
Annals of Software Engineering I(1995)43-55 43

Avoiding metric monsters: A design metrics approach

Wayne M. Zage t and Dolores M. Zage

Computer Science Department, Ball State University, Muncie, IN 47306, USA

Cathy Wilburn

Northrop Grumman Corporation, Electronics Systems Division,
Rolling Meadows, IL 60008, USA

Metric monsters are stumbling blocks that prevent software metrics-guided
methodologies from attaining product and process improvement. Metric monsters can
occur during the identification, collection or application of software metrics. In our
research, we have developed and tested our design metrics over a five-year period and
have found them to be excellent predictors of error-prone modules. Based on this
research, we will identify some of the monsters that occur in the quantitative analyses
of software and its development processes, and present our approach in formulating a
design metrics model that avoids these monsters. This model consists of software tools,
guidelines and actions for the application of software design metrics.

Keywords: Design metrics, design metrics analyzer, metrics model, software metrics,
software quality.

1. I N T R O D U C T I O N

In software engineering, it is useful to derive analogies f rom other fields to
gain an understanding of software development. Parallels to the industrial model for
controll ing processes can be drawn in an effort to improve the quality of software
and the process that produces it (figure 1). The industrial model displays a process
that is stable and divisible into a number of steps. During each step, the process is
monitored, and measurements are taken and compared to standards for that measured
characteristic [Dunn 1990]. The cornerstone of the industrial model is measurement .

This successful model can serve as the basis for a quality control model for
software development . However, the software development model contains problems
that can prevent it f rom producing the positive effects o f its industrial counterpart.
Whereas measurement is the cornerstone of the industrial model, measurement in the
software development process can lead to problems caused by what we label metric
monsters. As depicted in figure 2, when you are up to your neck in metric monsters,

t E-mail: wmz@bsu-cs.bsu.edu

© J.C. Baltzer AG, Science Publishers

44 W.M. Zage et aL, Avoiding metric monsters

material

measurement measurement measurement
standard standard standard finished

first process ith process last I~cess ~-

revise/adjust revise/adjust revise/adjust

Figure 1. Industrial quality improvement model.

Figure 2. Metric monsters.

it is difficult to remind yourself that your initial objective was to drain the swamp,
or in the software realm, to improve the process and/or product of software development.
Metric monsters are stumbling blocks in the areas of identification, collection and
application of metrics that prevent software metrics-guided methodologies from attaining
product and process improvement. Sections 2, 3, and 4 of this paper begin with a
discussion of predominant metric monsters in these three areas and end with a
perspective from our own research efforts on how to avoid them.

2. IDENTIFICATION OF USEFUL SOFTWARE METRICS

To apply the industrial model in figure 1 to software development, the initial
constraint of establishing a stable and divisible process first must be met. This
condition is satisfied by many software engineers who follow a software development
model such as the classic waterfall model or an iterative prototyping approach.

W.M. Zage et al., Avoiding metric monsters 45

Having met this requirement, a measurement/standard relationship must be established
for each of the defined processes. The key issues are how does one recognize and
measure when the ith process is complete at a certain level of quality. Many sources
such as intuition, office conversations and cherished beliefs are prospective benchmarks
for software developers. However, standards developed from such sources are hardly
reliable. For example, conventional wisdom dictates that systems composed of small
modules are more reliable than those made up of large modules, that low coupling
(a measure of how much modules depend on each other) and high cohesion (a
measure of how related the internal parts of a module are to each other and to the
functionality of the module) always lead to less error-prone modules, and that high
fan-out leads to lower-quality systems. These premises seem reasonable, but some
have been proven to be incorrect under certain conditions. (See [Card et al. 1986;
Conte et al. 1986; Branyan et al. 1987] for examples.)

Selecting metrics for software measurements that have not been validated
creates a metric monster. As mentioned by Grady [1992], practices of collecting and
using metrics that have not been measured and proven should not be accepted as
"software engineering". A rigorous analysis that validates the metrics must exist. The
metrics must be field tested and instill confidence in the practitioner with their
adoption. Furthermore, once metrics seem promising based on university results, they
should be evaluated in industry on large-scale software [Conte et al. 1986].

Other problems in choosing metrics are that the wrong characteristic of the product
or the process may be measured, or the intended objective cannot be measured
consistently or accurately [Grady and Caswell 1987]. Moreover, one must ask if a
chosen metric is really a reliable indicator of what it purports to measure. For example,
software quality has many facets that are sometimes measured by combining various
quality metrics to obtain a single metric value. In this approach, liberties may be taken.
Ordinal and cardinal values may be combined, tradeoff qualities may not be considered
and, thus, the value of the metric can be obscured and its validity questioned.

Metrics new to a measurement program must be nurtured over time. The
patience and persistence of practitioners needed to establish historical data that are
required to evaluate and fine-tune the performance of the metrics often run out
prematurely. The benefits of a new metric may not be recognized immediately and,
therefore, management must be committed to a multi-year time frame. New metrics
may not be clearly and precisely defined so as to be calculated accurately and
consistently. This monster also exhibits itself in established metrics. For example, the
definition of L O C can vary between organizations, departments, individuals and
tools, which can lead to possible misinterpretation of data.

2.1 Identification of Useful Design Metrics

Currently, the most commonly used product metrics are calculated from source
code. These measurements can provide developers feedback, but generally too late

46 W.M. Zage et al., Avoiding metric monsters

to easily make changes without severely impacting a product's cost and schedule.
Pfleeger [1991] states that it is easier to make changes to software when it is in its
abstract conceptual stage than when it is already implemented. The earlier a problem
can be identified, the fewer places that need to be checked to find its cause. The ideal
approach would be to collect metrics during design. However, a noticeably weak area
in metrics is quality indicators for design, especially preliminary designs, as noted
by Schulmeyer and McManus [1992]. Currently, managers depend on inspection
and/or testing to achieve quality. In any improvement process, quality must be built
into the product and not added later. Improving the design process helps to ensure
that quality is built into the product as opposed to engineers attempting to test it in
later [Zultner 1988].

Since it is chaotic to attempt to improve all phases of software development
at once, and since the design phase provides a significant return in terms of benefits,
researchers are measuring many aspects of design products. Information flow metrics,
some software science metrics and McCabe's cyclomatic complexity have been used
to predict code quality early in the life cycle [Henry and Selig 1990]. A software
complexity metric based on module interaction has been developed which helps to
analyze a software system during development in order to provide a guide to system
decomposition, and ultimately lead to more reliable software [Lew et al. 1988].
Gibson and Senn [1989] have found that system structural differences impact software
maintenance performance. Li and Cheung [1987] have suggested hybrid metrics to
remedy the lack of completeness of most single-factor measures of program volume,
complexity and control.

Other researchers have sought a metric which would identify problematic
components early in the life cycle. Studies have shown that approximately 20% of
a software system is responsible for 80% of the errors [Boehm and Papaccio 1988].
It is possible that such error-prone modules exhibit some measurable attribute to
identify them as design stress points. In Basili's study [1981], the measures V(G),
calls, LOC, executable statements, revisions and Halstead's effort metric E were
correlated with errors. The metric with the highest correlation with errors was the
number of revisions at .67. Obviously, a revision metric does not occur early enough
in the life cycle to help the software developer take corrective measures during
design. In the Distos/Incas experiment, information flow measures had only average
predictive capabilities [Rombach 1990].

In our design metrics research, we began analyzing software systems to determine
if identifiable traits of error modules could be uncovered during design. Our selection
criteria were that the metrics capturing such traits must be objective and automatable.
We have developed three design metrics: D e, D i and D(G). The external design
metric De is defined as

D e = el(inflows * outflows) + ez(fan-in *fan-out) ,

W.M. Zage et al., Avoiding metric monsters 47

where

inflows is the number of data entities passed to the module from superordinate
or subordinate modules,

outflows is the number of data entities passed from the module to superordinate
or subordinate modules,

fan-in and fan-out are the number of superordinate and subordinate modules,
respectively, directly connected to the given module, and

el and e2 are weighting factors.

The term inflows * outflows provides an indication of the amount of data
flowing through the module. The term fan-in *fan-out captures the local architectural
structure around a module since these factors are equivalent to the number of modules
that are structurally above and below the given module. This product gives the
number of invocation sequences through the module. De focuses on a module's
external relationships to other modules in the software system.

The internal design metric D i is defined as

Di = iI(CC) + i2(DSM) + i3(I[O),

where

CC, Central Calls, is the number of procedure or function invocations,

DSM, Data Structure Manipulations, is the number of references to complex
data types, which are data types that use indirect addressing,

I /0 , Input~Output, is the number of external device accesses, and

il, i2 and i 3 are weighting factors.

D i incorporates factors related to a module's internal structure. D(G) is a linear
combination of the external design metric De and the internal design metric D i and
has the form

D(G) = D e + D i.

The metrics De and D i are designed to offer useful information during two
different stages of software design. The calculation of De is based on information
available during architectural design, whereas Di is calculated when detailed design
is completed. In architectural design, information such as hierarchical module diagrams,
data flows, functional descriptions of modules and interface descriptions are available.
After completing detailed design, all of the previous information plus the chosen
algorithms, and in many cases either pseudocode or a program design language
representation for each module, are available.

48 W.M. Zage et al., Avoiding metric monsters

Due to costs, not all modules in the design of a system can be reviewed.
Therefore, only a small percentage of the modules in the system should be identified
as potentially error-prone. In order to select a reasonable set of modules to reconsider,
our standard algorithm for identifying error-prone modules begins by calculating the
particular metric for each module under consideration. Then those modules whose
metric value is more than one standard deviation above the mean for that metric over
all the modules considered are identified as stress points. Later, when error reports
are available, we determine what percent of the detected errors are actually in those
stress-point modules.

Our research team has obtained excellent results in finding error-prone modules
in relatively small projects by simply calculating D e values. The 12% of the modules
identified as stress points by De contained 53% of the detected errors over all the
systems in our university database [Zage and Zage 1990]. This external metric has
also been evaluated on CSC's STANFINS project. In that study, De performed even
better than on the university database by targeting 67% of the detected errors while
identifying only 12% of the modules as stress points [Zage and Zage 1993].

In our quest for an internal design metric that would be a good predictor of
error-prone modules, we studied D i with several weighting schemes. The best results
occurred on our test bed of projects when we set il = i3 = 1 and i2 = 2.5, stressing
the data structure manipulation usage within the modules. When highlighting 11%
of the modules as stress points, we found that 94% of the detected errors occurred
in 89% of those stress points, with false positives occurring 11% of the time. Thus,
using i2 = 2.5 gave excellent results as a predictor of error-prone modules. We also
asked how these results compared to the time-honored metrics cyclomatic complexity
V(G) and LOC (obviously calculated later in the life cycle) as a predictor of error-
prone modules. In this study, a module was identified as a stress point by V(G) if
its metric value was greater than or equal to 10 (the value that McCabe thought was
a reasonable upper bound [McCabe 1976]), and by LOC if the size of the module
was greater than one standard deviation above the mean for all modules of that
particular project. The results are summarized in table 1.

Table 1

Comparing metrics' ability to identify error-prone modules.

V(G) LOC D i

Modules highlighted 11% I 1% 11%
Highlighted modules with errors 44% 56% 89%
Detected errors found 37% 51% 94%
False positives 56% 44% 11%

Note that the highlighted modules with errors, the percent of detected errors
found and the percent of false positives were not as favorable using V(G) or LOC

W.M. Zage et al., Avoiding metric monsters 49

as when using D i. Yet the D i metric is available earlier than specific LOC counts!
None of the other well-known measures that we tested performed better than the D i

metric as a predictor of error-prone modules [Zage and Zage 1990]. D i also performed
well on industrial data, where the stress points highlighted contained 74% of the
detected errors [Zage and Zage 1993]. The design metrics, as shown by experimental
results, give a software designer a good indication of where trouble spots exist.

The metric D(G), incorporating both external and internal design metric
components, has given excellent results as a predictor of error-prone modules on
software projects developed at Ball State University for client-partners in industry.
More specifically, the 12% of the modules highlighted as stress points by D(G)
contained 97% of the detected errors [Zage and Zage 1990]. D(G) performed successfully
on the STANFINS modules as well, always highlighting high concentrations of errors
as stress points [Zage and Zage 1993].

Our design metrics approach avoids the aforementioned metric monsters of
poor validation, low reliability and insufficient nurturing. These design metrics are
based on the theoretical design principles of coupling, cohesion and modularity. The
metric De is related to the coupling between modules, and D i gives a measure of a
module's cohesion. The primitive design metrics involved, namely fan-in, fan-out,
inflows, outflows, central calls, data structure manipulations and input/output, were
chosen from a variety of primitive metrics available in architectural and detailed
design. To determine which specific primitives should be chosen to precisely define
our metrics, we analyzed the errors that were occurring in both university and industry-
based software projects. (Other researchers have used the correlation of metrics with
program changes to locate possible design and implementation problems [Henry and
Kafura 1981].) Our data showed that the predominant number of errors occurred when
data were passed between modules, when modules were invoked incorrectly, when
the number of central calls was relatively high, and when data structures were manipulated.
These metrics were selected as the primitive components of De and D i a s reliable
indicators of error proneness. Then, through five years of nurturing these metrics by
analyzing a variety of university and industrial projects and fine-tuning their components,
we developed the current formulas for De, Di and D(G). The important issue then was
whether these composite design metrics would be excellent predictors of error proneness.
The experimental evidence shows that they are [Zage and Zage 1993].

3. COLLECTION OF SOFTWARE METRICS

Metrics collection involves the expenditure of resources such as time, labor
and money. Companies will have unwisely invested their resources if the metrics
obtained are not used to achieve improvement goals. Practitioners will view such
metrics as an additional burden not worth the extra effort. In an already time and
resource compressed development cycle, metrics collection and analysis become
monsters. As reported by Pfleeger [1993], for the Software Engineering Laboratory

50 W.M. Zage et aL, Avoiding metric monsters

at the US National Aeronautics and Space Administration's Goddard Space Flight
Center, incorporation of data collection and analysis adds seven to eight percent to
the cost of a project.

A successful quality or productivity improvement program will require a team
effort from all participants. A high degree of cooperation among configuration
management personnel, project managers, software engineers, accountants and secretaries
is required for measuring and improving the development process. For example, team
players are necessary to bridge the gap between the metricians collecting the metrics
and the software developers using the metric reports. Shared values and attitudes and
a corporate commitment to a quality metrics program are required to make the effort
a success.

Whereas many code analyzers exist, only a limited number of commercial
tools are available that support metrics collection for other phases of the software
development life cycle, as noted by Moiler and Paulish [1993]. When selecting a
metrics support tool, practitioners need to consider the definitions of metrics employed
by the tool developers. The definitions used in the tool must coincide with the
definitions in the historical database if comparisons are to be made. Moreover, many
basic metrics are not independent and metrics such as time and size are often used
for normalizing purposes. Therefore, the tool output must be externally readable and
not stored in an undocumented internal data format. Even selecting a usable code
analyzer is a monstrous task. Often, companies must develop tools internally, and
companies report that approximately 10% of the total software staff can be dedicated
to tool support. This is a large investment that many companies are not able to make.
In a survey by Ross [1990], 108 companies responded to questions concerning
metrics used in quality management. Only 4% of the companies used a metrics
analyzer, and yet an overwhelming number responded that they wanted practical
metrics and tools. For many, the search for an appropriate metrics tool set continues.

3.1 Collection of Our Design Metrics

Several large Ada projects from industry were offered as data for this research.
Ada is increasingly being used as a design representation language for several reasons
[Agresti et al. 1992]. First, if both design and implementation are done in the same
language, the translation from one stage to the next is made more easily. Also, the
Ada design syntax can be checked by an Ada compiler and tools available for Ada
can be used to evaluate the designs.

To make our analyses more efficient and consistent, and to assist software
engineers in determining which components in a system to re-examine, a Design
Metrics Analyzer for Ada (DMAA) was developed for a Unix environment. This tool
helps designers avoid the metrics monster of overexpenditure of resources in that the
DMAA calculates, collects and analyzes seventy-seven metrics on each Ada module.
The metrics collected are our design metrics, as well as various size and complexity

W.M. Zage et al., Avoiding metric monsters 51

metrics. The design metrics are analyzed to produce stress-point reports. Other reports
that are helpful for documentation purposes and re-engineering or reverse engineering
efforts are also produced by the DMAA. All of the reports are in ASCII format and
are described in more detail in [Zage et al. 1994].

Tools must be available to successfully integrate the use of metrics into the
software development process. Tools ensure consistent measurements and minimize
the interference with the existing work load. Before the DMAA was available, the
design metrics analysis of a 14,000-line Ada program required 420 person-hours of
effort. The same program requires less than one minute using the DMAA. This tool
has been used on over one million lines of Ada. It is currently being used at Northrop
Grumman Corporation, Electronics Systems Division, Harris Corporation, Computer
Sciences Corporation and GTE Government Systems. To support the design metric
analysis of large industrial projects written in C, a Design Metrics Analyzer for C
(DMAC) has also been developed.

4. APPLICATION OF SOFTWARE METRICS

Although metrics have been shown successfully to aid in the development
process, many software engineers are reluctant to use them. Software engineers fear
that the metrics will be used to evaluate their performance. This can lead to ill-
feelings about the use of metrics and even to manipulating numbers or the software
product itself to achieve a measurement goal. Grady [1992] warns that "metrics are
not consistently enough defined that anyone should consider using them to measure
and evaluate people". When using metrics, engineers need to be assured that metrics
will not be used to measure personnel performance so that they will be more eager
and accurate in their metrics collection and analysis.

A metrics approach may claim to analyze software "faster than a speeding
bullet", build productive software development environments "more powerful than
a locomotive", and leap past the usual metric monsters "in a single bound". However,
metrics do not always fulfill expectations and sometimes too much is expected from
them as a cure-all. Boastful claims of unrealistic advertising can set up the user for
disillusionment. In a metrics-based software development methodology, metrics data
and analyses are not sufficient. A framework of guidelines for interpreting the data
and possible actions based on the results must be provided to the practitioner. Furthermore,
an understanding of the project being analyzed must factor into the interpretation of
the metric results. Dunn [1990] states that "the most reliable predictors are those that
are derived from personal experience". Therefore, a metrics model must include the
practitioner's past experience and knowledge of the application as actions are taken.

4.1 The Application of Our Design Metrics

The foundation for the successful application of software metrics is building
a practical metrics model. We view a metrics model as having four main components:

52 W.M. Zage et al., Avoiding metric monsters

metrics, tools, guidelines, and actions. Applying this model involves coordinating
these components with software development. Tools are used to automate metrics
collection and support the model to ensure efficiency and accuracy in data analysis.
Guidelines define the collection points for the metrics, establish stress-point cut-off
values, and employ the knowledge and experience of the designer. Based on these
guidelines, defined actions are recommended.

The metrics model for the application of our design metrics is displayed in
figure 3. (Compare to figure 1.) The guidelines direct practitioners to collect De
values after architectural design and to collect D i values after detailed design. Stress
points are identified in our guidelines as those modules whose metric value is more

calculate De
~-~ ~-~'architectural design I

<
revise/adjust

calculate Oi
detailed design

revise/adjust revise/adjust
Figure 3. The design metrics quality improvement model.

code

than one standard deviation above the mean. Based on the identification of stress
points, developers may take specific actions. For example, after calculating D e values,
software designers could modify the architectural design or progress to detailed
design. Similarly, after calculating D i values, software designers could modify the
detailed design or progress to the coding phase or go back and make further modifications
to the architectural design. This design metrics quality improvement model couples
the information currently available during each stage of design with a measurement
procedure to determine how a design is progressing.

Even in the most thoroughly tested and researched metrics model, if the actions
taken as a result of the metrics data are misguided targets of finger pointing, then
the model will not survive. In the design metrics model, after error-prone modules
are highlighted, corrective actions are based upon the knowledge and experience of
the designer. The design metrics results are used by the designers to proactively
analyze their design to improve their product. By first using the metrics to identify
a set of modules as potentially error-prone and then overlaying that information with
personal experience and application knowledge to limit that set, the practitioner
determines the appropriate actions in this model. Such actions can include looking
for alternatives to a particular part of a design, assigning difficult components to
experienced developers, marking a stress point for further review in the next cycle,
providing extra testing effort for the indicated stress points, or simply taking no
action at all. The features of our application model are summarized in table 2.

W.M. Zage et al., Avoiding metric monsters 53

Table 2

Design metrics application model.

Metrics Tools Guidelines Possible actions

D e DMAA identify metric collection modify architectural and/or
points detailed design

Di DMAC establish stress-point cut-off assign difficult components to
values experienced developers

D(G) employ practitioner'sknow- review stress points in next
ledge and experience design iteration

provide extra testing effort for
stress points

5. CURRENT RESEARCH DIRECTION

A software metrics model consists of metrics, tools, guidelines and actions. In
our previous research, we have developed the design metrics De, Di, and D(G) , tools
to automate the metrics collection, called the Design Metrics Analyzers for Ada and
C, and guidelines and actions for our model. Our current research is focused on
measuring the effects of the prescribed actions on the software development process
and product. The goal of this research is to evaluate the performance of our design
metrics as they are applied to ongoing software development in controlled industry
and university experiments.

Our research this year focuses on a design metrics analysis of a project at the
Northrop Grumman Corporation. This project's design schedule will allow design
changes based on our metrics data. We are using the first integration phase of
approximately 100,000 lines of Ada as the control system and a second integration
phase, an additional 70,000 lines of Ada, as the experimental system. Our approach
permits us to establish a baseline of design and implementation defect densities and
their correlations to the design metrics prior to the introduction of these metrics into
the second phase.

We have the rare opportunity to apply the metrics, as they are theoretically
intended to guide the design process, to industrial projects as well as to university-
based projects in this coming year. Based on the outcome of this analysis, we may
refine the design metrics, review our guidelines for applying these metrics to software
designs, and quantify the impact of the actions taken in our model.

ACKNOWLEDGEMENTS

This research was supported, in part, by a grant from the Software Engineering
Research Center (SERC) at Purdue University, and a National Science Foundation

54 W.M. Zage et al., Avoiding metric monsters

Industry/University Cooperative Research Center grant (NSF Grant No. ECD-8913133).
We thank the SERC industrial affiliates Northrop Grumman Corporat ion, Electronics
Systems Division, Harris Corporation, Computer Sciences Corporation, Magnavox
Electronic Systems Division, and the US Army Research Laboratory - Software
Technology Branch, for providing our research team with large-scale software for our
design metrics analyses. We also thank Pewter Graphics, Muncie, IN for drawing our
metric monsters.

R E F E R E N C E S

Agresti, W.W., W.M. Evanco, M.C. Smith, and D.R. Clarson (1992), "An Approach to Software
Quality Prediction from Ada Designs", Technical Report RL-TR-92-315, Rome Laboratory, Griffiss,
AFB, NY.

Basili, V. (1981), "Evaluating Software Development Characteristics: Assessment of Software Measures
in the Software Engineering Laboratory", In Proceedings of the Sixth Annual Software Engineering
Workshop, SEL-81-013, National Technical Information Service, Springfield, VA.

Boehm, B. and P. Papaccio (1988), "Understanding and Controlling Software Costs", IEEE Transactions
on Software Engineering SE-14, 10, 1462-1477.

Branyan, E., L. Thiel, and R. Rambo (1987), "Addendum to Establishment and Validation of Software
Metric Factors", presented at the Fourth Annual National Joint Conference on Software Quality and
Productivity, Washington, DC.

Card, D.N., V.E. Church, and W.W. Agresti (1986), "An Empirical Study of Software Design Practices",
IEEE Transactions on Software Engineering SE-12, 22, 264-271.

Conte, S.D., H.E. Dunsmore, and V.Y. Shen (1986), Software Engineering Metrics and Models,
Benjamin/Cummings, Menlo Park, CA.

Dunn, R.H. (1990), Software Quality, Concepts and Plans, Prentice-Hall, Englewood Cliffs, NJ.
Gibson, V.R. and J.A. Senn (1989), "System Structure and Software Maintenance Performance",

Communications o f the ACM 32, 3, 347-357.
Grady, R.B. and D.L. Caswell (1987), Software Metrics: Establishing a Company-Wide Program,

Prentice-Hall, Englewood Cliffs, NJ.
Grady, R.B. (1992), Practical Software Metrics for Project Management and Process Improvement,

Prentice-Hall, Englewood Cliffs, NJ.
Henry, S. and D. Kafura (1981), "Software Structure Metrics Based on Information Flow", IEEE

Transactions on Software Engineering SE-13, 5, 510-518.
Henry, S. and C. Selig (1990), "Predicting Source Code Complexity at the Design Stage", IEEE

Software 7, 2, 36-43.
Lew, K., T.S. Dillon, and K.E. Forward (1988), "Software Complexity and Its Impact on Software

Reliablity", IEEE Transactions on Software Engineering SE-14, 11, 1645-1655.
Li, H.F. and W.K. Cheung (1987), "An Empirical Study of Software Metrics", 1EEE Transactions on

Software Engineering SE-13, 6, 697-708.
McCabe, T.J. (1976), "A Complexity Meassure", IEEE Transactions on Software Engineering SE-2,

4, 308-320.
Moller, K.H. and D.J. Paulish (1993), Software Metrics, A Practitioner's Guide to Improved Product

Development, IEEE Computer Society Press, Chapman Hall, New York, NY.
Pfleeger, S.L. (1991), Software Engineering, The Production of Quality Software, Second Edition,

MacMillan, New York, NY.
Pfleeger, S.L. (1993), "Lessons Learned in Building a Corporate Metrics Program", IEEE Software

10, 3, 67-74.
Rombach, H.D. (1990), "Design Measurements: Some Lessons Learned", IEEE Software 7, 2, 17-25.

W.M. Zage et al., Avoiding metric monsters 55

Ross, N. (1990), "Using Metrics in Quality Management", IEEE Software 7, 4.
Schulmeyer, G. and J. McManus, Eds. (1992), Total Quality Management for Software, Van Nostrand

Reinhold, New York, NY.
Zage, W.M. and D.M. Zage (1990), "Relating Design Metrics to Software Quality: Some Empirical

Results", SERC-TR-74-P, Software Engineering Research Center, Purdue University, West Lafayette,
IN.

Zage, W.M. and D.M. Zage (1993), "Evaluating Design Metrics on Large-Scale Software", IEEE
Software 10, 4, 75-81.

Zage, W.M., D.M. Zage, and C. Wilburn (1994), "Achieving Software Quality Through Design Metrics
Analysis", In Proceedings of the Twelfth Annual Pacific Northwest Software Quality Conference,
Portland, OR.

Zultner, R. (1988), "The Deming Approach to Software Quality Engineering", In Quality Progess,
American Society for Quality Control, Inc., Milwaukee, WI, pp. 58-64.

