
Computing 49, 329-338 (1993) C o [~ [~ d r l ~

�9 Springer-Verlag 1993
Printed in Austria

Repack ing He lps in Bounded Space On-Line B in-Pack ing*

G. Galambos, Szeged and G. J. Woeginger, Graz

Received August 20, 1991

Abstract - - Zusammenfassung

Repacking Helps in Bounded Space On-Line Bin-Packing. We consider a version of the on-line bounded-
space bin-packing problem where repacking the items within the active bins is allowed. For this problem,
the 1.69103 lower bound of Lee and Lee [7] for the worst case ratios of bounded-space approximation
algorithms still applies. We present a polynomial time approximation algorithm that reaches the best
possible worst case ratio matching the Lee and Lee lower bound while using only three active bins.

A M S Subject Classifications: 90B35, 90(;27.

Key words: Combinatorial problems, on-line, bin packing, suboptimal algorithms.

Beim Bounded Space On-line Bin-Packing kann Umpacken von Vorteil sein. Wir behandeln eine Variante
des On-Line Bound-Space Bin-Packings, in der das Umpacken der Gegenst~inde innerhalb der aktiven
Bins erlaubt ist. Auch fiir diese Variante gilt die untere Schranke 1.69103, die Lee und Lee [7] ffir Worst
Case Ratios von Bounded-Space Approximations-Algorithmen bewiesen haben. Wir konstruieren einen
bestmrglichen polynomialen Approximations-Algorithmus, der die Schranke von Lee und Lee erreicht
und dazu nur drei aktive Bins verwendet.

1. Introduction

In the classical one-dimensional bin-packing problem, we are given a list of items
L = (a 1, a 2 , an), each item a~ ~ (0, 1], and we must find a packing of these items
into a minimum number of unit-capacity bins. This problem arises in a wide variety
of contexts and has been studied extensively since the early 1970s (see e.g. [5] and
I-6]). Since the problem of finding an optimal packing is NP-hard, research has
concentrated on approximation algorithms that find near-optimal packings and use
polynomial time. Let OPT(L) and A (L) denote, respectively, the number of bins used
by an optimum algorithm and the number of bins used by a heuristic algorithm A
to pack the input list L. Then the worst case ratio or performance 9uarantee of A,
denoted by r(A) is defined as

lim sup A(L)/OPT(L).
Opt(L)-* oo L

This ratio is customarily used to measure the quality of a heuristic bin-packing
algorithm.

* This paper was supported by a grant from the Hungarian Academy of Sciences (OTKA Nr. 2037).

330 G. Galambos and G. J. Woeginger

A bin-packing algorithm is called on-line if it packs all items ai solely on the basis
of the sizes of the items aj, 1 _ j < i and without any information on subsequent
items. A bin-packing algorithm uses k-bounded space if for each item a~, the choice
of bins to pack it into is restricted to a set of k or fewer active bins, where each bin
becomes active when it receives its first item, but once it is declared inactive (or
closed), it can never become active again.

These latter restrictions (on-line and bounded-space) arise in many applications, as
in packing trucks at a loading dock or in communicating via channels with bounded
buffer size. Consequently, the problem was analyzed thoroughly in the 1980s, cf. the
papers by Csirik and Imreh [1], Csirik and Johnson [2], Lee and Lee [7] and
Woeginger [8]. On the negative side, Lee and Lee [7] proved that no on-line
approximation algorithm using bounded-space can have a performance guarantee
less than the constant ho~ ~ 1.69103. On the positive side, algorithms were detected
whose asymptotic worst-case ratios approach h~o as the number of active bins tends
to infinity; but there is no algorithm known that reaches this bound while using
only a finite number of bins.

In this paper we will consider a related bounded-space bin-packing problem where
repacking the k active bins is allowed. In this version of the problem, we are allowed
to perform the standard actions of bounded-space bin-packing, i.e. we are allowed to

(i) Open a new bin (if the number of active bins is less or equal to k - 1),
(ii) Close some active bin (and never open it again),

(iii) Pack a new item into some active bin (if the contents of the bin remains below
one).

But in contrary to standard bin-packing, we are also allowed to (let ~1 , . . . , ~k
denote the active bins; we will identify the contents of a bin with the bin)

(iv) Repack the set of active bins, i.e. to form a new partition ~ , . . . , ~ of the items
inside the active bins such that U ~i = U ~ holds, and such that the items in
each part of the new partition have overall size less or equal to one.

To allow action (iv) is a natural assumption. As long as an item is in some active
bin, the item is available for the "packer" and the packer may change its position.
In the loading dock example mentioned above, trucks will partially be repacked
and items will be moved from one truck at the loading dock to another in order to
increase the number of pieces packed.

Unfortunately, the h~o lower bound of Lee and Lee carries over to this problem,
too. But we will show that now there exist approximation algorithms using a finite
number of active bins and reaching this worst case ratio. More precisely, we will
present an algorithm called REP 3 that uses only three active bins and has perfor-
mance guarantee ho~. The running time of REP 3 is O(n2). The main tool we apply
is a new weighting function function first used in [8].

The paper is organized as follows. Section 2 gives some basic definitions and intro-
duces the weighting function. In Section 3 we formulate the algorithm PEP 3 and
analyze its worst case performance. Section 4 finishes with the discussion.

Repacking Helps in Bounded Space On-Line Bin-Packing 331

2. Definitions and Preliminaries

The following sequence that was introduced by Golomb [4] will be essential in the
definition and in the analysis of our algorithm REP3.

tl = 2

ti+ l = t i (t i - 1) + l f o r i > l

Knowing this, the exact definition of the real number hoo (that was already used in
the introduction) may be stated as

1 1 1 1
hoo= _1 - 1 + + ~ + + + . " ~ 1 . 6 9 1 0 3 .

The proof of the following theorem is an easy modification of the proof of
Theorem 3 in [7].

Theorem 1. Let A be any bounded-space on-line bin-packing algorithm that uses
repacking. Then r(A) >_ ho~ holds.

Proof. Let n and m be some integers and let e be a very small positive real. We
consider the list L(n, m) that consists of m homogeneous sublists Li(n), 1 _< i _< m,
each of length n. The sublist Li(n) contains n items of size 1/ti + e.

Obviously, the optimum packing of L(n, m) uses exactly n bins where every bin
contains exactly one item from every sublist. On the other hand, any k-bounded
space algorithm must use n different bins to pack the first sublist Ll(n). At most k
of these n bins are active, when the first item of sublist L 2 (n) arrives; consequently,
the algorithm requires at least n / 2 - k new bins to pack sublist Lz(n). Using

n m analogous arguments we conclude that any heuristic will use at least ~ = 1 1/
(t~ - 1) - (m - 1)k bins. Since k is constant, the quotient of this expression and
OPw(L(n, m)) comes arbitrarily close to hoo as n and m both tend to infinity�9 []

Next, let us define our weighting function W(x): (0, 1] ~ R §

1
W(x) = x + - - for 1/tg < x < 1/(t~ - 1) and 1 < i

t i + 1 - - 1

t~+ 1
�9 x for 1/(ti+ 1 -- 1) < x <_ 1/ti and 1 _< i

t l

An illustration for the weight of items with size close to one is given in Table 1. The
weight of a set of items is defined to be the sum of weights over all items in the set.
The weight of a bin is the weight of all items in it. Analogously, we define the size
of a set of items (of a bin) to be the sum of sizes over all items in the set (in the bin).
The proofs of the following observations are straightforward.

Observation 2

(i) W(x) is nondecreasing in (0, 1]. []
(ii) For i >_ 1 and x < 1/ti, W(x) /x <_ (ti + 1)/ti holds�9 []

(iii) For i >_ 1 and x > 1/(ti+ 1 - 1), W(x) /x > (t i + 1)/tl holds. []

332 G. Galambos and G. J. Woeginger

Table 1. Illustration for the weighting function W

Type Interval Weight(x)

A (i/2,1] x + 1/2
/32 (1/3,1/2] x + 1/6
c 2 (1/4,1/3] 4x/3
D z (1/6,1/4] 4x/3

Type Interval Weight(x)

B 3 (1/7, 1/6] x + 1/42
C3 (1/8,1/7] 8x/7
D 3 (1/42,1/8] 8x/7
B 4 (1/43,1/42] x + 1/1806

L e m m a 3. In any packing of a list L the weight of any bin is at most h~o. Hence,
W(L) < h~ OPT(L) holds.

Proof. Let us consider some fixed bin ~ that contains items ql >- q2 ~ " '" ~ qra" We
distinguish two cases.

(a) q1 ~ (1/ti, 1/(ti - 1)] for i = 1. . . m. Then

W(~3)= q ~ + - - = q i +
i=1 q+l 1 ti 1 i=1 i=2 - -

< 1 + - - < h~o.
i=a f i - - 1

(b) N o w assume r < m is the least i such that q, <_ 1/tr. We denote by Q the sum
~ = , q~ < 1/(t, - 1). By Observat ion 2.ii, the total weight of q~... qm is less or equal
to (tr + 1)Q/tr. This yields

r-1 1 tr + 1 Q
<_ 1 - (2 + Y ' - - +

i=i ti+i -- 1 t r

< ~ 1 1
t - ~ 1 + - - < ho~ [] i=1 t , (t , - 1)

3. The Repaeking Algorithm

In this section we define and analyze the Repacking Algorithm, REP 3 for short. This
algori thm always keeps three active bins that we call BIN l, BIN 2 and BrN 3. REe 3
proceeds as follows.

(1) Get a new item x and put x into an empty active bin.

(2) Repack the three active bins such that at least one bin is empty
or such that at least one bin has weight greater or equal to one.

(3) Close all active bins with weight at least one and open new bins
instead of them. G o t o (1).

Repacking Helps in Bounded Space On-Line Bin-Packing 333

Of course the crucial (and not well-defined) step of the algorithm REP 3 is Step (2).
The main part of this section is devoted to establishing the fact that Step (2) is always
possible and how to perform it. To do this, we first prove the following theorem.

Theorem 4. Let BIN1, BIN2, BIN 3 be three bins. Then we can either repack the bins
to produce a packing with an empty bin or we can f ind a subset o f items with weight
at least one and size at most one.

Proof. We will assume that it is neither possible to produce a good packing (a
packing with an empty bin) nor to find a good subset of items (a subset of weight
greater or equal one and of size at most one), and we will derive a contradiction
from this. It is convenient to classify the items according to the following partition
of the unit-interval (cf. Table 1).

A = (1/2, 1]

B~ = (1/t~, 1/(t~ -- 1)] for i > 2

C, = (1/(t, + 1), 1/h] for i > 2

D~ = (1/(fi+ 1 - 1), 1/(t~ + 1)] for i > 2

First of all, we will produce a First-Fit Decreasing packing (FrD-packing for short)
of the items in the three active bins (cf. [5]). That means that we first order the items
by decreasing size; then we go through the sorted list and place each successive piece
into the first (leftmost) active bin into which it will fit. Since we assumed that there
neither exists a good packing nor a good subset, in the produced FrD-packing
neither BINa will be empty nor will there be a bin with weight greater or equal one.

We will proof a number of combinatorial properties of the FFD-packing. The proof
is split into several claims.

Claim 1. In the FFD-packin9, no bin contains an A-item x.

Proof. Trivial, as every type-A item has weight at least one and would form a good
subset. []

Claim 2. In the FFD-packing, neither BIN 2 nor BIN 3 contains any D~-item x, i > 2.

Proof. Since x was not put into BrN1, BIN1 is at least t~/(ti + 1) full. By Observation
2.iii, for x > 1/(t~+ 1 - 1), W(x) /x >_ (t i + 1)/t~ must hold. But now the total weight
of BIN1 is at least

t~ . t i + 1

t i + 1 ti

and the contents of BXN~ would be a good subset. []

Claim 3. In the FrD-packing, neither BrN 2 nor BIN 3 contains any B~-item x, i r 3.
Moreover, BIN 2 and BIN 3 together contain at most one B3-item.

Proof. First we show that BIN2 and BrN 3 cannot contain a Bz-item. By Claim 1,
BIN 1 does not contain an A-item. If BIN 2 o r BIN 3 contains a B2-item, BIN~ must

334 G. Galambos and G. J. Woeginger

contain two Bz-items, and consequently, BIN: has weight at least 2(1/3 + 1/6) = 1.
Again the contents of BIN1 would form a good subset.

Next, we examine the case i >_ 3. We denote by X the overall size of all items in BIN 1
that are larger than the Bcitems. By Observation 2.iii, the total weight of these items
is at least (h-, + 1)X/t~_:. Let the number of B,-items in BIN 1 be b, let their overall
size be denoted by B. We use the fact that W(BIN:) < 1 must hold and get

t i _ : + 1 b
- - X + B + - - < I . (1)

t,_: t~+ I - 1

As the item x <_ 1/(t~ - l) did not fit into BIN,, we know that

t~ - 2
x + B > - - (2)

t ~ - 1

must hold. We subtract the equation (2) multiplied by (ti_: + 1) from (1) multiplied
by t>: and derive

t i - - 2 ti-1 b < ti_: - + 1) + B. (3) t 5-1 (t'-:

On the other hand, we know that every Bi-item in BIN, has size at most 1/(t~ - 1)
and that there are exactly b such items. This implies B < b/(t~ - 1). Plugging this
into equation (3) and simplifying the resulting inequality yields

t~ - t~_: - - 2 2t~
- t ~ = t i �9 (4)

b > t~ - - t i _ * t i - - t i _ i

Now for i _> 4, the righthand side of (4) is at least t i - 3, and therefore, b is at least
ti - 2. Together with the item x in BIN2, there are at least t i - 1 Bi-items, each of
size greater i / t v Hence, the total weight of these ti - i Bi-items is at least

(t i 1) W (~) (~ 1) - �9 + ~ > (t ~ - l) " + = 1
ti+: - 1

and it is easy to check that they fit into a single bin. Thus, we have constructed a
good subset and derived a contradiction.

For i = 3, the righthand side of (4) is 7/2, and this yields b > 4. If there are two or
more B3-items in BIN 2 and BIN3, we have at least six Ba-items and we can argue
analogously to above. []

Claim 4. In the FvD-packing, neither BIN 2 n o r BIN 3 contains any C2-item x. The bin
BIN a does not contain any B3-item y.

Proof. Assume the contrapositive. As x did not fit into BIN,, BIN, must contain
three C2-items, each of size at least 1/4. This gives for BIN, an overall weight of at
least one, and the first part of the claim is proven.

To see the correctness of the second part, we observe that BIN 2 and BIN a do not
contain A-, Bz-, C2- or D2-items. Consequently, the B3-item y is the largest item in
these two bins, and FFD puts it into B:N 2. []

Repacking Helps in Bounded Space On-Line Bin-Packing 335

Claim 5. In the FFD-packing BIN 3 c a n n o t contain any Ci-item x with i > 4.

Proof. We denote by Y the overall size of all items in BIN 2 that are larger than the
C~-items. All of these items are at least C~_~-items, and by Observation 2.iii, the total
weight of them is at least (t~_~ + 1) Y/ti_ ~. Let the number of C~-items in BIN 2 be c,
let their overall size be denoted by C. Since the contents of BIN 2 is not a good subset,
W(BIN2) < 1 holds and this yields

__ti-1 + ti-4- 1 C 1 y + < 1. (5)
ti-1 tl

Since the item x N 1It i did not fit into BIN2, we have

ti - 1
Y + C > - - (6)

ti

We multiply the inequality (6) by (t~_~ + 1) and the inequality (5) by the factor t~_l.
Subtracting one inequality from the other and simplifying gives

t i - - t i _ 1 - - 1 l
C > - 1 . (7)

t i - t i _ 1 t i - - t i_ 1

Moreover, C < c/t i holds. Combining this with inequality (7), we derive

ti
c > ti > tl - 2, (8)

t i - - ti_ 1

where the righthand inequality in (8) follows from i > 4. Summarizing, we have at
least (t~ - 1) Ci-items in BIN 2 and at least one C~-item in BIN a. This gives t~ items
with overall weight at least one and overall size at most one, and we can construct
a good subset. []

Claim 6. In the FVD-packing BIN 3 c a n n o t contain any Ca-item x.

Proof. If BIN 2 does not contain a Ba-item, it must contain seven Ca-items with
overall weight at least one (otherwise FFD puts X into BIN2, too). Hence, we may
assume that BIN 2 does contain some Ba-item y.

Similarly as in the proof of Claim 3, we denote by X the overall size of all items in
BIN 1 that are larger than the B3-items (i.e. larger than 1/6). By Observation 2.iii, the
total weight of these items is at least 4X/3. Let the number of Ba-items in BIN 1 be
b, and let their overall size be denoted by B. Then W(BIN1) < 1 implies 4X/3 +
B + b/42 < 1. As the Ca-item x < 1/7 did not fit into BIN 1, we have X + B > 6/7.
These two inequalities yield 14B > b + 6. Finally, we plug in B < b/6 and derive
b > 9/2. Altogether, there are at least six Ba-items, and once more we detected a
good set of items with size at most one and weight at least one. []

Summarizing, in Claims 1 through 6 we have shown that in the FvD-packing BIN 3
can neither contain an A-, nor a B~-, nor a Ci-, nor a Di-item. Consequently, BIN a is
empty and the FFo-packing is a good packing. This is the final contradiction and
the proof of Theorem 4 is complete. []

336 G. Galambos and G. J. Woeginger

Theorem 5. The algorithm REPa can be implemented in such a way that it never gets
s tuck in Step (2). I t has the best possible worst case ratio ho~, and a running time o f
O(n z) (where n denotes the number o f items).

Proof. The proof that REP 3 can be implemented such that it never gets stuck is done
by induction over the number of packed items. We will keep the followng three
invariants. As REP 3 receives a new item to pack, (i) BIN 3 is empty, (ii) BIN 1 w BIN2
does not contain any A-item and (iii) BIN1 u BIN2 contains at most one B2-item.

Obviously, the three invariants hold as REP 3 receives the first item. Assume they
hold after the packing of item ak, and consider the moment as REP 3 receives ak+~.

In Step (1), item ak+ ~ is put into BIN 3. If ak+~ is an A-item, we just move on to Step
(3) where BIN 3 is closed and replaced by an empty bin. Obviously, all three invariants
hold again. Otherwise, ak+~ has size at most 1/2 and we distinguish three subcases.

(a) If a~+l is a Bz-item and BIN 1 u BIN z contains some Bz-item z, we simply move
z into BIN3 and go to Step (3).

(b) BIN t u BIN 2 does not contain any B2-item. In this case, we apply Theorem 4.
Either we can repack all items into two bins such that BIN 3 is empty (in this
case we go to Step (3) and all three invariants are fulfilled), or we detect a good
subset ~ . All items in 6 e are of size at most 1/3, and from Observation 2.iii we
derive that the total size of 6 ~ is at least 3/4.

We pack all items of 5 r into BIN3, ak+ 1 moves into B ~ . The remaining pieces
are packed by FED into BIN 1 and BIN 2. We claim that all pieces can be packed.
Assume that some piece z does not fit in any bin. If z > 1/4, at least one larger
piece has been packed into BIrq, and the contents of BIN 1 is at least ak+ ~ + 1/4.
If Z < 1/4, the contents of BIN~ is at least 3/4 > ak+ 1 -[- 1/4. Thus, in any case
the contents of BIN 1 is at least ak+ i -~ 1/4. But now we have derived a contradic-
tion: The overall size of all pieces is at most 2 + ak+ 1 . BIN 3 contains at least 3/4,
BIN 1 contains at least ak+ 1 q- 1/4, and all the remaining pieces fit into BIN 2.

Consequently, we may go on to Step (3).
(c) If ak+ 1 <_ 1/3 and BIN 1 w BIN 2 contains some B2-item of size greater 1/3, we

proceed similarly to subcase (b). We apply Theorem 4. If we can repack all items
into two bins such that BIN 3 is empty, everything is fine. Hence, assume we
detect a good subset 5 e. All items in 5 e are of size at most 1/2, and from
Observation 2.iii we derive that the total size of 6 ~ is at least 2/3.

Again we pack all items of 5 r into BIN3, ak+ 1 into BIN 1 and apply FFD to the
remaining pieces. I f some piece z could not be packed, it is easy to see that
z _< 1/3 and the c o n t e n t s of BIN i must be at least 2/3 > 1/3 + ak+ 1. We end with
a contradiction as in subcase (b).

This completes the inductional proof.

To prove that REP 3 has the best possible worst case ratio ho~, we simply observe
that for any list L of items, REPa(L) _< W(L) + 3 holds (The algorithm closes only
bins of weight at least one, the last three active bin are added to this number).
Combining this with the inequality in Lemma 3, we get

Repacking Helps in Bounded Space On-Line Bin-Packing 337

REPa(L) -- 3 ~ W(L) <__ h~ OPT(L).

Together with the lower bound of Theorem 1 this implies r(REP3) ---- hoo.

Finally, we consider the time complexity of REP 3. If we store all elements in the
active bins in a sorted binary tree, inserting and removing some item can be done
in O(logn) time. Hence, all the sorting steps can be performed in overall time
O(n log n). Every time a new item arrives, we have to repack at most n items. This
gives an overall time complexity of 0(/'/2). []

4. Discussion

In this paper we introduced an on-line bin-packing algorithm REP 3 that uses only
bounded space and strongly exploits the possibility of repacking. In contrary to all
known bounded-space bin-packing heuristics, the worst case ratio of REP 3 exactly
matches the lower bound of Lee and Lee while using only a constant number of
three bins.

We finish this paper by mentioning the following two open problems.

(1) Does repacking help in 2-bounded space on-line bin-packing? The ideas of our
algorithm do not work for two active bins. For example, we might receive a sequence
of items consisting of five items of size 1/7 + e and six items of size 1/7, where e is
some very small appropriately chosen positive real. F rom this sequence we cannot
select a good subset. If the next item to pack is of size greater 2/7, we must close
some bin with weight smaller than one.

The 2-bounded Best Fit algorithm of Csirik and Johnson [2] reaches a worst case
ratio of 1.7, even without repacking. So the gap is rather narrow.

(2) Can repacking improve the worst case guarantees in higher dimensional bin-
packing problems? (see [3] for definitions)

Acknowledgement

Part of this work was carried out while Gerhard Woeginger was visiting J6zsef Attila University; Gerhard
Woeginger gratefully acknowledges the hospitality of J6zsef Attila.

References

I-1] Csirik, J., Imreh, B.: On the worst-case performance of the NkF bin-packing heuristic. Acta
Cybernetica 9, 89-105 (1989).

[2] Csirik, J., Johnson, D. S.: Bounded space on-line bin packing: Best ist better than First. Proc. 2nd
Ann. ACM-SIAM Symp. on Discrete Algorithms, San Francisco, January 1991.

1-3] Garey, M.R., Graham, R. L., Johnson, D. S., Yao, A. C. C.: Resource constrained scheduling as
generalized bin packing. J. Comb. Th. Ser. A. 21,257-298 (1976).

[4] Golomb, S.: On certain non-linear recurring sequences. American Math. Monthly 70, 403-405
(1963).

1-5] Johnson, D. S.: Fast algorithms for bin packing. J. Comput. System Sci. 8, 272-314 (1974).

338 G. Galambos and G. J. Woeginger: Repacking Helps in Bounded Space On-Line Bin-Packing

1-6] Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., Graham, R. L.: Worst-case performance
bounds for simple one-dimensional packing algorithms. SIAM J. Comput. 3, 256-278 (1974).

I-7] Lee, C. C., Lee, D. T.: A simple on-line bin-packing algorithm. J. Assoc. Comput. Mach. 32, 562-572
(1985).

[8] Woeginger, G. J.: Improved space for bounded-space on-line bin-packing. Technical Report No.
187, TU Graz, 1991.

G. Galambos
J6zsef Attila University
Department of Applied Computer Sciences
Arp~d t6r 2, H-6720 Szeged
Hungary

G. J. Woeginger
TU Graz
Institut fiir Mathematik B
Kopernikusgasse 24, A-8010 Graz
Austria

