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Abstract - -  Zusammenfassung 

Iterated Defect Correction for Differential Equations. Part 1: Theoretical Results. Iterated Defect 
Correction (IDeC) is a technique for improving successively an approximate solution of a given 
problem F y : 0 .  One of the most important fields of application of this principle are differential 
equations. Here, IDeC can be used as a technique for increasing the order of a discretization 
method and thus for improving the accuracy. In this paper a metalgorithm for the class of 
IDeC-methods for differential equations is presented and analyzed. For every component of this 
metalgorithm conditions are given which guarantee a certain order of accuracy. These conditions 
are of particular importance for practical applications, as far as the implementation of IDeC- 
methods is concerned. 

Iterierte Defektkorrektur f ~  Differentialgleichungen. Teil 1: Theoretische Resultate. Die Iterierte 
Defektkorrektur (IDeC) ist ein Verfahren zur schrittweisen Verbesserung einer Nfiherungsl6sung 
eines gegebenen Problems Fy=O. Eiues der wichtigsten Anwendungsgebiete dieses Prinzips sind 
Differentialgleichungen. Die IDeC kann dort Ms Methode zur Verbesserung der Ordnung eines 
Diskretisierungsverfahrens, und damit zur Verbesserung der Genauigkeit eingesetzt werden. In der 
vorliegenden Arbeit wird ein Metaalgorithmus f/Jr die Klasse der IDeC-Verfahren ffir Differential- 
gleichungen vorgestellt und analysiert. Ftir jeden ,,Baustein" dieses Metaalgorithmus werden Be- 
dingungen angegeben, die es gew~ihrleisten, dag eine bestimmte Ordnung erreicht wird. Diese 
Bedingungen sind yon grol3er praktischer Bedeutung, wenn IDeC-Verfahren als Computer-Pro- 
gramme implementiert werden sollen. 

1. Introduction 

In 1966, Zadunaisky [11] introduced a new method for the estimation of global 
discretization errors of difference schemes. Stetter [7] took up the idea, modified 
it and made the proposal to employ this modified scheme in an iterative fashion 
for successively increasing the order of a finite difference method and thus for 
improving its accuracy. Zadunaisky's original scheme, used in an iterative way, 
was called Iterated Defect Correction (IDeC) by Frank and Ueberhuber, who 
first presented rigorous analyses (Frank [1], Frank, Ueberhuber [3]). The early 
papers on this subject considered only a few concrete realizations of a general 
principle. This "IDeC-principle" was pointed out and discussed by Stetter in [9], 
where he also proposed a large number of schemes resulting from the application 
of the IDeC-principle to discretization methods. In particular, Stetter made the 

24* 0010-485 X/78/0020/0207/$ 04.40 



208 R. Frank and C. W. Ueberhuber: 

proposal to use different discretization methods as components of one IDeC- 
method. Since a general theory for these methods is still lacking we shall 
present a rigorous error analysis of general IDeC-methods for the important case 
of (ordinary and partial) differential equations. 

In Section 3.1 we describe a metalgorithm (in the sense of John R. Rice) for the 
class of IDeC-algorithms. This metalgorithm consists of blocks or components, 
which may be chosen in one of several wa~/s. In Sections 3.2, ..., 3.6, we wilt 
state conditions, which must be satisfied by the respective components of an 
IDeC-method so that a certain order of accuracy is obtained. In Section 4 an 
asymptotic error analysis for the IDeC metalgorithm is given. It is a crucial 
question, in connection with every asymptotic error analysis, whether such a result 
gives an indication of the accuracy to be expected for stepsizes of practical 
relevance. Numerical experience gathered so far with IDeC-methods shows that, 
even for large stepsizes, the observed errors are in agreement with theoretical 
results and, moreover, that, for certain types of problems, codes based on IDeC- 
methods will prove to be very efficient. 

Many of the considerations of this paper are not only valid for differential 
equations but also hold for other types of operator equations. It was our goal, 
however, to present concrete conditions which guarantee a certain improvement 
of the order of accuracy. For this purpose one needs a rather detailed knowledge 
of the structure of the variational equations whose solutions are the coefficients 
of the asymptotic error expansions. Consequently assumptions about the local 
error mapping are made in Section 2; these are satisfied for practically all discreti- 
zation methods for differential equations whereas for other types of operator 
equations slightly different assumptions would have to be made. 

2. Preliminaries 

Throughout  this paper we will deal with problems specified by: 

a) a differential equation 
L y =f( t ,  y) (2.1) 

with L being a linear differential operator; t:  = ( t  1 . . . . .  t,) e ~" denotes 
the independent variable which varies on the interval of integration 
I=[al,  b l ] x . . . x [a , , b , ] c [~"  and Y:=(Yl . . . . .  y,~)eN m is the dependent 
variable. The order r of the operator L and of equation (2.1) is defined by 
the highest derivative occuring in L (where L contains partial derivatives 
if n > 1). f may involve (partial) derivatives of y up to an order r s < r -  1, 

b) initial and/or boundary conditions, which, in conjunction with (2.1), generate a 
unique solution to the problem which will be denoted by z =(z 1 (t), ..., z m (t)). 

A great variety of differential equations are included within the framework of a) 
and b). In particular, systems of ordinary differential equations when n =  1, and 
partial differential equations when n > 1. 
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A more compact notation for problem a), b) is: determine an element z ~ E  
such that 

F z = 0  (2.2) 

where F: E ~ E  ~ is a nonlinear operator and E and E ~ are normed linear spaces a. 
F has different components: one component corresponds to (2.1) and other 
components correspond to the initial and/or boundary conditions (an example 
of this notation may be found in Stetter [8], p. 2). In Chapter 1 of [8], Stetter 
presents a detailed analysis of discretization methods applied to operator equa- 
tions (2.2). We will assume that the reader is familiar with the results and the 
notation of [8]. There is only a minor difference between Stetter's notation and 
ours: instead of his integer index n (cf. Stetter [8] Def. 1.1.2, 1.1.3, 1.1.4 ...) we 
will use the meshwidth parameter h so that the finite-difference analogue of 
(2.2) becomes 

f h  ~h = 0 (2.3) 

where Fh: E h ~ E  ~ with E h and Eh ~ finite dimensional spaces. The parameter h 
characterizes the grid and if a step-size-control is used we assume coherent 
gridsequences (cf. Stetter [8], p. 73). 

For the subsequent analysis it is convenient to define classes o f  problems: a class 
of problems is characterized by n and m, by I and by the structure of the linear 
differential operator L. A problem, i.e. a representative of such a class of problems 
is characterized by its data, e.g. by a special right-hand side f ,  by special 
initial and/or boundary conditions and by special coefficients of L. We assume 
that the data of the problems are C~-functions and that all of their derivatives 
are bounded and Lipschitz continuous (although the analysis can be carried out 
under weaker differentiability conditions). Accordingly, we will assume E: = C ~ [I] 
and E ~ : = C ~~ [I] x {components arising from initial and/or boundary conditions}. 
We assume that every problem of a specific class has a unique solution. 

Basic tools for our later considerations are the local error mappings (Def. 1.3.1 
of Stetter [8]) and their asymptotic expansions (Def. 1.3.2 of Stetter [8]). It is 
important to note that for all problems in a certain class and for one particular 
discretization method (applicable to each problem of the class) the operators 
2 / E ~ E  ~ (cf. (1.3.2) of Stetter [8]) have the same structure; to obtain the )~j for a 
specific problem the data of this problem must be inserted into the general 
"formula" of each 2j (which depends on the class of problems). 

For most practical realizations of (2.1) and for most discretization methods 2j 
can be decomposed into 

2j = #j + 7j (2.4) 

1 In Stetter [81 E and E ~ are assumed to be Banach-spaces. We prefer the slightly more general 
assumption, that E and E ~ are normed linear spaces, since there exist definitions (of practical 
relevance) of norms in E which do not imply that E is complete. It is well-known that Taylor's 
theorem can be applied to the operator F, if F is sufficiently often Frechet differentiable, if E is 
a normed linear space and if E ~ is an L-normed linear space. Since the theory behind asymptotic 
error expansion relies on Taylor's theorem we make the further assumption that E ~ is an L- 
normed linear space and not only a normed linear space. 



210 R. Frank and C. W. Ueberhuber: 

where #j is a linear differential operator of order j + r from E to E ~ - -  or more 
precisely: #i Y is a linear combination of derivatives of y of maximum order j + r, 
and the coefficients (or coefficient functions) of this linear combination depend 
on L but not on the right-hand side f of (2.1). 7j is a nonlinear operator from E 
to E ~ To give a more precise specification of 7j, we recall that f (t, y) e ~"  may 
contain derivatives up to an order r s of y and consequently a detailed representa- 
tion of the i-th component o f f  reads as follows: 

f i  (wl, ..., w~)~- f i  (tl . . . . .  t,, Y l  . . . .  , Ym, "", (c3~/Ot~) Yl . . . .  ), 

where k<  rs. The dimension v ( v > m +  n) of the domain of f depends not only 
on n and m but also on the number of derivatives of y which actually occur in f.  
For the construction of a specific 7i we need terms of the following types : 

G1) (C3k/~Wk~)f,. l<_i<_m, l<_u<v,  O < k < j  

G2) (3k/Ot~)Yi l ~ i < m ,  l<_u<n,  O < k < j + r ~  

G 3) ci.. .  coefficients or coefficient functions (mapping I into R), which are cha- 
racterized by the class of problems and by the discretization scheme, 
and do not depend on the data of the problem. 

Every component of 7i Y is assumed to be a combination of elements of G1, G2, 
and G 3 - -  only a finite number of multiplications and additions are allowed - -  
into which the function y ~ E is inserted (different components of Vj y usually 
have different structure). The way in which 7j Y is formed from elements of G 1, 
G2 and G 3 depends on the class of problems and on the discretization scheme 
under consideration. 

In the sequel we shall assume that a decomposition like (2.4) holds. 

For  a number of practical situations ~j - 0  for each j. Such methods might be called 
linear methods. The analyses of the following sections, however, hold for the general 
case 7j~ 0. Examples of nonlinear methods (in the above sense) are Runge-Kutta- 
methods applied to IVPs of ODEs and the "hZ-algorithm '' applied to BVPs: 
y" = f ( t, y, y'), y (a)= A, y (b)= B. 

Note 2.1: In some situations, whether a method is linear or non-linear depends 
on the choice of the discretization operator A~ E~ ~ (cf. Definition 1.1.2 of 
Stetter [8]). E.g. consider Numerov's  method applied to the two-point boundary 
value problem y " = f  (t, y), y (a)= A, y (b)= B. A non-linear method results if Ah ~ is 
defined by (Ah ~ d)~: = d (t~) and the method is linear for 

(A ~ d)~: =(1/12)(d (t~_ 1)-]- 10 d (tv)-l-d (tv+ 1)), 
where (A ~ d)~ is the v-th component of A ~ d ~ E ~ for an arbitrary element d e E ~ 

This rather artificial example shows that the choice of A ~ may influence the 
character of the error analysis. The results of this analysis, however, are independent 
of the choice ofAh ~ since the variational equations are not affected by the particular 
definition of A ~ For  the examples of nonlinear methods given above (RK- 
methods . . . .  ), there exists no choice ofA ~ which "converts these nonlinear methods 
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into linear ones". For  Ah: E~Eh ,  we assume throughout this paper that it is given 
by the "natural definition": 

[Ah Y]~: = Y (G), t~ ~ N", (2.5) 

where v denotes an n-dimensional index. 

3. Conditions for Asymptot ic  Results  for Iterated Defect  Corrections 

In this section we introduce a metalgori thm for IDeC schemes and formulate 
conditions on its components which guarantee the validity of Theorem 4.1 - -  
our main result. 

3.1 A Metalgorithm for Iterated Defect Corrections 

The IDeC principle - -  applied to discretization methods for differential equa- 
tions - -  may be utilized either to estimate the global discretization error of an 
approximation (h to Z (where (h is the result of a discretization method Mb applied 
to F z = 0), or for producing iteratively approximations (o, (~, (~ . . . .  to z of an 
increasing order. To cover both possibilities in our treatment of the IDeC- 
principle, we will introduce a metalgorithm, which describes one arbitrary 
IDeC-step. This step may be interpreted to be either an error-estimation procedure 
or one of the steps of the iterative scheme (cf. Fig. 1). 

Metalgorithm: 

Consider a given original problem 
F z=O (3.1) 

which has been chosen from some class of problems, and a numerical approxi- 
mation (hS Eh to the solution z of (3.1) defined on a grid Gh with meshwidth h. 
According to the IDeC-principle the defect of ~h must be computed, which implies 
that (h must be mapped  into the domain E of the operator  F. For example, this 
mapping, Vh:Eh--~E say, can be defined via interpolation or smoothing. The 
defect 

dh: = F Vh ~h ~ E~ (3.2) 

is used to define a new problem (neighboring problem) 

F z h - d h = 0 (3.3) 

the exact solution of which is Zh=V h (h ~ E. We assume that this new problem 
(3.3) is a member  of the same class of problems as (3.1). We now choose a 
discretization method M applicable to the members of the class of problems 
under consideration. M can be applied to both (3.1) and (3.3) - -  on the same 
grid Gh mentioned above - -  yielding approximations ~h S Eh and nh ~ Eh, respec- 
tively. Since we know the exact solution of (3.3), the global discretization 
error n h - -  A h V h (h of the numerical solution n h is known. If we now replace the 
unknown global discretization error ~h -- AhZ in the identity 

A h z = ~h - -  (~h - -  Ah Z) 

by n h - A  h V h ~h, we obtain the " improved" approximation 

~h: = ~h -- (nh -- Ah Vh ~a) = Aa Va ~h - (nh -- ~h)" (3.4) 



212 R. Frank and C. W. Ueberhuber: 

Z < 

r 
�9 

a: 

�9 

-a 
< 

~a 

f 

~ Z  " ~ o  ~ 0 0  ~ ' 
~'V-- 

Z ~  =ag 
O F-- .o 

~ <  > o  
u a m  I ~  = ,.o ~ 
~ 0  < .2  ,-,a = 

~ ~:~] g 

m. ,r ~. m. 

Z Z Z Z Z 
0 0 0 0 0 

l-v 

I 

i 

o +~ 

(@ = 

~=.~ 

tn O 

O ~- 

i 

o 

�9 = 

0 

r 

o 

0 
; . q  

g 

g ! 

O'.~, 
l> *- 

,~ ~1 _o o! I . ~  
I . ~ H o  ~. 

. . ~ H ~ a  
.~  P t3<~H o l  
u , i[H ~ =1 

�9 " r  o 



Iterated Defect Correction for Differential Equations 213 

The two most common applications of the above metalgorithm are (compare 
Fig. 1): 

(i) the order of accuracy of a given discretization method ~b (solution: ~o) is 
increased by the iterative use of (3.4), which yields successively ~h 1, (~ . . . . .  
(h and ~h of the metalgorithm may be identified with any of the approximations 
~ and (~+ 1, respectively, j = 0, 1, 2, .... In our earlier papers we only considered 
the special case ~ - M b - - - - - - ~ ~  2= .... In this case the analysis of 
Section 4 shows that ~]~ is of order (j + 1) q if M is of order q (and if certain 
assumptions about Vh, ... are satisfied), and so this scheme provides higher 
order approximations by using only a low order discretization method (which is 
a desirable feature for some types of problems). Moreover, these IDeC-methods 
offer the advantage that ~ has to be applied to (3.1) only once (since 
;o=~o=r . . . .  ). 

(ii) to produce estimates of the global discretization error associated with (h" Let us 
assume that Vh is defined via an interpolation process, i.e. A h Vh (h = (h- The 
correction (3.4) then yields 

(~ = ~h--(~Zh--  ~h) = ~- - (~ - -  ~). (3 .5)  

It will turn out in Section 4 that ~h is an approximation of order p+q, if (h 
is of order p and ~ is a method of order q and some further assumptions are 
satisfied. As a consequence ~h--~h is an excellent estimate of the global 
discretization error ~h-- Ah Z : 

~ h - -  ~h = ~h--  ~h = ~h--  Ah z + 0 (hP + q). 

If Vh is not an interpolation operator, i.e. A h V h ~h 5 a (h, then 

~h -- ~h = (h -- Ah z + 0 (h p * ~) 

is true only under the additional assumption that 

Ah Vh [h--(h-=O (hP+q). 

Consequently, this last condition must be checked in such situations. 

Note 3.1.1: When constructing ~h and ~h, it is assumed that the grid G h is used. 
For the purpose of global error estimation only, Stetter [9] suggested the use of 
a coarser grid G~, with a meshwidth h>h,  for the computation of ~ and ~ .  
This reduces the computational effort. (3.4) then yields 

where Vh: Eh~E is an interpolation or smoothing operator. The analysis of 
Section 4 extends easily to the situations when /~@h (provided V~ is defined 
appropriately). 

3.2 Choice of the Interpolation or Smoothin 9 Operator V h 

For IDeC-methods (alternative (i) of Section 3.1), it is essentially the choice of 
V h which determines the maximum attainable order J (which cannot be exceeded, 
even by an arbitrarily large number of IDeC-steps). For error estimation schemes 
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(alternative (ii) of Section 3.1) V h (together with the order of M) determines the 
"quality" of the estimate n h -  ~h (as it is reflected in the order of accuracy of (h)" 
Thus, for both alternatives the choice of V h will be influenced by the desired 
maximum attainable order J (in the second alternative only one IDeC-step is 
considered). 

The question of how to choose V h will be answered in two steps. Initially, we 
point out the necessity of taking piecewise functions into consideration and 
discuss the implications of such a choice. Secondly, if a certain maximum 
attainable order J is sought, we give a criterium for choosing functions which are 
potentially suitable for defect corrections. For  instance, piecewise polynomial 
functions form an appropriate class, but the degrees of the polynomials have to 
be chosen according to the desired value of J. 

Usually, the argument (h of V h (the numerical solution of the original problem) 
has a large number of components, and so it is appropriate in many situations to 
define V h in a piecewise manner: for instance V h t/h (where t/h denotes an arbitrary 
element of Eh), may be a piecewise continuous polynomial, a spline-function . . . . .  
For a piecewise function Vh r/h, which is defined on a partition {I~, s = 1 (1) S (h)} 
of I, its differentiability is usually determined by its smoothness at the boundaries 
of the n-dimensional subintervals I~. It will turn out to be convenient to classify 
the operators Vh according to the smoothness of Vh ~/h: 

D 1) V h rlh e C (i) [I], 0 _< i < r -  1 

D 2) V h t7 h e C "~ [t] ,  r -  1 _< i, where r denotes the order of the operator L. 

Note that V h (h C C ") [I] does not agree with our former assumption 
Vh (h S E = C oO [I], which was made in Section 3.1 for explanatory purposes only. 

The space, which contains V h t/h, and which is characterized by the partition 
f h tls, s=  1 (1)S(h)} and by the differentiability properties of its elements, will be 
denoted by E h (this function space should not be confused with the finite 
dimensional space Eh). Corresponding to the definition of E, we will assume that 
the restriction of an element of E h tO I] belongs to C oO [I]]. E h depends on the 
meshwidth h of the partition {ih}. To give this dependence a precise meaning, 
let us assume for explanatory purposes that I - -  [0, 1] n and let G h be an equidistant 
grid Gh: = {v h, v =0  (1) w K; h= ~}n. We assume that the sequence of meshwidths 
is characterized by K ~  oo and by a fixed w ~ N. For every stepsize h we consider 
a subgrid ~h of G h which is defined as follows: 7 S h : = { f w h ,  # = 0 ( 1 ) K }  n. We 
assume that the partition {ih} is induced by the set 

n K - I  

Bt,:=U U b~ ~', 
i=1  #=1  

with 
b~":=[a l , b l ] x . . . x [ a t  1, b i - 1 ] x  { # w h }  xEai+l,  b i + l ] x . . . x [ a , , b , ]  

where [a~, bl] =[0,  1], / = 0  (1)n. The assumption of a fixed w for h ~ 0  (K~oo)  
implies 

(i) for h~0,  G h and ~;h are refined in exactly the same way 
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(ii) if t ~ B  h, for some h', then there exist infinitely many h"<h'  (with h', 
h" ~ {1/w K; K c N}), such that t ~ Bh,,. 

According to its definition, w characterizes the number of points of (3 h that lie in- 
side the (closed) subintervals Ih: this number is (w + 1)n. Therefore, w is strongly 
related to the definition of Vh; e.g., for piecewise polynomial functions, w is equal 
to the degree of the polynomials and for spline functions w = 1. These considerations 
have to be slightly generalized for non-equidistant grids, in particular coherent 
grid sequences (as defined on p. 73 of Stetter [8]) have to be assumed for the 
one-dimensional grids along the coordinate axes. 

Property (ii) permits the proper definition of expressions like "il % (t)i] = 0 (h p . . . .  ), 

for every t e Bh" (where % (t) e ~m). 

The introductory part of this section was devoted to a precise definition of E h. 
Obviously E c E  h and in the following we assume Ah: Eh---~Eh and Vh: E h ~ E  h 
(replacing Ah : E ~ E h, Vh : E h --* E, as introduced in Section 3.1). 

We are now in the position to formulate conditions on Vh which guarantee the 
desired maximum attainable order J: 

For an arbitrary sequence of functions {Yh}h-' O, Yh ~ Eh, which satisfies 

l[ Dk Yh ]l = 0 (1), h--'O, k =0, 1, 2,. . .  (3.6) 

the following relation must hold 

I [ D k V h A h Y h - - D k y  h j] =0  (h . . . .  (O,J-(k-r))), k=0,  1,2 . . . . .  (3.7) 

For n = l ,  Dk: =dk/dtk; for n > l ,  Dk:=t?k/(ot kl ... Otk, ") with Z kv=k, O<kv <_k and 
we assume that (3.6) holds for all the different derivatives D k (corresponding to 
the possible choices of k 1 . . . . .  k,) and implies (3.7) for all these derivatives D k. 
If necessary onesided derivatives have to be formed at the boundaries of the 
subintervals Is h. If y ~ C (i) [I] is an element of E h, then D k y is normally not an 
element of E h, since the differentiability of D k y at t ~ BI, is generally lower than 
that of y. For k > i, D k usually defines at those points two different values of the 
one-sided derivatives. We assume that II D k Y II for y ~ E h is given by 

II Dk Y II := max II Dk Y (t)il 
s:tel• 

where the norm used on the right hand side of this expression is the W~-norm. 

Note 3.2.1 : For most of the realistic definitions of V h, the quality of the approxi- 
mation D k Vh Ah Yh for D k Yh is increasing k; this fact is taken into account in 
formula (3.7); thus interpolation and smoothing functions of practical relevance 
(piecewise polynomial functions, spline functions, etc.) are included in our ana- 
lysis. 

Example 3.2.1: Lagrange interpolation with piecewise continuous polynomials 
of fixed degree M: 

c0 n = 1 : For these functions (3.6) implies 

I] DkVhAhYh--Dkyh ll=O(hmax(O'M+l-k)), k=0,  1,2 . . . . .  
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This relation may be derived e.g. from formula (3.3.15) of Hildebrand [63 for 
k < M  and is trivially satisfied for k > M  since DkVh A h yh=--0. A comparison 
of the above formula with (3.7) shows that piecewise polynomials with 
M_> J + r -  1 satisfy "(3.6)~ (3.7)" for a given J. Therefore, these functions are 
a suitable choice for IDeC-methods, if one has a maximum attainable order J 
in mind; the particular choice M = J + r - 1 ,  however, will be prefered for 
economical reasons. 

fl) n> 1: If in problem (2.1) no mixed derivatives occur (but only derivatives 
D k = ~3k/~ t/k) then for any discretization scheme of practical interest no mixed 
derivatives are involved in #j and 7j. It is therefore not necessary in these 
cases to include mixed derivatives in our theoretical investigations. In parti- 
cular, in the requirement "(3.6) ~ (3.7)", the symbol D k denotes only derivatives 
~?k/~?t~. Then a simple generalization of (3.3.15) of Hildebrand [6] shows that 
"(3.6) ~ (3.7)" holds, if M > J + r - 1 .  If, in problem (2.1), mixed derivatives 
occur it is still possible to show 

H Dk Vh Ah Yh -Dk Yh II =0  (h M+I -k); 

but, for k~<M and S k~>M, the mixed derivatives D k VhA h Yh do not in 
general vanish and negative powers of h can therefore occur in the above 
relation. Consequently, for such problems, "(3.6) ~ (3.7)" cannot be guaranteed 
for piecewise Lagrange interpolation. 

Example3.2.2: Spli~Te ilTteryolatio~7 with maztral spline [i,Tctio,.~ o[ degree 
M = d + r -  1. These functions also satisfy the assumption '~(3.6)~(3.7)" as for in- 
stance Lemma 7.1 of Swartz and Varga F10] shows for equidistant grids. 

With respect to computational complexity considerations, it turns out that, for 
increasing degree, the computation needed for spline functions grows faster than 
the computation needed for piecewise polynomial functions (which involve the 
use of "weightmatrices"; cf. for instance Frank, Ueberhuber I-5]). For IVPs, 
where forward step methods are highly desirable, only piecewise polynomial 
interpolation (which is a local interpolation scheme) seems to be suitable, whereas 
spline-functions would require the storage of the approximations o 1 ~h, Ch, "-- over 
the whole integration interval. For problems of order r > 2, piecewise polynomials 
have the disadvantage of being members of the lower differentiability class D 1, 
which demands the choice of a method M which is applicable to piecewise 
problems (cf. Sections 3.3 and 3.4). 

For the lower differentiability class D 1, we have in addition to "(3.6)~(3.7)" the 
requirement: 

If  teb~U for l <_i<nand I < # < K - 1  then 

II Dk+ (Vh(h)(t) -Dk- (Vh (h)(0 il =0  (h). k = J + r , J + r + l  ... .  (3.8) 

where Dk+ and D k_ denote lim ~k/0 t~ and lim 0k/d t~ respectively. 
t l~#wh§ ll~#wh--O 

If V h ~h consists of polynomials of degree M = J + r -  1 (as it does e.g. in Example 
3.2.1 and 3.2.2) the (M+l) -s t  and all further derivatives vanish and (3.8) is 
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trivially satisfied. Otherwise the validity of (3.8) has to be derived from the 
properties of Vh and (h. 

3.3 Piecewise Problems 

The solution of the neighboring problem (3.3) (namely, the piecewise function 
Vh ~h) is normally not an element of E, but of the more general space E h (cf. Section 
3.2). Consequently, the defect d h = F V h ~h belongs generally not to E ~ but to the 
space E~ = C (i-") [I] x {components belonging to initial and/or boundary con- 
ditions}. For i - r < 0 ,  we assume that the elements of E ~ have jump disconti- 
nuities along Bj, (this will be the most usual case; only for D2 with i_>r will this 
not happen). In accordance with the definition of E h, we assume that the restriction 
of the "functional part" of an arbitrary element d e E Oh ot Ih~ belongs to C ~ [I~]. 

As a consequence of having defined Vh to be piecewise, the neighboring problems 
(3.3) are members of a class of piecewise problems {F z= 0; F : Eh---,E~ Because 
E ~ E  h and E ~  ~ all smooth problems { F z = 0 ;  F:E-- ,E ~ are included 
in the more general class of piecewise problems. Thus (3.1) and (3.3) are both 
members of the same class of problems, a property, which is essential for the 
applicability of the IDeC-principle. 

The question of existence and uniqueness of a solution of a smooth problem is 
normally covered by theorems of analysis whereas this question has to be 
discussed for piecewise problems (note that the existence of a solution of problem 
(3.3) is trivial: V h (h is a solution; however, the existence of a solution of an 
arbitrary problem of our class of piecewise problems is not obvious). The 
greatest difficulty arises for D 1, where the uniqueness of the solution is normally 
lost: additional degrees of freedom are introduced through the introduction of 
jump discontinuities in derivatives of order less than r, at the points t e B h. As a 
consequence, additional conditions have to be included in the operator F, to 
guarantee the existence and uniqueness of a solution. Consequently, we require, 
that under the assumptions 

U 1) for D 1, the differences between k k D+, D_, k = i + 1 (1) r -  1, are prescribed at the 
points t ~ B h (concerning the definition of Dk+, D k_ cf. (3.8)), 

U 2) for D 2, no additional conditions are applied to F, 

the existence and uniqueness of the solution of piecewise problems (from the 
specific class under consideration) is guaranteed. 

Note that in the case U 1) the prescribed differences between the derivatives 
Dk+, D k_ (the "jump conditions"), contribute to the data of the operator F, and 
accordingly components have to be added to the elements of E ~ These additional 
components are functions which map 

b~'U:=[aDbl]X. . .x[al  1, b l _ l ] x { # w h } x [ a l + l ,  b l + l ] x . . . x [ a , , b n ] c B h  

into the space Em. For each of the given "jump-functions" (Pk, l,, the jump 
condition can be written as 

Dk+ (z) ( t ) -D k_ (z)(t)=Cpk,~,u(t), t~b2 u, k = i +  1 (1) r -  1,/~= 1 ( 1 ) K -  1, 1= 1 (1) n 
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where z denotes the solution of the problem under consideration. For n = 1 the 
functions q~a, ~, ~ reduce to m-vectors. 

Recall that V h ~h is used for the construction of the data of (3.3). Therefore the 
jump functions of (3.3) are defined by 

�9 k (v~ ~h) ( t ) -  D k_ (V~ ~h) (t) ~Ok, i, ~. =D+ 

and thus all data of (3.3) are well defined. For the problem (3.1), these jumps are 
zero. Particular examples of the technique for prescribing the jump conditions 
have been discussed by Frank [1] and Frank and Hertling [2]. 

Note 3.3.1: For the norm of the spaces E h and E h w e  will assume the maximum 
norm in agreement with Section 2.2.1 of Stetter [8]. The norm of an element 
y ~ E ~ is formed by summing up the norm of the functional part of y which 
belongs to C (i-r) (I), the norm of the components which belong to initial and/or 
boundary conditions and the norm of the components belonging to the jump 
conditions. The number of this third type of components grows like 1/nh,,~ 1/h 
for h~0 ;  that means: if the norm of each of the jump components behaves like 
0(h p+~) and if the norms of the other components behave like 0(h p) then 
II yh II = 0  (he). In our later applications this will be the typical situation. 

3.4 Choice of  the Method M 

Of the method M, we primarily require that it be applicable to the piecewise 
problems under consideration. Because discretization methods are usually de- 
signed for smooth problems they meet difficulties when confronted with piecewise 
problems having jump discontinuities at the points t E B h. Also, for i > r, if i is not 
substantially larger than r, the low differentiability of the data (along Bh) may cause 
difficulties. Discretization methods, however, which satisfy the following con- 
ditions, are applicable to our piecewise problems: 

A 1) M, applied to a certain concrete problem, requires the solution of a system 
of equations, and we assume that for every equation which results from 
discretizing the differential equation (but not from discretizing jump condi- 
tions . . . .  ) only gridpoints from one of the (closed) intervals I~ are involved. 

A 2) For D 1 the method ~ must comprise the discretized jump conditions (cf. 
Section 3.3). We suppose that the jumps (occuring along Bh) a r e  discretized 
in a linear way, i.e. components of 7j (cf. Section 2) corresponding to jump 
conditions vanish. The respective components of/~j are assumed to be linear 
combinations of terms Dk+ z (t)-- D k_ z (t), t ~ Bh, k <j  + r -  1. 

Examples for methods satisfying A 1 and A 2  may be found for instance in 
Frank [1] and Frank and Hertling [2]. 

Note 3.4.1: Multistep methods for IVPs of ODEs do not satisfy A 1, whereas 
Runge-Kutta methods are applicable (cf. Frank and Ueberhuber [3]). 

The essential assumption about M is that Theorem 1.3.1 of  Stetter [8] must be 
applicable, i.e. ~ admits asymptotic expansions. This assumption is sufficient 
for an asymptotic analysis of defect corrections, but one might think of situations 



Iterated Defect Correction for Differential Equations 219 

where Theorem 1.3.1 of [8] is not applicable and iterated defect corrections work 
nevertheless well. For instance, for stiff ODEs the authors carried out numerical 
experiments with IDeC-methods based on the implicit Euler scheme and obtained 
promising results, despite the wellknown fact that the error expansion of Theorem 
1.3.1 of [8] does not reflect the true behavior of the global error for large 
values of h. L (where L denotes the Lipschitz constant of the problem under 
consideration). Another example is given by BVPs for elliptic PDEs which often 
have a solution that is not sufficiently smooth at the vertices of the integration 
interval, and so Theorem 1.3.1 of [8] is not applicable. Preliminary numerical 
experiments, however, have shown that also in this case iterated defect corrections 
can be applied successfully (cf. Frank and Hertling [2]). 

An example where the assumptions of Theorem 1.3.1 of [8] are not satisfied and 
iterated defect corrections do not work, are linear multistep methods for IVPs 
of ODEs (refer also to Note 3.4.1). 

3.5 Assumptions About (h 

According to our metalgorithm (cf. Section 3.1), (h may be either the result of a 
discretization method ~A b applied to the original problem (3.1), or the result of 
preceding IDeC-steps. To cover both cases we require that (h satisfies 

(h=Ah(Z+hP eh, p+hP+l eh, p+l +. . .+hS+r 1 eh, J+r_l)+Rh 
(3.9 a) 

A h : Eh--eEh, eh, j ff E h, e h ff Eh, ]] R h ]] = 0  (h J+r) 
with 

B1) 
]] Dk ~ 0 (h max(-p'rnin(~ lc Gr 

eh' ) " = [ 0 (h ma• (- p' min (0, J-  j -  (k - r)))) ]~ > r (3.9 b) 

j = p ( 1 ) J + r - 1 ,  k=0,  1,2 . . . .  

B2) additional assumption for D 1: for every t ~ B h 

{O0(hmax(-p+l'min(l'J-J))) i % k ~ r  (3.9c) 
hi o k  eh, j(t) -Dk- eh, j(t)II = (hmax(-p+l,min(1,J-j-(k-r)))) ]s 

j = p ( 1 ) J + r - 1 ,  k=0,  1,2, .... 

In Section 4 we will conclude inductively from (3.9) that ~h satisfies 

~h=Ah(z+hgeh,~+...+hS+r-1 eh, J+r_l)~-Rh (3.10 a) 

with LI/~h ]] = 0  (h J+r) and ~ : = m i n  (p+q, J), where q denotes the order of the 
method M. In addition we will show that (3.10 b) and (3.10 c) hold. They are 
obtained from (3.9 b) and (3.9 c), respectively, by replacing p by ~. 

In Section 3.2 we introduced J as the maximum attainable order. This meaning 
of d follows immediately from (3.10): (3.10 b) for k = 0  implies ~h,~=0 (1), i.e. ~h 
is an approximation of order /5=min(p+q,J ) ;  thus the order of the defect 
corrections is limited byJ.  Consequently we make the obvious requirements: 

J > p  and J > q .  



220 R. Frank and C. W. Ueberhuber: 

If (h is the result of a discretization method ~b which admits an asymptotic error 
expansion, then the coefficients eh, j of (3.9) are functions which are independent 
of h (eh, j =--ej); B 1) is trivially satisfied and the jumps of the derivatives, occuring 
in B2), are zero (since (3.1) is a smooth problem, this follows from A2 of 
Section 3.4 and from Theorem 1.3.1 of Stetter [8]). According to the smoothness 
assumptions applying for problem (3.1), ~h posseses an asymptotic expansion up 
to an arbitrary order; in particular, up to an order J +  r - 1  (remainder term of 
order J + r). The order J + r - 1, instead of J (the maximum attainable order), was 
chosen because of technical reasons (mainly because 2j contains derivatives up to 
orderj+r) .  

The general formula (3.9) covers not only those situations where (h posseses an 
asymptotic expansion, but allows (h to be the result of a discretization scheme, 
where the coefficient functions eh, j do depend on h, i.e. where (3.9) is not an 
asymptotic error expansion in the usual sense. In this situation, it is necessary to 
make additional assumptions about the smoothness of the functions eh, j for 
h~0 ;  in particular, the assumption (3.9 b) for k=0.  The rather complicated 
relations (3.9 b) for k>  0 and (3.9 c) had to be introduced to cover the case when 
~h is the result of a preceding IDeC-step. 

Note 3.5.1: If (h is the result of a strongly stable linear multistep method applied 
to IVPs of ODEs, then the functions eh, j are given by: 

eh, j (t) = ej (t) + ~ xti/h wji (t/h) (3.11) 
i 

(cf. (4.4.21) of Stetter [8]), where the x~ are the extraneous zeros of the characteristic 
polynomial p with I x~ E< 1 for all values of i. The k-th derivative of x~/h tends 
to zero faster than any given power of h with h--r0 so that 11 Dk eh, j(t)11 =0 (1) 
which shows that B 1) is satisfied. B2) is satisfied trivially. As a consequence, the 
IDeC-principle is applicable if Mb is a strongly stable linear multistep method, 
whereas IDeC-methods with ~ or ~J  being a linear multistep method are not 
possible (cf. Section 3.4). 

Note 3.5.2: If in Examples 3.2.1 and 3.2.2 the degree M of the polynomials is 
chosen to be J + r -  1, the maximum attainable order is J. In practical implemen- 
tarions of IDeC-methods (alternative (i) of Section 3.1), however, the iteration will 
often be stopped before J is reached (e.g. if already an "earlier" iterate satisfies 
an accuracy requirement). On the other hand, the question arises as to whether 
successive increases in the degrees of the polynomials used during the IDeC- 
iteration (say by introducing V~ with degrees of the polynomials M ~ < M '  _ . . . )  
implies a corresponding increase in the maximum attainable order. From our 
analysis this question must be answered in the negative: If for the IDeC-step 
"(h~(h '', as described in our metalgorithm, piecewise interpolation polynomials 
of degree M = J + r -  1 are chosen, then the induction of Section 4 shows that the 
expansion (3.10) can be written up to order J + r - 1 ,  i.e. the expansion (3.9) and 
(3.10) are "of the same length". In a subsequent IDeC-step, proceeding from (h, 
(3.10) takes the place of (3.9). Thus the expansion for the result of this new 
IDeC-step is also of length J + r - 1 ,  irrespective of the degree 2~ > M, used in 
this step. 
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Note 3.5.3: In B 1) and B2) we did not assume an upper bound for the index k, 
due to our assumption about  the smoothness of the data of (3,1). If these data 
are not functions in C | the analyses of Section 4 are also possible, but an 
upper bound for k (which depends on the definition of V h, and which will be at 
least as large as J + r) must be introduced, and the smoothness of the data limits 
the maximum attainable order. 

Note 3.5.4: (3.10) shows that an IDeC-step which goes from (h to (h improves 
the order of approximation from p to ~. Lemma 4.1 shows that the functions 
Vh (h, Vh ~h, "'" have the same order of accuracy as the "discrete solutions" (h and 
(h namely p and ~. This result may be of some importance for practical imple- 
mentations, because it shows how to obtain easily an accurate solution (Vn (h (t)) 
at (output-) points t not belonging t o  G h. 

3.6 Continuity Assumptions for the Variational Equations 

In Section 4 we will proof asymptotic results for IDeC-methods essentially by 
comparing corresponding terms of asymptotic error expansions for the problems 
(3.1) and (3.3), both solved with the same method ~ .  The coefficients of these 
asymptotic expansions satisfy linear differential equations (variational equations) 
belonging to the same class of problems as (3.1) and (3.3). We therefore require a 
continuous dependence of the solution (and its derivatives) of a linear problem on 
its data. Since the data of the neighboring problem (3.3) depend on h the same is 
true for the data of the corresponding variational equations. Thus we consider 
two sequences (depending on the parameter h) of linear problems: 

F~ z~ =- Gh (y~) z~ +g~ = 0  (3.12 a) 

2 2 Z 2 _~ _2 Fh Zh =--Gh(y 2) h Yh = 0  ( 3 . 1 2 b )  

1 2 . 1 2 EOh; Fh, Fh �9 Eh ~ E~ Yh, Yh G Eh; g~, g~ 

Gh : Eh~Lin [Eh---~EOh']. 

Now we introduce the projector P, which is defined o n  E ~ such that those 
components of an arbitrary element g e E  ~ which belong to initial and/or 
boundary conditions and jump-conditions are omitted in P g. 

We require that, for arbitrary sequences (3.12), the relations 
il g~ __g2 I[ =-0 (h raax(O'min(p'sl))) (3.13 a) 

iI D k P g ~ - D k P g ~  il=O(hmax(O'min(p'sl-k)l) k=1 ,2 ,3 ,  ... (3.13 b) 

El D~Y~--DkY~ i[ = 0  (h max(~ k=0 ,  1,2, ... (3.13 c) 
imply 

II Dk z~ -- Dk ~ O (hmax(~ z h i]= k = 0 ( 1 ) r -  1 (3.14 a) 

II Dk z~ -- D k 22 [I = 0 (h  max (0, min (p, s3 - (k- r)))), k ~ r (3.14 b) 

where sl, S2 ff ~, $3 =min (sl, s2). 

For D1 the jump conditions inherent 
max (0, rain (p, s ,))+ 1 (cf. Note 3.3.1). 

in 1 z gh--gh of (3.13) are of order 

15 Computing20/3 
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Note 3.6.1: The question arises how it may be verified in given situations, that 
(3.13) implies (3.14). In our earlier papers we discussed this question for special 
situations: 

e) For IVPs of first order ODEs - -  situation D2 - -  (cf. Frank, Ueberhuber [3]) 
the assertion of Lemma 2 [3] is identical with (3.14 a). 

fl) For BVPs of second order ODEs - -  situation D1 - -  (cf. Frank [1]) the 
assertion of Lemma 4.1 [1] is identical with (3.14 a). The considerations of 
[1] show that it is indeed important to require that the order of the jump 
conditions is max (0, rain (p, sl))+ 1 (cf. Note 3.3.1). 

For c0 and fl), (3.14 b) follows after the total differentiation of (3.12) with respect 
to the independent variable t. 

For PDEs there might exist situations where the proposition "(3.13)~ (3.14)" can 
be proved by reducing the PDEs to ODEs (via the method of lines). 

For D 1 we further require, for a given sequence of linear problems 

f h Zh =- Gh (Yh) Zh -}- gh = O, (3.15) 

that for every t ~ B h the relations 

Dk+ Zh(t)--D k_ Zh(t) i[=O(hmax(l'min(p+l's4))), k = i + l  (1) r - 1  (3.16 a) 

Dk+ P 9h (t) -- D k_ P Oh (t) II = o (h max (1,min (p + 1, s 5 k))), k = 0, 1, 2. . .  (3.16 b) 

Dk+ Yh(t)--D k- Yh(t)[1 = 0  (hmax(l' rain(v+ 1' s6-k))), k = i +  1, i+2,  ... (3.16 C) 

imply 

[1Pk+ zh(t)--D k_ za (t)[ I :O(hmax(l'min(p+l's7-(k-r)))),  k > r  (3.17) 

where s4, ss, s6, s7 ~ N, s7 =min  (s4, ss, s6). 

Note 3.6.2: The validity of "(3.16)~ (3.17)" may be derived, for most classes of 
problems, by the total differentiation of (3.15) at t ~ Bh. 

Note 3.6.3: For D 1 we assumed that jump conditions for the jumps of the k-th 
derivatives, k =  i+ 1 ( 1 ) r - 1 ,  are included in F. Therefore the validity of (3.16 a) 
depends on the particular sequence of functions {~Ph, k, Z,,}h~0 for the considered 
sequence of problems (3.15). 

4. Asymptotic Analysis 

In this section an asymptotic analysis of our IDeC-metalgorithm will be presented. 
The main result is the following theorem: 

Theorem 4.1: Under the assumptions made in Section 3, in particular, if (3.9) is 
valid for ~h, if ~ is a method of order q, and if (3.6) implies (3.7) for Vh, the result 
~h of an IDeC-step satisfies 
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~h--Ah z=O (hmin(p+q'J))=O (h ~) for h~O (4.1) 

provided that the max imum attainable order J is larger than p and q. Moreover ,  
~h satisfies (3.10), i. e. fur ther  IDeC-s teps  are possible i f  J > p + q. 

4.1 M a i n  ldea  o f  the P r o o f  

Consider ~h satisfying (3.9), and the corresponding neighboring problem (3.3). 
If the method ~ is applied to the original problem (3.1) and to the neighboring 
problem (3.3), we have the asymptotic error expansions 

~ = A ~  (z+~q eq+~.lq+l eq+l + ... +~J+r-1 es+r_l)+ R (4.2) 

TC~=A~(Vh(h-[-hqOh, q'-~ q+l eh, q+lAV...Av~l d+r-1 eh, J+r_l)AvRh (4.3) 

where ej, Oh, j ~ E  h, ;z is the meshwidth parameter and H R []--0(ha+r), j[/~h il = 
=0  (hJ+0, R, /~h ~ E~. (The notation ~ for the meshwidth parameter is used, to 
avoid confusion with the meshwidth parameter h, which determines (h and 
therefore problem (3.3)). Note that for D l, where the elements of E ~ contain 
"jump-components", normally the jump conditions for ej vanish, whereas, the 
jump conditions for ~h,j do not vanish. An example of the expansions (4.2) and 
(4.3) in the case D 1 may be found in Frank [1]. The dependence of the data of 
the neighboring problem (3.3) on h reflected by the subscript h of 0h, ~ and /~h 
in (4.3). For the following asymptotic analyses, we will not consider only a 
fixed value of h but a sequence of meshwidth parameters with h--*0. This 
assumption requires the more precise notation 

][/~h ][ < const (h). h s+r (4.4) 

instead of ][ /~h 1] =0  (~J+r). 

As we assumed the same grid Gh for the computation of ~h, ~h and  ~h (cf. 
Section 3.1), we will choose h=h.  The subtraction of (4.3) from (4.2) after this 
substitution gives 

(~h -- Ah Z) -- (~C h -- Ah Vh (h) = hq Ah (eq -- Oh, q) + h q + 1 Ah (eq + 1 -- Oh, q + 1) + " "  
(4.5) 

. . . + h  s+r-~ Ah (ej+~_ 1 - Oh, j+ , -  a)+ R--/~h- 
If 

S1) [] ej--Oh, j J] =O(hmax(~ j = q ( 1 ) d + r - 1  (4.6) 

$2) for const (h) of (4.4) there exists a constant C independent of h such that 
const (h)_< C, 

we can conclude from (4.5): 

( h -  a h  z = ~ h - -  (~h - -  ah Vh ~h) - -  a h  z = (~h - -  Ah Z ) - -  (nh - -  Ah Va ~h) = 
(4.7) 

=Ah (hg eh,~ + ... + h a +r- ~ eh, j + r - 1 ) +  Rh 

with _Rh=O(hS+~), which is (3.10 a) of the desired result. In (4.7), the terms eh, j 
are defined by the relations 

h j eh,~=h J-p (ej-v--Oh, i -v) ,  j = p + q  (1) J - -  1 (4.8 a) 

15" 
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hJ eh, ;---- h J -  v (e j_ p - eh, J-  p )  -t-  . . .  ~ -  h ~ (ej - e h ,  d) 2 (4.8 b) 

h j e.h,j-=h j ( e j -  eh,;), j = J +  1(1) d + r -  1. (4.8 c) 

To derive (3.10 b) and (3.10 c), we have to verify the stronger assertion S 1' instead 
of S l :  

O(hrnax(~ k < r  (4.9) 
SI ')  il Dk e j - -Dk  eh, j II = O(hmax(O,min(p , j - j - ( k - r ) ) )  ' k>_r 

j = q ( 1 ) J + r - 1 ,  k--=O, 1, 2 . . . .  

]1Dk+ eh, j(t) -Dk-  eh, j(t)l[-=O(hmax(l'min(p+l'J-J))), i < k < r  (4.10a) 

il Dk+ eh, j(t) -Dk-  eh, j(t)ll=O(hmaxtl'mintv+t'J-J-(k-')))) k>__r (4.10b) 

where (4.10) for every t e  B h is required only for D1. It is easily proved that  (4.9) 
and (4.10) imply (3.10). 

It will be the main task of Section 4.2 to show the validity of S 1' and of S 2 
under the assumptions of Section 3. 

4.2 Technical Details of the Proof  

Proof  of  S 1': 
For  technical reasons we need an auxiliary operator gh:Eh--*E h which is de- 
fined by: 

C 1) A h Vh t /=  ~], 11 ff Eh, i. e., V7 h is an interpolation operator, 

C2) [I Dk Vh//h [I =-0 (hmax( l ' J - ( k - r ) ) ) ,  (4.11) 

where {t/h } denotes a sequence of elements of E h with [I ~h i! = 0  (hJ+'), h~O. 

For instance V7 h may be chosen to be piecewise continuous Lagrange inter- 
polation with polynomials of degree J + r -  1 ; for n > 1 no mixed derivatives D k 
are admit ted according to fl) of Example 3.2.1. Now we prove several lemmas: 

Lemma 4.1: Under the assumptions of  Section 3 

II Dk z - -DkVh  ~h N =O(hmax(O'min(p'J-(k-r)))), k=0 ,  1,2 . . . . .  (4.12) 

Proof: An auxiliary function ~h ~ Eh is defined for every meshwidth parameter:  

~h:=Z+hPeh,  p+h  v+l eh, v + l + . . . + h  J+~-I eh, j + ~ _ l + V h R  h (4.13) 

where eh, j e E h are the coefficients of the expansion (3.9). Note that, from (3.9 b) 
and from (4.11), it follows that  { ~ " ~ h } h ~ 0  satisfies (3.6). The following estimation 
is possible, since (h = Ah ~h: 

I[ Dk z--  Dk Vh ~h 11 <--il Dk z--  Dk ~h ][ + [I De ~h - Dk vh ~h <<- 

<hV il Dk eh, p II + hv+~ tl Dk eh, p+~ ]1 + . . -+  hJ+~-I i] Dk eh, j+~ ~ it + 

+ il Dk VTh Rh II -}- [I Dk ~h -- Dk Vh Ah ItIh I] 

which yields, together with (3.9), (4.11) and (3.7) the required result. [] 

2 (4.8 b) reads for d -p<  q: h ~ eh, j =hq (eq--eh, q)q- .... 
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For D 1 we need the additional lemma: 

Lemma 4.2: Under the assumptions of  Section 3 we have .for every t ~ B h 

][ Dk+ (Vh ~a)(t)- D k_ (Vh (a) (t)11 = 0 (h m"• (1,m n (p+ 1, J-(k-r)))), k = i+ 1, i+  2 ....  (4.14) 

Proof: To derive (4.14), we will first investigate the order of the jumps of the 
auxiliary function ~h at the points t ~ B a: 

l[ Dk+ ~h(t) -Dk-  ~h (t)[] < 11Dk+ z(t) -Dk-  z (  t) ]l + h p ]1D[ eh, p( t ) - -D[ eh, p(t) ][ + ... + 

+ El Dk+ (V~hRh)(t)--D[ (V~nRn)(t)][ =0(h  .... ~l,min(p+l,J-(k-r)))) (4.15) 

which follows from (3.9c) and (4.11). Assume for the moment that k < J + r :  
From the identity Vh [h = Vh Ah 7~h and from (3.7) it follows for t ~ Bh: 

[] Dk+ (Vh ~h)(t)--D k_ (V h (h)(t)il = il Dk+ (Vh [h) (t)-- Dk+ ~h (t)+Dk+ tPh (t)-- 

-- D [  Th (t) + D [  7~h (t)-- D [  (V h [h) (t)i[ < 

< [I D~+ V~ A~ % (t) - D~+ % (t)II + il D~+ % (t) - D ~_ % (t)il + 

+ H D~ 7Jh (t)-- D k_ Vh Ah Th (t)il = 

= 0 (h J -  (g- ~)) + 0 (h  max (1, rain (p + 1, J - (k-  r)))) jr_ 0 (h J-  (k- ~)). 

Together with (3.8), which covers the case k_> J + r, the assertion follows. [] 

With the help of the above two Lemmas (which follow essentially from the 
induction hypothesis (3.9)) we are now in a position to prove S I'. For this 
purpose we consider the variational equations (cf. Theorem 1.3.1 [-8]) for ej and 
eh, j respectively: 

j - q  

F' (z) e j=d~, j= - 2 j  Z -  ~ 21 (z) e j_ i+gj  (eq . . . .  , ej_q) (4.16 a) 
l=1  

j - q  

F' (Vh ~h) Oa,j = d~,j = - ;h,j (Va (h)-- ~ ~-;,,~ (Vh (h) Oh, j-~ + gh,j (Oh, q,..., Oh, j-q) (4.16 b) 

where 2j, 2h, j : Eh--*EOh are the coefficient operators of the local error mapping 
of problem (3.1) and (3.3), respectively. In both formulas, (4.16 a) and (4.16 b), 
the same operator F' occurs, because the defect (inherent in the neighboring 
problem) does not depend on the dependent variable y, so that its Frechet 
derivative with respect to y vanishes. 

To proof S 1', we proceed in an inductive fashion, i.e. we assume that the validity 
of (4.9) (and the validity of (4.10) for O 1) has already been verified for all j' 
with q<j '  <j  and derive (4.9) (and (4.10)) for j. For j = q  it will turn out that the 
validity of (4.9) and (4.10) follows immediately from Lemma 4.3, Lemma 4.4 and 
(4.22) of Lemma 4.6, because in this case only eq and Oh, q appear in the variational 
equations (4.16). 

In Section 3.6 we required that for linear problems "(3.13) ~ (3.14)" and 
"(3.16)=>(3.17)". To apply this requirement we will identify the problems (4.16 a) 
and (4.16 b) with (3.12 a) and (3.12 b), respectively; i.e. the following substitutions 
are made: 
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Notation of Section 3.6 Gh y~ y~ g~h 9 2 Z 1 Z~ 
(4.17) 

Notation of Section 4 F' z Vh (h d~,j d2,j ej eh,j 

Thus, the essence consists in verifying that, after these substitutions, the relations 
(3.13) and (3.16) hold, and that the parameters s 1 . . . .  in those relations are such 
that (3.14) and (3.17) are identical with (4.9) and (4.10). 

The assertion of Lemma 4.1 is identical with (3.13 c) for s 2 = J + r .  For the 
derivation of (3.13 a) and (3.13 b), we conclude from Lemma 4.1 and Lemma 4.2 
the following lemmas about the components of the decomposition (cf. Section 2): 

"~j =/gj ~- 7j, ~h, j = ]~h, j -~- ~h, j '  

j = q ( 1 ) J + r - 1  (4,18) 

Lemma 4.3: Under the assumptions of Section 3: 

II [Zj 2-- f~h, j (V h ~h)]l = 0  (hmax(~ J))), 

Proof: 
~) 

~)  

The functional part of the elements IljZ,/)h,j(Vh (h) @EOh a r e  linear combi- 
nations of D k z and D k (Vh (h), respectively, where k_<j + r. The coefficients or 
coefficient functions occuring in this linear combinations depend only on the 
operator L, which is the same for both problems (3.1) and (3.3). For k<_j+r 
we have (cf. (4.12)): 

H Dk z--Dk Vh (h II = 0  (h max(O'mln(p'J-(k-r)))) = 0  (h max(0' rain(p, J-j))). 

In the situation D1 we must take the jump conditions into consideration. 
Since (3.1) is a smooth problem we have 

II Dk+ z (t) - -  D k_ z (t) I[ = O, t e B h 

whereas Vh ~h has jumps whose behaviour is described in Lemma 4.2 (cf. 
(4.14)). For k < j  + r -  1 (cfi A 2 of Section 3.4) we can conclude: 

11 (Dk+ z ( t ) -  D k_ z (t)) - (Dk+ (V h ~h) (t) - D k_ (V h ~h) (t))11 ----- 

= 0 (h max (1, m~,, (p + ~, J -  (~-  r)))) = 0 (h ma~ (o, mi .  (p, s -  j)) + 1) 

which together with Note 3.3.1 gives the required result. [] 

Lemma 4.4: Under the assumptions of Section 3 

II 7jZ--~h,j(Vh(h) ll =O(hmax(~ j=q(1 )  J + r - 1 .  (4.19) 

Proof (Sketch): According to our assumption (cf. A2 of Section 3.4) the jump 
conditions of ~g and 7h, j vanish. Thus it remains to investigate the functional 
part of 7j z, ~h,j (Vh ~h)~ EOh, whose structure was discussed in Section 2. If e.g. 
7jz contains a term fz (t, z)D2z and the corresponding term of ~h,j(Vh ~h) is 
(8/8 Z) [ f  (t, Vh (h)+ dh (t)] D 2 (Vh ~h)= fz (t, Vh ~h) D: (Vh ~h) then the following esti- 
mation is possible: 

[I fz (t, z) D z z - f ~  (t, V h (h) D2 (Vh ~h)It -< I[ fz (t, z) D 2 z - - f z  (t, z) D 2 (V h ~h)II + 

+ II f~ (t, z) D z (Vh ~h)--f~ (t, Vh ~h) D2 (Vh ~h)II 
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and from Lemma 4.1 and the Lipschitz continuity of f~ the desired order can 
be derived. With exactly the same technique situations can be covered, where 
7j contains more complicated terms, and the required result follows from the 
assumptions about the structure of 7j (cf. Section 2). [] 

Lemma 4.3 gives together with Lemma 4.4 

]l "~j Z--2h, j (Vh (h)II = 0  (hmax(~ j = q  (1) J + r -  1. (4.20) 

For j > q  the inhomogeneities of (4.16), dh~,j and d2h,~, contain terms of the form 
)~'z (z) e i_ e and 2;, l (Vh (h) Oh, j -  2, respectively, beside 2j z and ~'h, j (Vh (h)" For 
these terms the following estimation is possible. 

Lemma 4.5: From the assumptions of Section 3 and from the validity of $1' for 
j' <j, it follows 

II )t'z (z) e j_ t - ~,;, t (Vh ~a) e h ,  j - 1 I1 = 0 (h max (o, rnin (P, J -- J ) ) ) .  (4.21) 

Proof (Sketch): If in the following relation 

,~'~ (z)  e j_  ~ - ih , ,  (Vh ~h) Oh, j -  ~ = (~', (z)  e j _ ,  - ~; ,  ~ (Vh ~h) Oh, ~ - , )  + 

+ (y'~ (z) e j_, -- ~;,~ (V h ~h) eh, j-Z) 

the first term (in parantheses) of the right-hand side is replaced by 
(#l(ej-t)--fih, t(Oh, j-1)) [/h is a linear differential operator!], then the desired 
result (4.21) can be easily derived inductively from the assumed validity of 
(4.9) for f < j  (and from (4.10) for f < j  in the case D 1) and from the assumptions 
about #~ and 7~ made in Section 2. [] 

Similar considerations for the terms 9~ (% . . . . .  ej_q) and 9h, j (eh, q,..., eh, j-q) lead 
to the desired relation (3.13 a) with Sl = J - j  (cf. (4.17)). To establish the validity 
of (3.13 b) with s~ = J - j  we need the following lemma: 

Lemma 4.6: Under the assumptions of Section 3 

]1DaP2jz-DkPY%j(Vh(a)l[--0 (hmax(O'mintp'J-J-k))), k = l ,  2 . . . .  (4.22) 

I1Dk P 2'i (z) ej_l--D k P 2;,z (Vh (h) eh, j - I  ]] = 0  (hmax(O'min(p'J-J-k))), 
(4.23) 

l<j, k = 1 , 2  . . . . .  

This lemma can be proved in an analogous way to that of Lemmas 4.3, 4.4 
and 4.5. 

Thus we have proved that (3.13) (with the substitutions (4.17)) holds, and 
consequently (3.14) is valid, which is identical with the assertion (4.9) for j. 
Similar considerations lead to relations (3.16) with s 7 = J - j ,  if (3.15) is identified 
with (4.16 b), i.e. if the following substitutions are made: 

Notation of (3.15) Gh Yh 9h Zh 

Notation of (4.16 b) F' Vh (h dZ, j eh,j 



228 R. Frank and C. W. Ueberhuber: Iterated Defect Correction for Differential Equations 

Sketch of Proof of $ 2 :  

To  p r o o f  $2,  all  t e rms  fo rmi n g  the r e m a i n d e r  of (1.3.12) of Stet ter  [-8] have  to be 
d iscussed  separate ly .  The  des i red resul t  t hen  fol lows f rom the s m o o t h n e s s  a s s u m p -  
t ions  on  f ( t ,  y) a n d  f rom the ab o v e  l emmas .  [ ]  

5. Conclusion 

In  this paper ,  we have  p r o v i d e d  a basis  for the p rac t ica l  i m p l e m e n t a t i o n s  of the 
I D e C - p r i n c i p l e  app l ied  to d i sc re t i za t ions  for differential  equa t ions .  The  com-  
p o n e n t s  of a n  I D e C - m e t h o d  have  been  inves t iga ted  step by  step w.r . t ,  the 
c o n d i t i o n s  which  they m u s t  satisfy in  o rder  to p r o d u c e  an  I D e C - m e t h o d  wi th  
a ce r ta in  des i red o rder  of accuracy.  In  P a r t  2 of  this  pape r  we will d e m o n s t r a t e  
prac t ica l  imp l i ca t i ons  of the  resul ts  p re sen ted  in  P a r t  1. 
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