
Annals of Software Engineering I(1995)43-55 43 

Avoiding metric monsters: A design metrics approach 

Wayne M. Zage t and Dolores M. Zage 

Computer Science Department, Ball State University, Muncie, IN 47306, USA 

Cathy Wilburn 

Northrop Grumman Corporation, Electronics Systems Division, 
Rolling Meadows, IL 60008, USA 

Metric monsters are stumbling blocks that prevent software metrics-guided 
methodologies from attaining product and process improvement. Metric monsters can 
occur during the identification, collection or application of software metrics. In our 
research, we have developed and tested our design metrics over a five-year period and 
have found them to be excellent predictors of error-prone modules. Based on this 
research, we will identify some of the monsters that occur in the quantitative analyses 
of software and its development processes, and present our approach in formulating a 
design metrics model that avoids these monsters. This model consists of software tools, 
guidelines and actions for the application of software design metrics. 
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1. I N T R O D U C T I O N  

In software engineering, it is useful to derive analogies f rom other fields to 
gain an understanding of software development.  Parallels to the industrial model  for 
controll ing processes can be drawn in an effort to improve the quality of  software 
and the process that produces it (figure 1). The industrial model displays a process 
that is stable and divisible into a number  of  steps. During each step, the process is 
monitored,  and measurements  are taken and compared to standards for that measured 
characteristic [Dunn 1990]. The cornerstone of the industrial model  is measurement .  

This successful model can serve as the basis for a quality control model  for 
software development .  However,  the software development model contains problems 
that can prevent  it f rom producing the positive effects o f  its industrial counterpart.  
Whereas  measurement  is the cornerstone of  the industrial model,  measurement  in the 
software development  process can lead to problems caused by what we label metric 
monsters. As depicted in figure 2, when you are up to your neck in metric monsters,  

t E-mail: wmz@bsu-cs.bsu.edu 

© J.C. Baltzer AG, Science Publishers 



44 W.M. Zage et aL, Avoiding metric monsters 

material 

measurement measurement measurement 
standard standard standard finished 

first process ith process last I~cess ~- 

revise/adjust revise/adjust revise/adjust 

Figure 1. Industrial quality improvement model. 

Figure 2. Metric monsters. 

it is difficult to remind yourself that your initial objective was to drain the swamp, 
or in the software realm, to improve the process and/or product of software development. 
Metric monsters are stumbling blocks in the areas of identification, collection and 
application of metrics that prevent software metrics-guided methodologies from attaining 
product and process improvement. Sections 2, 3, and 4 of this paper begin with a 
discussion of predominant metric monsters in these three areas and end with a 
perspective from our own research efforts on how to avoid them. 

2. IDENTIFICATION OF USEFUL SOFTWARE METRICS 

To apply the industrial model in figure 1 to software development, the initial 
constraint of establishing a stable and divisible process first must be met. This 
condition is satisfied by many software engineers who follow a software development 
model such as the classic waterfall model or an iterative prototyping approach. 
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Having met this requirement, a measurement/standard relationship must be established 
for each of the defined processes. The key issues are how does one recognize and 
measure when the ith process is complete at a certain level of quality. Many sources 
such as intuition, office conversations and cherished beliefs are prospective benchmarks 
for software developers. However, standards developed from such sources are hardly 
reliable. For example, conventional wisdom dictates that systems composed of small 
modules are more reliable than those made up of large modules, that low coupling 
(a measure of how much modules depend on each other) and high cohesion (a 
measure of how related the internal parts of a module are to each other and to the 
functionality of the module) always lead to less error-prone modules, and that high 
fan-out leads to lower-quality systems. These premises seem reasonable, but some 
have been proven to be incorrect under certain conditions. (See [Card et al. 1986; 
Conte et al. 1986; Branyan et al. 1987] for examples.) 

Selecting metrics for software measurements that have not been validated 
creates a metric monster. As mentioned by Grady [1992], practices of collecting and 
using metrics that have not been measured and proven should not be accepted as 
"software engineering". A rigorous analysis that validates the metrics must exist. The 
metrics must be field tested and instill confidence in the practitioner with their 
adoption. Furthermore, once metrics seem promising based on university results, they 
should be evaluated in industry on large-scale software [Conte et al. 1986]. 

Other problems in choosing metrics are that the wrong characteristic of the product 
or the process may be measured, or the intended objective cannot be measured 
consistently or accurately [Grady and Caswell 1987]. Moreover, one must ask if a 
chosen metric is really a reliable indicator of what it purports to measure. For example, 
software quality has many facets that are sometimes measured by combining various 
quality metrics to obtain a single metric value. In this approach, liberties may be taken. 
Ordinal and cardinal values may be combined, tradeoff qualities may not be considered 
and, thus, the value of the metric can be obscured and its validity questioned. 

Metrics new to a measurement program must be nurtured over time. The 
patience and persistence of practitioners needed to establish historical data that are 
required to evaluate and fine-tune the performance of the metrics often run out 
prematurely. The benefits of a new metric may not be recognized immediately and, 
therefore, management must be committed to a multi-year time frame. New metrics 
may not be clearly and precisely defined so as to be calculated accurately and 
consistently. This monster also exhibits itself in established metrics. For example, the 
definition of L O C  can vary between organizations, departments, individuals and 
tools, which can lead to possible misinterpretation of data. 

2.1 Identification of Useful Design Metrics 

Currently, the most commonly used product metrics are calculated from source 
code. These measurements can provide developers feedback, but generally too late 
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to easily make changes without severely impacting a product's cost and schedule. 
Pfleeger [1991] states that it is easier to make changes to software when it is in its 
abstract conceptual stage than when it is already implemented. The earlier a problem 
can be identified, the fewer places that need to be checked to find its cause. The ideal 
approach would be to collect metrics during design. However, a noticeably weak area 
in metrics is quality indicators for design, especially preliminary designs, as noted 
by Schulmeyer and McManus [1992]. Currently, managers depend on inspection 
and/or testing to achieve quality. In any improvement process, quality must be built 
into the product and not added later. Improving the design process helps to ensure 
that quality is built into the product as opposed to engineers attempting to test it in 
later [Zultner 1988]. 

Since it is chaotic to attempt to improve all phases of software development 
at once, and since the design phase provides a significant return in terms of benefits, 
researchers are measuring many aspects of design products. Information flow metrics, 
some software science metrics and McCabe's cyclomatic complexity have been used 
to predict code quality early in the life cycle [Henry and Selig 1990]. A software 
complexity metric based on module interaction has been developed which helps to 
analyze a software system during development in order to provide a guide to system 
decomposition, and ultimately lead to more reliable software [Lew et al. 1988]. 
Gibson and Senn [ 1989] have found that system structural differences impact software 
maintenance performance. Li and Cheung [1987] have suggested hybrid metrics to 
remedy the lack of completeness of most single-factor measures of program volume, 
complexity and control. 

Other researchers have sought a metric which would identify problematic 
components early in the life cycle. Studies have shown that approximately 20% of 
a software system is responsible for 80% of the errors [Boehm and Papaccio 1988]. 
It is possible that such error-prone modules exhibit some measurable attribute to 
identify them as design stress points. In Basili's study [1981], the measures V(G), 
calls, LOC, executable statements, revisions and Halstead's effort metric E were 
correlated with errors. The metric with the highest correlation with errors was the 
number of revisions at .67. Obviously, a revision metric does not occur early enough 
in the life cycle to help the software developer take corrective measures during 
design. In the Distos/Incas experiment, information flow measures had only average 
predictive capabilities [Rombach 1990]. 

In our design metrics research, we began analyzing software systems to determine 
if identifiable traits of error modules could be uncovered during design. Our selection 
criteria were that the metrics capturing such traits must be objective and automatable. 
We have developed three design metrics: D e, D i and D(G).  The external design 
metric De is defined as 

D e = el(inflows * outflows) + ez(fan-in *fan-out) ,  
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where 

inflows is the number of data entities passed to the module from superordinate 
or subordinate modules, 

outflows is the number of data entities passed from the module to superordinate 
or subordinate modules, 

fan-in and fan-out are the number of superordinate and subordinate modules, 
respectively, directly connected to the given module, and 

el and e2 are weighting factors. 

The term inflows * outflows provides an indication of the amount of data 
flowing through the module. The term fan-in *fan-out captures the local architectural 
structure around a module since these factors are equivalent to the number of modules 
that are structurally above and below the given module. This product gives the 
number of  invocation sequences through the module. De focuses on a module's 
external relationships to other modules in the software system. 

The internal design metric D i is defined as 

Di = iI(CC) + i2(DSM) + i3(I[O), 

where 

CC, Central Calls, is the number of procedure or function invocations, 

DSM, Data Structure Manipulations, is the number of references to complex 
data types, which are data types that use indirect addressing, 

I /0 ,  Input~Output, is the number of external device accesses, and 

il, i2 and i 3 are weighting factors. 

D i incorporates factors related to a module's internal structure. D(G) is a linear 
combination of the external design metric De and the internal design metric D i and 
has the form 

D(G) = D e + D i. 

The metrics De and D i are designed to offer useful information during two 
different stages of software design. The calculation of De is based on information 
available during architectural design, whereas Di is calculated when detailed design 
is completed. In architectural design, information such as hierarchical module diagrams, 
data flows, functional descriptions of modules and interface descriptions are available. 
After completing detailed design, all of the previous information plus the chosen 
algorithms, and in many cases either pseudocode or a program design language 
representation for each module, are available. 
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Due to costs, not all modules in the design of a system can be reviewed. 
Therefore, only a small percentage of the modules in the system should be identified 
as potentially error-prone. In order to select a reasonable set of modules to reconsider, 
our standard algorithm for identifying error-prone modules begins by calculating the 
particular metric for each module under consideration. Then those modules whose 
metric value is more than one standard deviation above the mean for that metric over 
all the modules considered are identified as stress points. Later, when error reports 
are available, we determine what percent of the detected errors are actually in those 
stress-point modules. 

Our research team has obtained excellent results in finding error-prone modules 
in relatively small projects by simply calculating D e values. The 12% of the modules 
identified as stress points by De contained 53% of the detected errors over all the 
systems in our university database [Zage and Zage 1990]. This external metric has 
also been evaluated on CSC's STANFINS project. In that study, De performed even 
better than on the university database by targeting 67% of the detected errors while 
identifying only 12% of the modules as stress points [Zage and Zage 1993]. 

In our quest for an internal design metric that would be a good predictor of 
error-prone modules, we studied D i with several weighting schemes. The best results 
occurred on our test bed of projects when we set il = i3 = 1 and i2 = 2.5, stressing 
the data structure manipulation usage within the modules. When highlighting 11% 
of the modules as stress points, we found that 94% of the detected errors occurred 
in 89% of those stress points, with false positives occurring 11% of the time. Thus, 
using i2 = 2.5 gave excellent results as a predictor of error-prone modules. We also 
asked how these results compared to the time-honored metrics cyclomatic complexity 
V(G) and LOC (obviously calculated later in the life cycle) as a predictor of error- 
prone modules. In this study, a module was identified as a stress point by V(G) if 
its metric value was greater than or equal to 10 (the value that McCabe thought was 
a reasonable upper bound [McCabe 1976]), and by LOC if the size of the module 
was greater than one standard deviation above the mean for all modules of that 
particular project. The results are summarized in table 1. 

Table 1 

Comparing metrics' ability to identify error-prone modules. 

V(G) LOC D i 

Modules highlighted 11% I 1% 11% 
Highlighted modules with errors 44% 56% 89% 
Detected errors found 37% 51% 94% 
False positives 56% 44% 11% 

Note that the highlighted modules with errors, the percent of detected errors 
found and the percent of false positives were not as favorable using V(G) or LOC 
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as when using D i. Yet the D i metric is available earlier than specific LOC counts! 
None of the other well-known measures that we tested performed better than the D i 

metric as a predictor of error-prone modules [Zage and Zage 1990]. D i also performed 
well on industrial data, where the stress points highlighted contained 74% of the 
detected errors [Zage and Zage 1993]. The design metrics, as shown by experimental 
results, give a software designer a good indication of where trouble spots exist. 

The metric D(G), incorporating both external and internal design metric 
components, has given excellent results as a predictor of error-prone modules on 
software projects developed at Ball State University for client-partners in industry. 
More specifically, the 12% of the modules highlighted as stress points by D(G) 
contained 97% of the detected errors [Zage and Zage 1990]. D(G) performed successfully 
on the STANFINS modules as well, always highlighting high concentrations of errors 
as stress points [Zage and Zage 1993]. 

Our design metrics approach avoids the aforementioned metric monsters of 
poor validation, low reliability and insufficient nurturing. These design metrics are 
based on the theoretical design principles of coupling, cohesion and modularity. The 
metric De is related to the coupling between modules, and D i gives a measure of a 
module's cohesion. The primitive design metrics involved, namely fan-in, fan-out, 
inflows, outflows, central calls, data structure manipulations and input/output, were 
chosen from a variety of primitive metrics available in architectural and detailed 
design. To determine which specific primitives should be chosen to precisely define 
our metrics, we analyzed the errors that were occurring in both university and industry- 
based software projects. (Other researchers have used the correlation of metrics with 
program changes to locate possible design and implementation problems [Henry and 
Kafura 1981].) Our data showed that the predominant number of errors occurred when 
data were passed between modules, when modules were invoked incorrectly, when 
the number of central calls was relatively high, and when data structures were manipulated. 
These metrics were selected as the primitive components of De and D i a s  reliable 
indicators of error proneness. Then, through five years of nurturing these metrics by 
analyzing a variety of university and industrial projects and fine-tuning their components, 
we developed the current formulas for De, Di and D(G). The important issue then was 
whether these composite design metrics would be excellent predictors of error proneness. 
The experimental evidence shows that they are [Zage and Zage 1993]. 

3. COLLECTION OF SOFTWARE METRICS 

Metrics collection involves the expenditure of resources such as time, labor 
and money. Companies will have unwisely invested their resources if the metrics 
obtained are not used to achieve improvement goals. Practitioners will view such 
metrics as an additional burden not worth the extra effort. In an already time and 
resource compressed development cycle, metrics collection and analysis become 
monsters. As reported by Pfleeger [ 1993], for the Software Engineering Laboratory 
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at the US National Aeronautics and Space Administration's Goddard Space Flight 
Center, incorporation of data collection and analysis adds seven to eight percent to 
the cost of a project. 

A successful quality or productivity improvement program will require a team 
effort from all participants. A high degree of cooperation among configuration 
management personnel, project managers, software engineers, accountants and secretaries 
is required for measuring and improving the development process. For example, team 
players are necessary to bridge the gap between the metricians collecting the metrics 
and the software developers using the metric reports. Shared values and attitudes and 
a corporate commitment to a quality metrics program are required to make the effort 
a success. 

Whereas many code analyzers exist, only a limited number of commercial 
tools are available that support metrics collection for other phases of the software 
development life cycle, as noted by Moiler and Paulish [1993]. When selecting a 
metrics support tool, practitioners need to consider the definitions of metrics employed 
by the tool developers. The definitions used in the tool must coincide with the 
definitions in the historical database if comparisons are to be made. Moreover, many 
basic metrics are not independent and metrics such as time and size are often used 
for normalizing purposes. Therefore, the tool output must be externally readable and 
not stored in an undocumented internal data format. Even selecting a usable code 
analyzer is a monstrous task. Often, companies must develop tools internally, and 
companies report that approximately 10% of the total software staff can be dedicated 
to tool support. This is a large investment that many companies are not able to make. 
In a survey by Ross [1990], 108 companies responded to questions concerning 
metrics used in quality management. Only 4% of the companies used a metrics 
analyzer, and yet an overwhelming number responded that they wanted practical 
metrics and tools. For many, the search for an appropriate metrics tool set continues. 

3.1 Collection of Our Design Metrics 

Several large Ada projects from industry were offered as data for this research. 
Ada is increasingly being used as a design representation language for several reasons 
[Agresti et al. 1992]. First, if both design and implementation are done in the same 
language, the translation from one stage to the next is made more easily. Also, the 
Ada design syntax can be checked by an Ada compiler and tools available for Ada 
can be used to evaluate the designs. 

To make our analyses more efficient and consistent, and to assist software 
engineers in determining which components in a system to re-examine, a Design 
Metrics Analyzer for Ada (DMAA) was developed for a Unix environment. This tool 
helps designers avoid the metrics monster of overexpenditure of resources in that the 
DMAA calculates, collects and analyzes seventy-seven metrics on each Ada module. 
The metrics collected are our design metrics, as well as various size and complexity 
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metrics. The design metrics are analyzed to produce stress-point reports. Other reports 
that are helpful for documentation purposes and re-engineering or reverse engineering 
efforts are also produced by the DMAA. All of the reports are in ASCII format and 
are described in more detail in [Zage et al. 1994]. 

Tools must be available to successfully integrate the use of metrics into the 
software development process. Tools ensure consistent measurements and minimize 
the interference with the existing work load. Before the DMAA was available, the 
design metrics analysis of a 14,000-line Ada program required 420 person-hours of 
effort. The same program requires less than one minute using the DMAA. This tool 
has been used on over one million lines of Ada. It is currently being used at Northrop 
Grumman Corporation, Electronics Systems Division, Harris Corporation, Computer 
Sciences Corporation and GTE Government Systems. To support the design metric 
analysis of large industrial projects written in C, a Design Metrics Analyzer for C 
(DMAC) has also been developed. 

4. APPLICATION OF SOFTWARE METRICS 

Although metrics have been shown successfully to aid in the development 
process, many software engineers are reluctant to use them. Software engineers fear 
that the metrics will be used to evaluate their performance. This can lead to ill- 
feelings about the use of metrics and even to manipulating numbers or the software 
product itself to achieve a measurement goal. Grady [1992] warns that "metrics are 
not consistently enough defined that anyone should consider using them to measure 
and evaluate people". When using metrics, engineers need to be assured that metrics 
will not be used to measure personnel performance so that they will be more eager 
and accurate in their metrics collection and analysis. 

A metrics approach may claim to analyze software "faster than a speeding 
bullet", build productive software development environments "more powerful than 
a locomotive", and leap past the usual metric monsters "in a single bound". However, 
metrics do not always fulfill expectations and sometimes too much is expected from 
them as a cure-all. Boastful claims of unrealistic advertising can set up the user for 
disillusionment. In a metrics-based software development methodology, metrics data 
and analyses are not sufficient. A framework of guidelines for interpreting the data 
and possible actions based on the results must be provided to the practitioner. Furthermore, 
an understanding of the project being analyzed must factor into the interpretation of 
the metric results. Dunn [1990] states that "the most reliable predictors are those that 
are derived from personal experience". Therefore, a metrics model must include the 
practitioner's past experience and knowledge of the application as actions are taken. 

4.1 The Application of Our Design Metrics 

The foundation for the successful application of software metrics is building 
a practical metrics model. We view a metrics model as having four main components: 
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metrics, tools, guidelines, and actions. Applying this model involves coordinating 
these components with software development. Tools are used to automate metrics 
collection and support the model to ensure efficiency and accuracy in data analysis. 
Guidelines define the collection points for the metrics, establish stress-point cut-off 
values, and employ the knowledge and experience of the designer. Based on these 
guidelines, defined actions are recommended. 

The metrics model for the application of our design metrics is displayed in 
figure 3. (Compare to figure 1.) The guidelines direct practitioners to collect De 
values after architectural design and to collect D i values after detailed design. Stress 
points are identified in our guidelines as those modules whose metric value is more 

calculate De 
~-~ ~-~'architectural design I 

< 
revise/adjust 

calculate Oi 
detailed design 

revise/adjust revise/adjust 
Figure 3. The design metrics quality improvement model. 

code 

than one standard deviation above the mean. Based on the identification of stress 
points, developers may take specific actions. For example, after calculating D e values, 
software designers could modify the architectural design or progress to detailed 
design. Similarly, after calculating D i values, software designers could modify the 
detailed design or progress to the coding phase or go back and make further modifications 
to the architectural design. This design metrics quality improvement model couples 
the information currently available during each stage of design with a measurement 
procedure to determine how a design is progressing. 

Even in the most thoroughly tested and researched metrics model, if the actions 
taken as a result of the metrics data are misguided targets of finger pointing, then 
the model will not survive. In the design metrics model, after error-prone modules 
are highlighted, corrective actions are based upon the knowledge and experience of 
the designer. The design metrics results are used by the designers to proactively 
analyze their design to improve their product. By first using the metrics to identify 
a set of modules as potentially error-prone and then overlaying that information with 
personal experience and application knowledge to limit that set, the practitioner 
determines the appropriate actions in this model. Such actions can include looking 
for alternatives to a particular part of a design, assigning difficult components to 
experienced developers, marking a stress point for further review in the next cycle, 
providing extra testing effort for the indicated stress points, or simply taking no 
action at all. The features of our application model are summarized in table 2. 



W.M. Zage et al., Avoiding metric monsters 53 

Table 2 

Design metrics application model. 

Metrics Tools Guidelines Possible actions 

D e DMAA identify metric collection modify architectural and/or 
points detailed design 

Di DMAC establish stress-point cut-off assign difficult components to 
values experienced developers 

D(G) employ practitioner'sknow- review stress points in next 
ledge and experience design iteration 

provide extra testing effort for 
stress points 

5. CURRENT RESEARCH DIRECTION 

A software metrics model consists of metrics, tools, guidelines and actions. In 
our previous research, we have developed the design metrics De, Di, and D(G) ,  tools 
to automate the metrics collection, called the Design Metrics Analyzers for Ada and 
C, and guidelines and actions for our model. Our current research is focused on 
measuring the effects of the prescribed actions on the software development process 
and product. The goal of this research is to evaluate the performance of our design 
metrics as they are applied to ongoing software development in controlled industry 
and university experiments. 

Our research this year focuses on a design metrics analysis of a project at the 
Northrop Grumman Corporation. This project's design schedule will allow design 
changes based on our metrics data. We are using the first integration phase of 
approximately 100,000 lines of Ada as the control system and a second integration 
phase, an additional 70,000 lines of Ada, as the experimental system. Our approach 
permits us to establish a baseline of design and implementation defect densities and 
their correlations to the design metrics prior to the introduction of these metrics into 
the second phase. 

We have the rare opportunity to apply the metrics, as they are theoretically 
intended to guide the design process, to industrial projects as well as to university- 
based projects in this coming year. Based on the outcome of this analysis, we may 
refine the design metrics, review our guidelines for applying these metrics to software 
designs, and quantify the impact of the actions taken in our model. 
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