
C o m ~ u t i n g  31, 317 - 346 (1983) ~ ~  
�9 by Springer-Verlag 1983 

Softwa~ Specification Using Graph Grammars 

G..Engels ,  R. Gal l ,  M . N a g l ,  and  W.Sch i i fe r ,  Osnabr i i ck  and  Er langen  

Received April 18, 1983 

Abstract - -  Zusammelffassung 

Software Specification UsingG~aph~Grammars. The following paper,demonstrates :fhat :programmed 
sequential graph grammars canbe used in a systematic proceeding tospecify tbechanges of highilevel 
intermediate data structures arising in aCpFogramming support environment, in which all tools,work in 
an incremental and syntax-tlrivenmode. In this paper we lay stress upon the way to get the specification 
rather than on the result,0f this:process. Therefore, we give here some approach to "specification 
engineering" using graph grammars. This approach is influenced by the syntactical definition of the 
underlying language for Programming in the Small, the module concept etc. to be supported on one side 
but also by the idea of,the user interface. 

AME'Szibject Classifications: 68 B 05, 68 B 10,68 F 05, 6"8!F25, 90-04. 
:Key.wards: Software development environments, software specification, syntax, graph grammars. 

Speziftkaiion von Software mittels Graph-Grammatiken. Der folgende.Aufsatz zeigt auf, dab program- 
~mierte sequentielle Graph-Grammatiken ,dazu benumt werden krnnen, die Ver~inderung ~hoher 
..Zwischeneodes zu spezifizieren, die im Kontext einer Software-Entwi~k, tungsumgehung auftreten, deren 
~W_e~kzeuge alle inkmmentell und syntaxgesteuert arbeiten. Wir  legen in diesem Atffsatz mehr Wert ~tuf 
,die ~Brl/iuterung.einer systematischen Vorgehensweise, um die Spezifikation zu erhalten, als auf die 
detaiUierte Ab~handlung der Spezifikation selbst. Somit kann dieses Papier'auch als ein Ansatz zu einem 
,;Spezifikations-Engineering" mit Hilfe von Graph-Grammatiken angesehen werden. Der Ansatz wird 
maBgeblich beeinfluBt won der Syntaxdefinition der zugrundeliegenden formalen Sprache for das 
Pro grammieten im ~Kleinen bzw. fiir das Modulkonzept etc. einerseits und andererseits vonder 
Worstellung der tForm, iier Benutzerschnittstelle. 

1.  I n t r o d u c t i o n  

The software which  is to he specified by  g raph  g r a m m a r s  in  the following p a p e r  is a 
programming support :environment ,(other n a m e s :  software deve lopment  system, 
p r o g r a m m e r ' s  workbench ,  etc.'), i ,e .  a se t  of  tools  implemen ted  by  software which 
~themselves facil i tate ~he deve lopmen t ,o f  software. The  user of  such an env i ronment  
usual ly  is  a !p rogrammer .  [Bu  80a]  summar i ze s  the requi rements  of  an  (in this case 
Classic) enx/ironment,  ~ta~lored :for :the p r o g r a m m i n g  language  Ada.  The  idea  of such 
envi ronments  i s  ( l )  to ease  soft,ware p roduc t ion ,  (2) to improve  the  re l iabi l i ty  a n d  
efficiency of ~software, and  thereby  (3) min imiz ing  the ove ra l l  ~osts 'for software 
within the w h o l e  software life ,cycle (p rob lem analysis ,  design,  i implementaf ion,  
va l ida t ion  and  evaluat ion ,  in tegra t ion ,  ins ta l la t ion,  maintenance) .  
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The aim of the project I P S E N  (Incremental Programming Support Environment) 
which is carried out at the University of Osnabriick in cooperation with other 
universities is to develop and implement such an environment. Within IPSEN all 
"technical" activities of software development are investigated, which means that 
support begins when the design has started, i.e. a part of the specification has been 
worked out. 

IPSEN has the following characteristics: 

�9 Incremental mode: The input is given in terms of language portions (increments) 
rather than by arbitrary text strings. Analysis, evaluation, or execution is even 
possible for partial programs, specifications, etc. This avoids a correction cycle 
which e.g. for programs consists of reediting, recompiling, relinking before 
execution after a change. 

�9 Syntax-directed: Any input is immediately checked, corresponding to context 
free as well as context sensitive relations and, consequently, incorrect inputs are 
rejected. Also, all implications of the input or the change of an increment are 
displayed. Therefore, a (partial) program or specification can never be syntacti- 
cally incorrect. The admissible alternatives for increment inputs or changes are 
indicated to the programmer by menus or help information. 

Command-driven: The user specifies by a command what he wants to do rather 
than only putting in the corresponding text string. Therefore, the system knows 
the user's intention which eases the analysis for syntactical correctness. On the 
other hand, parts of the concrete syntax as word symbols and delimiters can be 
generated automatically by the system. 

High-level intermediate data structures: Incremental mode enforces that all 
information contained in an external representation of a program, specification, 
etc. iscontained in and can be accessed from an intermediate data structure. On 
the other hand, support of program development especially means that messages 
corresponding to syntactical or semantical errors, or reporting on some kind of 
evaluation or execution are given in terms of constructs of the corresponding 
programming language, specification language etc. and not in those of internal 
characteristics of the underlying machine. These intermediate data structures are 
regarded to be graph-like here. Therefore, we call the intermediate code of a 
program system the system graph, that of a single program module the module 
graph, and so on. These graphs are the centers of all activities corresponding to 
system changes, module changes, etc. 

�9 Uniform user interface: The user interface for all tools is styled uniformly. Thus 
the user has not to realize the change of an activity from one tool to another. 

IPSEN is implemented on a remote mini-computer, which, together with all 
tools, results in a proorammin 9 support machine. 

Adaptable: Of course, the chosen module concept or programming language to 
be supported heavily influences the concept of a software development environ- 
ment. As a consequence, one major goal of designing a programming support 
environment like IPSEN is to get adaptability to other module concepts as well 
as to other programming languages. 
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�9 Integrated concept: Here, integrated means: (1) that most of the activities arising 
in the software life cycle are supported, (2) that the user interface is uniformly 
styled (as mentioned above), and (3) that tools are offered which combine related 
activities which are regarded to belong to different phases of software develop- 
ment in classic environments. 

Because of the incremental mode of the environment there is no sequential division 
of software development activities as suggested by the terms of software life cycle 
models. For example, the distinction between design, integration, and maintenance 
of a software system can no longer be sustained. At the time a part of the 
specification of the software system is put into the system, the (partial) integration 
can start (check for consistency of intermodular connections) and at the same 
moment the maintenance can begin (e.g. changes due to variations of the 
requirement definition). Corresponding to this view we have grouped the activities 
within software development when using an environment like IPSEN into the 
following three main problem areas: 
�9 ProgrammingintheLarge(containingthedesignof thesof twaresystemusingany 

specification language, transformation into an implementation language, in- 
tegration maintenance of the software system etc.). 

�9 Programmin 9 in the Small (module design, module coding, validation, module 
maintenance). 

�9 Organizational ltems (project management, project organization, variant/ver- 
sion control, release control, support of documentation, etc.). 

Of course, these three problem areas cannot be strictly separated. For example, one 
result of Programming in the Large can be a skeleton for each module, where the 
interface (export, import) of the module is fixed. On the other hand, within 
Programming in the Small a module can only use those resources, which are 
imported, and, conversely, all resources have to be realized, which are exported. So, 
also these problem areas are interleaved. Moreover, integrated tools, as mentioned 
above, cannot be designed and implemented without having managed an interaction 
between the various graph-like data structures. If, for example, one implements a tool 
handling all the tasks which have to be carried out when the export of a module is 
changed, then this tool must control activities corresponding to (1) project 
management (as not everybody is allowed to do this change), to (2) project 
organization (as the cost of this change should be estimated), to (3) release control (as 
this module now is no longer accessible), to (4) variant/version control (as the old 
system which contained the module may further exist as a special variant), to (5) 
specification within Programming in the Large (as all implications of this change 
have to be found out and corresponding changes, namely within the corresponding 
import clauses, have to be carried out), to (6) Programming in the Small (as the new 
import also leads to changes within the module implementation), to (7) documen- 
tation (as the technical documentation has to be altered also) etc. 

In this paper we mainly deal with Programming in the Small and only to a certain 
extent with Programming in the Large. Furthermore, all aspects of evaluating and 
executing (partial) program modules or (partial) program systems are not regarded 
here. So, we concentrate exclusively on syntactical aspects here (including the 

21 Computing 31/4 
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context sensitive syntax). The topic to be considered in detail is, which kind of 
incremental syntax-aided editing in a broad sense is possible and reasonable within 
Programming in the Small and Programming in the Large. 

For high level intermediate data structures we use graphs rather than trees (together 
with attributes). The reason is that (1) graphs are a uniform model which can be 
applied to internal high level intermediate codes of all problem areas, (2) there is no 
(artificial) distinction between the information which can be expressed within trees 
or outside trees, and (3) also aspects of evaluation and execution of program modules 
and program systems can be treated by the same model, as further information for 
evaluation and execution purposes can be integrated without leaving the class of 
admissible intermediate data structures. This, however, is not a reasoning for 
avoiding attributes at all. Attributes are necessary for expressing values. We pledge 
for using the same model for all structural information. 

In order to describe how modules and programming systems are built up and 
changed, we use graph grammars as a specification instrument. This specification is 
given for the graph-like intermediate data structures. Here, specification has a two- 
fold meaning: on one side we make clear how these incremental changes on the 
module or system graph look like, therefore using the term specification in the sense 
of making things precise on some more abstract level. On the other hand, we will 
show that this specification is also a specification in the software engineering sense, 
i.e. that it yields a detailed guide how to write the software realizing IPSEN. This 
graph grammar specification uses sequential programmed graph grammars. Here, 
sequential means that one rewriting step takes place after the other, programmed 
that such a rewriting step internally consists of a sequence of applications of 
productions where so-called control procedures determine the order of applications. 
In this paper no formal details about graph grammars in general and sequential 
programmed graph grammars in particular are given. The reader is referred to 
[Na 79]. 

This paper is based on [Na 80] where the concept of an integrated programming 
support environment is sketched originating from an incremental compiler. Other 
approaches for programming support environments started from different points of 
view, as GANDALF [Ha82] ,  M E N T O R  [DG80] ,  the Program Synthesizer 
[-TR 81]. Rather independent from each other they all developed similar integrated 
concepts. However, regarding graphs and not trees as internal structures and using 
graph grammars as specification instrument is specific to IPSEN. Parts of the 
presentation of this paper can be found in more detail in [ES 82] and [-GA 82, 83] 
and a preliminary version of this paper is given in I-NEGS 83]. A forthcoming paper 
will discuss the overall concept of IPSEN. 

The organization of this paper is as follows: Most of the paper, namely sections 
2 - 8, deal with the problem area Programming in the Small, which is presented in 
detail. For that, the input mode of syntax-aided editing is given first which later is 
generalized to cover the full incremental mode, where inputs, changes, and deletions 
may be done in any order. We start with comments on the user interface in section 2, 
then in section 3 we make precise on the string level what we mean by an increment 
and which kinds of increments we need for further proceeding. In section 4 we give 
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guidelines how to modify the grammar of the underlying programming language in 
order to get these kinds of increments. In section 5 the increments are discussed on- 
the graph level and the overall structure of the module graph is presented. 
Furthermore, in section 6 we construct the programmed graph grammar for the 
input editing mode. In section 7 and 8 the user interface and the programmed graph 
grammars are revised to handle the full incremental mode. Finally, section 9 outlines 
that an analogous proceeding can be applied for the problem area Programming in 
the Large. 

2. Sketch of the User Interface 

Before starting with incremental editing, it is useful to sketch the state o f  the art how 
a program nowadays is put into a computer. In most cases the source code of a 
module is edited by a usual text editor irrespective that it has to be written in some 
formal notation and it is not arbitrary prose. Then it has to be analyzed syntactically 
(usually as a part of compilation). After some syntactical corrections the module is 
syntactically correct. Changing this module means to start again with text editing 
and reanalyzing the complete source. This proceeding is inefficient because of two 
reasons: (1) it takes a long time to know about syntactical errors, and (2) it is 
inconvenient to force the programmer to learn unimportant details of his 
programming language as e.g. the word symbols and delimiters of the concrete 
syntax. 

As the idea of the user interface of our syntax-aided editing tool has a deep influence 
on the graph grammar specification we start our discussion by sketching the user 
interface in this section. 

We suggest a division of the screen into three different areas: (1) the working area 
contains a part of the source code of a module in Programming in the Small, a 
portion of the specification in Programming in the Large, some fragments of 
documentation, when supporting the editing of user or technical documents, etc., (2) 
the command area contains menus for command selection, text fields for parameters 
corresponding to selected commands etc., and (3) the status line reports on the tool 
which is used, the expected reaction time etc. The latter is no longer regarded in this 
paper. Working area and command area contain two different cursors indicating the 
actual position. These are called working cursor and command cursor in the following 
text. 

Let us regard a f ragment  o f  a session within which a PASCAL procedure with name 
EXAMPLE is put in by making use of syntax-aided editing (cf. Fig. 1). We assume 
that the skeleton of this procedure is already displayed in the working area. The 
working cursor always points to the position where the source code is to be modified. 
In our case (cf. Fig. 1. a) this cursor is located after the procedure head. Within the 
command area a menu is displayed showing all possible inputs of the user, i. e. in this 
case all possible declaration alternatives. Now, the user selects the third alternative, 
namely ITD for insert type declaration. 

21" 
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I 

procedure EXAMPLE; ( ~ j ]  ITD INSERT TYPE DECLARATION 
�9 choice I 

begin / /  ] typeB. . . . . . . . . .  type_def; 
end; / ~ / I T D  I identifier 

k * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  *********************************** 1. b 
DECLARATION ALTERNATIVES 
LABEL mILD VAR [ ] IVD 
CONST [] ICD FUNC [] IFD PERSON 
TYPE []ITD PROC []IPD 
************************************ procedure EXAMPLE; 

1. a type PERSON = � 9  ; 

procedure EXAMPLE; 
type PERSON = �9 

begin 
end; 

choice 

IRT 

IRT INSERT RECORD TYPE 
[] packed 
�9 unpacked record ] \ c h o i c e  

record_co�9 1 ] un- 
end I packed 

************************************* A 

begin 
end; 

TYPE DEFINITION ALTERNATIVES 
TYPE_ID l i T  AR_TYPE []IAT 
EN_TYPE [] IET REC_TYPE[] IRT 
SR TYPE � 9  SET_TYPE DIST 
PT_TYPE DIPT FIL_TYPE DIFT 

1.c 

procedure EXAMPLE; 
type PERSON = 

record 

end; 
/ ~ ]  begin 

choice end; 
*********************************** / / I *********************************** / / # 

IRC INSERT RECORD COMPONENT / @ R C  ] RECORD PART ALTERNATIVES 
I I c /  [ ANOTHER RECORD COMP. � 9  

J 

I ~ . . . . . . . .  : type_def [ / VARIANT PART []IVP 
id-list I ~ \ * ** ** ** ** ** *** ** ** ******* ********** 

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  l e 
" l . f  FIRST_N / 

}------) procedure EXAMPLE; 
LAST_N 

break 
type PERSON = 

record 
FIRST N, LAST_N: �9 

end; 
begin 
end; 

TYPE DEFINITION ALTERNATIVES 
l.g 

Fig. 1. Fragment of a dialog of syntax-aided editing (input mode) 

W i t h i n  the  c o m m a n d  a rea  the  m e n u  d i s appea r s  and  a f r ame  for t ype  dec l a r a t i on  is 
p re sen ted  (cf. Fig .  1. b). I n  this f r ame  the  w o r d  s y m b o l  type,  the  equa l  sign a n d  the 
semico lon  are  a l r eady  con ta ined .  There fo re ,  the  user  need  n o t  k n o w  these  conc re t e  
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syntax symbols. The command cursor is at the position of the type identifier. Dot 
sequences indicate all input fields within a frame and comments make clear, which 
kind of input is allowed. Now, let us assume that the user types in the string 
PERSON for the type identifier and then presses a special button "next" indicated 
by a right arrow. As there is only one input field in this frame, the frame is already 
completed (but, of course, not the type declaration increment). 
The frame, which can be regarded as some cutout of the source code (enriched with 
detailed information), is now transferred to the working area (cf. Fig. 1. c). The 
working cursor now is at the position of a type definition. The command area 
immediately shows all possible alternatives. We assume that the user chooses the 
alternative for a record type definition. 
In this case, the frame consists of the pair of word symbols record and end (cf. 
Fig. 1. d). Especially, it contains no input field. However, by a selection the user has 
to choose, whether the type definition is that of a packed record type or not. Now the 
user may have chosen an unpacked type definition. Within the next menu (cf. 
Fig. 1. e) the user is asked whether he wants to put in a record component and 
elongate the list of components or whether he wants to switch to the optional variant 
part. Let us assume that he decides for the first alternative. 
Within the command area the frame for a single record component or a sequence of 
components of the same type is displayed (cf. Fig. 1. f) which contains only one input 
field for a list of identifiers. Now, the user types in the string FIRST_ N, then presses 
the next-button by which the separating comma symbol is automatically generated, 
then types in the string LAST_ N, and then, by pressing a break-button, indicates 
that the list of identifiers for record components is completed. 
Then, the frame is transferred into the working area (cf. Fig. 1. g) the working cursor 
being at the position of a type definition. Thus, the displayed menu is the same as in 
Fig. 1. c. Now, the user selects one alternative for type definition and the dialog may 
proceed anyhow. 

What can we learn from the example dialog of Fig. 1? The input of a language 
increment is started by naming an insert command for this increment, which here is 
done by selection from a menu. Increments may either be "simple", as a type 
identifier, a record component name etc., or they may be "complex", as a type 
declaration or a type definition. Complex increments are related to structured 
frames. These frames contain comments to indicate input fields for simple 
increments and to give hints what kind of input is expected. All possible symbols of 
the concrete syntax are generated. Therefore, the user is liberated from learning 
most of the concrete syntax of the underlying programming language. 

The complete syntax of any input is immediately checked: This means (1) that it is 
immediately checked whether an increment is possible in a special location at all, (2) 
that the context free syntax rules of the increment (e.g. whether an identifier at a 
certain place of an increment is correctly built up) as well as (3) the context sensitive 
syntax rules corresponding to this increment (e. g. whether a record type declaration 
does not contain two components with the same name, or whether a variable which 
is used is also declared) are fulfilled. Therefore, no syntactically incorrect (fragment 
of a) module source is possible (corresponding to the inputs which have already been 
made). 
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3. String Increments 

Above we spoke of increments as the portions in which module source text is put in. 
Of course, these increments are not arbitrary pieces of source text. Instead, they 
correspond to language constructs or meaningful fractions thereof, as an expression, 
an array type declaration, a while-statement etc. To say it in another way, they 
correspond to the nonterminal symbols of the context free grammar of the 
underlying programming language. A strin9 increment is any phrase derivable by 
this string grammar which starts with the corresponding nonterminal symbol as 
string axiom. 

We distinguish between simple and complex increments. Corresponding to the 
mode of input simple increments are not further divided. Instead, they are put in in 
one step as a text string. In IPSEN simple increments are e.g. identifiers, literals, but 
also arbitrary expressions. Therefore, there is a cut within the set of nonterminal 
symbols of the grammar distinguishing between simple and nonsimple ones. (This 
cut makes only sense for statement-oriented languages.) The reason for regarding 
expressions as simple increments is that a division of expressions by commands into 
subexpressions etc. until one ends up at the level of primitive operands is too 
inconvenient. Whereas there may be a different opinion whether to make 
expressions simple or not, identifiers, literals etc. must be simple as it is completely 
up to the user to determine the identifier for an object, or the literal corresponding to 
a compile-time value. Putting in the text string for a simple increment internally 
leads to a complete syntactical analysis of this text string, which can be regarded as a 
construction of a complete derivation subtree. 
Complex increments on the other side are structured corresponding to the mode of 
input by the IPSEN user. Their inpu t is started with a choice within a menu, i.e. by 
the selection of a command. They usually consist of concrete syntax symbols as word 
symbols or delimiters, and of simple increments and further complex increments. 
Examples are a type declaration or a for-statement. As already sketched above the 
user need not know the concrete syntax symbols (they are generated) nor the order of 
simple or complex increments within a complex increment (they are displayed 
within frames). Complex increments are derived step by step corresponding to the 
user's input of choices and of simple increments. 

Nonterminal symbols for simple or complex increments occurring within incre- 
ments are called gaps. These gaps have to be filled by further activities of the user. 
An increment is called not expanded or empty if besides concrete syntax symbols it 
contains only gaps and no other increments. So, "boolean_expression" or "if 
boolean_expression then statement" are empty increments. On the other hand an 
increment is called totally expanded or full if it contains no gaps, neither for simple 
nor for complex increments. Within all intermediate steps the increment is called 
parHally expanded. 
It is clear f rom the above discussion of different input modes that a complex 
increment can either be empty, partially expanded, or full whereas a simple 
increment can only be either empty or full. 
For the input mode of text editing which we have sketched in the last section the 
following situation holds: An increment is entered as an empty increment and it is 
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left as a full increment. Therefore, when having decided to put in a certain language 
construct into the source code, this language construct is riot left until being 
completed. This is not true for the full incremental mode which we regard later on. 

An increment can be a part of another increment. Then we call it an inner increment. 
An inner increment may be simple or complex. Nesting of data or control structures 
is a consequence of complex increments being inner increments of complex 
increments. 

Increments are also classified whether they are optional or obligatory. There exist 
optional simple increments (as e.g. the label of a statement) as well as optional 
complex increments (as e.g. a type declaration). Analogously, we have obligatory 
simple increments (as e.g. the boolean expression within an if-statement) as well as 
obligatory complex increments (as the main program). Please note that correspond- 
ing to input optional complex increments always have a corresponding frame 
whereas optional simple increments are always a part of the frame to a complex 
increment. 

In input mode frames always correspond to complex increments as outlined in the 
last section. However, frames and complex increments are not the same. Especially, 
inner complex increments B_i of a complex increment A are not contained in the 
frame to A. The reason is that a complex increment may lead to an arbitrary 
complex piece of source code which cannot be displayed in a region of fixed size on 
the screen, i.e. here within the command area. If a complex increment contains 
further complex increments, then these complex increments also have frames. So, a 
frame is the "result" of a complex increment after erasing complex inner increments, 
indicating simple increments or lists thereof as input fields and enriching this with 
comments and giving it a certain layout. 
In full mode simple increments also have frames which, however, only consist of an 
input field. In input mode simple increments always occur as input fields within 
frames of complex increments. 

For any simple or complex increment there is a strin9 representation in the working 
area on the screen as part of the source code. Here, also, nonterminal symbols are 
not displayed. Furthermore, indentation and splitting of the increment to fit into 
consecutive lines are characteristics of this mapping. 

Nonterminal symbols of the grammar which do not belong to simple increments 
need not always correspond to complex increments. Such nonterminal symbols may 
also represent a choice out of a finite set of alternatives. Thus, these nonterminal 
symbols represent a class of (here in most cases complex increment) nonterminal 
symbols which are admissible in a certain place of source text. This is e.g. the case for 
the nonterminal type which represents the nonterminal type identifier up to record 
type. Of course, such nonterminals correspond to menus on the screen where one of 
the members of the class has to be selected (cf. Fig. 1. c). 

However, menus also correspond to situations where the user specifies whether he 
wants to have an optional increment or not or whether he wants to have options out 
of a determined sequence of options. The first is the case for the variant part selection 
in Fig. 1. e, the second for the declarations in Fig. 1. a as the PASCAL syntax fixes 
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the order of declarations. Finally, menus may also represent whether a cycle of 
inputs of a certain kind of increments is continued or not. This e.g. is the case for the 
first alternative of the menu of Fig. 1.e but also e.g. for the menu for statement 
alternatives which after the input of a statement is presented again to determine the 
kind of the next statement. 

Complex increments may contain gaps which are filled by a list of elements of one 
and only one class of nonterminals. This is the case for the components of a record or 
the statements of a procedure body. As the user has to decide about the length of 
such a list, each element of this list is always regarded as a separate simple or 
complex increment, respectively. In the case of a complex increment there exists a 
corresponding frame, while in the case of a simple increment in input mode the 
whole list is contained within the corresponding frame. 

Summing up we see that we have got three kinds of nonterminal symbols which are 
differently represented in the command area: (1) simple increment nonterminals 
which are represented as input fields within frames (nonterminal symbols which 
correspond to parts of simple increments as e. g. factor, primary etc. do not appear at 
the user interface and, therefore, are not interesting for our investigation), (2) 
complex increment nonterminals which correspond to frames consisting of concrete 
syntax symbols, input fields, and comments, and, finally, (3) menu nonterminals 
which correspond to menus where one of more alternatives, an option, a sequence of 
options, or the continuation of a loop has to be decided. We would like to emphasize 
here again that the distinction between simple and complex increments is a matter of 
the user interface but not of the underlying grammar. Especially, simple increments 
internally may be arbitrarily complex. 
Within the next section we shall outline that starting with a grammar for a 
statement-oriented programming language this grammar can easily be modified 
such that it only contains nonterminals of these three kinds. 

4. Syntax Diagram Modifications 

In the following we use syntax diagrams as a representation of the grammar of the 
underlying programming language. We show how the given syntax diagrams (cf. 
e.g. [-JW 78]) can be modified in order to get the three different kinds of nonterminal 
symbols corresponding to simple increments, complex increments or menus. 
Modification here means (1) that some syntax diagrams are made more hierarchical 
inasmuch as some part of it is taken out and made to another new syntax diagram, 
and that, on the other hand, (2) syntax diagrams are also flattened by "inline 
inserting" syntax diagrams into other ones. Furthermore, optional elements are 
spread in order to have them in deeper increments. This, for example, is the case for 
the label of a statement. 

The modification should be carried out according to the following guidelines: 
1. Syntax diagrams for simple increments and their subordinate nonterminals are 

not modified. This means that the syntax diagrams for expression, simple 
expression, term, factor etc. are not changed. 
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2. All other syntax diagrams are modified such that for any empty complex 
increment there is a syntax diagram all terminal nodes of which are labelled with 
the concrete syntax symbols of this complex increment and all nonterminal nodes 
are labelled with the names of syntax diagrams corresponding to the gaps in this 
complex increment. Especially, lists of simple increments always belong to a 
complex increment. 

3. All remaining syntax diagrams must correspond to menu nonterminals. Such 
syntax diagrams consist of multiple alternatives of nonterminal nodes labelled by 
the names of other syntax diagrams (cf. Fig. 3. a). They may also represent a 
sequence of options or a loop of complex increments (cf. Fig. 3. c). In many cases 
they may also consist of a combination of these three possibilities (cf. Fig. 4). 
Usually, nonterminals occuring within the syntax diagram to a menu type 
nonterminal correspond to complex increments. 

type -[ simple type ] 

- ( ~ - - - - - - ~  type identifier [ 

, ( ~ _ L ~  simple t y p e ~ - ~  

simple type } 

2. a 

simple type �9 [ type identifier t "I 
2. b 

field list 

identifier variant part 

G 
2. c 

Fig. 2. Original syntax diagrams for type, simple type and field list 

Let us show this modification of syntax diagrams by some examples. We start with 
the three syntax diagrams for type, simple type and field list of Fig. 2. The syntax 
diagram for field list has already been modified by replacing the subdiagram for the 
variant part by a nonterminal node and creating an own syntax diagram for it. 



328 G. Engels, R. Gall, M. Nagl, and W. Sch/ifer: 

Since each type definition alternative is regarded as a complex increment, the syntax 
diagram for type is modified such that it contains only a multiple alternative of 
nonterminal nodes each of which corresponds to an other syntax diagram. This 
modification is done by inline insertion of the syntax diagram for simple type, then 
replacing each type alternative subdiagram by a nonterminal node and by creating 
new syntax diagrams. The resulting syntax diagram (cf. Fig. 3. a) corresponds to a 
menu nonterminal having a menu representation on the screen (cf. Fig. 1. c). 
Some type definitions may be declared by the user as packed type. This decision of a 
user is included because of certain reasons within the frames for the type definition 
alternatives (cf. Fig. 1. d) and, therefore, also in the corresponding syntax diagrams. 
This implifies that the terminal node labelled by packed in the syntax diagram for 
type (cf. Fig. 2. a) has to be inserted into each of these type definition alternatives. 
For example, the syntax diagram for a record type declaration is modified as given in 
Fig. 3. b. 
Since each record type consists of a possibly empty semicolon-list of record 
components, each list element forms a separate complex increment, described by the 
syntax diagram record component of Fig. 3. d. 

type 
type identifier ] 

-1 enumeration type I 

--1 subrangetype I 

_t pointer type ] -1 
. [ array type ] 

_r record type 1 -t  l 
:_f 1 ~. _i set type j 

- t file type j 3. a 

record type 
l " ~  field list - ( - ~  

3. b 

field list 

j - 
3. e 

record component 

identifier 
3. d 

Fig. 3. Menu and complex increment nonterminals corresponding to a record type 
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If there is a sequence of optional pa r t s  in a syntax diagram, the questions are 
presented to the user like a menu. Here, however, the user is not allowed to choose in 
arbitrary order. For example, this is done for the declarations in a block, where each 
declaration part is optional (cf. Fig. 1. a). The corresponding modified syntax 
diagram is given in Fig. 4. 
An analogous situation occurs if the user is asked for the continuation of a cycle (and 
in this case also for an option) as given in Fig. 3. c. Now, the correspondence of 
syntax diagrams of Fig. 3 to the menus and frames of Fig. 1 is obvious: Fig. 3. a 
corresponds to the 1-from-n selection in menu 1. c, Fig. 3. c and Fig. 4 to the menu of 
Fig. 1. e and 1. a, respectively, whereas the syntax diagram of Fig. 3. b and 3. d 
correspond to the frames of 1. d and 1. f. 

declaration alternatives 

label decl part ~ - ~  const decl part type decl part } "~ 

- I var decl part func decl 

proc decl 

Fig. 4. Menu nonterminal corresponding to a sequence of options 

5. The Module Graph 

As mentioned in the introduction incremental mode enforces high-level in- 
termediate data-structures (intermediate codes). For  Programming in the Small, i. e. 
for a single module, this data structure is called module graph. As Programming in 
the Small also means runtime support, transformation etc. of modules (cf. e.g. 
[Na 80]) the internal structure has to be chosen not only to cover the aspect of 
syntax-aided editing. AII these activities may need further information to be added 
to or deleted from the internal data structure. This is the reason that the 
intermediate code is a graph and not only a tree. The module graph (e.g. Fig. 5) is a 
labelled graph where labelled nodes in most cases express lexical units or increments 
and where labelled edges express context free as well as context sensitive relations. 

To any string increment there corresponds a graph increment. The module graph is 
nothing else than a composition of graph increments. 
An empty simple increment corresponds to a node labelled with a place holder label 
(abbr. by ph). So, an empty increment for an identifier is represented by a node  
labelled with ph_id. A full simple increment corresponds either to a single node 
labelled with a lexical unit for an indentifier, literal etc. or, in the case of a variable or 
an expression, it is internally represented by a subgraph of the module graph. This 
subgraph essentially is the abstract syntax tree. 
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An empty complex increment is described by a graph the nodes of which are labelled 
with concrete syntax symbols or with nonterminal symbols of the modified 
grammar of section 4. The latter ones are indicated as placeholder nodes. For a 
complex increment there is always a start and an end node both being connected by 
an ei-edge (for end of increment) if this relation is not expressed by other edges. 
Graph increments corresponding to the inner increments of a complex increment 
are connected to the start node of the complex increment using different labelled 
edges: e. g. c-edges for the components of a record, td-edges for indicating a type 
definition, n-edges for a denotation to a construct etc. If the complex increment is 
partially expanded or full then some or all of nodes labelled with the nonterminals 
corresponding to the inner increments have been replaced by nodes or subgraphs. 

Besides the edges indicating inner graph increments we need edges of a certain label 
to indicate the order of increments. This order (1) may be enforced by the syntax of 
the programming language (as the order of declarations in PASCAL) but (2) it is also 
necessary to express the order in which increments (the order of which is arbitrary 
corresponding to the programming language) have been put in by the user. These 
edges are drawn without a label in the following figures. This order also gives the 
order of elaboration of declarations and execution of statements of a given module. 

ei 

Fig. 5. Module graph 

Further edges are needed to express context sensitive relations between increments 
or parts thereof. Especially, any applied occurrence of a data object must have a 
declared occurrence. The same holds true for type identifiers, labels, and procedures 
and functions. In the example module graph of Fig. 5 for example there is an o-edge 
indicating that the PERSON-node within the object declaration is an applied 
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occurrence to the PERSON-node within the type declaration. These context 
sensitive relations especially show the advantage of the graph as model for the 
internal data structure. The PERSON-node is kept twice in the module graph to 
have a simple one-to-one correspondence between the module graph and the source 
text on the screen. 
Further edges, which are not drawn in Fig. 5 are necessary e.g. for simply handling 
cursor movement but also for other technical reasons arising in the context of 
evaluation and execution of the module graph. 

Nodes labelled with nonterminal symbols represent either a certain simple 
increment (e. g. ph_ id) or complex increment, or a class of complex increments (e. g. 
ph_ td for type-definition) or a list of simple or complex increments (e. g. ph _idl or 
ph_ stmtlst for identifier list or statement list). In either case the nonterminal symbol 
exactly specifies the kind of admissible input to be asked by the user. This is 
especially necessary for the full mode to be explained later. 

Finally we have to introduce the cursor node. This node represents the place where 
editing (but also any other action) takes place. The cursor node, therefore, is the 
graph representation of the screen cursor. 

The translation scheme pursued in IPSEN is given in Fig. 6. Corresponding to the 
input of editing commands the module graph is altered appropriately. The source 
code displayed on the screen is generated from the module graph, i.e. the source text 
is not kept in storage, too. This module graph may now be evaluated to find out, 
whether the (partial) program has some property, it may be transformed to get some 
property, or executed. This execution may also happen after having instrumented 
the module graph by some consumption counters, or this execution may only go on 
if some test conditions hold true or after resumption of the user at some breakpoints. 
Also, execution may take place only after having translated the module graph to 
some other more machine adequate level (incremental compiling). All these aspects 
of further activities around the module graph are not studied in this paper (cf. e.g. 
[Na 80]). Now, the reader may understand that the module graph is the center of all 
activities corresponding to Programming in the Small. 

Changes 
input of _ _ . ~ ~  on / -  t - f  

tmodule~ commands ~ ,.. / 
/source ! / " - ~  module translation ~> other level 

r-tn .. ~ a p h  . -  - - (execution) 
generation of-  / . /  /s.l \ \  .- / 

~ ~text repre- " / It \ \  
sentation / \ I 

\ / 
/not \ evaluation 

transformation ( regarded \ 
here test 

instrumentation 
execution 

Fig. 6. Translation scheme for Programming in the Small within IPSEN 
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6. Construction of a Programmed Graph Grammar for Input Mode 

In this section we will show that module graph changes due to syntax-aided editing 
commands can easily be specified using a sequential programmed graph grammar. 
Furthermore, this graph grammar can systematically be derived from (1) the 
modified (context free) string grammar of the underlying programming language of 
section 4, (2) the context sensitive relations of this language, and (3) the idea of the 
user interface we have outlined in section 2. It should be noted that detection of 
errors and recovery corresponding to errors made by any input of the user is not 
handled here. 

A sequential programmed graph grammar consists of a start graph, a set of 
productions, and a set of control procedures which control more complicated graph 
rewritings. A production consists of a left-hand side (the graph to be replaced), a 
right-hand side (the graph to be inserted) and an embedding transformation (which 
says, how incoming and outgoing edges are transferred, when the right-hand side 
replaces the left-hand side). For the embedding transformations needed in this paper 
the notation of nearly any graph grammar approach can be used (cf. [CER 79]). A 
control procedure is nothing else than a flow diagram the actions of which are 
applications of productions or calls of other control procedures. However, an action 
may also demand an input of text corresponding to a simple increment. 
Furthermore, there are decision notes where an input of the user is expected to 
decide the edge to proceed further in execution. Control procedures are denoted here 
in a PASCAL-like fashion in order to make use of control structures. A direct 
sequential programmed derivation step from graph g to graph g' by control 
procedure c_i, which is abbreviated by 

g - -  s p - - )  g', 
c_i 

is nothing else than a sequence of elementary sequential derivations with 
productions p_j which are named by action nodes of a control path through c_i and 
all the control procedures called within this path. A sequential programmed 
derivation then consists of a sequence of such direct sequential programmed 
derivation steps. The aim of introducing control procedures is to describe 
modifications of a graph which are the result of a sequence of simple steps rather 
than the result of a single step. 

The construction of the graph grammar is done in two steps starting with the 
modified syntax diagrams the nonterminal nodes of which are either simple 
increment, complex increment, or menu nonterminals: (1) The control procedures 
are nearly derived automatically. (2) The second step then consists of writing down 
the corresponding graph productions for these control procedures. The shape of the 
graph increments to be inserted we have already indicated in the last section. Let us 
demonstrate this procedure for getting the graph grammar specification first for 
menu nonterminals. Fig. 3. a shows the syntax diagram for type. This syntax diagram 
directly corresponds to the menu of Fig. 1. c. The translation of the syntax diagram 
of Fig. 3. a into the control procedure of Fig. 7. a is trivial. A menu nonterminal 
representing a 1-from-n selection is translated into a case-statement where in each 
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case-alternative the control procedure for the corresponding complex increment 
nonterminal (only type identifier is a simple increment nonterminal) is called. 
Analogously, the menu nonterminal field list of Fig. 3. c representing a loop followed 
by an option is directly translated into the control procedure of Fig. 7. b. Please note 
that for this kind of syntax diagrams no graph productions have to be developed as 
the modification of the module graph is only done in the control procedures called 
within menu type control procedures. Thus, the function of control procedures for 
menu nonterminals is only to call the control procedures corresponding to the 
selection the user has made. 

control procedure type def; 
begin 

case "user choice" of - -  by input of a cmd by selection 
IT: type_id; 
IET: en_ type_def; 
ISRT: sr_type def; 
IPT: ptr_type_ def; 
IAT: ar_type def; 
IRT: rc type def; 
IST: set_type_def; 
IFT: file_ type_def 

esac 
end; 

control procedure rc_field_list; 
begin 

while "another record component" do - command IRC by selection 
rc_comp decl; 

if "variant_part" then - -  command IVP 
rc_ varpart 

end; 

Fig. 7. Menu nonterminals and corresponding control procedures 

7. a 

7.b 

The next type of nonterminals to be discussed is the complex increment nonterminal. 
Again, the translation into a control procedure is straightforward. The structure of 
the (modified) syntax diagrams of Fig. 3. b and 3. d can directly be found within the 
procedures of Fig. 8. At the beginning of each control procedure, however, there is 
an application of a skeleton production which inserts the concrete syntax nodes and 
some placeholder nodes in the module graph as we show in detail below. At the end 
of each control procedure we find the application of a technical control procedure 
e r a s e - o p t - p h s  which deletes some placeholder nodes which are not necessary 
further. The function of the control procedure rc type_def mainly is - besides of 
applying technical productions - to call the control procedure rc_field _list. This is 
because the frame for record type definition has no input fields for simple 
increments. The frame for record component declaration contains an input field for 
a list of identifiers but not the corresponding type definition. Here, opposite to 
rc_ f i e l d  list, we have a nonempty sequence. Therefore, here an until-loop instead of 
a while-loop is used. For each identifier put in by the user some context sensitive 
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check is necessary here to avoid that this identifier has already been used for another 
component within the actual record type definition. The insertion of the subgraph 
corresponding to the type definition of any component is done within the procedures 
which are called within the control procedure type_def. 

control procedure rc_type_def; 
begin 

rc_skeleton; -- frame here contains no input field, it is immediately 
if "packed" then change_to_packed_rc; - -  transferred after having 
rc_field_list; - -  decided for packed/unpacked 
erase_ opt_phs 

end; 

control procedure rc_comp_decl; 
begin 

rc_ comp_ skeleton; 
repeat 

rc_comp_id - -  component identifier is taken as input 
- context sensitive check 

until break symbol; 
frame is closed and transferred 

type_def; - insertion of type definition within the control 
- procedures called in type def 

erase opt_phs 
end; 

Fig. 8. Complex increment nonterminals and corresponding control procedures 

8.a 

8.b 

Let us now explain how the productions for the two control procedures rc_type_def 
and rc _ comp _ decl look like (cf. Fig. 9). The production rc_ skeleton inserts a pair of 
rec-end-nodes, but also changes the placeholder node from ph_td to ph_fl where fl 
stands for record field list. The cursor is moved to the ph_fl-node. The embedding 
transformation is such that all edges of node 1 of the left-hand side are transferred 
without any change to node 1 of the right-hand side and the same happens for edges 
incident to node 2 of the left- and right-hand side, respectively. This is indicated by 
E id (1 ; 1) and E_ id (2; 2). Analogously, the production rc_ comp_ skeleton inserts 
two further placeholder nodes, namely for identifier list and for type definition. The 
ph_fl-node for record field list is still existing. The cursor now is at the ph_idl-node, 
as identifiers for record components are expected. The cursor-node gets again an 
identical embedding while the embedding of the node 1 of the left-hand side is now 
transferred to node 1 and 3 of the right-hand side. This means both that the ph idl- 
node as well as the ph_fl-node of the right-hand side have an incoming c-edge after 
the application of this production. The production rc_comp _id inserts a record 
component identifier leaving the ph_idl-node available as further identifiers are 
expected. Note, however, that this identifier node is only inserted if within the same 
record type definition there is no record component with the same name. This is 
expressed by the negative application condition drawn here as a subgraph separated 
from the left-hand side by a dotted line marked by NOT. The label id within this 
production stands for an arbitrary identifier. So, we furthermore have some 
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primitive two-level mechanism here. Finally, the technical control procedure 
erase_opt_phs erases the optional placeholder nodes of the actual increment. The 
reason that we erase the placeholder nodes is that in the full incremental mode (see 
below) nearly everywhere a change can occur and, because of storage and lucidity 
reasons, we cannot insert everywhere a placeholder node. So, to act uniformly, the 
placeholder nodes are also deleted here. This control procedure consists of 
productions where the optional placeholder nodes are erased unconditionally and 
which are quite simple. 

rc_ skeleton : : = 

2 

1 ~ 4  E_id(1; 1) 

e 1 ~ 3  ~ 2 E  _ id (2; 2) 

rc_comp_ skeleto .. _ 

2 2 
3 

C / 

rc_comp_id / /  1 1 

E_id(l;  1,3) 

" "2 

4 

E_id(1 ; 1,3) 
E_id (2; 2) 

Fig. 9. Graph productions of control procedures rc_type_ de/', rc_ comp_ decl 

For another and more typical example of a complex increment nonterminal and its 
translation into a control procedure look at Fig. 10. There, Fig. 10. a gives the syntax 
diagram for a for-statement, Fig. 10. b the corresponding frame at the screen, and 
Fig. t0. c gives the control procedure. The productions are analogous to the example 
above and, therefore, are not given here. This example will be picked up again in 
section 8. 

For simple increment nonterminals we give no example in this paper. If a simple 
increment is only a node label on the module graph level, then the control procedure 
is only the application of a trivial relabelling production (eventually together with a 
context sensitive check). If, however, a simple increment is internally represented as 
a graph rather than a single node, then this graph has to be built up and embedded in 

22 Computing 31/4 
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the module  graph.  Then,  also:a lot  of context  sensitive checks are  necessary,  i.e. for 
mak ing  sure tha t  all app l ied  occurrences belong to declared objects,  types,  
procedures  etc. T h i s  modif ica t ion ,of  the module  g raph  due to the input  of a s imple  
increment  can also be descr ibed by p r o g r a m m e d  graph  g r a m m a r s  in an analogous  
proceeding  as sketched above  for complex  increment  nonterminals .  Here,  again,  the 
guideline for the cons t ruc t ion  of the p r o g r a m m e d  g raph  g r a m m a r  is the context  free 
g r a m m a r  which, however,  in this case is not  modif ied as these increments  are 
r ega rded  to be s imple at  the user interface. 

for strut 

( .[ statement } - 

10. a 

. . . . . . . .  : for  �9 " [ ]  d o w n t o  
. . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . .  do 

label variable_id expression [] to  expression 

statement 

IO.b 
control proc for stmt; 
begin 

for_stmt skeleton; - -  loop upward as default 
if "label" then label; 
var_id; -- includes context sensitive check 
expression; - -  c.s. check; construction of an internal graph 
if "downto" :then ~change _ to _ downloop; 
expression; - -  c.s. check; construction of an internal graph 
- -  frame is closed and transferred; 

- insertion of strut graph within control procs called within statement 
statement 

end; 10.c 

Fig. 10. Another complex increment nonterminal: syntax diagram, frame, control procedure 

To summar ize  the graph rewritin 9 approach used in this paper  here we can state:  the 
embedd ing  t ransformat ions  are  ra ther  simple. N o  relabel l ing or  reversing of 
embedding  edges is necessary.  W e  fur thermore  need some pr imi t ive  two-level  
mechanism,  as identifiers put  in by  the user must  replace me tasymbol s  of node  labels 
thereby p roduc ing  so-cal led product ive  procklcfions. F ina l ly ,  we make  use of 
negat ive app l ica t ion  condi t ions.  The  g raph  g r a m m a r  presen ta t ion  of this paper  is 
comple te ly  informal ,  for ~precise definit ions see [ N a  79]. 
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7. The Full Incremental Editing Mode: User Interface Revised 

In section 2 we have sketched syntax-aided editing for the input mode. Menus and 
frames are alternatively offered to the user to select syntactical constructs and to put 
in their simple increments. All necessary syntactical checks are carried out and, on 
the other hand, the concrete syntax is generated by the system rather than put in by 
the user. The cursor is set forward automatically. The building-up of the module 
graph has been specified within control procedures which recursively call each 
other. The user is only asked to select between alternatives possible in a special 
situation. Now, in the full incremental editing mode there is no sequential and fixed 
order in which editing commands are put in by the user. Any order of inserting, 
changing, deleting, or cursor moving commands is possible. To illustrate this, let us 
again consider a dialog fragment (cf. Fig. 11). 
In section 2, we have sketched the menu selection mode for putting in commands, i. e. 
commands are activated only by being selected from a menu. For briefness reason, 
commands can also be put in by text string for the command name. This mode is 
intended for the more experienced user. We call this text input mode for commands. 
It is taken for the next example. In this mode the frames may also have a simpler 
shape. Furthermore, there is some mechanism to switch between these different 
command input modes which is not explained in this paper. 
In Fig. 11, a the working cursor is before an if-then-else-statement, which we want to 
refine partially. Pressing three times the next-button positions the cursor to the 
location, where a boolean expression is to be put in. (Pressing it once the compound, 
if twice the if-then-else-statement is marked.) Now, within the command area we put 
in the command IBE for Insert Boolean Expression (cf. Fig. 11. b). (I for Insert in this 
case would have been enough, as at this position only a boolean expression is 
allowed.) 
As above, a frame appears which, however, is unstructured here as we regard a 
boolean expression to be a simple increment. After putting the string A > B into the 
input field of the frame and pressing the next-button the working cursor is at the 
position of the then-part. 
This then-part shall be left empty for a while. So, by pressing again the next-button, 
we move the cursor down to the else-part. Then, we put in the command name IAS 
for Insert Assignment Statement. 
Here, a structured frame appears, which contains the becomes symbol. The input 
sequence A (for the variable and the left-hand side), next-button (for moving the 
command cursor to the right-hand side) and 1 (for the right-hand side) completes the 
assignment. The following next-command moves the cursor to the next position, 
which here is the following assignment. 
Here, for example, the command DAS for Delete Assignment Statement would 
delete this statement. The dialog could proceed anyhow now. 
What we can learn from a full mode editing step is that an arbitrary increment may 
be empty, partially expanded, full before being incrementally edited but it may have 
one of these forms even after editing. For example, in Fig. 11.. b the if-then-else 
statement is empty, afterwards in Fig. 11. f its then-part is still missing. 
Now, let us explain, which commands are possible in the full incremental editing 
mode. 

22* 
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Ilk \ 
begin 

if then 
else 

end; 3 times 
B:=2; I > 
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GIVE COMMAND: �9 / / )  

/ /  
t l .a IBE 

I: I E INSERT BOOLEAN EXPRESSION 

A>B 
[ boolean expression [ I ) 

l l .c 

IAS INSERT ASSIGNMENT STMT ~/1 
I IAS �9 . _  ~L -> 

/ 

begin 
i f � 9  then 
dse 

end; 
B:=2; 

GIVE COMMAND: �9 

ll .b 

/begin 
if A > B then 

else 

end; 
B; =2; 

GIVE COMMAND: �9 

ll.d 

/begin 
if A > B then 

else 
A:=I  

end; 
:." = 2; 

l l .f  

Fig. 11. Full incremental mode: user interface 

There are insert commands  which can be used to fill an existing gap for a simple 
increment (e.g'. for boolean expression if the enclosing if-then-statement is already 
generated) or to generate a gap and possibly fill it (e. g. for inserting an assignment 
statement within two already existing assignments). Analogously, any complex 
increment can be inserted and its frame can be filled (left blank, be partially filled, be 
completely filled). Inserting a complex increment means also the insertion of 
concrete syntax nodes and placeholder nodes. Finally, a partially expanded or full 
increment may  be inserted which is the result of some previous dialog activity (see 
below) which means that some graph has to be embedded in the module graph. 
As in most  situations there are several possibilities for expansion, insert is not  a 
command  but a command group. IAS or IBE are commands.  However,  in some 
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situations the command is clear from the context and, therefore, only the command 
group has to be specified. This remark also holds true for the following command 
groups. 
Dele t e  commands are possible for simple increments and complex increments. If the 
increment to be deleted is obligatory (e. g. the boolean expression within an if-then- 
statement) then in the module graph a placeholder node is left behind after having 
erased the subgraph corresponding to the increment. Otherwise, if the increment is 
optional the increment subgraph is completely erased within the module graph. 
Please note, that for complex increments deletion means that all inner increments 
are also deleted. 
For making incremental modifications easier there are also change  commands 
which avoid (a repetitive) deletion and insertion of simple increments within a 
complex increment. If, for example, the command CFS (for Change For-Statement) 
is given, then the frame for the actual for-statement again appears and all simple 
increments in the frame can be changed (without touching all possible inner 
increments of the for-statement). 
Finally, there often arises a situation that a complex increment has to be 
transformed to another one, e.g. the transformation of an if-then-statement into an 
if-then-else-statement, of a compound into a procedure body etc. As there are many 
situations feasible and reasonable a big bunch of commands would result if for any of 
these transformations there would exist a corresponding command. For this, there 
are save commands with which an increment or a sequence of increments can be 
saved to be used later. This means that a more or less big part  of the module graph 
must be stored such that it can be inserted at any admissible position later only by 
specifying some name (which is asked for when executing the saving command). 

For moving around arbitrarily we must also have cursor  m o v e m e n t  commands (cf. 
Table 1). 

Table 1. Cursor movement commands 

~ Command "next" and "pred": to next or predecessing increment in the most detailed 
structure (in graph and source text). 

~ Command "down" and "up": to following increment or to increment heading of the actual 
increment without entering the details of the actual or heading increment. 

\ F Command "hierarchy up" and "leave": go up in nesting hierarchy, or leave actual increment 
and then take next (eventually again leave and next increment). 

One of them is the n e x t - c o m m a n d  which is initialized by pressing the right arrow 
button. In section 2 this button was understood as the end symbol of an insertion 
command.  Now, in the full incremental mode it is a command like all other 
commands which is only activated differently, namely by pressing a special key. 
"Next"  means moving the cursor to the next increment if we follow the most detailed 
source structure. This sometimes means to go into a structure (from if-then- 
statement to the boolean expression within the if-then-statement), to go to the next 
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structure on the same level (from the boolean expression to the then-part of an if- 
then-statement), but also to go to the next structure at a higher level (from the then- 
part to the increment following the if-then-statement). The pred- command (pred for 
predecessor) initiated by pressing the left arrow key is inverse to the next command, 
i.e. it is going up within the most detailed source structure. 
The 9o-up-command ( N key) takes the cursor up to the beginning of the next 
increment upward in nesting hierarchy, the leave-command ( 2  key) exits the actual 
increment and then goes to the beginning of the next following increment, if any, 
otherwise again up and forward. Finally the ~ and ~ cursor movements have been 
introduced for going down and up without entering the details of an increment. Thus, 
pressing the ~ key if the working cursor is at an if-then-statement means that the 
increment following the if-then-statement on the same (or next higher level) is 
marked. 
It is clear that these cursor movement commands can easily be specified on the graph 
grammar level by writing the corresponding control procedures and their elemen- 
tary cursor movement productions. 

The input mode, which we have introduced in section 2, is only a special case of the 
full incremental mode, i.e. it is only some abbreviation. One step in this direction of 
interpreting the input mode in this way was to understand the pressing of the ~ key 
always as some movement command. The next is to regard a frame as part of the 
source: A frame is nothing else than a cutout of the program which is enriched with 
comments. It can be filled but also left by cursor movement commands. The third 
step, finally, is to understand the filling of input fields as implicit input of an insert 
command together with its parameter. The possible command is clear within such a 
situation. So, in Fig. 12 the input LOOPV is understood as implicit activation of a 
command IV for Insert Variable identifier with text LOOPV as parameter, ~ as 
movement command to the next placeholder node, 1 as implicit activation of IEX 
(Insert EXpression) with parameter 1. A frame can be left by a 2" command, here 
leaving the expression for the upper bound blank. Analogously, choosing a 
downward-loop implicitly corresponds to a change command CDL. 

/ /  -- . .  - - - - - - - - _  

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

[] downto 
. . . . . . .  : for .11. . . . . . . . . .  : = .  . . . . . . . . . . . . . . . . . . .  do 
label variable_id expression [] to expression 

statement 

LOOPV ~ 1 selection ~" 

r l l T l 
IV NEXT IEX evtl. CDL LEAVE 

Fig. 12. Input mode as special case of the full incremental editing mode 
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8. Control Procedures Revised 

W h a t  was the execution model for sequent ia l  p r o g r a m m e d  rewri t ing  steps we had  for 
the input mode cont ro l  p rocedures  of sect ion 6? There,  the cont ro l  procedures  have 
been ac t iva ted  by  (recursive) calls. The  order  of  ac t iva t ion  was fixed within the 
bodies  of the cont ro l  procedures .  F o r  example ,  in the cont ro l  p rocedure  for_ s tmt  of 
Fig.  13. a it is fixed tha t  after app ly ing  a skeleton p roduc t ion  the control  p rocedures  
va r_ id ,  expression,  expression,  and  s ta tement  are called in this order .  The  user was 
only  asked,  if one of more  a l ternat ives  had  to be selected. The  cursor  movemen t  in 
the g raph  as well as on the screen was unde r s tood  to h a p p e n  au tomat ica l ly .  

In  the full incrementa l  mode  no p rede te rmined  and  au toma t i c  ac t iva t ion  of cont ro l  
procedures  can take  place. The  reason is tha t  the user is a l lowed to put  in increments  
in any order ,  leave par t ia l ly  expanded  increments ,  come back to those increments ,  
delete increments  etc. Here,  all cont ro l  p rocedures  are  directly activated in any  order  
by the user ra ther  than  by  some k ind  of pregiven order  fixed in the bodies  of the 
control  procedures .  This direct  ac t iva t ion  can be done  explicitly by specifying a 
c o m m a n d  (by input  of a c o m m a n d  name or  by  a selection) or  implicitly by filling out  
the input  fields of a frame. 

control proc for stmt; - -  corresponding to IFS 
begin 

for_strut skeleton; - -  
if "label" then label; - -  corresponding to IL 
var_id; corresponding to IVI - -  
expression; corresponding to IEX 
if "downto" then change-to-downloop; - -  c.t. CDL 
expression; - -  corresponding to IEX . . . .  
statement 

end; 

control proc I For Statement; 
begin 

exit if not for_stmt allowed; - -  check only for non-menu mode 
for_stmt_skeleton - contains implicit NEXT call 

end; show frame 

control proc I Var Id; 
begin 

exit if not var id_allowed; 
var_id 

end; 

check not necessary if impl. activ. 
- -  corr. frame only shown if expl. activ. 
- -  context sensitive check 

Fig. 13. Control procedures for inserting a for-statement: input mode and full mode 

13.a 

13.b 

So, if we write the cont ro l  p rocedure  for a for -s ta tement  in the full incrementa l  mode  
(cf. Fig.  13), then this cont ro l  p rocedure  need not  conta in  the ac t iva t ion  of label,  
var  _ id, expression,  and  s ta tement  as these cont ro l  p rocedures  are direct ly  act ivated.  
Also,  the cursor  movemen t  need not  be con ta ined  nor  done  au tomat ica l ly .  Final ly ,  
the change  f rom an u p w a r d - l o o p  to a d o w n w a r d - l o o p  is direct ly  ac t iva ted  by  a 
cor respond ing  change command .  So, the control  procedures  in the full incrementa l  
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mode (cf. Fig. 13. b) consist only of a skeleton production for complex increments or 
some relabeIIing production or building up control procedures for simple increments 
which may contain context sensitive checks. The first is the case if, for example, a 
loop variable is inserted the second if an expression is put in. However, because of 
the arbitrary order of activation, at the beginning of each control procedure for the 
full mode, there must be a check whether the execution of this control procedure is 
allowed at all. This check need not be carried out, if the command is selected in menu 
mode and it is also not necessary for directly but implicitly called insert commands. 

Now, again, let us compare the execution model we had for input mode in section 6 
with that for the full mode we have here (cf. Fig. 14). For input mode we had one 
rather complex programmed graph rewriting step which was driven by the 
execution of a single control procedure c prog_im (for program and input mode) 
corresponding to a PASCAL module (program or subprogram). The mutual 
activation of control procedures was already fixed in the bodies of the control 
procedure c_prog_im and its subordinate control procedures which recursively 
called each other. User input was only necessary for selection and input of simple 
increments. This complex rewriting step directly corresponds to a derivation of the 
source program within the PASCAL string grammar. The graph grammar for input 
mode is nothing else than a rather direct translation of the corresponding string 
grammar. 
In the full mode we have no correspondence to a string derivation as the module and 
also the internal graph is usually partially expanded before and afterwards. 
Furthermore, it can be changed arbitrarily. So, the situation of the full mode is that 
we have a sequence of sequential programmed derivation steps with control 
procedures c_ i_j selected by the user. If such a control procedure is not admissible in 
a special situation, then its execution is rejected because of the check for applicability 
at the beginning of each control procedure. Any of these graphs g j of the full mode 
graph grammar is also the result of a derivation of the input mode graph grammar if 
one additionally allows to leave increments empty when building up the source code. 
The application of a programmed step corresponding to full mode on graph g _j and 
leading to graph g_j + 1 can be imagined as changing the derivation of g _j within 
the input grammar in order to get a derivation of g_j + 1 within the input grammar. 
There are close relations between these two grammars. It is clear that the input 
grammar is properly contained in the full mode grammar in the sense that for any 
input grammar derivation there is a full grammar derivation but not vice versa. 

input mode : 

full mode: 

g _ 0 -  - s p - - @  g_n  
c prog_im 

g _ 0 - - - s p - - @  g _ l  - - s p - - @  
c i_ l  c_i 2 

g_0 - - s p  - )  g_n  
c_prog fm 

g_2 ... - -  sp - @  g_n  
c i n  

Fig. 14. Programmed derivations in input and full mode 
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Now, we summarize this sequence of sequential programmed rewriting steps 
corresponding to a user session of full mode editing in order to get a complex step 
with one control procedure. This control procedure c_prog_fm (for program and 
full mode), of course, then has the structure of a while-loop (cf. Fig. 15). As long as 
commands are put in by the user, the while-loop is executed. Depending on the 
actual command a corresponding control procedure is called. Commands can be 
input commands, delete commands, change commands, save commands, cursor 
movement commands, but also other commands arising in the context of 
evaluation, transformation, execution, testing, and monitoring of modules. 
The module graph acts as a global data structure for all control procedures. The 
start graph of a session using the full mode grammar is the axiom graph of the graph 
grammar or the result of a previous session. The calling hierarchy of the recursively 
called control procedures of the input mode is implicitly contained in the module 
graph. 

control proc prog_fm; 
begin 

while "command given" do 
case "command" of - -  commands: 

CMDI: call_of_control_proc to_CMD1; - 

CMDn: call of_control ,_proc_to_CMDn - -  
esac 

od 
end; 

D , , .  

C , , .  

S . . .  

c u r s o r ,  e t c .  

Fig. 15. Uppermost control procedure for full incremental mode 

Now, if we summarize the proceeding taken in this paper, we get the picture of 
Fig. 16. We have seen that we can systematically develop a programmed 9raph 
9rammar for syntax-aided editing. The input of this proceeding is a clear idea of the 
user interface, and the context free as well as the context sensitive syntax of the 
underlying programming language. The user interface leads to a modification of the 
context free string grammar, thus influencing the programmed graph grammar 
indirectly. On the other hand, we have also a direct influence as in the control 
procedures we describe transfer of frames, which questions are given to the user etc., 
too. This systematic development is applicable for the input mode as well as for the 
full editing mode. Furthermore, we have seen that the input mode is only a special 
case of the full mode. 

user interface ~> c.f. string . . . .  t2> p graph <] . . . .  context sens. 
grammar grammar rules 

Fig. 16. Summary of the proceeding taken for input as well as full mode 
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9. Programming in the Large 

We claim that for Programming in the Large we can take the same systematic 
proceeding which was described for Programming in the Small above. However, the 
starting point is quite different here. For Programming in the Small the base of 
support is the underlying programming language. No method of using this 
programming language is supported at this moment, for example, stepwise 
refinement. So, making reasonable or foolish use of PASCAL is not influenced by 
IPSEN. 
For Programming in the Large, i.e. for specification purposes, we cannot take the 
same view. Old programming languages as FORTRAN, or COBOL, but also newer 
programming languages like PASCAL hardly offer any constructs evidently 
applicable for Programming in the Large. So, here some formal language and some 
methodology for developing and maintaining specifications has to be offered. This 
means that some module concept has to be selected and the development of 
specifications using this module concept has to be facilitated. For this, we again 
make use of all IPSEN characteristics (incremental mode, syntax-directed reaction, 
command-driven input etc.). Also, the transformation of such specifications into an 
existing programming language has to be supported. The necessity for a metho- 
dological support even arises for a quite modern programming language like Ada. In 
Ada, there are a lot of constructs applicable for Programming in the Large, i.e. Ada 
can be used as specification language. We feel, however, that their methodological 
use should be facilitated in order to get elucid specifications. The reader may have 
noticed that we mean only syntactical aspects here if we speak of specifications. 

To speak of a module concept especially means to introduce certain necessary types 
for modules. In IPSEN, we have chosen different types for data abstraction and for 
functional abstraction, respectively. Furthermore, some relations between modules 
have to be fixed. It is our belief that for this at least the following relations are 
necessary: "A module B is contained in a subsystem A' and therefore is usable only 
in some local context", and "A subsystem A' represented by its top module A is 
usable as some common tool by other subsystems". In both cases a module exports 
resources which have to be imported explicitly by other modules. Besides module 
types and module relations a module concept consists also of a set of consistency 
conditions (part of the context sensitive syntax). 
Looking at existing programming languages then this module concept represents 
some kind of extension to these programming languages, i.e. we must introduce 
some new textual representation for these constructs. It is, however, not an 
extension in the sense that a precompiler is planned to be written as, in the same way 
as in Programming in the Small, the source code on the screen is generated from an 
higher level intermediate data structure, namely the system graph. There is no place 
left to go into details of this module concept here. The reader is referred to 
[Ga 82, 83] and a forthcoming paper. 

Having fixed the module concept the next step is to lay down its representation as a 
9raph, i.e. the class of graphs used as system graphs: node labels, edge labels, graph 
consistency conditions. The following step then is to fix the increments for 
incremental changes on graph level as we start here with a graph model for a module 
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concept. Trivially, in our approach an increment is not the source of a complete 
module as it is the case in those languages which have constructs for separate 
compilation (as Ada, cf. e.g. [Na82]). Instead, increments are e.g. parts of the 
module interface, i.e. of the export or import clause. After having determined the 
graph representation and the kind of increments the abstract syntax on graph level is 
roughly fixed. So, up to this point, we have some informal specification of the 
corresponding graph grammar. This belongs to context free as well as context 

",~ensitive aspects. 
\ \  

The next step consists of fixing the string representation for this specification 
language derived from the module concept. This is a formal programming language 
for Programming in the Large but, as stated above, no compilation step in the 
classical sense necessarily appears. This fixing is done in the form of syntax 
diagrams. 

Now, the proceeding of sections 2 - 8 of above can be adopted as all three inputs for 
our proceeding are laid down. The derivation of the sequential programmed graph 
grammar may of course lead to modifications of the informal graph grammar 
specification mentioned above. 

10. Conclusion 

We have indicated that graph grammars are an appropriate specification me- 
chanism for incremental changes arising in the context of syntax-aided 
Programming in the Small and Programming in the Large, respectively. The 
specification was carried out in a systematical or engineering-like way: It was the 
result of a rather mechanical transformation using three inputs. The proceeding was 
first demonstrated for the input mode and then extended to the full incremental 
mode of Programming in the Small. Finally, we have sketched that it can be used 
also for syntax-aided editing within Programming in the Large. 

As stated in the introduction, the graph grammar specification has a two-fold 
significance: On one side it makes precise which kind of problems occur and how an 
abstract solution to these problems looks like. On the other hand this specification is 
operational and, therefore, is a direct guideline for the specification of IPSEN in the 
software-engineering sense. 

What we pointed out is rather the method taken than its result. While the result is 
depending on the programming language for Programming in the Small and the 
module concept for Programming in the Large the proceeding, of course, is also 
applicable for other programming languages and module concepts. Moreover, we 
would claim that this proceeding can be applied for arbitrary dialog systems. 
Especially, it is also applicable for the third problem area "organizational items" 
within IPSEN. Because of this general suitability we have chosen the more general 
title of this paper. 
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