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Summary 

The structures and periods of the lowest four normal modes of Lake Constance and the 
fundamental mode of the Bay of Konstanz are determined by an application of a 
simplified version of the two-dimensional theory developed by Rao and Schwab [ 12]. 
The effect of the earth's rotation is neglected, because the medium size of the Lake 
implies only a minor influence on the oscillations. The calculations of the lowest four 
modes are verified by spectral analyses of simultaneous measurements of water level 
fluctuations at up to 9 stations on the shore. In particular, the water wonder at 
Konstanz in 1549 described by Schulthaiss [14] is explained in terms of a possible 
resonant excitation of the fundamental mode of the Bay of Konstanz. For the analysis 
of this event a translation of Schulthaiss' notes, which give the oldest known observa- 
tions on seiches, is included in the text together with some historical comments. 

Zusammenfassung 

Die freien Schwingungen des Bodensees mit einer Interpretation des ,,Wasserwunders" 
von Konstanz im Jahre 1549 

Die Struktur und Perioden der vier niedrigsten Eigenschwingungen des Bodensees und 
die Grundschwingung der Bucht yon Konstanz wurden durch Anwendung einer verein- 
fachten Version der yon Rao und Schwab [ 12 ] entwickelten zweidimensionalen Theorie 
bestimmt. Der Effekt der Erdrotation wurde vernachl~tssigt, da der Einflufi auf die freien 
Schwingungen des Sees durch die mitflere Gr6fie des Seebeckens gering ist. Die Berech- 
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nungen der niedrigsten vier Eigenschwingungen werden dutch Spektralanalysen yon 
gleichzeitigen Messungen der Wasserspiegelschwankungen an 9 Uferstationen verifiziert. 
Im besonderen wixd das Wasserwunder des Jahres 1549 in Konstanz, das von Schulthaiss [14] 
beschrieben wurde, als eine m6gliche resonante Anre~ng der Grundschwingung in der Bucht 
yon Konstanz erkl~rt. Zur Analyse dieses Ereignisses ist eine Obersetzung des Berichts tiber 
das ,,Wasserwunder" zusammen mit einigen historischen Bemerkungen beigefligt. Die 
Mitteilungen yon Schulthaiss stellen die Ntesten derzeit bekannten Beobachtungen yon 
Seiches dar. 

1. Introduction 

Although the free surface oscillations in Lake Constance generally do not 
exceed an amplitude of 5 cm [8], the phenomenon contributes considerably 
to flood damage of the flat nearshore areas, when maximum amplitudes of 
20 to 30 cm coincide with high mean water levels. This condition occurs 
relatively often, since there is a high annual range of the water level. The 
mean value of this water level fluctuation is 1.5 m during the period 
1877-1964 [7]. The low grounds around the lake, although intensively 
cultivated, remain unprotected against inundations. For this reason it is of 
interest to predict the spatially variabie contributions of the free surface 
oscillations to the total maximum water level set-up. 
The solution of the problem requires the application of a two-dimensional 
theory because of the irregular, though oblong shape of the lake (see map in 
Fig. 1) and was left to the present time, since efficient two-dimensional 
methods for natural water bodies have been developed in full generality 
only recently (see, for example, [11 ] and [12]). In the following investiga- 
tion the most important gravitational modes of the lake are calculated by 
the theory of Rao and Schwab. The verification of the results is performed 
by spectral analysis of water level fluctuations measured by Mtihleisen and 
Kurth [8] at up to 10.gauges between 1967 and 1974 and a set of measure- 
ments made by the Swiss Federal Institute of  Environmental Protection, 
National Hydrological Bureau, in 1972 at Kreuzlingen. Valuable information 
is also provided b y  the historical observations by Forel [3 ] and Christoph 
Schulthaiss [14 ]. The latter report is the oldest known description of free 
surface oscillations in a lake. Because this report documents carefully one of 
the strongest cases of higher order oscillations ever observed in the lake, the 
event will be examined in more detail. 
On the basis of Miihleisen and Kurth's [8] measurements, which included 
wind and air pressure observations on the shore, Hamblin and Hollan [4] 
tried to explain the excitation of the forced oscillations through a normal 
mode expansion technique. The normal modes in that investigation were 
calculated using a finite element method. However, the computed normal 
mode properties were verified against observations only in a qualitative 
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manner for some of the modes. The theoretical approach adopted in the 
present investigation is based on a finite difference formulation of the eigen- 
value problem. A systematic verification analysis using water level data was 
carried out to validate the theoretical calculations. 

. ~  0 ljberlingen 

Fr iedr ichshafen 0 

- ~  ~ Lindau 
0 

8regenz 

Fig. 1. Bathymetry of Lake Constance 

2. Method of Calculation 

The governing equations and the method of their solution are summarized 
only briefly in order to elucidate the simplified version of the general theory 
by Rao and Schwab [12] which was applied successfully to the Great Lakes 
of  North America [ 13, 15 ]. Since Lake Constance is considerably smaller, 
though deeper than the Great Lakes, the influence of tile Coriolis force on 
barotropic motions is less important.  The radius of deformation c/f, where 
c is the phase speed of long gravity waves, and f is the Coriolis parameter, 
is about 291 km for the mean depth o f h  = 100 m of the lake. As the largest 
horizontal scale of  the lake is only 62 kin, which is much less than the radius 
of deformation, Coriolis force can be neglected in the calculations. The 
governing equations of  small amplitude, free, quasi-static oscillations in a 
homogeneous lake may be written in terms of a Cartesian coordinate system 

as a l~ 
- g H v ~  (1) 

0 t  

- - +  v . M = 0 .  
0 t  

The dependent variables in eq. (1) are the free surface displacement ~ f rom 
the equilibrium position and the transport vector M = H V. V is the velocity 
vector and H(x, y) is the equilibrium depth of the lake. The gradient symbol 
in eq. (1) is defined with respect to the horizontal coordinates x and y. 
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Since the shallow open parts at the east end of the lake where the two main 
tributaries enter, and the outflow through the city of Konstanz (see Fig. 1) 
are very narrow, the lake may be considered completely enclosed. Hence the 
adiabatic boundary condition 

1M . ~  = 0 (2) 

has to be satisfied by the solutions of (1) on the coastline, h ~ is a unit vector 
normal to the coast. 
The normal modes are assumed expressible in the following form appropriate 
for a closed basin: 

~I= M(x,y) sin at  7 = rl(x, y) cos ot. (3) 

M, 77 are the space dependent parts of M, ~ and a is the oscillation frequency. 
Substitute eq. (3) into (1) and eliminate the transport vector M. This results 
in a self-adjoint elliptic equation 

V. H vr /=  - Xr~ X=-o2/g (4) 

OH 
with the boundary condition H 3 n - 0 in the boundary. In order to solve 

the problem for an irregular lake, it is necessary to discretize the continuous 
operatior V. HV using a finite difference grid covering the lake. The resulting 
finite difference equations constitute an algebraic eigen value problem for 
eigen values X and eigen functions r~. Each eigen function rl(x, y) represents 
the free surface amplitude distribution of the normal mode associated with 
a frequency o which is related to X as shown in eq. (4). 
The basin of  Lake Constance was approximated by grid squares of 1.4 km 
side fitted to the geometry of the lake (Fig. 2). The depths were read from 
the bathymetric chart of Lake Constance from 1893 [18] updated by the 
Cartographical Survey of the State of Baden-Wfirttemberg [2] at the mouth 
of the main tributaries at the east end across from Lindau. The mean depth 
calculated from the numerical grid exceeds the value derived from the 
depth chart, 100 m, by 2.9%. To compare the calculated frequencies with 
observed frequencies this difference in the mean water level has to be 
accounted for and will be discussed later. 
The open circles of the grid give the places where the height field is 
defined. The components M and N of the transport vector, M, can be 
calculated from adjacent r/'s at the points marked by ~ and ~, 
respectively. At these latter points the depths were read from the charts. 
In total 235 points exist, where the height field is defined. The calculations 
give for each mode a frequency and the amplitude distribution in percentage 
of the maximum range encountered on the grid for each particular mode. 
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o H A  

Fig. 2. Location of water level recording stations and numerical grid on Lake Constance 
with grid spacing of 1.4 km. Code letters refer to the recording stations listed in Table 1. 
Symbols of the grid are explained in the text 

3. The First 4 Normal Modes Compared with Spectra of Observed Water 
Level Fluctuations 

In this section, we will examine the properties (period and structure) of the 
lowest four longitudinal modes of Lake Constance. The spatial resolution 
provided by the measurement programme allows for a reasonable analysis 
of the structures of the lowest four modes. The network of observational 
stations is too wide for an investigation of higher modes. However, a partial 
verification of the periods of higher order modes is possible because the 
measurements at individual stations can provide sufficient resolution in 
time. An example of one of these higher modes is given in section 5. From 
Mtihleisen and Kurth's [8] measurements 6 cases have been selected for the 
analysis of the low order oscillations. Four of these cases consist of a 
simultaneous set of  up to 9 records, whereas in two cases only a single record 
is available. The dates of these events are listed in the second column of  
Table 2, where the observed and calculated periods of the first 4 normal 
modes are compared. The stations, at which these measurements were 
obtained, are included in the grid representation of the lake in Fig. 2 and 
designated by letter labels, while their names are listed in Table 1. 
The spectra were calculated by the method of Blackman and Tukey [1 ], 
for which a programme of the Institute of  Marine Research at the University 
of Kiel was used. In order to provide a machine-processable form of the 
data the original continuous records had to be converted into series of 
equally spaced measurements. A time interval of/~ t ; 1 or 2 min was 
chosen depending on the quality of the data for this purpose. Before the 
series were subjected to the spectral analysis, linear trend was eliminated 
from the data in each case. Hence the effects of long term changes of the 
level (<  1 cph) on the spectral density are removed to a large extent. For 
reduction of  truncation errors in the spectra caused by the finite lengths of 
the series the spectral window of v. Hann was applied. In order to provide 
high resolution the lag window of the autocovariance function has been 
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Table 1. Code Letters Used for the Water Level Recording Stations Around Lake 
Constance (see Fig. 2) 

Station name Code letters 

Ludwigshafen (B.W.) LU 
Unteruhldingen (B.W.) UN 
Konstanz-Staad (B.W.) KS 
Konstanz-Jakobsbad (B.W.) KJ 
Kreuzlingen (Switzerland) KR 
Hagnau (B.W.) HG 
Romanshorn (Switzerland) RO 
Friedrichshafen (B.W.) FR 
Lindau (B.) LI 
Hard (Austria) HA 

Abbreviations in brackets mean B.W.: State of Baden-Wtirttemberg, B.: Free State 
of Bavaria. 

chosen as great as possible. This condition results in a low statistical stability 
of the spectral density estimates in terms of Blackman's and Tukey's con- 
sideration for Gaussian signals. However, the reliability of the calculations 
may be checked by cbmparing the results of the spectral analyses for differ- 
ent events of oscillations as shown, for instance, in the case of the normalized 

amplitudes of the fundamental modes on June 25 and August 23 in 1967 
given in Table 4. The spectra were computed with the same parameters, 
except for a small difference between the lengths of tee actual series in 
both cases (960 and 846). The close agreement of the amplitudes shows 
that the estimates are indeed satisfactorily stable. 
The spectra over the frequency range of 0.5 to 10 cph for the two cases 
selected for structure analysis are plotted in Fig. 3 and 4. As the analysis 
of the structures and the eigen-frequencies requires only the consideration 
of relative changes of power density, the absolute scaling of the spectra is 
not necessary. Hence, for convenience, the spectra of each case from various 
stations are shown arranged vertically one below another. The corresponding 
stations, at which the measurements were obtained, are designated in the 
diagrams by the same letter labels as in the grid representation in Fig. 2. 
Guided by the calculated eigen-frequencies we identified at first the 
prominent spectral peaks of the normal modes at several stations. Then we 
sought for minor peaks at or close to these frequencies in the spectra of the 
remaining stations and marked finally all detectable peaks by best-fit vertical 
lines in the diagrams, thus defining observed eigen-frequencies. The numbers 
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F i g .  3. Power spectra for 9 stations from August 20th, 1969. Each vertical line is a best 
fit to peaks occurring near this period in several spectra. The numbers indicate the order 
of the mode. Stations are denoted by the code letters listed in Table 1 
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Fig. 4. Power spectra for 7 stations from November t l th ,  1969. See Fig. 3 for further 
explanations. The fifth longitudinal mode referred to in section 4 is marked by the 

letter, a 
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added  to these lines refer  to the  order  o f  the  corresponding normal  mode.  
The eigen-periods ob ta ined  by this procedure  are listed in Table 2 and 
compared  with the  calculated values. General ly  the  observed per iods  are 
higher than those  o f  the  calculated oscillations. This difference may  be 
ascribed to  f r ic t ional  influences,  which are not  considered in the theory ,  
and to the  variat ions o f  the mean water  level, when the different  events 
were recorded.  An es t imat ion  of  this la t ter  effect in terms of  Merian's  
formula  is included in the  last co lumn of  the Table.  It shows an approach  
o f  observed and ca lcula ted  periods,  excep t  for  the  4th  mode ,  when these 

Table 2. Comparison o f  Calculated and Observed Periods of  the Lowest 4 Normal Modes 
o fLake Constance 

Mode Case Period Depth correction Corrected 
(rain) ZXH (m) period (min) x 

1 calculated 53.87 - 2.9 54.63 
1 25.6. 1967 55.64 - 1.33 56.00 
1 23.8. 1967 55.57 -0 .99 55.84 
1 20.8. 1969 56.89 -0 .56  57.05 

2 calculated 35.96 -2 .9  36.47 
2 11. 11. 1969 37.72 + 0.54 37.61 

3 calculated 27.03 - 2.9 27.41 
3 20.8. 1969 28.44 -0 .56  28.52 
3 9.11. 1969 27.63 + 0.54 27.55 
3 11.11. 1969 28,28 + 0.54 28.20 

4 calculated 19.84 -2 .9  20.12 
4 13.8. 1969 19.13 -0 .35  19.16 
4 20.8, 1969 18.62 -0 .56  18.87 

1 Corrected to 100 m chart depth. 

values are corrected for the same mean water  level corresponding to the 
ba thyme t r i c  chart  o f  1 893. The deviat ion o f  the  4 th  eigen-period from this 
behaviour  may be re la ted  to the resolut ion  o f  the spectral  analysis, the  
discrete app rox ima t ion  of  the basin by  the size o f  the  numerical  grid, which 
causes greater  inaccuracy as the spatial  scales o f  the  modes  decrease and the 
fact that  modes  o f  even par i ty  are usually not  s trongly exci ted,  thereby  
making their  per iod es t imates  a l i t t le uncertain.  However,  as seen f rom 
Table 2, the  agreement  between the observed and theoret ical  per iods  is 
very good with a max imum error o f  only  abou t  6% for the four th  mode.  
One o f  the  authors  (B~iuerle) ca lcula ted recent ly  the  longi tudinal  modes  o f  
low order  by  the channel theory  described by Pla tzman and Rao [10]. 
Table 3 shows the eigen-periods o f  the  lowest  four  modes  obta ined  from 

21 Arch. Met. Geoph. Biokl. A. Bd. 29, I-I. 3 
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Table 3. Periods of  the Lowest 4 Normal Modes Obtained from the Two-Dimensional 
Theories of  Rao and Hamblin, as well as from the Channel Theory (period in min) 

Channel results Two-dimensional results 
Mode Order (B~uerle) (Hambtin, 1978) (Rao, Table 2) 

1 54.0 53A 53.9 
2 39.1 35.7 36.0 
3 26.2 27,2 27.0 
4 18.7 19.4 19.8 

the channel theory  as well as f rom Hambl in  and Hol lan 's  [4] and our two- 
dimensional  calculations.  The differences between the results of  the  la t ter  
two theories are small. Hambl in  and Hol lan 's  per iods  show slightly lower 
values - except  for the  3rd mode.  When we look at  the  per iods  o f  the 
channel solutions,  the  neglect of  the second dimension becomes apparen t  
for the higher modes.  
In order  to verify the theoret ical  s tructures the observed power  densities 
are conver ted to the  corresponding ampl i tude  densities. The ampl i tude  
d is t r ibut ion  of  each calculated normal  mode  was de te rmined  as a percentage 
o f  the m a x i m u m  encounte red  for that  mode.  Hence the same representa t ion  
o f  relative changes is worked  out  for the observed ampli tudes .  Fo r  this 
purpose  one s ta t ion was selected, at  which the measured ampl i tude  was 
normal ized to the calculated value of  the corresponding grid square. The 
ampl i tudes  observed at the remaining s tat ions were then mul t ip l ied  by this 
factor,  thus yielding the desired relative ampl i tude  d is t r ibut ion  o f  the  real 
oscil lat ion.  The results of  this evaluat ion and the calculated values are 
compared  for each mode in Table 4, while the comple te  theoret ical  
s t ructures  arc shown in Fig. 6 and 7. In the fol lowing individual  notes ,  the 
compu ted  s t ructures  of  the first four  longi tudinal  modes  and the results  of  
the verif icat ion analysis are discussed. Local details of  the s t ructures  will 
be described with the help of  names of  nearby si tuated villages or  towns  
on the shore. The sites o f  these places are i l lustrated in a separate map of  
place-names in Fig. 5. 

3.1 First Longitudinal Mode (53.87 rnin) 

The max imum range of  the fundamenta l  mode  occurs at the  west end of  
the lake. As Fig. 6 shows, the ampl i tudes  th roughout  Lake Oberl ingen are 
higher than at the east end, where the range amount s  to slightly less than  
50% of  that  at  the  oppos i te  end. The nodal  line is l ightly curved to  the  
west and ends at He lmsdor f  on the nor thern  shore and Kesswil on the 
southern  shore (see also Fig. 5). 
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Fig. 5. Map of place-names used for the description of the lowest four normal modes 

The calculated structure agrees well with the observations listed in Table 4. 
In particular, the two cases of June 25th and August 23rd in 1967 verify the 
calculation satisfactorily. Great differences appear in the case of August 20th 
1969, and result from the lower spectral resolution as well as the reduced 
absolute intensity of  the oscillation compared with the two previous cases. 
There is a higher difference between calculated and observed ranges at the 
station Hard across from Lindau. The discrepancy is probably linked with 
the fact that the recorder was placed inside a small lake with a narrow inlet 
from the main basin. Since descretization by grid squares of 1.4 km does 
not resolve these details, the local influence of the enclosed shallow water 
body on the normal modes is not included in the calculation. This short- 
coming with respect to the amplitudes at Hard applies also for higher normal 
modes, as is evident in some cases listed in Table 4. 
The earlier descriptions of the fundamental mode by Forel [3] agree to a 
large extent with our results. The position of the node, however, is not 
shifted so far to the west as he concluded on the basis of his measurements 
at Kirchberg and the lower depths in the western part of the lake. As to the 
period, Forel  obtained a value of 55.8 min, which is nearly the same as in 
the two cases from 1967 (Table 2). 
Calculation of Hamblin and Hollan [4] agrees essentially with our results. 
Due to the inclusion of  earth's rotation in their calculations, the node 
appears transformed into an anticlockwise amphidromic system. However, 
in view of the relative unimportance of earth 's  rotat ion,  the phase propaga- 
tion associated with this amphidromic point is confined to a very narrow 
band near the nodal line and cannot be tested from the available observa- 
tions. 

21" 
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Table 4. Comparison of  Calculated and Observed Elevation Ranges in % for the Lowest 
4 NormalModes o fLake Co nstanee 

Mode 
order Case LU ~UN KS KJ HG RO FR LA LI HA 

1 calculated 100 52 34 (28) 16 9 9 17 40 (42) 
1 25.6. 1967 100 48 30 - 13 4 - 10 46 - 
1 23.8. 1967 100 47 - - 14 7 6 12 45 - 
1 20. 8. 1969 100 58 40 36 - N 10 8 53 73 
2 calculated 35 3 12 20 21 18 20 7 73 76 
2 11.11.1969 41 N 12 18 - - 22 - 73 161 
3 calculated 51 21 37 58 33 7 5 19 33 36 
3 20.8. 1969 51 25 30 43 - 6 4 14 43 65 
3 11.11.1969 51 20 31 42 - - 5 - 38 19 
4 calculated * * * * * 1 0  * * * * 

4 20. 8. 1969 12 14 10 12 10 24 3 N N 

Underlined values represent amplitudes adjusted among one another. 
- -  means: not measured; N stands for: not distinguishable in the spectrum (low value); 
�9 : values not exactly available because of weak structure in the isopleth-representation 
(comparison given qualitatively in Fig. 7). For the same reason the calculated values of the 
fundamental mode are given in brackets at stations KJ and HA. 

3. 2 Second Longitudinal Mode (35.96 rain) 

The structure of  the second mode  shows max imum  range at the east end of  

the lake (Fig. 6). The eastern node is aligned between Tunau just east o f  the 

mouth  of  the Argen river and the mou th  of  the Old Rhine on the southern 

shore, while the western node is situated at the Isle of  Mainau. F rom the 
distr ibut ion of  the ampli tudes in the central and western part o f  the lake it 

is clearly discernible that  the central crest is shifted to the west. As indicated 
above in the case of  the fundamental  mode,  this peculiari ty is caused by the 

lower depths in that part of  the lake. As observations o f  Mtihleisen and 

Kurth  [8] show, the second mode  is usually not  strongly excited. We were 
able to detect  it only in one case measured on November  1 I th,  1969, when 

it prevailed in the water  level f luctuat ions at the east end of  the lake. The 

comparison of  the computed  and observed ampli tudes  in Table 4 exhibits 

satisfactory agreement  except  for the station Hard, where the measured 

value far exceeded the theoret ical  value as a result of  local configurat ions 

o f  the ba thymetry ,  which are not  resolved by . the  numerical  grid. At the 

station of  Unteruhldingen the predicted western node is verified by an 

undistinguishable low ampl i tude  denoted  by N in Table 4. 
The second mode  was observed by Forel  [3] at Kirchberg in the vicinity of  
its central crest, where only minor  contr ibut ions  of  the fundamenta l  mode  
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occur. On the basis of nine cases measured during January 1891, he obtained 
a period of 39.3 rain, which is greater than our observed value, 37.72 min, 
by 4.2%. This difference may be attributed to the generally low mean water 
level in January. Unfortunately, there are no recent measurements available 
with necessary resolution in time and space to investigate the properties of 
the second mode in greater detail. Forel did not explain the oscillation, 
because he had no other method of analysis at his disposal than by visual 
inspection of the records. At his two other observational stations in 
Konstanz and Bodman the fundamental and third mode were prevailing and 
did not allow for an isolation of possible weak contributions of the second 
mode. 
Hamblin and Hollan's [4] calculation yields only a rough picture of the 
structure. The positions of the nodes are well reproduced in terms of two 
anticlockwise amphidromies, while the amplitude distribution is presented 
with low resolution. At the east end a less high relative range appears than is 
confirmed by our analysis. 

3. 3 Third Longitudinal Mode (2 7. 03 rain) 

The structure of this mode is characterized by high ranges at both ends 
(Fig. 6). The value at Bregenz exceeds that of Ludwigshafen by more than 
20%. In the Bay of  Konstanz unrealistically high amplitudes occur because 
of the rough approximation of the bay by only two grid squares. This 
results in a fictitious amplification of the oscillation resulting in a 30% 
difference between the calculated and observed range at Konstanz- 
Jakobsbad as shown in Table 4. 
The western node is situated 1 km to the west of the line between Birnau 
and Litzelstetten, whereas the central node crosses the lake just west of 
the line between Friedrichshafen-Strandbad and Romanshorn. The eastern 
node appears far at the east end between Bad Schachen near Lindau and 
the head of the peninsular Rohrspitz on the southern shore. The spectral 
hnalysis of  the two cases observed on August 20th and November 11 th in 
1969 yields satisfactory results compared with the calculation, if we 
disregard the differences in the Bay of  Konstanz (see Table 4). 
Forel [3] explained the third mode.wrongly as the second mode. He con- 
cluded this from the usual relation between the eigen-periods of the funda- 
mental mode and the higher ones according to Merian's formula. The mis- 
interpretation resulted from the insufficient horizontal resolution of his 
measurements and from the assumption that there is an analogy to Lake 
Geneva, where the first and second eigen-periods accidentally satisfy 
Merian's relation. 
For the third mode, there is good agreement between our calculated 
structure and that of  Hamblin and Hollan. The positions of the nodes are 
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Fig. 6. Calculated amplitude distribution and period of the lowest Lake Constance mode 
(53.87 rain), the second Lake Constance mode (35.96 min) and the third Lake Constance 
mode (27.03 min). Amplitudes are represented by co-range lines in steps of 10% of the 
maximum elevation 

quite well reproduced,  but the ranges at the ends of  the lake differ by 20% 
just in the opposite sense. In the Bay of  Konstanz Hamblin and Hollan 
used a finer resolution, thereby eliminating the fictitious amplification. 

3.4 Fourth Longitudinal Mode (19. 84 rain) 

The structure of  this mode exhibits high ranges in the Bay of  Konstanz 
and the bay east o f  the mouth  o f  the Old Rhine (Fig. 7) due to the coarse 
approximation by the numerical grid. Except  for these local differences 
the structure is in qualitative agreement with the observations. The veri- 
fication is less precise, since the calculated amplitude distribution is 
displayed with low resolution throughout  the main part of  the lake. 
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In order to illustrate the qualitative fit of the calculated ranges to those 
observed on August 20th, 1969, the latter have been entered into the 
diagram in Fig. 7 by italic numbers. As noted in Table 4, the observed 
values have been normalized to the calculated amplitude at Romanshorn, 
where a line of equal range coincides with a measurement station. 
At Lindau and Hard no peak occurs in the spectra at the eigen-period 
of the fourth mode. This result corresponds well with the nearby position 
of the eastern node. The next node to the west is aligned transverse to the 
lake between Arbon and Langenargen, where the observed low amplitude 
verifies the close proximity of the station to the nodal line. 
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Fig. 7. The fourth Lake Constance mode (explanation of numbers in Fig. 6, observed 
elevations are entered by italic letters at the measurement stations shown in black 
squares, see Table 4 and the text for further explanation) 
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The remaining two western nodes cross the lake at the lines Altnau-Hagnau 
and Klaushom-Obeflingen. As expected, there is only a moderate increase 
of the observed range, when we proceed from the station Konstanz-Staad 
into the Bay of Konstanz. At the station of Konstanz-Jakobsbad the value 
is only 20% higher than in Konstanz-Staad compared with an increase of 
about 200% in the calculation. 
The fourth mode has been detected neither by Forel nor by Miihleisen and 
Kurth. Hamblin and Hollan describe the structure by four anti-clockwise 
amphidromies just at the same positions of the nodes in our solution. 
Further details are scarcely reproduced by their calculations because of a 
strong cooscillation in the bay across from Lindau. This singular resonant 
structure is probably artificial since the bathymetry of the bay is very 
irregular and has been approximated by only one finite element. 

4. Interpretation of the Wonder of the Rising Water at Konstanz by the 
Fundamental Mode of the Bay of Konstanz 

The report on the water wonder at Konstanz given by the chronicler 
Christoph S chulthaiss [14] has been referred too by Forel [3 ], Thorade [ 161, 
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Kel ler  [6], N e u m a n n  and Pierson [9], Miihleisen and Kur th  [8] as well  as 

H a m b l i n  and Hol lan  [4]. In the l a t t e r  inves t iga t ion  an a t t e m p t  was m a d e  to  

exp la in  the  p h e n o m e n o n  using a t w o - d i m e n s i o n a l  h y d r o d y n a m i c  mode l .  

The  ca lcu la t ions  ind ica t ed  the poss ib i l i ty  o f  a r e sonan t  coup l ing  b e t w e e n  

a h igher  o rde r  normal  m o d e  and the  f u n d a m e n t a l  m o d e  of  the  Bay 
of  Kons tanz .  H o w e v e r ,  no  a t t e m p t  was m a d e  to ca lcu la te  the  bay per iod  

precisely .  In t he  present  s tudy ,  the  pe r iod  o f  the  Bay o f  K o n s t a n z  was 

d e t e r m i n e d  fo l lowing  the  p r o c e d u r e  used by Rao  et al. [13] in thei r  s tudy  

o f  the  Green  Bay normal  modes .  Befo re  we discuss these  resul ts ,  a transla- 

t ion  o f  the  Old G e r m a n  t e x t  is given be low in o rde r  to exp la in  the  even t  

Chr i s toph  Schul tha i s s  obse rved  at K o n s t a n z  in 1549. In o rde r  to  unde r s t and  

the  r epor t ,  s o m e  old  local i t ies  m e n t i o n e d  in this r epo r t  need  to  be refer -  

enced .  F o r  this  pu rpose  a m a p  o f  the  t o w n  f r o m  1700 is r e p r o d u c e d  in 

Fig.  8 showing  the  loca t ions  d e n o t e d  in t he  t r ans la t ion  by n u m b e r s  1 
t h r o u g h  5. 

T h e  old t ex t  reads: 
"The wonder of the rising water" 
"In the morning of  this day, February 23 in 1549, the surface of the lake rose and fell 
by about one ell (59 cm). At high water the level rose up to the corner of the hospital 1, 
at low water it fell so far that the water was swirling around the bases of fire piles of the 
fishermen's jetty 3. As soon as it had sunk this far it came surging back as if the waves 
had been driven by the wind (though there was no wind). This happened four or five 
times in about an hour as I saw myself. This continued until after noon, but decreased 
as time went on. The same thing happened further down in the Rhine. Several people 
from Paradis 5 wanted to raise their fish traps and found the Rhine was flowing on this 
day upstream towards the town and the Rhine bridge 4, whereas it normally flows away 
from them. It also flowed backwards and forwards at the same time as the lake at the 
landing-place 2 and the fishermen's jetty 3. This caused great astonishment among the 
people, since there was nobody who had ever before heard of such a thing happening." 
We converted the observed wave-height of one ell into cm according to the definition of 
the old unit mentioned by J~inichen [5]. He reported that the unit of a short eli was in 
use in Konstanz in 1534. It was defined by the following relation between three linear 
measures: 

1 Rute - 6 ells minus 1 Zolt (5) 

where 1 Rute equals 3_5141 m and 1 Zoll represents the length of an inch, which is not 
precisely known for that time. If we assume the actual definition of an inch, i. e., 
I ZoI! = 2.54 cm, the length of  an ell results in 58.98 cm. Since the unit of  1 ZoII had 
the same small magnitude in former times, it is apparent from eq. (5) that the derived 
value of an ell depends only slightly on this quantity. For instance, if we introduce 
1 badischer Zoll = 3 cm used in Konstanz until 1877 one ell amounts to 59.07 cm, which 
differs negligibly from the previous value. 
It is obvious from Schulthaiss' description that an extraordinary seiche-like motion 
occurred in the Bay of Konstanz, The maximum amplitude of the oscillation amounts to 
about 30 cm, which represents one of the extreme values in Lake Constance. The period 
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value is estimated less precisely to be between 12 and 15 min, but may also come to 
twice that value, since it is not clear whether Schulthaiss counted the number of complete 
or the number of half oscillations. 

I I I I I [ 

0 0j2 0,4 0,6 0,8 lkm 

Fig. 8. Map of the city Of Konstanz and surroundings ca. 1700. Locations denoted by 
numbers: 1 Heitig Geist hospital, 2 landing-place, 3 site of the fishermen's jetty, 
4 Rhine bridge, 5 site of the former village of Paradis. The scale given in toise has been 
converted to km using the following definitions of former French linear measures quoted 
by Weisbach [17]: 1 toise = 6 old feet, 1 old foot = 0.324839 m (reproduction of the map 
by courtesy of the Archives of the city of Konstanz) 

A possible explanat ion for the large oscillation in the bay is a resonant  ex- 
ci tat ion of a natural  mode of the bay - possibly, the lowest one - by one of 
the higher modes of Lake Constance. In order to substantiate this hypothesis,  
it is necessary to determine if the Lake has a natural  mode (or several modes) 
with a period in the range of 1 2 - 1 5  rain and also if the bay has a natural  
period in the same range. Table 5 shows the values of some of the higher 
normal  modes of the Lake Constance system that  are obta ined from the 
computat ions .  Since the calculations were. made using a 235 x 235 matrix, 
yielding 235 eigen-values, it is reasonable to assume that the period estimates 
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of the lowest 10 modes may be well determined. Since the structures of 
these modes tend to be complicated, we made no attempt to classify the 
oscillations as being longitudinal, or transverse or mixed but simply arranged 
the periods in a descending order and numbered the modes sequentially from 
5 to 10. It is clear from Table 5 that the Lake Constance system does indeed 
have some modes with periods in the range of 12-15 rain. 

Table 5. Calculated Periods of  Higher Normal Modes o fLake Constance (period in rain) 

Mode 5 6 7 8 9 10 

Calculated period 17.86 16.13 14.83 13.96 1 2 . 0 6  11.65 

Period corrected to 100 m 
chart depth: 18.11 16.36 15.04 14.16 12.23 11.81 

Consider now the question of determining the natural period of the funda- 
mental or the lowest mode of the Bay of Konstanz. An important problem 
in determining the periods of oscillation of a bay is the location of the 
mouth of the bay, where the boundary condition of zero height fluctuation 
has to be prescribed. Since the Bay of Konstanz is physically a part of the 
Lake Constance system, it is not obvious a priori where the mouth of the 
bay is located. However, by first solving for the oscillations of the entire 
Lake Constance system including the Bay of Konstanz, as we have done 
here, it is possible to locate the approximate position of the mouth of the 
bay. 
The bay mode is characterized by an oscillation whose amplitude is essen- 
tially confined to the bay with very little amplitude over the remaining part 
of the lake. After the bay mode is thus identified, it is possible to carry out a 
further calculation for the period of oscillation using a finer grid over the 
domain spanning the bay and its mouth. Such a procedure has been used 
successfully by Rao et al. [13] in determining the oscillations of Green Bay 
in Lake Michigan and by Schwab and Rao [15] for the oscillations of 
Saginaw Bay and Georgian Bay in Lake Huron. 
Fig. 9 shows the structure of the mode with a period of 17.86 min. This 
period is the fifth lowest in sequence and a possibility exists that this may 
be interpreted as the fifth longitudinal mode. However, the structure of the 
mode shows that the oscillation is essentially confined to the Bay of 
Konstanz with a curved nodal line close to the edge of the bay with very 
little amplitude elsewhere in the lake. Hence, this mode has the appearance 
of the fundamental mode of the bay but computed on a grid of 1.4 km inter- 
val. The 1.4 km grid, however, provides a rather poor resolution of the bay. 
Hence, to compute the period of oscillation of the bay more precisely, a 
grid of 0.5 km is used to cover the domain between the head of the bay and 
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Fig. 9. The fifth Lake Constance mode showing inverse resonant structure in the Bay 
of Konstanz (explanation of numbers in Fig. 6) 

its m o u t h  as de te rmined  f rom the coarse grid calcualt ion.  The  geomet ry  o f  
th~ bay  on  the 0.5 km grid is shown in Fig. 10. In this figure, there  are two 
nodal  lines. The inner  one  is ob ta ined  f rom the 1.4 km grid model .  In  order  
to examine the  effect  o f  changing the loca t ion  of  the nodal  line on the 
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Fig. 10. Numerical grid on the Bay of Konstanz with grid spacing of 0.5 km. The two 
approximations of the mouth applied in the calculation are represented by dotted lines. 
Symbols of the grid have the same meaning as in Fig. 2 

per iod  of  oscil lat ion,  an ou te r  nodal  line is also considered.  The  la t ter  is 
arrived at by  in terpola t ing  be tween  the locat ions  of  this line as ob ta ined  
f rom the 1.4 km grid mode l  and a 2 km grid mode l  which was used in some 
earlier calculations.  
The per iod  of  osci l la t ion of  the lowest  mode  of  the Bay of  Konstanz  using 
the inner nodal  line is 12.8 min. Using the outer  nodal  line, it  is found  to 
be 13.6 min. The  s t ructure  o f  the  lowest  mode  using the inner nodal  line is 
shown in Fig. 11. The ou the r  nodal  line does not  change the modal  s t ructure  
in any essential way. The inner and ou te r  nodal  lines considered here repre- 
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sent respectively the inner and outer limits within which the real mouth of 
the bay can be expected to lie. Hence the actual period of the bay must be 
between the computed values of l 2.8 and 13,7 min, and this conclusion is 
consistent with the observation of Schulthaiss [ 14]. Since Lake 
Constance has at least three modes with periods in the range of 12-15  mins, 
a resonant excitation of the Bay of Konstanz mode by one (or more) of the 
higher lake modes is a very viable hypothesis. Such higher order normal 
modes could have been excited by a small scale localized meteorological 
disturbance. 

12,8 min 
\........-"': 

0 1k in 

Fig. 11. Fundamental mode of the Bay of Konstanz obtained with the inner nodal line 
(explanation of numbers in Fig. 6) 

Although Schulthaiss' description indicates that he was aware of the 
characteristics of wave motions, we have to consider an alternative inter- 
preation. The German text raises the possibility that he counted in units of 
half oscillation in describing the event. In this case the period range of the 
event is between 24 and 30 rain. An explanation in terms of a resonant 
oscillation will then have to involve the third longitudinal mode (eigen- 
period 27 min). The verification analysis given in Table 4 yielded a weaker 
structure for the third mode in the Bay of Konstanz than was predicted 
(Fig. 6; 27.03 min). From the increase of the relative amplitudes between 
the stations Konstanz-Staad and Konstanz-Jakobsbad in Table 4 we may 
estimate the elevation in the inner bay to be about the same as at the 
western end at Ludwigshafen. This condition, however, implies that the 
oscillation must have been excited strongly throughout the lake, which was 
not confirmed by the observations. 
We now consider some recent observations of water level fluctuations at 
Kreuzlingen near Konstanz in order to determine the observed period of the 
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coosci l la t ion mode  from spectral  analysis. A t  this s tat ion a gauge o f  the same 
reso lu t ion  as Fore l ' s  ins t rument  (Sarasin 's  l imnograph)  was run for the 
per iod from November  l Oth through December  18th in 1972 by the Swiss 
Federal  Ins t i tu te  o f  Envi ronmenta l  Pro tec t ion  (Schweizerisches Bundesamt  
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Fig. 12. Power spectra for the station of Kreuzlingen from November 20th, December 
8th and 15th in 1972. The range of periods of Schulthaiss' [ 14] observations is marked 
by dashed vertical lines. C denotes the period of 11.5 min in the spectrum from 
November 20th. The peaks marked by the dotted line indicate an unknown higher 
order mode 

fiir Umwel tschutz ,  Landeshydrologie) .  11 Sect ions  of  the record  were 
subjec ted  to spectral  analysis and 8 o f  them exhib i ted  dis t inct  peaks in the 
range o f  per iods  between 12 and 15 rain. 

Three examples  o f  these spectra are assembled in Fig. 12. F o r  convenience 
we marked  the l imits o f  the interest ing range o f  per iods  by dashed vertical 
lines. The central  peak  in this interval is loca ted  at  13.4 min in the  cases o f  
November  20th and December  8th. It is slightly shif ted to 13.5 rain on 
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December 15th, when the mean water level of the lake had decreased by 
about 20 cm. These spectral estimates are in good agreement with the 
computed value corresponding to the outer nodal line in Fig. 10. An inter- 
esting spectral evidence of the existence of the higher lake oscillation is 
indicated in a simultaneous measurement at Lindau on November 20th. 
This spectrum is represented in Fig. 14, The peak at the period marked by 
the letter S is approximately 13.2 min. Its amplitude is considerably 
smaller than in the bay as would be expected. 
As Forel [3] pointed out, an oscillation with a period of about 15 rain is 
typical for the lake at Konstanz. From the spectra of the records on 
December 8th and 15th we also obtain peaks at 16.4 min and 15.0 rain, 
respectively. Probably these oscillations represent signals from the normal 
modes of Lake Constance labelled mode numbers 6 and 7 in Table 5. 
Since both these eigen-periods are close to the period of  the bay, they will 
also tend to exhibit a strong resonance in the bay. It is possible that these 
modes could have made secondary contributions in the event of "water 
wonder". 
The repeated occurrence of these two oscillations in the few measurements 
from the gauge at Kreuzlingen indicates that the resonance to the bay is 
often present, in the water level fluctuations, though scarcely visible to the 
naked eye. The event in 1549 represents obviously one of the rare cases, 
when the conditions of a meteorological disturbance must have been most 
favorable for excitation of the appropriate higher order modes in Lake 
Constance with a resulting resonant amplification of these modes in the 
Bay of Konstanz. 

5. Example of a Higher Order Normal Mode 

The higher order modal solutions are more strongly influenced by the grid 
discretization. The amplitude distribution of these modes are, in general, 
very complicated and the computed structure may not be a satisfactory 
approximation to the true solution. However, there are some higher modes 
which appear to exhibit a coherent and simple structure. Even though no 
observations are available to verify the computed structures of these higher 
modes, an example of one such higher order mode with a coherent structure 
is shown in Fig. 13. This particular mode has an eigen-period of 11.49 min 
and consists of 6 longitudinal nodes and one in transverse direction as shown 
in Fig. 13. From the position of the latter nodal line at the mouth of the Bay 
of Rorschach it appears that the oscillation is chi~racterized by a cross- 
oscillation in the broad central part of the basin. Since the prominent 
feature of this mode is the large amplitudes at Rorschach on the south 
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side and Langenargen on the nor th  side of  the  eastern par t  of  the lake, it 
appears  reasonable  to consider  this mode  as a cross-channel osci l la t ion be- 
tween these two regions. 

2 0  0 < -8  

<-1 

0 <- <_ 

11,49 min  6 

Fig. 13. Cross-oscillation in the central part of Lake Constance between Friedrichshafen 
and Rorschach obtained with 2.0 km grid spacing (explanation of numbers in Fig. 6) 

I t  spectral  evidence is apparen t  in a single observat ion at Lindau in the  
eastern par t  of  the  lake, where the range of  e levat ion is general ly higher 
than in t h e  western half  of  the  basin. The record  was ob ta ined  simultan-  
eously with that  f rom Kreuzl ingen on November  20th,  1972, which 
spec t rum is shown in Fig. 12. In the  spec t rum from Lindau which is present-  
ed in Fig. 14 we realize a s t ronger  con t r ibu t ion  o f  energy in the range of  
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Fig. 14. Power spectrum for the station of Lindau from November 20th, 1972. Numbers 
denote the peaks of low order modes, whereas the peak in the range of periods observed 
by Schulthaiss [14] is marked by the letter S and that of the 11.5-min-oscillation by the 
the letter C 
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periods around 1 1.5 min, while in the same range at Kreuzlingen there is 
only a weak peak. It is marked in Fig. 12 by the letter C. The exact period 
resulting from the observation at Lindau amounts  to 11.51 min (vertical 
line in Fig. 14 labelled by C). This value is precise to 1.1% due to the spectral 
resolution. In  view of the low time resolution of the German records this 
agreement between calculation and measurement  is remarkable. 
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