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Abstract - -  Zusammenfassung 

Clique Detection for Nondirected Graphs: Two New Algorithms. Making use of special tree search 
algorithms the present paper describes two new methods for determining all maximal complete sub- 
graphs (cliques) of a finite nondirected graph. In both methods the blockwise generation of all 
cliques induces characteristic properties, which guarantee an efficient calculation of special clique 
subsets, especially the set of all cliques of maximal length. Moreover, by their structure both algorithms 
allow to calculate the complete clique set by parallel processing. The algorithms have been tested for 
many series of characteristic graphs and compared with the algorithm of Bron-Kerbosch (Algorithm 
457 of CACM) the most efficient algorithm which is known to the authors. 

Cliquenbestimmung in ungerichteten Graphen: Zwei neue Algorithmen. Die folgende Arbeit enth~ilt zwei 
neue Algorithmen zur Bestimmung der Menge s~imtlicher maximaler vollst~indiger Untergraphen 
(Cliquen) eines endlichen ungerichteten Graphen. Die Methoden verwenden spezielle Baumsuch- 
algorithmen. Die blockweise Erzeugung aller Cliquen ffihrt zu charakteristischen Eigenschaften der 
Algorithmen, die eine effiziente Berechnung spezieller Untermengen von Cliquen, u. a. die Menge 
aller Cliquen yon maximaler L~nge, erm6glichen. Uberdies erlaubt die Struktur beider Algorithmen 
die Berechnung der vollst~ndigen Cliquenmenge auf parallel arbeitenden Rechnern. Die Algorithmen 
wurden an umfangreichen Serien charakteristischer Graphen getestet und mit dem wirksamsten der 
den Autoren bekannten Algorithmen, dem Algorithmus yon Bron-Kerbosch (Algorithm 457 of CACM), 
verglichen. 

I n t r o d u c t i o n  

A maximal  complete subgraph of  a (nondirected) graph  - -  that  is a complete 
subgraph which is not  conta ined in any other comple te  subgraph - -  is called a 
clique. 

It  is well known  that  the determinat ion of the cliques of  a graph (respectively the 
determinat ion of  the internally stable sets) is an impor tan t  p rob lem for it occurs 
in many  diverse applications as in cluster analysis, classification theory, graph  
coloring, informat ion retrieval systems, disposal systems, biological systems and 
many  socionomic concepts. 

Therefore, in the last ten years, m a n y  clique detection algori thms have been 
developed [1], [2], [4], [5], [6], [8], [11], [12] w h i c h -  roughly  s p o k e n -  can 
be divided into two classes. The first class contains those algorithms, which build 
up a clique of  the graph step by step, construct ing set systems of  vertices of  the 
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graph or systems of matrices which are to be stored in long lists and which are 
changed during the calculation procedure. The second class includes those algo- 
rithms which do not need the information of any clique after its construction and 
notation. Therefore, this class consists of space-saving and time-efficient clique 
detection methods (cf. [2], [6], [12]) among which the algorithm [2] of Bron- 
Kerbosch is on the average close to the best possible by'its structure. 

The new algorithms described in the present paper belong to the second class. 
Comparing their computing time with that of the algorithm [2], the new algorithms 
are nearly of the same efficiency. Moreover, in the case of graphs of high sym- 
metric structure or of sparse adjacency matrices the developed algorithms are 
most efficient. The basic concept of the new algorithms is to construct special 
subsystems of cliques each of which is related to a fixed vertex of the graph and 
whose totality builds up the whole set of cliques of the graph. These clique 
systems are found by different tree search techniques which guarantee in a simple 
way, that a clique will be constructed only once and which allow cutting off 
branches that cannot lead to a clique. The theoretical background of the tech- 
niques used is explained in the sections A--D of the paper. 

Additionally, the independent blockwise generation of the total clique set of the 
graph involves some remarkable characteristic properties (described in section E) 
of the new algorithms, as: 

- -  the possibility of the use of parallel processors during the calculation pro- 
cedure; 

- -  the calculation of special clique sets whose elements contain a prescribed set 
of vertices; 

- -  the computation of the cliques of maximal length. 

Numerous test results obtained with the new algorithms were compared with the 
results of algorithm [2]. A collection of these results for some characteristic series 
of graphs is finally given in section F by time-tables and diagrams. 

A .  G r a p h - T h e o r e t i c a l  D e f i n i t i o n s  a n d  R e s u l t s  

1. Notations and Definitions 

1.1 A nondirected 9raph G = (V, E) consists of a set of vertices V and a set of edges E, 
where E~_S(IO is a subset of the set S(V) of unordered pairs (vi, vj):=(vj, vi) 
of different vertices vi, vj~ V. S(V) can be obtained from (V• V)\A where 
A = {(vi, vi) ~ V • V/vi ~ V) by an identification of the elements (vi, v j) and (v j, vi) 
(i#j). 

1.2 A subgraph of G=(V,E)  is a graph G ' = ( V ' , E v ,  ) where V'__V and 
E v, = E  n S (V'). 

The following Lemma is obvious: 

Lemma 1.2.1: I f  GI=(V1, Evl ) and Gz=(V2, Ev2) are subgraphs of the 9raph 
G=(V, E), then G 2 is a subgraph of G1 iff V2 ~_ V 1. 
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1.3 Two vertices v~, vj of G=(V, E) are said to be connected in G (denoted by ~)  
if (% vj): =(v2, vi) ~ E. If G'=(V', Ev,) is a subgraph of G=(V, E), we immediately 
obtain the implication v i ,~, vj =~ v~ ,~ vj. 

1.4 A complete 9raph G=(V, E) is one in which each vertex is connected to every 
other vertex: v~ ~ vj for all v,, vj ~ V(i~j). 

1.5 If V={v~ . . . . .  v,} is the vertex set of G=(V,E), every vertex v~E V can be 
represented by its subscript i and we obtain a total ordering on V: 

v i < v j ~ i < j  (i#j). 

i .6 A graph G = (V, E), [ V [ = n can be represented by a symmetric (n x n)-matfix 
(called the adjacency matrix of G): 

M (G): = (m0, • where ~ m~j = 1, if i ~ j 
mij=O , if i ~ j 

If G'=(V',Ev, ) is a subgraph of G=(V,E), the matrix M(G') can be obtained 
from M (G) by deleting those rows and columns of M (G) which correspond to the 
vertices of V~V'. 

1.7 A maximal complete subgraph C=(V', Ev, ) of the graph G=(V, E) is called a 
clique of G. The set of all cliques of G may be denoted by L o. 

1.8 For an arbitrary nondirected graph G---(V, E), the graph G '=  (V', E') defined 
by V'= V, E '=E u A has the same set of cliques as G provided that a cfique is 
regarded only as its set of vertices. For computational reasons, in the following 
we may restrict our attention strictly to graphs G=(V, E) where E=E'  w A and 
E ' ~  S (V) except in section D where G is a nondirected graph in the sense of the 
definition 1.1. 

2. Neighborhoods in a Graph 

2.1 Let G=(V, E) be a graph. Then the two subsets of V 

NG(i):=~j~ V/i ~ j} and N~ (i):= {j 6 Nr  (i)/j<<_i } (2.1) 

are called the i-neighborhood (reduced i-neighborhood) of the vertex i~ V in G 
respectively. 

Lemma 2.1.1: Suppose that G'=( V', Ev, ) is a subgraph of G=( V, E) and that i ~ V', 
then: 

Nw (i) = N G (i) c~ V' and N~, (i) = N~ (i) c~ V'. (2.2) 

Proof: Suppose j ~ N w (i). Then it follows that j ~ V' and i~, j  and according to 
1.3 we have i ~ j .  Since V'~ V, we obtain tha t j  ~ N o (/) and therefore j~  V' ~ No (/), 
hence N o, (/) ~_ N~ (i) ~ V'. Suppose now that j ~ N o (/) ~ V'. Then j ~ V' and 
i ~ j .  Since i~ V' we obtain i~,j, and consequently j~No , ( i  ). Therefore, the 
inclusion N o (i) ~ V' _~ N o, (/) is valid. Similar for the second relation. 

2.2 For the graph G=(V,E) of I V l = n  vertices, one defines for l<i<_n the 
following subgraphs of G: 
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S-<._tN-< Si:= (No, (i), EN G (0) and ~ . -  ~ c, (i), E~(~)) 

which play an important role in the construction of Lc,. 

Since N~ (i) _ No, (i), by Lemma 1.2.1, S~ is a subgraph of S i. 

(2.3) 

B. Theoretical Background of the Algorithm A 11 

3. Characterization of Cliques by Neighborhoods 

3.1 Let G'=(V', Ev,) be a subgraph of G=(V, E) and Q_c V'. Then the foliowing 
Theorem gives a necessary and sufficient neighborhood condition for the sub- 
graph C = (Q, EQ) of G to be a clique of G': 

Theorem 3.1.1: C s Lo,,~Q= n No,, (J). 
jeQ 

Proof: o :  Assume C s Lo,. Then, since C is a complete graph i s  Q implies 

i s N No' (]), hence Q _  n NG' (]). If Q c n No,' (J), there exists an element 
jeQ jeQ j~Q 

k s n No, (]) such that k q~ Q. Q w {k}, however, generates a complete subgraph 
j s e  

of G, but this contradicts the assumption that C is maximal. Therefore, we obtain 

Q = N No,' (])" 
j sQ 

~ :  Assume Q = N No,, (]). Suppose further that C is not a complete subgraph 
jeQ 

of G'. Then there are i, k e Q such that i ~  k. Thus i or k is not contained in 
�9 . G '  . 

N No, (]). But this contradicts the assumption and therefore C is complete. 
jEQ 
Now let C be complete but not maximal in G'. Then N No,' (]) contains an ele- 

jeQ 
merit i r Q also contradicting the assumption. 

Theorem 3.1.2: Let C=(Q, Ee) be a subgraph of G=( V, E), then: 

CsLs~<:>CeLC, and i sQ.  

Proof: Using Lemma 2.1.1, we obtain: 

N Ns, U)=N No,(/) if ieQ. (3.1) 
j~Q J~Q 

~ :  Suppose C E Ls~. Then Q= N Ns~ (]) by Theorem 3.1.1. Since C is a subgraph 
jeQ 

of S~, it follows that Q_c N o (/) by Lemma 1.2.1. Because i ~ j  for all j s N o (i), 
one concludes i s  Q and by (3.1) we have Q = N No (]), hence C e L o by Theo- 
rem 3.1.1. J~Q 

~ :  Suppose C s L o and i s  Q. Then Q =  N No, (1) by Theorem 3.1.1. Since i e Q, 
jeQ 

by (3.1) we obtain Q =  n Ns, (]) and therefore by Theorem 3.1.1, C e Ls,. 
jEQ 

1 This algorithm has been developed by the first author. 



Clique Detection for Nondirected Graphs: Two New Algorithms 299 

4. i-Systems of Cliques and Their Characterization 

For each vertex i t  V of a finite graph G =  (V, E) and ordered vertex set V let 

(4.1) 

4.1 

B i: = { C-- (Q, EQ) ~ L o f  t t Q ~_ N~ (i)} 

be the subset of all cliques of G which contain only vertices j ~ i of V. 

Theorem 4.1.1: Let C=(Q, EQ) be a clique of G=(V, E). Then: 

C ~ Bi • Q ~- N~ (i) = N~ (i) and Q = N Nsi (J). 
J~Q 

Proof: ~ :  If C ~ ~ the relation Q __ N~ (i) immediately follows from the definition 
of B i. Since i is connected with every element of N~ (i), we have i t  Q and by 

Theorem 3.1.2 C ~ Ls~, hence Q = N Ns~ (J) by Theorem 3.1.1. 
j~Q 

~ :  Conversely, if Q =  N Nsi (J), by Theorem 3.1.1 it follows that CtLs~ and by 

Theorem 3.1.2 we obtain i t Q  and C t L  o. Together with the condition 
Q __ N~ (i), we conclude that C ~ B~. 

Theorem 4.1.2: The following statements are equivalent: 

(a) Bi-- 0. 

(b) For all cliques C = (Q, EQ)~ Ls~ there exists an element k ~ N o (i)\N~ (i) such 
that k ~ j for all j ~ Q. 

(c) Q # 0 Ns~ (J) for all subsets Q ~_ N~ (i). 
jeO 

Proof: (a) ~ (b): If B i =~  every clique of S~ can be imbedded in a complete 
subgraph of Si which contains a vertex k t N o (i)\N~ (i). 

(b) ~ (c): By Theorem 3.1.1, Q~_N~ (i) is the generating set of a clique of S~ iff 

Q = ~ Ns, (]). Since condition (b) means that every clique of Sr can be imbedded 
jeQ 

in a complete subgraph of Si, condition (b) implies (c). 

(c) => (a): If (c) is satisfied then by Theorem 4.1.1 Bi=  0. 

Corollary 4.1.3: Bi=0,  /f No(i)\N ~ (i) contains an element k such that k y,j for 
allj ~ g ~  (i). 

Proof: The condition implies condition (b) of Theorem 4.1.2. 

4.2 If B~--PO, there exists a well defined greatest complete subgraph H e  of Sr 
whose vertex set T~ (i)~_N~ (i) consists of all elements of N -< o (i) which are 
connected with each vertex of N~ (i) itself. H e  always exists, since at least 
i e T~ (i). Moreover, H~ is a subgraph of each clique of B~. 

By ~these remarks and Theorem 4.1.2 we obtain the following Reduction Theorem: 

Theorem 4.2.1: Every subset Q = T <-~ (i) u K ~_ N~ (i) is the generating vertex set 
of a clique of Bi iff K~_N~ (i)\T~ (i) is the vertex set of a clique of the 
subgraph S[ ~ of S~ generated by (N~ (i)\T~ (i)) u Rg where R~ is the subset of 

�9 N < N a (t)\ ~ (i) whose elements are connected (say in G) with all elements of T <- (i). 
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Theorem 4.2.1 is the basic theorem for the development of algorithm A1 
described in the following section. The reduction to the relatively small subgraph 
S* effects the efficiency of this method. In version 1 of algorithm A 1 Theorem 3.1.1 
is the fundamental theorem for the decision, if a vertex set of S* is a clique of this 
subgraph. Version 2 of A 1 needs another clique criterion, which will be described 
in section C., 6.3. 

C. A Short Description of the Implementation of Algorithm A 1 

5. Basic  S t ruc ture  o f  A 1 

5.1 S o m e  No ta t ion  

5.1.1 Every graph G = ( V ,  E) regarded in A1 is represented in the computer by 
its adjacency matrix M (G), which is symmetric and reflexive (see 1.6 and 1.8). If 
G' =(V', Ev,)  is a subgraph of G, then M (G~ is obtained from M (G) by deleting all 
rows and columns of M (G) which correspond to the vertices of V~V'. 

5.1.2 We introduce the following notation for M (G): 

va (i) i-th row vector of m (G) 

v T (i) i-th column vector of M (G) 

ea (i) i-th unit vector of length [ V[ 

m G (i) special mask of the form !1 . . . . . . . .  10 . . . . . . . .  0) 

/-times (] V I-/)-times 

5.2 The  A lgor i t hm  C L I Q U E  

5.2.1 The algorithm CLIQUE consists of an iterative procedure which successi- 
vely determines the/-systems B i of cliques of G = (V, E), (1 _< i_< n = 1 V l). 

5.2.2 In testing the sufficient condition of Corollary 4.1.3 by Boolean operations 
on M (G), in CLIQUE will be examined if there exists an/-system B i (1 < i <_ n): 

Bi = 0 ~'~(ve (i) a m e (i)) A v e (j) = ve  (i) a m e (i) for some j e V, j > i. 2 

5.2.3 B i = {i} ~ v e  (i) = e e (i) (i is an isolated vertex). 

5.2.4 The vertex set T~ (i) of the graph He,  which is a subgraph of every clique 
of Bi, can be calculated on M (Si)~=,S ~ ( N  e (i), ENe(~)). For Jk ~ N e  (i), it follows: 

e ( i ) ~ j k  ~ N 6  (i) and  ms, (i) A Vsi ( jk )=msi  (i). 

5.2:5 There is only one clique in B i consisting of the elements of T~ (i) if 
IT_< < e (i) 1 = [ N~ (i) 1. 

z The test of this Boolean relation is equivalent to (va (i)/x m o (i)) v vG (j) = v G (j). 
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5.2.6 If ~i = (X, Ex), X = (N a " N < < (0\ ~ (i)) w T~ (i) and M (~i)*-~Si, then the subset 
Ri = ~dk ~ Na (i)/jk ~ l for all I e 7~ (i)} defined by Theorem 4.2.1 is computable by 

testing the following condition: 

Si 9Jk ~ R i ~ j k  ~ N~  (i) \N~ (i) and rag, (i) A v~, (jk)=mz& (i). 

5.2.7 Symbolic code of the program CLIQUE. 

(CL/OUE) 

F r 

I I 
I 

1 
T 

A. procedure CLIQUE: 
begin 

BLOCK 1 
while i :P l V I do 
begin 

i ~ i + l  
if B i --/= 0 then 

begin 
/f i isol. Vertex then write B~ = {i} 
else 

begin 
BLOCK 2 
if  [ T~  (i) I = [ N ~  (i) [ then write B i = { T~  (i)} else BLOCK 3 

end 
end 

end 
end 
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B. procedure BLOCK 1: 

C. 

D. 
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begin 
read M (G)~-+G=(V, E), (1N G (0]>_l NG (k)], (1_<i, k<_n=l VI)) 
i+--0 

end 

procedure BLOCK 2: 
begin 

determine NG (/) and M (St) ~ St = (N~ (i), E•  ~0) from M (G) 
determine T~ (i) 
comment For the determination of T~ (/) cf. 5.2.4 in the context 

end 

procedure BLOCK 3: 
begin 

determine R i and M (S*) ~ S* = (X, Ex) from M (S) 
comment X is defined by X:=(Nff  '~ < < (z)\T~ (i)) w R,; for determination of R~ 

cf. 5.2.6 
�9 < 

determine Bi = { K ~ N ~ (t)\ T~ (i)/(K, Ek) ~ Ls~ } 
comment The determination of Bt can be done by calling algorithms K-CAL 1 
comment or K-CAL 2 
determine B i = {Q:= K w T~ (i)/K ~ Bi} 

end 

6. Two Efficient Methods for calculating Bt 

6.1 The Fundamental Graph S* 

According to Theorem 4.2.1, for the determination of 

B,-- {K~_N~ ( i)\ T~ ( i)/( K, Ek) ~ Lsz } 

we need the adjacency matrix M (S*) of the subgraph S* =(X, Ex) of St, where 

X : = ( N ~  (i)\T~ (i)) ~ Ri~_n G (i) 

(for R i see Theorem 4.2.1). The elements of X will be denoted by Jl . . . .  , J , - l ,  
Jk . . . .  , J r S~*l, where Jt <Jz+ 1 (l= 1, ..., I S* [ -  1) and 

�9 < jt ~ N~ (i)\T~ (i) for l-- i . . . .  , k -  1 

Jl s R, for l=  k . . . .  , [ S7 1 

6.2 The Algorithm K-CAL 1 

6.2.1 The algorithm K-CAL 1 determines the sets Bt (1_<iN] VI) for the graph 
G---(V,E) (cf. procedure BLOCK3 of CLIQUE). It requires a method of 
selecting suitable subsets of N~ (i)\T~ (i) which are potential generating vertex 
sets of cliques of S*. If the algorithm is to be efficient, then a subset of 
N~ (i)\T~ (i) must be generated once and the strategy should be to examine only 
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those sets which are strictly the generating vertex sets of cliques of S*. One 
N <  �9 <: method of selecting the subsets {Jil,-..,J~r} of ~ (0\T~ (i) is to generate all index 

subsets {il, ..., i~} of {1 . . . .  , k - 1 }  ordering them by dual number arithmetic in 
the following way: 

6.2.2 Let I be the set of integers 1 . . . . .  k. Then to any subset I*=  {i t . . . .  , i~ = k} ___ I 

containing k there is associated a binary number D (I*)-- ~ 2 h-~ and a total 
l = l  

ordering <. of all subsets I* of I is defined by: I*<.I**<:~D(I*)<D(I**). 
According to this ordering, the subsets I* of I are selected by the following 
algorithm: 
6.2.3 The algorithm BINSET. Let FE be the leading element of a vector VS 
representing the current subset. 

Algorithm BINSET: 

(.~IIVSET" ) 

t 
"~Z~ v'8"~" g$ :~LOCK I 
wrH'~ VS 

5U~ 4 

~ e l e ~  F ~  t~'om g $  

q 

1 

A. procedure BINSET: 
begin 

V S ~ k  
write VS 
EL~-I 
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BLOCK 1 
SUB 1 
while E L  ~ k do SUB 1 

end 

B. procedure SUB 1 : 
begin 

BLOCK 2 
while E L  ~ FE  do 
begin 

BLOCK 1 
E L ~  I 
BLOCK 1 
BLOCK 2 

end 
end 

C. procedure BLOCK 1 : 
begin 

VS+-EL, VS 
write VS 

end 

D. procedure B LOCK 2: 
begin 

delete FE from VS 
EL*--EL + 1 

end 

6.2.4 During the algorithm K-CAL 1, a reduction of the selected subsets is 
possible if the current subset 

5di~, .... Ji~} c ~dt . . . .  , Jk-1 }; (Ji, e N~ (i)\ r ~  (i); l=  1 . . . .  , r) 

is the generating vertex set of a clique of B~ or if at least two vertices of this set are 
not connected in S*. In both cases either {Ji,+l . . . . .  Jr} or {J~r+l} is the next 
potential set for the clique test according to whether i~+ 15 ~ i~+1 for some lowest 
l < r o r i l + l = i z +  1 ( l = l , . . . , r - 1 ) a n d i ~ < k - 1 ,  

6.2.5 By Theorem 3.1.1, Y:= {Ji~, ...,J~,} is the vertex set of a clique of S* iff 

Y =  ~ Ns~(l). Using the representation M (S*) of S*, the test of this condition 

is equivalent to the Boolean test of I1" = / ~  Vst(l ), where Y* is a binary vector 
l e g  

of length I S* [ containing a 1 at the ie-th place (e = 1 . . . .  , r) and 0 otherwise. 

6.2.6 Symbolic code of  the algorithm K - C A L  1. Let FE, VS defined as in 6.2.3. 
VS* denotes the vector consisting of the components of VS without the last 
element LE, VS = (FE = x 1 . . . .  , x n = LE); VS* = (FE, x z . . . . .  x ,  _ 1). 
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Algori thm K - C A L  1" 

( K'CAL~t ) 
i 

(Je ~ sa* ) 
- -~ VS 

,I.-.. EI .  
EL~ VS--,'V,S l 

! t 
_ _  ~-~--_1 I _ _  . 

F 

suB'[ 

s u ~  

F TF + TF T 

; i 

l . . . . . .  l L.- . . . . . . . . . . . . . .  
r 

I 

A. procedure K - C A L  1 : 
begin 

l<--jr 
comment j~ is an element of the vertex set of S* 
V S ~ k  
SUB 2 
SUB 1 
while EL @ k do SUB 1 

end 

21 Computing 21/4 
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B. procedure SUB 1: 
begin 

E L ~  I 
VS , -EL,  VS 
if C OND 1 and not C O N D  2 then BLOCK 1 

end 

C. procedure SUB 2: 
begin 

BLOCK 2 
while EL ~ FE do 

begin 
V S ~ E L ,  VS 
if C OND 1 then 

begin 
if COND 2 then SUB 1 
else BLOCK 1 

end 
else 

begin 
if FE = t then SUB 1 

end 
BLOCK 2 

end 
end 

D. procedure C O N D  1 : 
comment Adjacency test 
if FE connected with all x E VS* then return true else return false 

E. procedure C OND 2: 
comment Clique test 

if VS* :/: A Ns~*(l) then return true else return false 
l e V S *  

F, procedure BLOCK 1 : 
begin 

form K from VS* by substituting l~j l  
write K 

G. procedure BLOCK 2: 
comment Reduction 
begin 

delete FE from VS 
E L ~ E L  + 1 

end 
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6.3 The Algorithm K-CAL 2 

6.3.1 Similar to the method of [2], the algorithm K-CAL2 is essentially an 
enumerative tree search algorithm which iteratively works on M (S*). 

6.3.2 At some stage n during the algorithm, a complete set of vertices 
V,,c N~ (i)\7-~ (i) is augmented by an other suitably chosen vertex of N~ (i)\7~ (i) 
to generate a complete set V.+~ at stage n + l .  If no further augmentation is 
possible, Vn becomes the vertex set of a clique of S*. 

6.3.3 During the tree search, at every stage n one defines three different sets of 
vertices of S* whose elements, added to V., generate a complete set V.+ 2, namely: 

S., T n the set of those vertices of N~ (i)\T~ (0 which have (not) been used to 
augment Vn, respectively. 

U. the subset of all elements of R~ which are connected with each element 
x ~  V n. 

6.3.4 By a forward branching process choosingj~. ~ T. from V., T~, S~, U. new sets 

v.+ ~ = v.  u U,;} ; 7".+1 = ~.\(rT~ ~j,.) u ~j,,,}) 

s.+~ = s . \G .  (/~.); u .+l  = u . \ G ~  (j,~ 

are constructed, where 

G G.)=U e Y / J + J j ,  Y=S . ,  T., U.. 
s f  

6.3.5 In a backtracking step during the algorithm (see H. in 6.3.8), j~, is 
removed from Vn+ ~ reproducing V, and by the removal ofj~. from the old set 
T, and its addition to the old set S,, new sets T, and S, are constructed. 

6.3.6 It follows immediately that 

v. ~ ~,~. ze.=0, s .=0,  u .=0 .  

6.3.7 Further the condition that there exists an element s ~ S, w U, such that 
s ~ l for all 1 ~ T, is sufficient for a backtracking process, since, if s ~ Sn, no 

maximal complete set containing only elements of N-<G ( i ) \ ~  (i) can result from 
any forward branching from V,, and in the case that s ~ U,, V. is a subset of the 
vertex set of a clique of Bj where j > i. 

21" 
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6.3.8 Symbolic code of the algorithm K-CAL 2. 

Algorithm K-CAL 2: 

@~A-z ) 

T 

T F 

1 

1 

[ 

l 
I ~~ I 

I- 

[ 
L_ . . . . . .  

T" 

l 

A. procedure K-CAL 2: 
begin 

B L O C K  1 
B L O C K  2 
SUB 1 

while n > 0 or (n = 0 and To "P ~) do SUB 1 
end 
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B. procedure SUB 1: 
begin 

while not C O N D  1 and not C O N D  2 and not C O N D  3 do B L O C K  2 
/f C O N D  2 and not C O N D  1 then B L O C K  4 
n ~ n - 1  
if n >>_ 0 then B L O C K  3 

end 

C. procedure C O N D  1 : 
comment Branch reduction test 
/f 3 x ~ Sn U U. : x s~ J for all j ~ T. then return true else return false 

D. procedure C O N D  2: 
comment Clique test 
if S. = 0/x T. = 0/x U. = 0 then return true else return false 

E. procedure C O N D  3 
if T. = 0 A S. ~ U. =p (A then return true else return false 

F. procedure B L O C K  1 : 
comment Initialization of K-CAL 2 
begin 

n~--O 
l~j t  ~ S* 
~ro~-{~ . . . .  , k - i }  
Vo,--{k . . . .  , I s~ [} 
Rr ..., IS* I} 
clear V o and S o 

end 

G. procedure B L O C K  2: 
comment Stack generation 
begin 

s.+ l ~ s . \ r s .  (i.) 
r .+  1,-- r . \ ( rT .  (i.) u {i.}) 
u .  + ~ ~- u . \ r v .  (i.) 
comment F r (i.) = {j ~ Y/j ~ i.}, Y= S., T., U. 
v.+ 1 ~ v .  u {i,} ~* 
comment i. is the first element listed in T. 
n ~ n + l  

end 

H. procedure B L O C K  3 : 
comment Backtrack 
begin 

v.,--  v,,+ 1\{i~ 
T . ~  r . \{i .} 
s . , - - s ,  w {i.} 

end 
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I. procedure BLOCK 4: 
comment Clique decoding and clique report 
begin 

form K from V n by substituting l~j l  
write K 

end 

D. Theoretical Background of the Algorithm A 2 3 

7. The Algorithm A 2 

The method described in the following is based on n * iterations of a special tree 
search algorithm, which always operates on a system of sets 

9J~ i ='{M(~ ), M (i~ i= 1 . . . .  n 
�9 . ' ,  s i j ~  

and by which a well defined subset L~ of cliques of G=(V, E) (see 7.1) will be 
determined. Each of these sets M} ~ thereby consists of a special subset Sj of 
N~ (i)\N~ (i) such that the vertices of S t are not connected with certain other 
vertices of G. The strategy, fundamental for the total searching algorithm, 
depends on the essential statement, that a set C of vertices of G is a clique of 
L~ iff the relations 

C ~ M}~ for all j =  1, ..., si 
hold. 

7.1 Notations and Definitions 

7.1.1 In this part let G=(V,  E) be a nondirected (irreflexive) graph in the sense 
of A. 1.1 represented by its adjacency matrix M (G). Furthermore, we use the 
notations and definitions of chapter A. and the following two additional defi- 
nitions: 

7.1.2 A clique containing the vertex i (l_<i_n) but no vertex j < i  is called an 
i-clique and the totality L i of those/-cliques an i-block 5. 

7.1.3 The i-significant domain M (i) is the totality of all those vertices @ i, which 
are contained in/-cliques. 

7.1.4 According to these definitions, we obviously obtain: For each clique 
C= {i, Jl . . . . .  Jr} ~ Li : Jk ~ g ~  (i)\N~ (/) for all k= 1, ..., r; that means g~( i ) \g~  (i) 
is the/-significant domain M (i). 

a This algorithm has been developed by the second author.  
n is the number  of vertices of the given graph G. 

s Note that an / -b lock  is different from the "/-system of cliques" in the preceeding chapters, but  dual 
in a certain sense. 
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7.2 Theoretical Foundations of Algorithm A 2 

For each i (1 <iNn),  let M ( i )=N~ (i)\N~ (i) be the /-significant domain. Let 
further xl . . . .  , tcr;xr+l . . . .  ,x~ (xj<~c k for j<k)  be the ordered set of all these 
vertices of N G (i). Additionally assume that ~x ~ N~ (/) for 2 = 1, ..., r and x~ e M (i) 
for # = r + 1 . . . .  , s. To each of these vertices there is defined a set M~I)Q with 

M (I)'= {j ~ M (i)/j ~ Xe}, Q= 1 . . . . .  s 6 (7.1) / r  

G 

The system consisting of these s sets will be fundamental for the generation of 
the/-cliques. For  there holds the 

Theorem 7.2.1: (Main theorem for A 2): Let T ~  M (i) be a set of pairwise connected 
vertices of G with i q~ T. Necessary and sufficient for C= T w {i} to be an 
i-clique are the conditions 

(0 T n M ~ e # O  forall  e = l  . . . . .  s. 

Proof: =>: We suppose that C={i,c~ . . . . .  ct} is an /-clique. According to the 
definition, then the vertices c~ . . . .  , ct must belong to the /-significant domain 
M (i) and above all the conditions 

T n (~) M~Q#O for o = l  . . . . .  r 

must be fulfilled. For if it would be not so, there must  exist an index O' -< r, so that 
(0 T c~ M (~ = 0  holds. But because M~ contains only those vertices connected with t~Q, Q ,  �9 . . �9 

i which are not connected with x 0, the assumption T n M(~, = ~  implies that C 
cannot contain any vertex which is not connected with xe.. That  means that x o, 
would be a vertex which is connected with i and all the vertices ct . . . . .  ct, i.e. 
xQ, must be an element of C. But also x 0, < i therefore C cannot be an/-c l ique 
in contradiction to our assumption. 

Now we have still to prove, that the conditions of the main theorem are also 
valid for the sets M(~ with Q = r +  1, ..., s. Associated to each element cj ~ C 
( l < j < t )  is the set M~ ), which is a member  of the system (7.1). Because, from 
footnote 6, cj is contained in M~ ), the conditions of the main theorem are 
trivially satisfied for all those sets ~4(~) M (~) of (7.1) which are characterized 

" � 9  , " ' ' ,  c t  

by the elements c~, ..., ct of C. Now let c r C be an arbitrary element of G 
connected with i. Then there must exist in C an element c~, for which cj ~ c holds, 

�9 ( 0  ( i )  �9 a this means cj ~ M~ and consequently C c~ M~ =~ 0. Herewith the first part  of the 
Theorem 7.2.1 has been proved�9 

~ :  We now assume that the conditions of the theorem are fulfilled for T with 
T= {c 1 . . . .  , ct}. Proving the assertion indirectly, we now suppose C = T w {i} is 
not yet a clique. Then there must exist a vertex c # i, c r T with c ~ i and c ~ cj 
( j= 1 . . . .  , t). According to the definition, M~ ~ contains - -  besides c - -  only 
those elements which are not connected with c, i.e. the vertices cl . . . . .  c t cannot 
belong to M~ ~ Hence, in contradiction to the assumption, T ~  M~~ must 

6 Note, that for all Q with r+l<<_Q<s this set is not empty, because it contains, according to the 
irreflexivity, the vertex x o itself. 
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hold. Therefore the assumption that C =  T u {i} is not a clique was false. This 
completes the proof. 

Helpful for the construction of an/-clique is the following Lemma, which is an 
immediate consequence of the main theorem. Using the notation of (7.1), we have 

Lemma 7.2.2: Let T' be a proper subset of an i-clique. Let further 2; (Z ~ S -- {1 .... , s}) 
be the full set of those indices ~ (1 <_ cr <_ s) for which 

(*) T' c~ M (i)=O, if a ~ Z, but Kq 

(**) T' ~M( i )~O , if z sSkN 
g. c 

holds. Then C= T w T' u {i} is an i-clique iff T (-" I M(~ r O for all a s 2;. 

Proof: According to the main theorem, C= T w  T' u {i} is an/-clique iff 

(i) 1,. (7.2) ( T w  T')c~M~Q~O f o r a l l ~ =  . . ,s 
holds. 

Because of supposition (**), this relation is satisfied for all indices Q e S/2, by 
regarding (*) therefore, (7�9 can be reduced to T c~ M~i)~ 0 for all o-~ 2;. 

This lemma states that for the determination of all /-cliques containing 
' S T = ta~, .., a~} only the sets M (~) (a e 2; ) - -  and only these - -  are necessary. 

Now let a and b be two arbitrary vertices of G, both contained in the same set 
M ~  of (7.1) with some ~ (1 < q <s). Further, let us assume that all i-cliques con- 
taming T' u {a} have been determined�9 If b is not connected with a, then each 
/-clique containing T' u {b} cannot contain the vertex a. Quite different however 
is the situation if b V a. In this case, there may exist i-cliques, which contain, besides 
T' u {b}, also the vertex a. By the following lemma it is possible to decide if and 
when this case occurs. 

Lemma 7.2.3: Suppose T' = {a 1 . . . .  , a~} fulfills the suppositions of Lemma 7.2.2. 
Suppose two vertices a, b of G also fulfill the followirgl conditions: a,ff b, 
a, b ~ a~ (j = 1, ..., v), a, b ~ M(~ ~(M (i~ is one of the sets of (*)). Then an i-clique C, 
containing T' w {b}, does not contain the element a iff the condition 

(M~(0 c~ C)\{a} ~ 0 
is fulfilled. 

Proof: We first have to show that M~ i) is identical with one of the sets (*) of 
Lemma 7.2.2. If M~ ~ c~ T' :p 0 holds, then due to a ~ T' (according to assumption), 
7" must contain at least one element a~(~a) (1<2<_v) with a ~ M ( j  ), i.e�9 
a~ ~ a in contradiction to the assumption. 

Now let C be an /-clique containing T' w {b} but not containing the vertex a. 
Then according to the main theorem, the condition of Lemma 7.2.3 must be ful- 
filled. On the other hand, if the condition of this lemma is fulfilled, C must contain 
at least one element, which is not connected with a in G. 

The algorithm for computing all cliques depends on the successive determination 
of all/-blocks ( i= 1, ..., n). Thereby, each of these blocks is constructed from the 
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characteristic sets M (~ M (~ of (7.1) by using the main theorem. If one of 
K I ,  - ' - ,  K S 

these sets is empty, then/-cliques do not exist. Otherwise, a searching algorithm on 
this system of sets will be started. Lemma 7.2.3 guarantees that a clique will 
never be determined for a second time. 

7.3 Remarks 

Numerous comparing test series have indicated that the method based on 
Theorem 7.2.1 of section 7 is well suitable for the treatment of large sparse 
adjacency matrices, while it is not so efficient for those graphs with a very large 
number of edges (see the tables of chapter F), therefore we omit the detailed 
description of the implementation of the algorithm A 2. 

In common with the algorithm A 1, the method A2 has many characteristic 
properties which are described in the following chapter E. 

E. Significance of the Algorithms 

8. Characteristic Properties of  the Algorithms 

8.1 Calculation of  Special Clique Sets 

In the current section, let v=(il  . . . .  , is) be a vector of labeled vertices of a graph 
G=(V, E). Then, by the structure of the algorithms developed, it is possible to 
calculate efficiently the following special clique sets: 

(i) the subset L~, ~ __%_ L G of all cliques of G containing at least one vertex of v; 

(ii) the subset L~,~c_L G of all cliques of G which contain all vertices of v, 
provided that s >2  and any two vertices of v are connected with each other. 

8.1.1 Computational determination of L A Making use of the algorithm A 1, . G ,  t~" 

the set L~,v can be determined by calculating the /k-systems Bix (k= 1, ..., s) 
relative to the matrix M (G) which can be obtained from the adjacency matrix M (G) 
of G by exchanging the rows and columns v G (ik), V r (i,) of M (G) with va ( n -  s + k), 
v~ ( n - s + k ) ,  (k= 1 . . . .  , s), respectively. Using algorithm A 2, it is possible to 
calculate L~,~ by restricting A 2 to the first s rows and columns of the matrix 
M (G) which can be obtained from M (G) of G by the exchange v~ (ig)~-~va (k), 

(k), (k = 1, . . . ,  s). 

8.1.2 Computational determination of L v Let M (G) be the matrix obtained G, v" 
T T from M (G) by exchanging v~ (ig), v~ (ig) with v~ (n), v G (n), respectively, and where 

i k s v is an element for which [ N~ (ik) [ = min[ N~ (]) I. Then using algorithm A 1, 
j e v  

LG a, v is determined by the ik-system Bix, which is calculated from the adjacency 
S '  matrix M (~x) (instead of M (S~k), see procedure C. of CLIQUE) and where Six 

is the subgraph of Six which is generated by the vertex set 

N~ (ik)= U e Ne (ik)/j ,.ff i~ for all i~ e v}. 
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M (S'i~) can be obtained from M (G) by deleting those rows v~ (j) and columns 
T v6 (j) of M (G) which correspond to the vertices j of G satisfying the condition 

j ~ N s  (ik) o r j  ~ N~ (ik) and j  ~c is for some i s e v. 
G 

By an equivalent calculation, L ^ ~,~ can be obtained by application of A 2, if 
v~ (i~), v r (ik) is exchanged with v G (1), vG r (1)~ respectively. 

L v ^ for other algorithms. From a special (heuristic) 8.1.3 Importance of ~;,., LG, v 
viewpoint, the calculation of subsets of L~ as L v ^ G,v, La, v is of great importance 
for the development of efficient cluster algorithms which operate on clique sets. 
Since the clique set of a graph exponentially grows with the number of vertices of 
G, the determination of clique subsets of G containing selected vertices of the 
graph is always desirable. But, moreover, experience shows, that in the case 
where G is a graph associated with a complex organization structure of more than 
200 entities and more than 50~ relationships between them, the restriction of 
clique calculation to special selected vertices of G is necessary for time- and 
space-saving algorithms. 

8.2 Determination of all Cliques of G of Maximal Length 

8.2.1 Let G=(V, E) be a reflexive graph, [ V[ = n  and k=max  L NG(i)I. Further let 
i E V  

A (m) (1 <_m<_k) be the number of those vertices i ~ V for which [ NG (i)1 _>m. Then 
it is obvious that there exists a clique C = (V', Ev, ) of G having ] V' I = m vertices 
only if A (m)>m. In this case SG, m:= {j ~ V/[ Na(j)[ >m} is the potential set of 
all vertices of G for which cliques of length m can be expected. Moreover, in the 
case of existence, the union U B~ of special /-systems contains all cliques of 
length m. ~sa, m 

8.2.2 Using the necessary condition of 8.2.1, the set MG of all cliques of 
maximal length can be calculated by an iterative procedure by the following 
algorithm: 
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Algorithm MAXCLI:  

r 

l ' ~ ~  I 

I 
T 

i 

l ~ ,"  Mo ] 

l ~ 1 I 

A. procedure MAXCLI: 
begin 

BLOCK 1 
SUB 1 
while S =fi (k do SUB 1 
write M e 

end 

B. procedure SUB 1 : 
begin 

B LOC K 2 
if m = ~  then S~S~{k} else BLOCK 3 

end 

C. procedure B LOCK 1 : 
begin 

m*,,--max {Ill <l<_kA A (/)> l}, k = m a x  [ NG (i)[ 
m,6-m* iev 

S~--SG, m : { j ~  V] I N G ( j ) I - - > m }  

T~-O 
end 
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D. procedure BLOCK 2: 
begin 

Take k s S and calculate the k-system Bk, 
storing in Ma only cliques of current maximal length r~; 
r*--Tu {k}; 

end 

E. procedure BLOCK3: 
begin 

m,,---~gl 
S~SG,~\T 

end 

9. Parallel Computation 

9.1.1 All algorithms (known to the authors) for determining the set L~ of all 
cliques of a finite graph G=(V, E) operate on the complete adjacency matrix 
M (G) of G. These clique determination algorithms can be divided into two classes. 
One of them includes the space-saving and more or less time-efficient algorithms, 
which can forget every clique after its construction. The other class contains 
those algorithms, which successively build up every clique of G so that long lists 
of complete but not maximal complete subgraphs of G have to be stored in the 
computer. 

9.1.2 The algorithms A 1, A 2 of this paper belong to the first class. But, moreover, 
the basic concept of the independent blockwise generation of the /-systems 
by A 1 (/-blocks by A 2) allows us to calculate these special clique sets by parallel 
operating processors, so that even in the worst cases a space- and time-saving 
calculation is possible. Especially, the time efficiency of the algorithms is of great 
importance if interactive systems are used for cluster algorithms which operate 
on large clique sets. 

F. Test Results and Comments 

10. Calculation of La for Series of Characteristic Graphs 

10.1 The algorithms A 1 (both versions CLIQUE/K-CALl and CLIQUE/ 
K-CAL 2) and A 2 have been written in FORTRAN IV and implemented for the 
computer SIEMENS 4004/151. A 1 and A 2 were tested and compared with the 
ALGORITHM 457 of CACM [2] which is the most efficient method among 
many other clique determination algorithms which have also been tested and 
compared with A 1 and A 2 v. 

7 We intend to publish a further paper containing the results of comparison of the tested algorithms. 
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10.2 Random Graphs 

10.2.1 The algorithms A 1, A 2 were tested for many series of random graphs R (n, k), 
where n is a fixed number of vertices of the graph and k an increasing parameter, 
which corresponds to the number e of edges of the considered graph. Starting with 
k =0  (R (n, k)consists of n isolated vertices) and ending with k= 100 (R (n, k)is the 
complete graph S, of n vertices) every series was calculated for increasing k in % 
relative to S, (k (S,)= 100%). In comparsion to ALGORITHM 457, the methods 
A 1, version 2 (CLIQUE/K-CAL 2) and A 2 show the same characteristic mode 
of acting and the (k, t)-diagrams are quite similar. This is obvious, since the tree 
search procedures used are similar to each other. But because the algorithm A 1, 
version 1 (CLIQUE/K-CAL 1) needs a binary tree search which is defined by a 
dual ordering and a different neighborhood clique test, its (k, 0-diagram is quite 
different from the (k, 0-diagrams of the other algorithms. 

But characteristic for all compared methods is that the computing time t expo- 
nentially increases with the augmentation of edges and that the maximal compu- 
ting time is reached between 85% and 90% of edges relative to S, (k (S,)= 100%). 

Further, the test series show that in the case of relatively large n (100< n_< 250) 
and relatively small k (k < 50) the algorithms A 1 and A 2 are very efficient. 

10.2.2 Time-tables and (k, t)-diagrams for R (36, k), 0<k_< 100 and R (250, k), 
k= 1,2, 3, 5, 10. 

e = number of edges of R, N = number of cliques of R, k = density of edges of 
R in % rel. to S,, t = computing time in [sec]. 

R (36, k), O_<k_<lO0 

I ALG. 457 A 1/vers. 1 A 1/vers. 2 A 2 
e k N 

t t t t 

0 0 36 0.54 0.48 0.47 0.53 

63 10 55 0.84 0.51 0.80 0.78 

126 20 80 1.36 1.07 1.44 1.49 

189 30 116 1.84 1.59 2.11 2.31 

252 40 192 3.16 2.93 3.54 4.66 

315 50 294 4.84 5.11 5.20 10.30 

378 60 505 8.84 11.44 10.15 25.30 

441 70 853 16.30 32.79 19.07 53.28 

473 75 1289 26.95 79.13 29.35 83.20 

504 80 1827" 40.63 143.71 47.81 169.83 

536 85 2076 49.32 273.03 58.66 176.31 

567 90 3242 81.29 1131.12 96.24 231.02 

599 95 4092 109.12 881.21 119.48 194.20 

617 98 64 2.27 3.25 2.40 2.73 

630 100 1 0.26 0.24 0.14 0.24 
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R(250, k~ k = 1 , 2 , 3 , 5 ,  10 

ALG. 457 A i/vers. 1 A 1/vers. 2 A 2 
e k N 

t t t t 

311 1 317 17.58 7.40 13.49 14.00 

623 2 589 20.94 10.43 18.01 17.45 

934 3 815 23.88 13.63 21.06 21.50 

1556 5 1157 31.18 19.27 30.03 30.14 

3113 10 2456 61.27 47.70 67.95 82.67 
I 
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10.3 Moon-Moser Graphs [10] 

10.3.1 There exist three series of  graphs M(n) (n >_ 2) with n vertices and with a 
maximum number f (n) of  cliques�9 It follows from the theory that f ( n ) =  3 "/3, 
4 . 3  t"/3], 2 . 3  E"/3J if n = 0 (3), - 1  (3), = 2 (3), respectively. The graphs M(n) can be 
obtained, if the set of  n vertices is divided into subsets such that as many as possible 
of them have three vertices and the remaining one have two or four vertices and 
if two vertices are joined exactly if they do not belong to the same subset�9 
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10.3.2 Time-table of the Moon-Moser series: 

M(n), n~-0(3), 3 N n N 2 7  

ALG. 457 A 1/vers. 1 A 1/vers. 2 A 2 
e k N 

t t t t 

0 0 3 0.11 0.02 0.13 0.04 

9 60 9 0,08 0.07 0.08 0.15 

27 75 27 0.29 0.24 0.28 0.43 

54 82 81 1.14 1.05 1.12 1.40 

90 86 243 3.17 3.37 3.02 4.46 

135 88 729 10.34 12.02 9.69 14.26 

189 , 90 2 187 34.23 47.42 32.82 46.02 

252 91 6 561 105.65 186.42 107.43 151.49 

324 92 19 683 354.37 734.96 335.51 447.85 

10.3.3 The Moon-Moser test series and many other calculations for graphs with 
high degree of symmetries confirme the assumption, that the algorithms developed, 
especially A 1, are very efficient for symmetrically structured graphs. 

11. Test Results for the Calculation of  [~. ,~ and U~. v 

11.1 This section contains the test results for calculating L~, v and L~. 8 of the 
graph series R(36, k), 0_<k_< 100 of 10.2.2 for the vector v=(12, 24, 36), 
whose components are selected from the vertex sets of the original graphs. 

L~,v 

k N A1/vers. 2 A2 k N 
t t 

10 13 0.20 0.19 10 0 

20 25 0.35 0.53 20 0 

30 39 0.61 1.12 30 0 

40 73 1.21 1.96 40 0 

50 142 2.49 4.85 50 0 

60 235 4.74 10.39 60 14 

70 504 t3.92 29.69 70 25 

75 791 20.87 48.45 75 57 

80 1092 34.07 71.58 80 35 

85 1552 55.17 126.14 85 99 

90 2684 114.99 216.30 90 246 

95 4092 130.94 281.32 95 350 

98 64 2.19 2:78 98 32 

8 tt is possible to calculate L~, v by modification of Algori thm 457. 

A LG,v 

[ A1/vers. 2 
t 

A2 
t 

0.03 0.03 

0.03 0.03 

0.03 0.03 

0.03 

0.03 

0.27 

0.63 

1.27 

0.98 

2.84 

8.37 

10.89 

L09 

0.03 

0.03 

0,37 

0.84 

1.68 

1.24 

5.45 

12.55 

16.45 

1.29 
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12. Tables Showing the Blockwise Generation of the Clique Set of a Graph 

12.1 The following tables give the computing time for each/-system (/-block) of 
the random graph R (36, 80) of the series of 10.2.2 calculated by A 1/vers. 2 (A 2), 
respectively. 

The computing time of every/-system (/-block) is related to the number of cliques 
constructed and from the totality of these computing times it is to be expected 
that parallel calculation will increase the efficiency of the developed algorithms. 

12.2 Blockwise Generation of R (36, 80) 

A 1/version 2 A2 

No. No. 
/-system t /-block i N t 

1 ] 0.13 1 253 18.60 

2 0.05 2 

3 3 0.12 

0.29 

13 

9 

16 

21 

272 24.5r 

264 24.68 

157 14.35 4 4 

5 0.81 5 29 101 7.78 

6 0.63 6 14 157 19,99 

7 0.22 7 17 99 6.97 

8 I 0.47 8 30 67 4.96 

i 

9 0.54 9 2 78 13.34 

10 0.97 10 11 127 15.80 

i N 

15 6 

24 3 

8 6 

19 12 

3 39 

33 26 

20 7 

34 18 

31 24 

25 42 

11 95 

7 101 

2 78 

17 99 

30 67 

14 157 

29 101 

21 157 

16 264 

9 272 

13 253 

11 2.45 11 7 69 3.93 

12 2.17 12 20 16 1.61 

13 2.38 13 25 38 1.66 

14 2.38 14 31 19 0.67 

15 1.73 15 34 18 1.07 

16 4.22 16 3 53 

17 2.56 

3.24 

0.87 17 19 12 

18 3.93 18 24 5 0 . 2 0  

19 6.83 19 8 7 0.40 

20 6.76 20 33 9 0.27 

21 5.90 21 23 2 

27 

28 

22 

23 

0.05 

0.05 

0.03 

22 Computing 21/4 
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