
Annals of Software Engineering 1(1995)119-139 119

Software quality management through process
and product modeling

Robert C. Tausworthe**

Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109, USA

This paper presents a simple cost-based method for managing software quality
during the development process. The technique may apply conceptually to the management
of quality for other processes, as well. A unifying metric for quality is defined to be
the ratio of the cost expended at a given point in time to that which will be required
to satisfy all requirements placed on quality attributes, such as correctness, reliability,
etc. Unit quality then corresponds to a system that fulfills all of its quality attribute
requirements. The paper indicates the need for developing cost-versus-attribute relationships
for all quality factors of concern.

1. I N T R O D U C T I O N

Quality is an intrinsic, multifaceted characteristic of a system. We perceive it
as the composite of features and characteristics of a system that bear on its ability
to satisfy given needs, together with the assessment of the degree to which the system
possesses individual desired attributes. Evaluations of system quality by analyses,
metrics, tests, reviews, and usage, with qualification against objective standards, are
indicators of the levels of quality achieved.The creation of a high-quality s y s t e m - -
one that will meet the composite needs and requirements of user and operational
communities---demands that the pertinent quality factors be specified, designed,
engineered, and built into products from the beginning, so that the perceptions of the
end product are satisfactory.

We judge the composite quality of a system by the extent to which its range
of attributes fits the needs and desires of its customers and users. Metrics of quality
are manifest in such quantities as operational performance, test effort, time to failure,
anomaly history, anomaly criticality classification, time to restore service, effort to
remove anomalies, amount of training necessary for maintenance personnel, document
consistency and completeness, traceability among products, and conformance to product

*The research described in this paper was carried out by the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration.

+ E-mail: robert.c.tausworthe@jpl.nasa.gov

© J.C. Baltzer AG, Science Publishers

120 R.C. Tausworthe, Software quality management

workmanship standards. The correlation of these measures with other product attributes
(e.g., cost, size, complexity, functional type, amount of reuse, and new technology
requirements) and environmental attributes (e.g., production work place, computer
resources, level of technology, and staff expertise) potentially enable the statistical
determination of general trends and dependencies among attributes, which then become
useful quality indicators within appropriately defined ranges of measured validity.

Any shortfall in a quality attribute from its required value is a quality defect.
We achieve quality through planning and building products with specified attributes,
by defect prevention, and, failing this, by defect detection and removal. The process
of defect prevention and removal, i.e., quality engineering, is not the subject of this
paper. The influence of management on this process, however, is.

The advent of Total Quality Management (TQM) [Deming 1989] presented the
software industry with a challenge to execute major changes in attitude and direction
to achieve "quality-first products". The TQM view is that we improve quality in
products by focusing on customer needs and streamlining the production process to
eliminate waste. TQM considers quality as the antithesis of loss, or waste, associated
with a product due to deviations of its characteristics from target values. High quality
in products corresponds to low losses in production processes. The works of Taguchi
[Elsayed et al. 1988] and others [Walton 1988; Phadke 1989] in robust design produced
a methodology and set of tools for statistical optimization of the production process,
so that high-quality products could be mass produced more quickly and at lower cost.

Some skeptics maintain that the TQM approach cannot effectively be applied
to software projects because their products are unique; in reality, however, TQM principles
are consistent with good software practice. Recognition of "quality" as the absence of
"loss" distinguishes processes in terms of their consequences- errors, awkwardness,
embarrassment, penalties, loss of reputation, suffering, damage, ruin, etc.

Quality, cost, and risk are intricately related. The cost expended to forestall
risks is thus a natural standard for judging quality. Cost is a unified and universal
measure that applies equally to measurement of customer dissatisfaction, defective
products, operational excesses, inferior utilization, and poorly used human resources.

Pall [1987] claims that quality in the United States has not necessarily been
on the decline; contrarily, in most sectors of our industry, it has continued to improve.
But the rate of improvement has seemingly not been sufficient to satisfy increasingly
demanding requirements and expectations of customers. He contends that this is due
to the dissection of the quality process into individual elements, separately optimized.
Rather, a more global optimization of the process, he states, is needed. Quality, he
argues, is not so much a technical problem as it is a management problem.

2. MODEL BASED MANAGEMENT

The term model based management here refers to supervision of software
development and/or maintenance efforts assisted by quantitative interrelationships

R.C. Tausworthe, Software quality management 121

among metrics applied to the development process and its products. In truth, every
manager already uses model based management in one form or another, some portions
of which may be formal; but, more likely, they are informal mental intuitions gained
through training and experience.

Mathematical models and metrics for interrelating complexity, cost predictability,
and quality are still in their adolescence, and remain experimental. Formal models,
as currently exist, are controversial in matters of validity, accuracy, and application.
They mostly address cost and reliability, and none has emerged to be definitively
superior to the others in its class [Lyu 1991].

However, we know that certain metrics do correlate, albeit imperfectly, with
system performance and development status. These statistical measures not only
provide a tenable degree of quantitative information for improved management, but,
if collected, they also provide a database for future project planning and model based
management research.

Modem managers, meanwhile, do plan definable development processes, adhere
to adopted standards, use assistance tools, create effective organizational structures,
promote particular staff objectives, etc., as matters of good practice. Such infrastructures
are forms of process methodologies that are becoming increasingly more articulated
and assessable.

In its maturity framework, the Software Engineering Institute (SEI) [Humphry 1987]
identifies five levels of process maturity and two stages of technology advancement that
characterize the capabilities of enterprises. At the optimized maturity level (Level 5),
enterprises have not only achieved a high degree of control over their processes, but
they have also placed a major focus on improving its operation. They routinely apply
quantitative, model-based management principles by making sophisticated assessments
of quality and costs from data gathered during the process; they also execute
comprehensive cause analyses and prevention studies to avert poor quality or cost
performance. Even the second SEI maturity level demands process repeatability in
an enterprise.

The SEI Capability Maturity Model (CMM) evolved from then-current best
practices and a theory of what future best practices would be like. That theory has
not yet been fully validated quantitatively; however, the Department of Defense
[Mosemann 1993] estimates that 64% of its software project documentation costs
could be avoided by only using contractors having been evaluated as CMM Level 3
or higher, who have the relevant domain knowledge, and who have a satisfactory
skills matrix.

The "universality of management" concept launched by Koontz et al. [1984]
is a non-quantitative model in which the fundamental functions and activities of
management are the same, regardless of the management positions within the organization
or the enterprise managed. The detailed application of these fundamentals, however,
does change depending on position, enterprise, and domain. Thayer [1988] identifies
and describes a basic set of software and project management activities and tasks

122 R.C. Tausworthe, Software quality management

necessary to successfully manage a software engineering project. He also depicts the
introduction and rise in utility of submodels, which include scheduling and monitoring
techniques (e.g., PERT and CPM), organizational structures (e.g., project versus
matrix), motivational methodologies (e.g., Theories X-Y-Z, MBO, and Maslov-Need-
Hierarchy), and control disciplines (Configuration Management).

These models, and many others used today by software projects, are chiefly
oriented toward procedure and form, and are not particularly quantitative. Still others,
such as those found in [Gilb 1977] and [Perlis 1981], are more quantitative, but lack
unity. Further, there is controversy in how measurements relate to assessing the
quality of processes and products. The fact, that most enterprises so far rated by the
SEI lie in the lowest two maturity levels, is a fair indication that model-based quality
management has not yet penetrated deeply into the software industry.

But as the industry matures to the point that its processes are repeatable, such
methods will surely evolve, for any process that is repeatable becomes predictable,
and thus can be modeled. The mere fact that these methods may not exist today
should not deter us from investigating the form, utility, and benefit that they will
someday have.

Model-based management depends on forecastability of events, quality attributes,
and resources. Traditionally, forecasting human behavior has been successful only in
structured situations, or in making near-term projections, or in sketching general
trends. Hence, to foster success, our quality-based method will have to impose structure
on the development process, primarily require only near-term forecasts, and display
basic trends that can continually improve the method.

This paper introduces two simple, but novel concepts of quantitative quality
management based on operations research techniques. Admittedly, this approach is
yet in the straw man theory stage. Much work lies ahead before sufficient maturity
in the method, technology, and usage come about that could qualify the method for
industrial use. However, it is proper now to introduce the basis of unified quality
metrics, to discuss how the metrics could be used, and to forecast what kind of
measures will be required if total quality is to be quantitatively managed.

We can illustrate the method with hypothetical examples; but we cannot present
case studies, because no body of supporting empirical evidence has yet been developed.
It is thus fair to view this approach with some skepticism. Technical literature traditionally
publishes untried methods and models for public review and further development.
The application of the proposed method will require both cultural and technological
changes that will not occur overnight.

The quality management method presented here springs from fundamental
considerations of the underlying natures of quality, software, and the development
process. Real-life processes are flexible, intricate, and complex. Quality attributes, schedules,
and costs are interrelated by product requirements, available funding, the chosen life
cycle model, process controls, personnel aptitudes, usage of tools and technology, company
organizational structure, customer/user interfaces, and work friction.

R.C. Tausworthe, Software quality management 123

With respect to the role models play in management, we recognize that they are only
tools that provide advice. They generally cannot be held accountable or liable when
they fail. Human performance is stochastically variable, and all methods, no matter
how carefully and accurately calibrated, will certainly and expectedly produce uncertain
estimates. All advice, from humans as well as models, should be weighed in respect
to its perceived uncertainty and bias.

3. QUALITY-COST RELATIONSHIP

Belady [1977] mused that it was "discouragingly difficult to construct a [quality]
index which measures not only the end product but also the process leading to it".
He foresaw that such a measure, if it existed, would constitute a model of how
software evolves from its requirements to an operating, maintained program. Mere
charts of disparate, unrelated measurements of the sequential phases could not be
considered sufficient information for successful management.

Crosby [1979] contended that "quality is free", but that "no one is ever going
to know, if there isn't some sort of agreed-on system of measurement". He classified
the "costs of quality", or COQ, as (1) the extra costs that are expended to do the job
right the first time, (2) all costs involved in doing the work over, and (3) operational
liability costs. Crosby argued that the costs to achieve a given level of quality do not
increase when expenditures are concentrated in the first category--the "extra costs"
perhaps thought necessary to do the job right in the first place are, in fact, not extra
in the overall cost sense. For while quality competes with productivity during
development, if operations costs and utilization benefits are factored in, increased
quality tends to increase overall productivity. The cost of quality thus depends on the
length of the life-cycle and the impacts of defects in usage. If life is long, quality
is free, although development costs are perhaps higher.

Boehm [1978] and Gilb [1977], attempting to capture the elusive essence of
software quality that will validate Crosby's hypothesis, have developed a comprehensive
arsenal of metrics. Taken together, these metrics quantify numerous factors that
comprise the concept of quality. Their approaches are similar, although they differ
somewhat in structure. Together, they aggregate about 175 specific elemental measures
into some 41 composite quality factors.

One problem with applying Crosby's definition of COQ is the difficulty in measuring
the "extra costs" for quality. The evaluation of extra expenses for quality requires that
costs (1), (2), and (3) above be separately planned, managed, and accounted. But
these costs are frequently not measurable without special, separate efforts. Those "extra
costs" actually incurred in building a superior product are seldom directly observable or
freely furnished; they are typically estimated after-the-fact from the recollections of
those having done the work. Project management systems and enterprise accounting
systems seldom have provisions for measuring just when developers are doing the
job correctly the first time, and when they are doing it incorrectly the first time.

124 R.C. Tausworthe, Software quality management

Another view [Stamm 1981] is that quality is not merely what a Quality Assurance
effort provides, but what the entire project staff produces. Software projects seek to
expend their budgets to produce and assure a set of products whose function, performance,
and other quality attributes are acceptable. The entire staff is responsible for the
product set and the quality attained. Therefore, he argues, the total cost to develop
products to their delivered and maintained state is the true cost o f quality, TCQ.

This paper adopts the TCQ view: all development expenditures are made for
the sake of quality, including those for specification, design, implementation, integration,
validation, and installation/delivery. Depending on a particular project's scope,
management of quality may not end upon delivering the required functions and
performance, but may extend into the maintenance and support phases, as well.

Realistically, when customers require a quality factor in a system, there is a
cost required to develop it. We can build slow, failure-prone, cumbersome systems
sometimes at considerably less cost than fast, reliable, easily used ones. We may thus
expect the costs to build a system to increase as a function of the required level of
quality. In developing a system, many attributes of the process and products compete
for project resources. Curtis [1981] notes that probably no software project will ever
be able to stay within its allocated resources and maximize all quality factors; rather,
it will be necessary for quality attributes to be weighed according to the nature of
the system, the needs of the users, and the resources available.

Once the proper value of a given quality factor has been agreed upon, then the
extra cost of achieving that required quality may be free, as proposed by Crosby, whether
incurred during the initial production cycle or retrofitted into the system at a later time.
There may be penalties and associated risks in a system delivered with a prescribed level
of quality absent. As a result, the quality-related cost will be incurred, either in expenditures
to update the quality, or in loss of benefits, or in operational risks. The rational approach
to building a superior system, then, is to expend the resources necessary to achieve the
required quality attributes in the most cost-effective manner.

Besides competing for resources, quality attributes may be highly interrelated.
Work expended to positively service one attribute may negatively impact another.
The classic case of this is that work performed to meet performance objectives
frequently results in highly optimized, complex code. Conversely, however, work
performed in servicing some attributes may benefit others. For example, costs expended
toward portability tend to abet efforts in reusability and interoperability. Clearly,
managers must know how to apply resources to the various required quality attributes
in order to conduct the software process successfully.

4. QUALITY MEASUREMENT

The perception of quality varies by individual and over time, but, on the average,
it is governed by supply and demand economics and may be assessed as a balance

R.C. Tausworthe, Software quality management 125

between value, measured by satisfaction of needs, and worth, measured by expenditure
of precious resources.

On this basis, the method presented in this paper presumes that, properly
managed, the overall cost of a system measures the level of the quality it has paid
for. This is a TCQ theme that applies to customer, user, and sponsor points of view,
where needs for quality often may be mitigated by affordability, and the cost of that
quality becomes a competitive issue.

For example, one expects that an automobile selling for $50,000 will have been
built to meet quality (and profit) goals five times more difficult to reach (for that
manufacturer) than those of a car selling for $10,000. Several cars, each selling for
$10,000, may have different sets of quality attributes, as well as different levels of shared
qualities, depending on the goals and productivities of the manufacturers. Owners willing
to spend no more than $10,000, who buy and find satisfaction in one or another of these,
tacitly acknowledge that their quality goals and affordability constraints have been met
within their (perhaps unarticulated) requirements for automobiles. In effect, they have
optimized their latent quality-attribute-versus-affordability function.

Those who are unsatisfied with all $10,000 cars must spend more to achieve
the higher levels of quality they desire. Those unwilling to spend more become
potential customers of entrepreneurs who can better deliver satisfaction at the given
price, if that is possible. Those buying cars anyway, but still having unsatisfied needs,
have thoughtfully bought the highest quality they can afford. There is then a "quality
gap" equal to the difference between the price of an acceptible-quality car and the
price of the car actually bought.

Similar expectations of quality persist whether software is developed or purchased
off-the-shelf. In the case of commercial database management systems, word processors,
and other software items on the market, various packages are available in a range
of prices and possessing various mixtures of features and performance characteristics,
desired and abhorred. The duty of the buyer is to match functional characteristics and
quality features against the intensity of need for them, and to determine the greatest
affordable match.

Statistically speaking then, in a free market economy, quality corresponds to
price. The amount of quality that one can afford is fixed by economics, whereas the
particular attributes of quality purchased are determined by cost effectiveness.

Whether or not software customers and users are able to articulate their needs
for quality attributes, it is, nevertheless, possible to express quality attributes of an
information system in absolute, rigorous terms, such as mean time to failure, percentage
of portable code, achieved processing speed, and cost to develop. The units of these
measures are hardly conformable; however, they do serve as figures of merit l) that
distinguish the system.

1) It gives us strangely little aid,
But does tell something in the end.
- R o b e r t F r o s t

126 R.C. Tausworthe, Software quality management

To make quality assessment less subjective than individual perceptions of
satisfaction, we will require that target values of quality attributes be articulated and
tabulated in testable form, whether met or not, and, if not, assessable at any time as
to the resources required to remediate and fulfill the requirement.

All projects measure expended costs, if nothing else. They must also predict,
or otherwise assess, the runout costs for all remaining work. They normally do this
at key points in the development process, for costs must be managed. Managers are
thus perhaps more aware of costs than of any other project metric (except for schedule,
perhaps, in some cases).

Software developers who can relate quality attributes to cost have the means
to manage the quality of the products they build. They can build custom products for
customers who can articulate their quality needs, and they can build product lines on
supposed needs of their potential customers, which will be validated in sales and
market share.

Some quality attributes may be deemed more meaningful when expressed in
relative terms or in normalized forms. These measures tend to relate the degree to
which a given quality attribute is present in a particular entity. For example, if one
defines

cost to reuse
reusability factor = 1 -

cost to redevelop

for a particular object, then this factor serves to indicate the effectiveness with which
this object can be incorporated elsewhere. A score of unity expresses high reusability,
indicating zero cost to reuse. A score of zero or less indicates no reusability, for the
cost to reuse exceeds the cost to redevelop. The reusability indicator thus relates this
quality attribute to a measurable (and forecastable) cost parameter.

Other quality factors may also be related directly to cost, as suggested by the
entries in table 1. Some of these may be readily measurable, while others may
perhaps be inferred through factor analyses of measured relationships among composite
quality and overall cost. Guidelines for use in evaluating software product quality
may be found in [ISO 9126].

This paper proposes the usage of cost as a causal measure of quality, in that
it directly influences each quality attribute in a dominant way: a cost applied to
servicing a given attribute will tend to improve that attribute, and, moreover, that
attribute will not generally tend to improve without it.

The use of cost as a unifying quality metric depends on several supplementary
hypotheses and assumptions, among which are

(1) it is possible to articulate and to measure or quantitatively assess the status of
all quality attributes of interest, and

(2) it is possible to relate quality status to a forecast of resources required to
achieve the specified levels of quality.

R.C. Tausworthe, Software quality management 127

Table 1

Major quality factors and cost measures.

Factor Attribute indicators

correctness

reliability

efficiency

security

integrity

usability, operability

survivability

maintainability

testability, verifiability

flexibility

portability

reusability

interoperability

expandability

availability

adaptability

Cost to meet functional requirements, remove faults,
process liens, and establish workarounds

Cost to produce required probability of operating
successfully

Cost to produce specified performance margin

Cost to produce required probability of only
authorized access

Cost to produce required probability of damage due
to improper access

Cost to reach specified training, familiarization,
input prepration, and output interpretation cost goals

Cost to produce required probability of continued
perforance when a portion becomes inoperable

Cost to produce given repair-cost/fault ratio

Cost to produce given test-cost/total-cost ratio

Cost to alter a given function

Cost to port to a new host

Cost to produce given ratio of reuse-cost to
redevelopment-cost

Cost to couple and operate with another system

Cost to add new requirement

Cost to produce required probability of accessibility
for given purpose

Cost to adapt to changed host system characteristic
or different user interface or application

Even if we canno t do some o f these things now, the article o f faith o f this pape r is
that, with m e a s u r e m e n t and study, they b e c o m e poss ib le in the future.

At each dec is ion point, managers assess and judge whe the r qual i ty a t t r ibute
values are suff ic ient or def ic ient for that point in time. T h e y use this a s ses sed state
o f quality, toge the r with the project history, the profi les of expended and p lanned
resources, and causal indicators to est imate the remaining out lay o f resources necessary
for a t ta ining qual i ty goals. A proper ly conducted quali ty met r ics p r o g r a m p rov ides
the his tory and current data upon which the evaluat ions operate ; con f idence g rows

as the me thods improve .

128 R.C. Tausworthe, Software quality management

When the cost to reach all the required quality attribute levels is too high or
unjustifiable, quality in some attributes must be sacrificed to the benefit of others.
We thus seek to establish balanced quality attribute costs by developing a benefit
indicator in the form of weighting factors applied to individual indicators based on
relative importance, value, priority, risk, and performance goals. We may determine
individual attribute requirements and goals from physical needs (e.g., function,
performance, safety, and risk) or associated economic and corporate goals, such as
are inherent in maintainability, usability, and adaptability. Strategies for attaining
balanced quality goals are treated in section 7 of this work.

5. QUALITY BREAKDOWN STRUCTURE

The degree to which runout cost predictions can be made to be accurate
translates directly into the certainty in overall achieved quality. Estimates of cost and
quality uncertainty are necessary for risk management. Boehm [1981] notes that
software cost estimation accuracy tends to improve as projects progress; nevertheless,
unreliable cost forecasting and ineffective cost management can lead to inevitable
situations in which planned costs have been totally expended, and yet the system has
not met its quality objectives. Ineffective cost assessments can lead to the "90%
complete" 2) syndrome, in which managers estimate that 90% of the quality goals
have been met far before they have sufficient basis to make that judgment.

Fortunately, cost accounting based on earned-value assessment and Work
Breakdown Structure (WBS) techniques [Tausworthe 1980] now commonly used in
most large software projects, tend to prevent this from occurring. The WBS method
challenge is to plan all project costs and resource expenditures as a hierarchy of
activities, each with a definite beginning and ending point and definite products, with
unit work packages of about the same size and expenditure uncertainty each. The
WBS itemizes all budgeted project cost and schedule items (and, perhaps, also
contingencies). Activities that may be deemed not to contribute to quality become
candidates for elimination from the project plan.

WBS milestones are used as quality evaluation points. Earned values, awarded
to each work package (inch-pebble) according to the degree that the planned activity
has achieved its technical goals, are used by the project to measure the overall status
of achievements. Some resource expenditures, such as management, development
support, and company overhead, by their nature, may not produce sharp milestones,
and may thus seem only peripherally related to quality. Others may be sharp, but may
not be deliverables (e.g., trade-off studies), and may not be directly visible within
the deliverable item accounting system. But management and support activities do
contribute to the quality achieved in the activities they service; their resource expenditures

2) The 90-90 rule: the first 90% of a project requires the first 90% of the resources. The remaining 10%
requires the other 90% of the resources. (A not-always humorous software engineering adage.)

R.C. Tausworthe, Software quality management 129

may be accounted as a tax to each serviced activity, or may be separately accounted
as prorated expended resources.

The WBS earned-value challenge is to assign weights to each of the inch-
pebble work packages that reflect the effectiveness of the resources expended, and
to account expenditures in terms of earned value. The earned-value metric used in
this paper is the relative quality index, a quantity to be defined more precisely in the
next section. Briefly, it is the assessment of the degree to which quality goals have
been met, as measured by expended versus required costs.

This metric imposes quality requirements on the WBS in the form of criteria
for assessing the contribution of each work package to quality goals. Each work
package identifies which attributes are being serviced, and at what cost to achieve,
in addition to the budgeted cost and schedule allotted to the package. We refer to this
quality-oriented WBS as the Quality Breakdown Structure (QBS).

We will discuss methods for properly allocating and accounting costs across
quality attributes in a little more detail in section 7. For now, let us investigate the
characteristics and metrics that will foster proper quality management, once the QBS
and cost-quality relationships have been established.

6. THE RELATIVE QUALITY INDEX

Management metrics are measurements of actual performance parameters,
regularly made during a development process. When compared with plans and forecasts,
they help to determine the project's health and status. Deviations are indicators of
actions that need to be taken and work that needs to be performed over the plan
horizon. Even if faulty, actual-versus-forecast and earned-value plots are often very
useful in indicating trends, pointing out problems, and improving future forecasting.

At any time, the costs that have been expended or allocated relative to the true
cost needed to achieve quality goals is a measure of the degree to which the requirements
for quality have been or will be met. A relative cost of unity indicates that the system
is of the highest quality required for its intended purposes. The differential between
unity and a relative cost less than unity discloses that fraction of the task quality in
deficit.

To be more specific, let Ct denote the cost that has been expended up to a given
time t, and suppose that an assessment of the current situation now predicts that an
additional cost AC will be required in order to elevate the system to full compliance
with its quality specification. The forecasted total Cost of the system is C = Ct + AC;
the true cost to reach the desired quality is Ct + AC. If the projected cost C is within
the budgeted cost (~, all is well; if it is not, management action is indicated.

We define the estimated relative quality index as the cost fraction thus far
incurred,

_ C, _ C, _ 1 (1)

130 R.C. Tausworthe, Software quality management

where ~ = ACICt is the estimated relative remaining cost, or current quality deficit.
Similar quantities q and e based on actual future costs are also defined. Since C is
unknown until the quality is actually achieved, we will drop the notational differences
henceforth, and rely on context to distinguish between C and C, and q and ~.

The q index serves as an earned-value measure of quality: it measures the
composite satisfaction of quality goals with respect to a set of predefined quality
attributes, in terms of true costs to achieve. This is such a simple, but subtle, concept
that it deserves more explanation and analysis.

A set of proposed means for reaching stated quality requirements can be
compared on the basis of their absolute costs C, and the relative status at any time
is indicated by the relative quality indices or relative quality deficits. At point t in
time, a manager observes that an actual cost Ct of the budgeted cost C has been
incurred, and that C - Ct remains to complete the project. The perceived quality
(according to budget allocations) is q = CflC. The manager wants to know if costs
are on track, so a new forecast of the remaining costs required to achieve the specified
quality of products is made, resulting in a new runout cost estimate C.

At that point in time when the estimated remaining AC will have reached zero,
i.e., when the relative quality index has reached unity, the system will have acquired
its required quality, and further expenditure will not be warranted.

If the budgeted cost C exceeds the estimated required cost C, then all is well,
and no remedial action is indicated. However, when the opposite situation is true,
then the manager realizes that quality goals will not be met within the current budget.
The ultimate index, only reaching ~ = C/C < 1, is the relative performance shortfall
of the developing organization in meeting its contracted responsibility. The customer-
specified level of quality will not be achieved under the current plan.

Similar considerations relate to schedule constraints. For illustrative purposes
here, however, we shall concentrate on cost constraints only.

Regular assessments of status are a matter of routine in the TQM environment.
Managers need to know the quality status of their products in order to be effective.
Along with assessments of quality, they also need to estimate the amount of remaining
work (cost) required to reach quality goals.

The relative quality index is a natural model-independent combination of
quality and cost assessments that is also independent of the scale of the effort. Any
methods for assessing costs to achieve specified levels of quality appropriate to the
size and complexity of a particular project, formal or informal, may be used. Since
cost and quality assessments may be subject to error, proper contingencies for risks
should be included.

As a simplified hypothetical example, let us suppose that only one quality
attribute, namely mean-time-to-failure, has been specified as the total quality measure
of a particular software product. Let us further suppose that Ct = $60,000 represents
the current expenditures for development, test, and repair that have resulted in a
measured mean-time-to-failure of 4 hours, and that an additional AC = $40,000 has

R.C. Tausworthe, Software quality management 131

been forecasted as necessary to bring the system within its specified mean-time-to-
failure (MTTF) goal of 24 hours. However, only $20,000 remains in the budget, and
this expenditure will only bring the MTTF to 12 hours. The current relative quality
index is

60, 000 = 0.6.
q = 60, 000 + 40, 000

In this case, 60% of the quality goal has already been reached. But when all funds
will have been expended, the quality index will only have reached 80%, and yet the
MTTF goal is a factor of two off! Either the original estimate of $80,000 was off
by 25%, or the project has been mismanaged with respect to quality concerns. The
quality index itself does not reveal which of these possibilities is the case. It is a
simple measure of quality status with respect to a plan.

But combined with a QBS, the q index time line can be much more revealing.
We illustrate this utility by supposing that the project has decomposed its work in
developing a system into a hierarchy of work elements for system design (including
requirements, operational concepts, and system architecture), subsystem developments,
and system integration, test, and delivery. We further suppose that the project has
allocated the total estimated system cost AC across the w work packages and has
devised accounting procedures that will track the total, current (time = t), and estimated
runout work package costs, respectively, Ci, Ci.t, and ACi , i = 1 w.

The particular quality breakdown method and development process (e.g., waterfall,
spiral, incremental delivery, rapid prototyping) are unimportant to the measurement
of relative quality, as long as quality criteria have been assigned to each work
element. The breakdown method is very important to being able to use q to manage
the quality effectively, because the benefits in each quality attribute then come into
play. Synthesis of the QBS from benefit considerations will be discussed further in
section 7.

Since all work has been allocated to separate packages, the total costs, by
definition, are l i n e a r l y related to work package costs. We therefore find, after some
mild algebraic manipulation, that the overall system relative quality is a weighted
sum of the individual work package relative quality indices,

W

q = ~ c iq i . (2)
i = 1

The coefficients c i = C i /C , i = 1 w are the work package relative costs. The work
package relative quality indices are given by

1 (3)
qi - 1 + E i

with E i = ACi]Ci, t.

132 R.C. Tausworthe, Software quality management

If we aggregate a number of work packages together for management purposes,
say as system design, subsystem development or integration efforts, or for quality
reasons, such as packages to improve reliability or the user interface, then we similarly
may define the relative quality index qa of the aggregate A as the ratio of the current
aggregate cost Ca,t to the total required aggregate cost CA, then we find that

1
qA -- 1 + E A '

(4)

CAqA = X ciqi" (5)
i ~ A

Here, CA = CAIC is the relative cost of the aggregate, and e a = ACAICA, t is the current
quality deficit in aggregate work. If A, B Z represent a set of non-overlapping
aggregates that span the entire QBS, then

q = c a q A + C Bq B + . . . + C Z q z . (6)

Notice that the parameters qi, qA, £i, and eA at the work package and aggregate levels
take forms similar to q and e at the system level. The aggregate quality index formula
in equation (6) is the more general form, as it reduces to equation (2) when the
aggregate is the entire QBS, and to equation (3) when the aggregate is a single work
unit.

We may carry the QBS work package decomposition to whatever level of
detail is supported by project cost accounting procedures and limited by the effort
required to devise and maintain it. We may also aggregate unit tasks to any degree
deemed appropriate as milestones. Equation (3) provides a means for readily calculating
the overall system and subsystem (or other aggregate) quality indices, regardless of
how many layers of decomposition comprise the system or how quality attributes are
allocated over the work packages in the aggregate. Equation (3) also provides a
means for recognizing work aggregates displaying poor quality performance. For
simplicity, we shall drop the distinction between work packages and work aggregates.
The formulas are the same, except for interpretation of the subscripts.

If a work package or aggregate expends its resources before its qi reaches
unity, then quality goals have been compromised. Either further funding will be
required, or the quality deficit must be made up by taxing another work package or
aggregate, or else the loss in quality must be accepted by the customer.

The schedule required by a project is the sum of work package durations along
a time-critical path dictated by resource precedences and quality requirements. Software
work package costs typically derive only from work effort, measured in staff size
times duration. In such cases, the schedule, too, can be expressed in terms of quality
indices,

q--L-i, (7)
rcrit = C ~.~ s i r i

critpath

R.C. Tausworthe, Software quality management 133

where si is the number of full-time-equivalent staff and r i is the average worker pay
rate in the ith work package. (We note that qi may depend on si, due to the team
communication work factor, discussed in [Brooks 1974].)

7. QUALITY IMPROVEMENT STRATEGY

At each feasible opportunity, a project should examine its remaining resources
- C and reallocate them toward reaching the promised quality goals, or, falling

short of these, toward achieving the best customer satisfaction it can under the
circumstances.

So, how should the quality attributes be serviced, and in what order? What is
the best profile for expenditure of costs? The answers to these questions depend on
the rates at which benefits accrue from various candidate cost expenditures. The
overall quality index gives no direct assistance in deciding these questions. The
increase in relative quality index at time t is independent of which particular work
package expends its resources, for, as it turns out,

~q 1
- (8)

~Ci,t C '

which is a consequence of the fact that q itself only measures cost status. The partial
derivative in management circles is called "leverage". The equation above says there
is no cost leverage advantage in the quality index for any particular work package.

But perceived benefits do vary with distributions of costs, for users hold some
quality attributes as being more important than others. In order for managers to act
effectively, they must prioritize work towards the greatest user satisfaction to define
the best work profile for the given customer expectations and budget constraints.
This is where the choices of QBS decomposition method and development process
become important.

The QBS and development process decisions are made through assessments
of alternatives with respect to costs and benefits, a process that may take the form
of informal analyses, analogies, rules-of-thumb, or formal evaluations using cost-
estimation relationships or other forecasting methods. Today these decisions are
largely made informally, based on experience, lessons learned, various management
methodologies, and folklore, although some Operations Research formalisms have
also been used where supported by good models.

The fundamental principle of Operations Research (OR) is that if one can
create a model that accurately interrelates the characteristics of a product or set of
products to the structure, procedure, and parameters of the process that developed
them, and if one can quantitatively express the criteria by which to judge the quality
of products, then it is possible to optimize the allocations of resources within the
process. An OR approach to management thus depends on the "big ifs" being satisfied
to an acceptable degree.

134 R.C. Tausworthe, Software quality management

We shall briefly outline the software quality management method and develop-
ment of the QBS in terms of a formal OR model. Reflections of good informal
practices may be seen echoed in the mathematical forms.

Further, we shall adopt vector notation to contain the information on quality
indexes, costs, etc. For example, q = (q~ qw); the vectors e, c, C and Ct are similarly
defined.

Formally or informally, there exists a benefit 3) function, here denoted by B(q),
that forecasts the current benefit in terms of the quality attributes. A formal expression
of benefit forms a basis for repeatable operations-research analyses of alternative
actions. Informal benefit assessments that are consistent with good management
practices may be less repeatable, but are still effective.

Ordinarily, the benefit function relates to levels of quality achieved in the
products to which it is applied. But time has a benefit value, as well, and timely
delivery is important. We shall ignore this time dependency momentarily, but then
return to such considerations later.

Let a = (al txn) denote the vector containing the current values of the n
quality attributes ai of interest, and let fl(a) quantify the benefit as a function of each
of these attributes.

We shall here adopt the convention that an increase in ai yields an increase
in the quality benefit. We may do this without loss, for if a proposed measure of an
attribute were to lead to a decreasing benefit, then its negated or inverse value could
be used instead. For example, if frequency of failure were proposed as a reliability
quality metric, benefit would be judged to decrease if the frequency were to increase;
but the inverse, mean-time-to-failure, when increased, would be judged to be beneficial.

Next, let a(q) represent the quality-attribute versus quality index forecasting
function (actually, an n × w matrix of functions). Then, the function fl(q) that relates
benefit to current quality status is the composite form

B(q) = fl(a(q)). (9)

This form of the benefit function separates trade-offs into two (almost) independent
assessments: first, deciding how to quantify the composite benefits of multiple quality
attributes; and second, deciding how work elements contribute to individual quality
attributes. These assessments are not quite independent because the cost of a given
level of quality almost always mitigates the perceived benefit of that quality.

The former assessment is primarily customer-related. TQM demands this be
given high priority, as it directly relates to satisfaction of customer needs, without
regard to cost. Formulation of the fl(a) benefit function is apt to be subjectively
derived, at least until industry has quantified, catalogued, and iteratively revised a
few examples. We see informal examples today in the form of prioritized "wish lists".

3) Also called the objective, utility, or value function in other contexts.

R.C. Tausworthe, Software quality management 135

The second functional assessment is almost purely related to the software development
process; TQM demands this be given high priority also, since higher quality products
are deemed to spring from higher quality processes. Formulation of the tz(q) function
is purely a matter of measuring and quantifying the repeatable quality aspects of a
software process. This matrix of quality-cost relationships is the current quantitative
limitation of the method of this paper, for many of the constituent elements have not
yet been satisfactorily established formally. We may therefore proceed formally with
the method mathematically, but only informally in the assessments of quality required
in practice of the method.

Quality attributes above are expressed in terms of q, rather than cost directly.
This is done for normalization purposes. Since q measures the accrued costs relative
to the total costs required for quality (as opposed to costs relative to the budget), the
required quality attribute goals are contained in the vector a(1, 1 1). If a given
attribute quality were expressed as ai = f (.... Ci, Ci, t), we could equally well express
it as ai = g(.... Ci, qi) by substituting qiCi for Ci, t in f(. . .) .

The operations research problem is thus to find the particular vector ~ that
produces maximum end-of-project benefit under the budget constraint qfinal = q"
The approach is classic optimization of B(q) over values of q whose coordinates are
constrained and described by

w

Z ciqi = ~ for qi > O, i = 1 w (10)
i=1

and there is a further constraint imposed by equation (7). Together, these restrict the
number of degrees of freedom in B(qfinal) for optimization.

An extremum can either be global (truly the best value) or local (the best in
a finite region). Virtually nothing is known about finding global extrema in general.
Many optimization approaches are embodied as computer algorithms available in
subroutine libraries. Classical considerations are computer speed, memory, and
computational cost. Approaches to finding extrema resort to trial-and-error strategies,
a number of which are described in [Press 1987]. Many of the algorithms rely on the
function gradient (multidimensional slope function) VB(q) to point in the direction
of increased benefit.

Incremental steps in quality &/ over time result in incremental changes in
benefit SB, which we desire to reach the final optimum values indicated above. The
time rate of quality benefit gain is

dql dq.
n = {~1 "-'E-. + " - + I#w - ¢ ' q = V B ' ¢ , (11)

dt a t

where ,~ = dx/dt represents time rate of change. The gradient coefficients ¢i are
given by

136 R.C. Tausworthe, Software quality management

CPi = ~ Oaj ~qi "
j=l

(12)

Each ~i coefficient measures the rate that benefit derives from an expenditure in qi.
Each term Ofl/Oaj expresses the change in benefit with respect to quality attribute aj,
and O~j/Oqi relates the effect of an incremental expenditure in work package i to the
improvement of quality attribute aj. Some terms may be negative when an expenditure
towards servicing one quality attribute has a counter-impact on another.

The gradient ~ indicates the local preferred direction in quality improvement
at each point in time. As each quality attribute otj reaches its goal value, further
improvement of aj is not required, so ~fll~aj becomes 0, and no longer contributes
to ~i"

When a gradient term q~i is positive, an expenditure in work package i is
beneficial. If the term is zero or negative, then no expenditure should be made
(unfortunately, we cannot unspend money!). If all the terms were equal and positive,
the application of fiq toward improving any one of the attributes would, in judgment,
yield the same incremental benefit. Having one ~i larger than the others would indicate
that higher immediate benefit per unit of cost would come from work package i.

For a given size quality increment ~q = c 1 5ql + ... + cwSqw, each individual
~qi may be chosen so as to maximize the total overall incremental benefit. The
classical approach would demand that the entire •q be spent on that work unit having
the greatest ~i (this is a consequence of the linear constraints of equations (7) and
(10) above). This approach would lead to expending the project's resources serially,
executing work packages in order of judged benefit.

However, as a practical matter, time-benefits require that critical path work
must proceed in the order scheduled. Work off the critical path is more flexible and
takes place in parallel. The assessment of incremental benefits versus incremental
quality indices, nevertheless, serves to reinforce the importance of critical path items.
If some work on the critical path is deemed of less benefit than some work off the
path, then some rethinking of what constitutes benefit may be in order.

8. WHAT PROJECTS CAN DO NOW

Formal methods may be applied toward optimizing quality when project benefit
functions eventually become quantified. But even if unquantified, the benefit functions
do exist in informal guise, and managers do use these, perhaps unconsciously, when
making decisions. We can look to the formal approaches for guiding principles when
allocating expenditures under informal circumstances.

Good managers have applied mathematically sound guidelines for years, perhaps
even without knowing it. Using their experience, knowledge base, and pertinent
project information, including predefined priorities for quality, they develop budget
profiles that optimize expenditures in accordance with their perceived requirements

R.C. Tausworthe, Software quality management 137

and constraints. They assess progress relative to the expenditure profile, making
readjustments as the priorities or circumstances change. By taking a more global
view of quality than just performance and reliability, they are able to achieve better
overall products. By recording their priorities, work breakdowns, and quality status
metrics over project lifetimes, they bequeath to future projects and quality modelers
the means for improvement.

We wish now to show how these informal principles are consistent with formal
optimization processes. We shall illustrate the equivalence using a "follow-the-gradient"
approach. We choose this approach not because it is the fastest for a computer (in
fact, it is usually not), but because it is simple in form, intuitive, and requires only
shorter-range forecasts of benefit versus resources.

Properly done, the planning of work packages should align priorities with the
gradient of the benefit function, resulting in weights for the way costs are applied
within each increment of the project. That is, expenditures over each t~t schedule
increment would produce a change in the quality index of 8q whose individual
components &/should be in the same direction as the gradient ~, or

= h 0 . (1 3)

By equation (12), assessments of priority should examine the combined effects
of how much each quality attribute incrementally contributes to benefits and how
much the work in each package contributes to the quality attributes. Using equation (2)
permits us to eliminate h in the above equation and to express the prioritized quality
allocation condition as

=
w Zi=I Ci~i

0. (14)

The gradient-directed strategy is thus to set priority factors for each of the
project schedule increments in the direction of the benefit gradient, to allocate expenditures
accordingly, and to repeat this process during the development process whenever
status demands.

This incremental heuristic strategy does not always produce a result globally
optimized over all ways of running a project, but it applies well when the particulars
of a global optimum are unknown. Recording lessons-learned for posterity permits
other projects perhaps to recognize more globally optimized strategies for continual
improvement.

A more formalized statement of the incremental priority-driven quality manage-
ment process is merely a restatement of good management practice:

(1) At each decision point in time, estimate the cost to complete and the current
quality status, and compare these with available resources and quality requirements.

138 R.C. Tausworthe, Software quality management

Then set priorities for expending the remaining resources, considering the
contributions of each particular quality attribute to benefit, and of each work
unit to quality attribute improvement. Use whatever methods, metrics, and
statistics are at hand for assistance.

(2) Allocate incremental resources in proportion to assessed priority, and then
extrapolate the probable status of the project at the next decision date.

(3) Continue to apply these "what if" estimations at simulated next-decision
opportunities, until the required quality is perceived to have been reached, or
until the budget will have been exhausted.

(4) If the current plan falls short, reassess the planned expenditures using other
project alternatives that may exist, and reapply these steps until the best solution
seems to have been found.

(5) Allocate resources for the next stages of development according to the best
plan known.

(6) Record priorities, allocations, cost drivers, and perceived quality status for
future insight, lessons learned, and modeling purposes.

9. CONCLUSION

This paper has introduced the concept that relative quality quantification, measured
in terms of amounts of work performed and required, together with a quality-oriented
WBS and means for assessing the benefits of each work package, form a potentially
valuable method for unifying quality requirements and measurements through the
same managed units for all quality attributes. The concept appears to apply throughout
the hierarchic layering of system and subsystem architectures.

Quality-attribute-versus-cost trades, when they can be formulated, enable the
impacts of given quality requirements to be evaluated in terms meaningful both to
management and to customers. Comparison of actual and predicted quality status
may serve as a useful management indicator, and may also provide feedback data for
improving quality assessment methods earlier used. Relative quality index tracking
may contribute to a quantitative strategy for improving cost-effectiveness through
prioritization of work and assessment of incremental benefits.

Most importantly, this paper suggests that a more comprehensive and useful
quality measure may also exist. The relative quality index concept appears to be
extensible to other critical-resource-related parameters other than dollars, such as
workyears, schedule, facilities, and capacity.

The recognition and adoption of these principles by software professionals
will, it is hoped, provide a clearer direction and unifying focus for future TQM
management research.

R.C. Tausworthe, Software quality management 139

REFERENCES

Belady, L.A. (1977), "Software Complexity", Software Life Cycle Management Workshop, AIRMICS,
Atlanta, GA, pp. 371-383.

Boehm, B.W. et al. (1978), Characteristics of Software Quality, Elsevier-North Holland Book Co.,
Amsterdam, Holland.

Boehm, B.W. (1981), Software Economics, Prentice-Hall, Inc., Englewood Cliffs, N J, pp. 310-313.
Brooks, EP. (1974), "The Mythical Man-Month", Datamation 20, 12, 45-52.
Crosby, P.B. (1979), Quality is Free, Mentor Books, New York, NY.
Curtis, W. (1981), "The Measurement of Software Quality and Complexity", In Software Metrics, A.J.

Perlis et al., Eds., MIT Press, Cambridge, MA, chapter 12.
Deming, E. (1989), Out of Crisis, MIT Center for Advanced Engineering Study, Cambridge, MA.
Elsayed, E.A., G. Taguchi, and T. Tsiang (1988), Quality Engineering in Production Systems, McGraw-

Hill Book Co., NY.
Gilb, T. (1977), Software Metrics, Winthrop Press, Cambridge, MA.
Humphry, W. (1987), "Characterizing the Software Process--A Maturity Framework", Technical Report

CMU/SEI-87-TR-11, ESD-TR-87-112, Software Engineering Institute, Carnegie-Mellon University,
Pittsburg, PA.

"Information Technology- Software Product Evaluation - Quality Characteristics and Guidelines for
Their Use", International Organization for Standardization, ISO/TEC 9126.

Koontz, O'Donnell, and Weihrich (1984), Management, McGraw-Hill Book Co., NY, Eighth Edition.
Lyu, M.R. (1991), "Measuring Reliability of Embedded Software: An Empirical Study with JPL Project

Data", International Conference on Probabilistic Safety Assessment and Management, Beverly Hills,
CA, pp. 493-500.

Mosemann, L.K. (1993), "Creating a National Vision and Force in Software Through Software Measurement",
keynote address, Cooperstown I Workshop, Rome Laboratory, Griffiss AFB, NY.

Pall, G.A. (1987), Quality Process Management, Prentice-Hall, Inc., Englewood Cliffs, NJ.
Perlis, A.J. et al. (1981), Software Metrics, MIT Press, Cambridge, MA.
Phadke, M.S. (1989), Quality Engineering Using Robust Design, Prentice-Hall, Inc.
Press, W.H., Ed. (1987), Numerical Recipes: The Art of Scientific Computing, Cambridge University

Press, New York, Chapter 10.
Stamm, S.L. (1981), "Assuring Quality Quality Assurance", Datamation 27, 195-200.
Tausworthe, R.C. (1980), "The Work Breakdown Structure in Software Project Management", Journal

of Systems and Software 1, 181 - 186.
Thayer, R.H. (1983), "Software Engineering Project Management: ATop-Down View", Software Engineering

Project Management, IEEE Computer Society Tutorial 751, Computer Society Press, Washinton, DC.
Walton, M. (1988), The Deming Method, Dodd-Mead, Inc., New York, NY.

