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Abstract - -  Zusammenfassung 

Repacking Helps in Bounded Space On-Line Bin-Packing. We consider a version of the on-line bounded- 
space bin-packing problem where repacking the items within the active bins is allowed. For this problem, 
the 1.69103 lower bound of Lee and Lee [7] for the worst case ratios of bounded-space approximation 
algorithms still applies. We present a polynomial time approximation algorithm that reaches the best 
possible worst case ratio matching the Lee and Lee lower bound while using only three active bins. 

A M S  Subject Classifications: 90B35, 90(;27. 
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Beim Bounded Space On-line Bin-Packing kann Umpacken von Vorteil sein. Wir behandeln eine Variante 
des On-Line Bound-Space Bin-Packings, in der das Umpacken der Gegenst~inde innerhalb der aktiven 
Bins erlaubt ist. Auch fiir diese Variante gilt die untere Schranke 1.69103, die Lee und Lee [7] ffir Worst 
Case Ratios von Bounded-Space Approximations-Algorithmen bewiesen haben. Wir konstruieren einen 
bestmrglichen polynomialen Approximations-Algorithmus, der die Schranke von Lee und Lee erreicht 
und dazu nur drei aktive Bins verwendet. 

1. Introduction 

In the classical one-dimensional bin-packing problem, we are given a list of items 
L = (a 1, a 2 . . . .  , an), each item a~ ~ (0, 1], and we must find a packing of these items 
into a minimum number of unit-capacity bins. This problem arises in a wide variety 
of contexts and has been studied extensively since the early 1970s (see e.g. [5] and 
I-6]). Since the problem of finding an optimal packing is NP-hard, research has 
concentrated on approximation algorithms that find near-optimal packings and use 
polynomial time. Let OPT(L) and A (L) denote, respectively, the number of bins used 
by an optimum algorithm and the number of bins used by a heuristic algorithm A 
to pack the input list L. Then the worst case ratio or performance 9uarantee of A, 
denoted by r(A) is defined as 

lim sup A(L)/OPT(L). 
Opt(L)-* oo L 

This ratio is customarily used to measure the quality of a heuristic bin-packing 
algorithm. 

* This paper was supported by a grant from the Hungarian Academy of Sciences (OTKA Nr. 2037). 
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A bin-packing algorithm is called on-line if it packs all items ai solely on the basis 
of the sizes of the items aj, 1 _ j < i and without any information on subsequent 
items. A bin-packing algorithm uses k-bounded space if for each item a~, the choice 
of bins to pack it into is restricted to a set of k or fewer active bins, where each bin 
becomes active when it receives its first item, but once it is declared inactive (or 
closed), it can never become active again. 

These latter restrictions (on-line and bounded-space) arise in many applications, as 
in packing trucks at a loading dock or in communicating via channels with bounded 
buffer size. Consequently, the problem was analyzed thoroughly in the 1980s, cf. the 
papers by Csirik and Imreh [1], Csirik and Johnson [2], Lee and Lee [7] and 
Woeginger [8]. On the negative side, Lee and Lee [7] proved that no on-line 
approximation algorithm using bounded-space can have a performance guarantee 
less than the constant ho~ ~ 1.69103. On the positive side, algorithms were detected 
whose asymptotic worst-case ratios approach h~o as the number of active bins tends 
to infinity; but there is no algorithm known that reaches this bound while using 
only a finite number of bins. 

In this paper we will consider a related bounded-space bin-packing problem where 
repacking the k active bins is allowed. In this version of the problem, we are allowed 
to perform the standard actions of bounded-space bin-packing, i.e. we are allowed to 

(i) Open a new bin (if the number of active bins is less or equal to k - 1), 
(ii) Close some active bin (and never open it again), 

(iii) Pack a new item into some active bin (if the contents of the bin remains below 
one). 

But in contrary to standard bin-packing, we are also allowed to (let ~1 , . . . ,  ~k 
denote the active bins; we will identify the contents of a bin with the bin) 

(iv) Repack the set of active bins, i.e. to form a new partition ~ ,  . . . ,  ~ of the items 
inside the active bins such that U ~i = U ~ holds, and such that the items in 
each part of the new partition have overall size less or equal to one. 

To allow action (iv) is a natural assumption. As long as an item is in some active 
bin, the item is available for the "packer" and the packer may change its position. 
In the loading dock example mentioned above, trucks will partially be repacked 
and items will be moved from one truck at the loading dock to another in order to 
increase the number of pieces packed. 

Unfortunately, the h~o lower bound of Lee and Lee carries over to this problem, 
too. But we will show that now there exist approximation algorithms using a finite 
number of active bins and reaching this worst case ratio. More precisely, we will 
present an algorithm called REP 3 that uses only three active bins and has perfor- 
mance guarantee ho~. The running time of REP 3 is O(n2). The main tool we apply 
is a new weighting function function first used in [8]. 

The paper is organized as follows. Section 2 gives some basic definitions and intro- 
duces the weighting function. In Section 3 we formulate the algorithm PEP 3 and 
analyze its worst case performance. Section 4 finishes with the discussion. 
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2. Definitions and Preliminaries 

The following sequence that was introduced by Golomb [4] will be essential in the 
definition and in the analysis of our algorithm REP3. 

tl = 2 

ti+ l = t i ( t  i - 1 ) + l  f o r i > l  

Knowing this, the exact definition of the real number hoo (that was already used in 
the introduction) may be stated as 

1 1 1 1 
hoo= _1 - 1 +  + ~ +  + + . " ~ 1 . 6 9 1 0 3 .  

The proof of the following theorem is an easy modification of the proof of 
Theorem 3 in [7]. 

Theorem 1. Let  A be any bounded-space on-line bin-packing algorithm that uses 
repacking. Then r(A) >_ ho~ holds. 

Proof. Let n and m be some integers and let e be a very small positive real. We 
consider the list L(n, m) that consists of m homogeneous sublists Li(n), 1 _< i _< m, 
each of length n. The sublist Li(n) contains n items of size 1/ti + e. 

Obviously, the optimum packing of L(n, m) uses exactly n bins where every bin 
contains exactly one item from every sublist. On the other hand, any k-bounded 
space algorithm must use n different bins to pack the first sublist Ll(n). At most k 
of these n bins are active, when the first item of sublist L 2 (n) arrives; consequently, 
the algorithm requires at least n / 2 -  k new bins to pack sublist Lz(n ). Using 

n m analogous arguments we conclude that any heuristic will use at least ~ = 1  1/ 
(t~ - 1) - (m - 1)k bins. Since k is constant, the quotient of this expression and 
OPw(L(n, m)) comes arbitrarily close to hoo as n and m both tend to infinity�9 [] 

Next, let us define our weighting function W(x): (0, 1] ~ R § 

1 
W(x) = x + - -  for 1/tg < x < 1/(t~ - 1) and 1 < i 

t i +  1 - -  1 

t~+ 1 
�9 x for 1/(ti+ 1 -- 1) < x <_ 1/ti and 1 _< i 

t l  

An illustration for the weight of items with size close to one is given in Table 1. The 
weight of a set of items is defined to be the sum of weights over all items in the set. 
The weight of a bin is the weight of all items in it. Analogously, we define the size 
of a set of items (of a bin) to be the sum of sizes over all items in the set (in the bin). 
The proofs of the following observations are straightforward. 

Observation 2 

(i) W(x) is nondecreasing in (0, 1]. []  
(ii) For i >_ 1 and x < 1/ti, W(x) /x  <_ (ti + 1)/ti holds�9 [] 

(iii) For i >_ 1 and x > 1/(ti+ 1 - 1), W(x) /x  > (t i + 1)/tl holds. [] 
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Table 1. Illustration for the weighting function W 

Type Interval Weight(x) 

A (i/2,1] x + 1/2 
/32 (1/3,1/2] x + 1/6 
c 2 (1/4,1/3] 4x/3 
D z (1/6,1/4] 4x/3 

Type Interval Weight(x) 

B 3 (1/7, 1/6] x + 1/42 
C3 (1/8,1/7] 8x/7 
D 3 (1/42,1/8] 8x/7 
B 4 (1/43,1/42] x + 1/1806 

L e m m a  3. In any packing of  a list L the weight of  any bin is at most h~o. Hence, 
W(L)  < h~ OPT(L) holds. 

Proof. Let us consider some fixed bin ~ that  contains items ql >- q2 ~ " '" ~ qra" We  
distinguish two cases. 

(a) q1 ~ (1/ti, 1/(ti - 1)] for i = 1. . .  m. Then 

W(~3)= q ~ + - -  = q i +  
i=1 q+l 1 ti 1 i=1 i=2 - -  

< 1 +  - -  < h~o. 
i=a f i - -  1 

(b) N o w  assume r < m is the least i such that  q, <_ 1/tr. We denote by Q the sum 
~ = ,  q~ < 1/(t, - 1). By Observat ion 2.ii, the total weight of  q~... qm is less or  equal 
to  (tr + 1)Q/tr. This yields 

r-1 1 tr + 1 Q 
<_ 1 - (2 + Y '  - -  + 

i=i ti+i -- 1 t r 

< ~  1 1 
t - ~  1 + - -  < ho~ [ ]  i=1 t , ( t , -  1) 

3. The Repaeking Algorithm 

In  this section we define and analyze the Repacking Algorithm, REP 3 for short. This 
algori thm always keeps three active bins that  we call BIN l, BIN 2 and BrN 3. REe 3 
proceeds as follows. 

(1) Get  a new item x and put  x into an empty active bin. 

(2) Repack the three active bins such that  at least one bin is empty 
or  such that  at least one bin has weight greater or equal to one. 

(3) Close all active bins with weight at least one and open new bins 
instead of  them. G o t o  (1). 
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Of course the crucial (and not well-defined) step of the algorithm REP 3 is Step (2). 
The main part of this section is devoted to establishing the fact that Step (2) is always 
possible and how to perform it. To do this, we first prove the following theorem. 

Theorem 4. Let  BIN1, BIN2, BIN 3 be three bins. Then we can either repack the bins 
to produce a packing with an empty bin or we can f ind  a subset o f  items with weight 
at least one and size at most one. 

Proof. We will assume that it is neither possible to produce a good packing (a 
packing with an empty bin) nor to find a good subset of items (a subset of weight 
greater or equal one and of size at most one), and we will derive a contradiction 
from this. It is convenient to classify the items according to the following partition 
of the unit-interval (cf. Table 1). 

A = (1/2, 1] 

B~ = (1/t~, 1/(t~ -- 1)] for i > 2 

C, = (1/(t, + 1), 1/h ] for i > 2 

D~ = (1/(fi+ 1 - 1), 1/(t~ + 1)] for i > 2 

First of all, we will produce a First-Fit Decreasing packing (FrD-packing for short) 
of the items in the three active bins (cf. [5]). That  means that we first order the items 
by decreasing size; then we go through the sorted list and place each successive piece 
into the first (leftmost) active bin into which it will fit. Since we assumed that there 
neither exists a good packing nor a good subset, in the produced FrD-packing 
neither BINa will be empty nor  will there be a bin with weight greater or equal one. 

We will proof a number of combinatorial properties of the FFD-packing. The proof 
is split into several claims. 

Claim 1. In the FFD-packin9, no bin contains an A-item x. 

Proof. Trivial, as every type-A item has weight at least one and would form a good 
subset. []  

Claim 2. In the FFD-packing, neither BIN 2 nor BIN 3 contains any D~-item x, i > 2. 

Proof. Since x was not put into BrN1, BIN1 is at least t~/(ti + 1) full. By Observation 
2.iii, for x > 1/(t~+ 1 - 1), W(x) /x  >_ (t i + 1)/t~ must hold. But now the total weight 
of BIN1 is at least 

t~ . t i + 1 

t i + 1 ti 

and the contents of BXN~ would be a good subset. [] 

Claim 3. In the FrD-packing, neither BrN 2 nor BIN 3 contains any B~-item x, i r 3. 
Moreover, BIN 2 and BIN 3 together contain at most one B3-item. 

Proof. First we show that BIN2 and BrN 3 cannot contain a Bz-item. By Claim 1, 
BIN 1 does not contain an A-item. If BIN 2 o r  BIN 3 contains a B2-item, BIN~ must 
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contain two Bz-items, and consequently, BIN: has weight at least 2(1/3 + 1/6) = 1. 
Again the contents of BIN1 would form a good subset. 

Next, we examine the case i >_ 3. We denote by X the overall size of all items in BIN 1 
that are larger than the Bcitems. By Observation 2.iii, the total weight of these items 
is at least (h-, + 1)X/t~_:. Let the number of B,-items in BIN 1 be b, let their overall 
size be denoted by B. We use the fact that W(BIN:) < 1 must hold and get 

t i _ :  + 1 b 
- - X + B + - - < I .  (1) 

t,_: t~+ I - 1 

As the item x <_ 1/(t~ - l) did not fit into BIN,, we know that 

t~ - 2 
x + B > - -  (2) 

t ~ -  1 

must hold. We subtract the equation (2) multiplied by (ti_: + 1) from (1) multiplied 
by t>:  and derive 

t i - -  2 ti-1 b < ti_: - + 1) + B. (3) t 5-1 (t'-: 

On the other hand, we know that every Bi-item in BIN, has size at most 1/(t~ - 1) 
and that there are exactly b such items. This implies B < b/(t~ - 1). Plugging this 
into equation (3) and simplifying the resulting inequality yields 

t~ - t~_: - -  2 2t~ 
- t ~  = t i  �9 (4)  

b > t~ - -  t i _  * t i - -  t i _  i 

Now for i _> 4, the righthand side of (4) is at least t i - 3, and therefore, b is at least 
ti - 2. Together with the item x in BIN2, there are at least t i - 1 Bi-items, each of 
size greater i / t  v Hence, the total weight of these ti - i Bi-items is at least 

(t i 1) W ( ~  ) (~  1 )  - �9 + ~  > ( t ~ - l ) "  + = 1  
ti+: - 1 

and it is easy to check that they fit into a single bin. Thus, we have constructed a 
good subset and derived a contradiction. 

For  i = 3, the righthand side of (4) is 7/2, and this yields b > 4. If there are two or 
more B3-items in BIN 2 and BIN3, we have at least six Ba-items and we can argue 
analogously to above. []  

Claim 4. In the FvD-packing, neither BIN 2 n o r  BIN 3 contains any C2-item x. The bin 
BIN a does not contain any B3-item y. 

Proof. Assume the contrapositive. As x did not fit into BIN,, BIN, must contain 
three C2-items, each of size at least 1/4. This gives for BIN, an overall weight of at 
least one, and the first part of the claim is proven. 

To see the correctness of the second part, we observe that BIN 2 and BIN a do not 
contain A-, Bz-, C2- or D2-items. Consequently, the B3-item y is the largest item in 
these two bins, and FFD puts it into B:N 2. []  
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Claim 5. In the FFD-packing BIN 3 c a n n o t  contain any Ci-item x with i > 4. 

Proof. We denote by Y the overall size of all items in BIN 2 that are larger than the 
C~-items. All of these items are at least C~_~-items, and by Observation 2.iii, the total 
weight of them is at least (t~_~ + 1) Y/ti_ ~. Let the number of C~-items in BIN 2 be c, 
let their overall size be denoted by C. Since the contents of BIN 2 is not a good subset, 
W(BIN2) < 1 holds and this yields 

__ti-1 + ti-4- 1 C 1 y  + < 1. (5) 
ti-1 tl 

Since the item x N 1It i did not fit into BIN2, we  have 

ti - 1 
Y + C > - -  (6) 

ti 

We multiply the inequality (6) by (t~_~ + 1) and the inequality (5) by the factor t~_l. 
Subtracting one inequality from the other and simplifying gives 

t i - -  t i _  1 - -  1 l 
C > - 1 . ( 7 )  

t i -  t i _  1 t i - -  t i_  1 

Moreover, C < c/t i holds. Combining this with inequality (7), we derive 

ti 
c > ti > tl - 2, (8) 

t i - -  ti_ 1 

where the righthand inequality in (8) follows from i > 4. Summarizing, we have at 
least (t~ - 1) Ci-items in BIN 2 and at least one C~-item in BIN a. This gives t~ items 
with overall weight at least one and overall size at most one, and we can construct 
a good subset. [] 

Claim 6. In the FVD-packing BIN 3 c a n n o t  contain any Ca-item x. 

Proof. If BIN 2 does not contain a Ba-item, it must contain seven Ca-items with 
overall weight at least one (otherwise FFD puts X into BIN2, too). Hence, we may 
assume that BIN 2 does contain some Ba-item y. 

Similarly as in the proof of Claim 3, we denote by X the overall size of all items in 
BIN 1 that are larger than the B3-items (i.e. larger than 1/6). By Observation 2.iii, the 
total weight of these items is at least 4X/3.  Let the number of Ba-items in BIN 1 be 
b, and let their overall size be denoted by B. Then W(BIN1) < 1 implies 4X/3  + 
B + b/42 < 1. As the Ca-item x < 1/7 did not fit into BIN 1, we have X + B > 6/7. 
These two inequalities yield 14B > b + 6. Finally, we plug in B < b/6 and derive 
b > 9/2. Altogether, there are at least six Ba-items, and once more we detected a 
good set of items with size at most one and weight at least one. []  

Summarizing, in Claims 1 through 6 we have shown that in the FvD-packing BIN 3 
can neither contain an A-, nor a B~-, nor a Ci-, nor a Di-item. Consequently, BIN a is 
empty and the FFo-packing is a good packing. This is the final contradiction and 
the proof of Theorem 4 is complete. []  
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Theorem 5. The algorithm REPa can be implemented in such a way that it never gets 
s tuck in Step (2). I t  has the best possible worst case ratio ho~, and a running time o f  
O(n z) (where n denotes the number o f  items). 

Proof. The proof  that REP 3 can be implemented such that it never gets stuck is done 
by induction over the number of packed items. We will keep the followng three 
invariants. As REP 3 receives a new item to pack, (i) BIN 3 is empty, (ii) BIN 1 w BIN2 
does not contain any A-item and (iii) BIN1 u BIN2 contains at most  one B2-item. 

Obviously, the three invariants hold as REP 3 receives the first item. Assume they 
hold after the packing of item ak, and consider the moment  as REP 3 receives ak+~. 

In Step (1), item ak+ ~ is put into BIN 3. If  ak+~ is an A-item, we just move on to Step 
(3) where BIN 3 is closed and replaced by an empty bin. Obviously, all three invariants 
hold again. Otherwise, ak+~ has size at most  1/2 and we distinguish three subcases. 

(a) If  a~+l is a Bz-item and BIN 1 u BIN z contains some Bz-item z, we simply move 
z into BIN3 and go to Step (3). 

(b) BIN t u BIN 2 does not contain any B2-item. In this case, we apply Theorem 4. 
Either we can repack all items into two bins such that BIN 3 is empty (in this 
case we go to Step (3) and all three invariants are fulfilled), or we detect a good 
subset ~ .  All items in 6 e are of size at most  1/3, and from Observation 2.iii we 
derive that the total size of 6 ~ is at least 3/4. 

We pack all items of 5 r into BIN3, ak+ 1 moves into B ~ .  The remaining pieces 
are packed by FED into BIN 1 and BIN 2. We claim that all pieces can be packed. 
Assume that some piece z does not fit in any bin. If  z > 1/4, at least one larger 
piece has been packed into BIrq, and the contents of BIN 1 is at least ak+ ~ + 1/4. 
If Z < 1/4, the contents of BIN~ is at least 3/4 > ak+ 1 -[- 1/4. Thus, in any case 
the contents of BIN 1 is at least ak+ i -~ 1/4. But now we have derived a contradic- 
tion: The overall size of all pieces is at most  2 + ak+ 1 . BIN 3 contains at least 3/4, 
BIN 1 contains at least ak+ 1 q- 1/4, and all the remaining pieces fit into BIN 2. 

Consequently, we may go on to Step (3). 
(c) If ak+ 1 <_ 1/3 and BIN 1 w BIN 2 contains some B2-item of size greater 1/3, we 

proceed similarly to subcase (b). We apply Theorem 4. If we can repack all items 
into two bins such that BIN 3 is empty, everything is fine. Hence, assume we 
detect a good subset 5 e. All items in 5 e are of size at most  1/2, and from 
Observation 2.iii we derive that the total size of 6 ~ is at least 2/3. 

Again we pack all items of 5 r into BIN3, ak+ 1 into BIN 1 and apply FFD to the 
remaining pieces. I f  some piece z could not be packed, it is easy to see that 
z _< 1/3 and the c o n t e n t s  of BIN i must be at least 2/3 > 1/3 + ak+ 1. We end with 
a contradiction as in subcase (b). 

This completes the inductional proof. 

To prove that REP 3 has the best possible worst case ratio ho~, we simply observe 
that for any list L of items, REPa(L ) _< W(L)  + 3 holds (The algorithm closes only 
bins of weight at least one, the last three active bin are added to this number). 
Combining this with the inequality in Lemma 3, we get 
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REPa(L ) -- 3 ~ W(L) <__ h~ OPT(L). 

Together with the lower bound of Theorem 1 this implies r(REP3) ---- hoo. 

Finally, we consider the time complexity of REP 3. If we store all elements in the 
active bins in a sorted binary tree, inserting and removing some item can be done 
in O(logn) time. Hence, all the sorting steps can be performed in overall time 
O(n log n). Every time a new item arrives, we have to repack at most  n items. This 
gives an overall time complexity of 0(/'/2). [ ]  

4. Discussion 

In this paper  we introduced an on-line bin-packing algorithm REP 3 that uses only 
bounded space and strongly exploits the possibility of repacking. In contrary to all 
known bounded-space bin-packing heuristics, the worst case ratio of REP 3 exactly 
matches the lower bound of Lee and Lee while using only a constant number  of 
three bins. 

We finish this paper  by mentioning the following two open problems. 

(1) Does repacking help in 2-bounded space on-line bin-packing? The ideas of our 
algorithm do not work for two active bins. For  example, we might receive a sequence 
of items consisting of five items of size 1/7 + e and six items of size 1/7, where e is 
some very small appropriately chosen positive real. F rom this sequence we cannot 
select a good subset. If  the next item to pack is of  size greater 2/7, we must close 
some bin with weight smaller than one. 

The 2-bounded Best Fit algorithm of Csirik and Johnson [2] reaches a worst case 
ratio of 1.7, even without repacking. So the gap is rather narrow. 

(2) Can repacking improve the worst case guarantees in higher dimensional bin- 
packing problems? (see [3] for definitions) 
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