: In a primary iteration the initial and final data at t~ (1 _< v_< n) are 
improved, while during a secondary iteration (4.1, 4.2) is applied. 

We reject the method sketched above because of the two stacked iterations. The 
desired iteration method should be of the following form: 

1. Choose any starting function y0 (t), e.g., yO (t)=0;  

2. for v=n, n - 1  . . . . .  1 solve (4.1) in [t~_l,t~] with a 
suitable final value p~ (t~) = p~; (5.1) 

3. for v =  1, 2 . . . .  , n solve (4.2) in [tv-1, t~] with a suit- 
able initial value yU (t~_ 1)=~u; 

4. go to 2.; 

where p~, ~ are to be chosen in such a manner that all information obtained 
from the previous steps are included. 

In the remaining part of this paragraph the GauB-Seidel iterations will be 
analysed. Without loss of generality consider the homogeneous equations (4.1, 
4.2) restricted to the first subinterval [to, tl]" 

d 
rcu= - L *  lrU--E11 u-l, /zu ( t l ) = / ~  u (#> 1), (5.2) 

dt 

d 
dt 11U=L11U-DTr"' 11u (to) = ~/~ (#>_ 1). (5.3) 

The solutions rc ~ (t) and 11u (t) depend linearly on 11o and ~x, 0z (1 _<Z___#): 
/ r  

7cu(t)=ao(t)~ru+ ~, (au_x(t)~x+flu_x(t)~lx)+Tu(t)11~ ( to<t<tl ) .  (5.4) 
Z = I  

A similar expansion holds for 11u (t). Using the solution operator U (t, s) of (3.6), we 
construct integral operators a, fl by 

t l  

(or 11)(t)= ~ U (s, t)* E (s) I I (s) ds, (fl 7r)(t)= - i U (t, s) D (s) n (s) as. 
t to 
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Then the coefficients of (5.4) are 

c~ = (~/~)~ u (t~, .)*, G = ~ (/~ ~)~-~ u (., to), 

Thus, the leading terms 2 of TC,a (tO) and ~" (t 0 are 

~zu (to) = q/ .  fcu + g  f l , - i  + ~ ,  .~,-i + ... 

t/# (t l)  = 0  ~ ~/,a..[_ @ ~/~-- 1 -I-~-  0 # -  1-4- ... 

where 

(#_> 2), (5.5 a) 

(# _ 2), (5.5 b) 

a~ = U (t~, to),  

9 = 9 " = - -  ~ U(tl ,  S) D(s ) U ( t l , S ) * d s  , 
to 

t~ (5.6) 
~ = ~ * =  y U(s, to)* E(s) U(s, to)ds, 

to 

i f= -  -- ~ U (tl, S) D (s) U ((y, s)* E (G) U (a, to) dr; ds. 
to<_s<_a<_tt 

The convergence of (5.2, 5.3) for fixed ~ = ~ l ,  f/u= f/1 follows from the estimates 

I1 ~. II <(Ko K~)" K ~ " + t ( t l -  to)Z"; j] ft, ]1, l[ 7, II-< K~ g ~  -1 g 2v (t 1 - t o )  2u-1 (5.7) 

i f t  1 - t o <  1 / ( ~ K v )  (cf. [53). Ko, KE and K v are bounds for D, E and U. 

6. Determination of Initial and Final Data 

In (5.6) the operators q/, 9 ,  g, ~,~ are constructed for the first interval [to, t~]. 
Generally we denote the operators corresponding to Its_ l, G] by qC, 9~, g~, ~,~ 
(l_<v<n).  

Note: It is convenient to compute ~#~, ~v, ~ ,  ~v by 

~ei t~_a)=I ,  d~(t) /dt=L(t)~]1(t) ,  ~]1/=~ 

9 ( G _ 1 ) = 0 ,  d g ( t ) / d t = L ( t ) 9 ( t ) + 9 ( t ) L * ( t ) - D ( t ) ,  9 v :=giG) ,  
(6.1) 

J (G - t) = O, d ~ (t)/d t = L (t) ~ (t) + ~ (t) E (t) ~ (t), ~.~,. : = .~ (G), 

E (G)=0, d E ( t ) / d t = - L ( t ) * o e ( t ) - E ( t ) L ( t ) - E ( t ) ,  g~:=o~(G_~). 

The equations for ql, 9 ,  ~,~ can be solved simultaneously. 

Let A / = A  r and B o be the operators appearing in (2.2). The auxiliary operators 
A~, B,, G, d~ (1G v G n) are defined recurs(rely by 

G = ( ~ + ~ ) *  ( I - A ~  9,,) -~, d~=(~  g~) -~, 
(6.2) 

2 The restriction to three leading terms is arbitrary. Taking into account more terms we improve 
the rate of convergence, but the method would require more complicated formulae in Chapter 6. 
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Lemma (ef. [5-1): A ,  B, (O<_v<_n) are self-adjoint. A,. and B, differ from A(t ,)  
and B (t,) by 0 ([ A [2). Moreover 

Gp=G+I G+2...co(v<-P), d ,p=d,d~- l . . .dp+l  (v>P) (6.3) 

approximate the solution operators of (3.4), (3.5) by the same order. Since 
~ = 0  ([ A 1) and g , = 0  (t A I) hold, G and d,. are well-defined for a sufficiently 
fine partition A (or if Av, - @~, - B~, ~ are semi-definite). 

At the intermediate values t~ additional transition conditions are to be fulfilled: 

(y-B~p)l t ,  +o=(y-B~p)[t<o, (p -A~y) l~+o=(P-A~y) l t<  o ( l_<v<n).  (6.4) 

(6.4) ensures continuity if I - A ,  B, is a bijection. This holds by (3.7) and the 
previous Lemma,  if I A [ is small enough (or if A, and - B~ are semi-definite). 

In (5.1) the functions ~ ,  ~ are introduced. The magnitudes s 

~ _ y , ( t v _ 0 ) @ . ~ v  (~vp._y~- l ) ,  ~ _ p g ( t v _  1 @ 0 ) @ f l y ,  ( ~ _ p ~ - l ) ,  

y ,=  yv + ~ ,  (p~ - f)~), D~= ~ " .~ p. + ~ ( ~ -  ~ -  ~) 

are to be thought  of as values of y", pU at t = t,_ 1, t, improved by the knowledge of 
the history of the iterative process. We define the residuals 

# -- v# -/~ - / J -  I o 

R _ p , + l _ p _ A , ( y , + l _ ) ~ - l ) ,  . ~. -u-1 R,,=pv+l--f3~v-l--Av(Yv+l--y~ -1) ( 1<vKn) ,  

u - ^ u  -~' -" ~' ~  ( l < v < n ) .  S , - y , . - y , , + I  --B,,(p~.--p,.+l), S~ - , , .  ,,+~ -" ~" - 

Theorem: The iteration (5.1) with 

_1 } 
p~(G)=D~:=pU,-I+(I-A~B~)-I cvpR~+R~+A~ ~ d,pS~ -~ , (6.5a) 

p = v + l  p=O 

�9 =Yv q- ( I -B~- lAv -1 )  -1 1 .pS~+S. - I+B. - I  G-Lo 
p=V 

(6.5 b) 
yields the estimates 

max i] P", - P (t,) il <- 0 ([ A [2) max { il YU- 2 (t) il, il p~- 2 (t) il, il y~- 3 (t) ii }, 
v O<_t<_T  

max i[ Y~- Y (tv- 1)[1 < 0 ([ A [ 2) max { il PU- 1 (t) il, il y"- 2 (t) i[, il pU- z (t)il}. 
v 0< t<T  

(6.6) 

The rate of convergence is at least proportional to [ A 16/s : 

_1 , 16/5. ; ly~-y(G_l)i l<gls~(12>O),  [Ip"~-p(t ,) i l<Kls ~ gU2>I ) , s<K2IA  (6.7) 

Proof: (6.6) is obtained by reordering the right-hand sides of (6.5), applying (5.5) 
and estimating by (5.7). (6.7) follows from (6.6), (5.4) and (5.7) (cf. [5]). 

3 Define y~- : =pO =0, since these values are additional starting values. 
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7. Application of the Method in the Discretized Form 

In Chapter 6 the iteration method was considered for the differential equation 
itself. Now we discretize (2.1, 2.2) by the implicit scheme using a step size A t 
and a grid O h ~ f2, both indicated by h = (A t, •h)" The intermediate values t~ of the 
partition A must be multiples of A t. For each subinterval the analysis of the 
discretized version of (5.2) proves an expansion corresponding to (5.5) with 
g#~, ~ ,  ~ ,  Y~ replaced by some (N x N)-matrices ~'h~, ~h~, Ch~, ~'~h~ (for N cf. 
Chapter 4). The further auxiliary matrices ch~, dh~ , Ah~ , Bhv a r e  constructed 
analogously to (6.2). In many cases the following Note applies. 

Note: If the coefficients L, D, E of (2.1) are time-independent and if the partition 
A is equidistant, then Y/h~, ~h~, Eh~ and Nhv do not depend on v. @h~ = ~-hv = 0 holds 
for D - 0, whereas E = 0 implies O~hv = ~h~ = 0. 

In the following we want to reduce the computational work. Contrary to the 
decoupling method mentioned in Chapter 4, the iteration (5.1) tends to the 
discrete solution of (2.1, 2.2), which is independent of perturbations of e//h~, Nh~ 
etc. Therefore, we look for approximate matrices ~hv, ... that are easier to compute 
and which result in almost the same rate of convergence. 

A first possibility is the application of a larger step size A t = ~:. A t (~: > 1, t~/A t 
integers) for the numerical integration of (6.1). Let L h (t) be a difference analogue 
of L (t). I - A  t L h (t) is assumed to be invertible. Then ~h~, ~h*, gh~, ~h* may be 
defined by 
~'h (t~- 1, t,-1)---- I, ~h (t+ A t, t ~ _ a ) = ( I - 2 1 t L  h (t)) -~ ~h (t, t~_ 1), 

@hv : -~- @h (tv, t v -  1), (7.1 a) 

~(t~_~,  t~_~)=0, 
~h  (t -~- ~ t, t v_ l )  = (I -- ~] t L h (t)) -1 (#h (t, t v_l) -- zJ t D h (t)) (I -- A t L h (t)*)- 1, (7.1 b) 

~ : = ~ ,  (t~. t~ -0 .  

g~ (t~. t~) = 0, g~ ( t -  3 t. t~) = (I - ~ t L~ (t)*) -~ (g~ (t. t~) + 3 t E~ (t)) ( I -  3 t L~ (t))- ~, 

gh~: =gh  (t~- l, t~), (7.1 C) 

.Oh (t,._ ,, t~ 0=0 ,  

. ~h ( t+At ,  t , . - 1 ) = ( l - - A t L t ~ ( t ) ) - l ( S h ( t , t ,  1)+At ~h(t,t,.-1)E,~(t)Jffh(t,t,~ l)), 

where E~, D h denote approximations of the operators E, D. Again (7.1 a, b, c) are 
to be solved simultaneously. 

The most work arises from the product ~h Eh ~llh of tWO full matrices appearing 
in (7.1 d). (E h is assumed to be diagonal.) Consider ~/, 6p, where 6p approximates 
the Dirac function for P ~ s The function Y/~ 6 e is concentrated in a small neigh- 
bourhood of P if I A I or the coefficients of the differential operator L are small. 
Expecting similar properties for Y/h and ~h, we may omit all entries corresponding 
to points P, Q ~ Oh with I P -  Q I > P0 for suitable Po- Thus, @h and ~h involved in 
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(7.1 d) become sparse matrices. For r = 1 these matrices are band matrices. In any 
case the work for computing ~h Eh ~h is reduced. 

Now consider the opposite case and assume that bp is smoothed out by 
applying ~//v. Recalling that the computational work is proportional to A t -1 
A x-3r (cf. Chapter 4), the replacement of O h by a coarser spatial grid f2g c O h 
seems promising. Therefore; we introduce two mappings (p and 0. By q0 the 
f2~-grid functions are interpolated on Oh, while ~b maps functions defined on O h 
into functions defined on ~2~. Furthermore, ~ o (p = I is assumed. Iff2~c f2 h c f2 = (0, 1) 
are equidistant grids we may, e.g., define tp by truncation of the trigonometric 
interpolating polynomial, whereas ~0 describes the trigonometric interpolation 
in (2 h. 

By means of q~ (M): = (p M ~b, matrices M corresponding to (2~ are mapped into 
lab-matrices. Moreover, the "interpolation" ~b is multiplicative: 4,(MI M2)= 
=qS(M1)qS(M2). Let @~, ~ v ,  etc., denote the results of (7.1) for h={A-t, f2~). 
Formally 4 we define ~176 etc. The above assumption implies that the 
matrices ~ ... have good approximations belonging to the subspace range (~b). 

In order to analyse this situation, we consider a model problem. Let (2~ c f2 h c f2 
be as mentioned above in the example for q), 0. Furthermore, the grid functions 
(sin)~ # zt A x),= 1 ..... N (A x = 1/(N+ 1), 1 <)~ < N) are assumed to be eigenfunctions 
of the discretized version of (2.1, 2.2). Then Fourier analysis gives the following 
result. The difference of the eigenvalues of q/h~ and d//~ is very small for small 
wave numbers )~. Since the first N eigenvalues of 0//~v and ~'h~: = ~b (a#~) coincide, 
agh~ is a good approximation of agh~ with respect to the first part of their spectra. 
By our assumption the remaining components of the Fourier expansion are 
diminished by the difference equation itself, provided that the coupling coefficients 
D and E are not extremely large. 

Finally we touch upon nonlinear problems. E.g., if we apply Newton's method, 
a sequence of linear problems has to be solved. The auxiliary matrices q/h . . . . .  
are to be computed for each step of Newton's method (primary iteration). 
However, since we need only approximate values ~hv, ..., we may use the same 
matrices for several iteration steps. As soon as the convergence rate of the 
secondary iteration becomes too slow, the auxiliary matrices are to be computed 
again. 

8. Numerical Examples 

Two one-dimensional examples are added to give an idea of the rate of con- 
vergence. The first example has also been computed by Nedelec [-11]: 

Q__(0,1),  2 2 1 ( 0 )  2 
HB=H~ L( t )=  40-0- ~-x ' O ( t ) = l  or 100, E( t )=0 ,  

Bo=0, AT=l ,  T = I .  

4 The right-hand sides of (6.5) can be expressed without using ~h .... .  explicitly. Only ~ .... and 
q~, 0 and (p o 0 are necessary. 

16 Computing 20/3 
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f ,  g, a r and b o are such that  

V3 3 (~2t~ 
y ( t ) = s i n ( u x ) / ~ -  x ( x - 1 ) ,  p ( t ) =  - ~ - s i n  (= x) e x p \  400 / 

1 1 
satisfy (2.1), (2.2). The grid sizes are A t = ~ 6 -  and A x=~0--.  The i terat ion starts 

with u(~ 0. The  C P U  t ime s t, is needed for one iteration, i.e. for the integrat ion 
of p and y f rom T to 0 and 0 to T, respectively, wi thout  calculating the initial 
values (6.5). t e corresponds  to the C P U  time of the preprocess ing phase, while tc 
denotes  the t ime that  is necessary for the compu ta t i on  of the initial values (6.5) 
dur ing one iteration. Therefore,  the numerical  solut ion of the p rob lem by v 
i terat ions requires the t ime tp + v (t c + t,). The t ime for the evaluat ion of the 
coefficients of the differential equat ions is not  taken into account.  The  number  
of intervals is n = 1. 

Table I. First example (6 y(")= i] y(m _ y(U-1 II., 3 # ) =  1[ p(,)-p<~-l)il ~, w= maximal band width) 

1 1 1 100 100 

discretization parameters 

1/4 At 1/40 1/4 1/40 1/4 

AT~ 1/20 1/20 1/10 1/20 1/20 

w 18 10 4 18 16 
I 

maxtmum normofcorrections 

6y (u) 3p(.) 6y(.) 5p(~) 3y(U) 6p(.) 6y(~) 6p(.) 6y(~) 3p(.) 

5.6 ( -  1) 
7.0 ( - 1) 

7.7 ( - 2) 
7.6 (-2) 

3.4 ( - 4) 
3 . 0 ( - 4 )  

8.8 ( - 6) 
5.6 ( -  6) 

3.6 ( - 7) 
1.8 ( -  7) 

1 5.6 ( -  1) 
7.o(-1) 

2 7.5 ( -  2) 
7.4 ( - 2) 

3 3.1 (-5) 
2.6 ( -  5) 

4 1.5 ( - 7) 
6.6 ( - 8) 

5 1.1 (-9) 

5.6 ( -  1) 
7.0 ( -  1) 

7.7 ( -  2) 
7.6 ( - 2) 

3.6 ( -  4) 
2.9 ( - 4) 

2.1 ( -  5) 
5.4 ( -  6) 

3.6 ( -  6) 
8.0 ( --  7) 

1.1 (-2) 
4.6(+1) 

4.8(-1) 
4.6(+1) 

2.9 ( - 4) 
2.8 ( -  2) 

1.8 ( -  7) 
1.7 ( -  5) 

8.0 ( - 9) 
1.7 ( -  7) 

1.1 (-2) 
4.6(+1) 

4.8 ( -  1) 
4.7(+1) 

2.9 ( -  3) 
2.8 ( -  1) 

1.8 ( - 5) 
1.7(--3) 

8.6 ( - 7) 
1.8 ( -  5) 

additional computational work 

t~/t, 11 1.s  0.5 ! 11 2.2 

tc/t I 0.11 0.10 O.lO ] 0.11 O.lO 

The first and fourth columns of Table  1 cor respond  to A') = A t, Ax = A x. There-  
fore, the respective ratio tp/ t ,  is similar to that  of  the decoupl ing method.  

s The computations were performed on the CDC computer Cyber 72 of the Rechenzentrum der 
Universitg.t zu K/51n. 
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Table 1 shows that  the computa t iona l  amoun t  of  the preprocessing phase can 
greatly be reduced by a suitable choice of  A't and A-x preserving fast con- 
vergence. 

Because of  E ( t )=0,  the expansions (5.5 a, b) consist of at most  two terms. For 
the second example both  coefficients D and E do not  vanish:  

HB= Ho (~), L (t)= -&-x ' f2=(0,1) ,  2 2 D ( t ) = 1 0 ,  E ( t ) = l ,  Bo=Ar=l ,  T = 4 .  

f ,  g, ar and bo correspond to the solution y = p  = x ( 1 -  x). The parameters  of the 
1 

discretization are A t = , A x =2-0-" The first co lumn of  Table 2 is obtained for 

~ 4 1 
n = 1, A} - -A t, Ax  = A x, while the second uses n = 1, A t = 4 0 - '  A-x = . 

Table 2. Second exam Jle 

# A't = 4/80, Ax = 1/20 A~t = 4/40, Ax = 1/4 
number  of 
iterations 1[ Y(U)-Y~U-a)]I ]l pCU)-p(U-1)H ]] y(U)_y(U-1)[] H p(U)-p(U-1)]l 

4.2 ( - 1) 2.2 ( - 1) 
2.1 ( -  1) 

2.0 ( -  1) 4.0 ( -  2) 
3.6(-2) 7.9(-3) 
7.2 ( - 3) 1.6 ( - 3) 
1.4 ( - 3) 3.0 ( - 4) 
2.7 ( - 4) 5.9 ( -  5) 
5.3 ( -  5) 1.2 ( - 5) 
1.o ( -  5) 
2.0 (-6) 2.3 (-6) 

4.2 ( -  1) 2.2 ( -  1) 
2.0 ( -  1) 2.2 ( -  1) 
4.5 ( - 2) 4.9 ( - 2) 

1.1 ( - 2 )  
1.0 ( -  2) 2.5 ( - 3) 
2.3 ( - 3 )  5 . 6 ( - 4 )  
5.1 ( - 4 )  1.3 ( - 4 )  
1.1 ( - 4 )  2.8 ( - 5 )  
2 . 5 ( - 5 )  6.3 ( - '6)  
5.7 ( - 6) 

tp/t t 65 1.2 
to~t, 0.13 0.04 

1 1 
The replacement of Ax  = ~ - 0  by A x = 4  corresponds to the interpolat ion o f  

(19 x 19)-matrices by (3 • 3)-matrices. Table 2 shows that  nearly the same results 
are obtained with very much  less computa t iona l  work  of  the preprocessing 
phase. 
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