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Abst rac t  

We announce the structure theorem for the H2(M)-generated part of co- 
homology of a compact hyperk~ihler manifold. This computation uses an 
action of the Lie algebra s0(4, n - 2) where n = dim H 2 (M) on the total co- 
homology space of M. We also prove that every two points of the connected 
component of the moduli space of holomorphically symplectic manifolds can 
be connected with so-called "twistor lines" projective lines holomorphi- 
cally embedded in the moduli space and corresponding to the hyperk~ihler 
structures. This has interesting implications for the geometry of compact 
hyperk/ibler manifolds and of holomorphic vector bundles over such mani- 
folds. 

1. Lie Algebra Act ion  

This article is an announcement of results which are to be published in [V1]. 
We also give an outline of the proof, and use results of IV1] to prove some 
startling implications. A hyperk~ihler manifold is a Riemannian manifold 
M equipped with three complex structures I, J and K, such that I o J = 
- J o I  = K and M is Kghler with respect to I, J and K. Relations between 
I, J and K imply that there is an action of quaternions in its tangent space. 
Consequently, there is a multiplicative action of SU(2) on the algebra of 
differential forms. This action commutes with the Laplacian. Hence, there 
is a canonical action of SU(2) on the cohomology of M. 

Let M be a complex manifold which admits a hyperkiihler structure. A 
simple linear-algebraic argument implies that M is equipped with a holo- 
morphic symplectic form. The Calabi-Yau theorem shows that, conversely, 
every compact holomorphically symplectic K~ihler manifold admits a hy- 
perk£hler structure, which is uniquely defined by these data. Further on, 
we consider only holomorphically symplectic manifolds which are compact 
and of K~ihler type. For simplicity of statements, we assume also that  

d imH2 '° (M)  = 1 and Hi(M)  = 0 ,  

though these assumptions are not necessary for most results. 
The algebraic structure on H*(M) is studied using the general theory 

of Lefschetz-Frobenius algebras, introduced in [LLu]. 
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fr~2d A Let A = ~-~i=0 i be  a graded commuta t ive  associative algebra over a 
field of characteristic zero. Let H E End(A) be a l inear endomorphism of 
A such tha t  for all U E A~, H(~?) = (i - d)~. 

For all a E A2, denote  by La : A --* A the linear map  which associates 
with x E A the  element  ax C A. The triple (La, H, A~) E End(A) is called 
a Lefschetz triple if 

[ ia ,Aa]  = H ,  [H, La] = 2L~ , [H,A~] = - 2 A a .  

A Lefschetz tr iple establishes a representa t ion of the  Lie algebra st(2) in the 
space A. For cohomology algebras, this representat ion arises as a par t  of 
Lefschetz's theory. In  a Lefschetz triple, the  endomorphism A~ is uniquely  
defined by the  element a E A2 ([Bou], VIII  §3). For a rb i t ra ry  a E A2, 
a is called of Lefschetz type if the Lefschetz triple (L~, H, A, )  exists. If 
A = H*(X) where X is a compact  complex manifold of K/ihler type, then  
all K/~hler classes w E H2(M) are elements of Lefschetz type. As one can 
easily check, the  set S C A2 of all elements of Lefschetz type  is Zariski open 
in A2. 

DEFINITION 1.1: A Lefschetz-Frobenius algebra is a Frobenius  graded 
supercommuta t ive  a lgebra which admits  a Lefschetz triple. 

DEFINITION 1.2: Let A be a Lefschetz-Frobenius algebra. The s t ructure  
Lie algebra g(A) C End(A) is a Lie subalgebra  of End(A) generated by 
La, A~, for all elements of Lefschetz type a E S. 

Let M be a compact  hyperk/ihler manifold with the complex s t ructures  
I ,  J, K .  Consider the K/ihler forms wI, w j, w~ associated with these complex 
structures.  Let PI : s[(2) ~ End(H*(M)),  p j  : z[(2) --* End(H*(M)),  
PK : St(2) ~ End(H*(M)) be the  corresponding Lefschetz homomorphisms.  
Let a C End(H*(M)) be the min imal  Lie subalgebra  which conta ins  images 
of Px, P J, PK. The algebra a was computed  explicitly in [V2]. 

T h e o r e m  1.3  IV2]. The Lie algebra a is naturally isomorphic to 20(4, 1). 

This  s t a t ement  can  be regarded as a "hyperk~hler Lefschetz theorem".  
Indeed,  its proof  parallels the proof of Lefschetz theorem. 

Using Theorem 1.3, we compute  the s t ruc ture  Lie a lgebra of H*(M). 

T h e o r e m  1.4.  Let M be a compact holomorphicalty symptectic manifold. 
Assume tha t  d i m / ' / 2 ' ° ( M )  = 1. Let n = d i m ( H 2 ( M ) ) .  Le t  g(A) be a struc- 
ture Lie algebra  for A = H*(M). Then $(A) is isomorphic to s 0 ( 4 , n  - 2). 1 

tThis isomorphism can be made canonical. The Lie algebra g(A) is isomorphic to ~o(V(~ 
7-/) where V is the linear space H2(M, •) equipped with the natural pairing of a signature 
(3, n - 3) ([B, Remarques, p. 775]; see also Theorem 2.1), and 7"l is a 2-dimensional vector 
space with hyperbolic quadratic form. 
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Proof. See [V1, Theorem 11.1]. [] 

Let H*(M) be a sub-algebra of H*(M) generated by H2(M). It is easy 
to see that g(A) acts on H* (M), and H* (M) is an irreducible representation 
of g(A). Moreover, multiplicative structure in H*(M) is easily recovered 
from an action of g(A). Using the general knowledge of representations of 
s0(n), we obtain exact knowledge of the multiplicative structure of H* (M). 
In particular, we obtain the following theorem (see IV1, Theorem 15.2]). 

Theorem 1.5. Let dime M = 2n. Then 

{ H~i(M) "~ SiHZ(M) for i <_ n, and 
H ~ ( M )  ~ S ~ - ~ H ~ ( M )  for i > n . 

2. T h e  R i e m a n n - H o d g e  P a i r i n g  

Let M be a compact holomorphically symplectic manifold of K~hler type, 
satisfying 

dim H2'°(M) = 1 . 

In [B, Remarques, p. 775], Beauville introduces canonical 2-form on H2(M),  
of signature (n - 3,3), where n = d imH2(M).  In [V1], this form was 
described via the action of SU(2) on H2(M). 

Let w be a Kiihler class on M such that  

M 5ddimc M ---~ 1 

and (I, J, K, (.,-)) be the corresponding hyperk~hler structure. Let 

(', ')H~r : H~(M,C)  × H~(M,C) -~C 

be a positively Hermitian form on the second cohomology of M which corre- 
sponds to the Riemannian structure (., .). Let H~(M) = Hinv(M)~)H+(M) 
be a decomposition such that H~nV(M) consists of all SU(2)-invariant 2- 
forms, and H+(M) is the complementary SU(2)-invariant subspace. Let 
(.,-)• be the form which is equal to (-, ")Her on H+(M) and - ( . ,  ')Her on 
Hin~(M). 

REMARK: In the paper [V1] the form (., ")n is called the Hodge-Riemann 
pairing and is defined independently of [B]. 

Theorem 2.1 [B, Remarques, p. 775]. The form (., .)~ is independent from 
the choice of the complex and K~hler structure on M. 

The form (., .)~/is used in the proof of Theorem 1.4. 

Let PI : u(1) -~ End(H*(M)) be a map for which z C u(1) acts on 
HP'q(M) by (p-q)z. Clearly, the action of u(1) on H2(M) respects the form 
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( ' , ' )n .  Let gM C End(H*(M))  be a Lie algebra generated by the images 
of Pl for all complex structures I on M. Let V denote the linear space 
H2(M) equipped with bilinear form (., .)n. By Theorem 2.1, the action 
of ~M on V preserves (.,-)n. This defines a Lie algebra homomorphism 
F : GM ~ so(V). The following theorem is the chief tool in proving the 
Mirror Conjecture for a compact holomorphically symplectic manifold. 

T h e o r e m  2.2. The map F : gM --* ~0(V) is an isomorphism. 

Proof. [V1, Theorem 13.1, 13.2]. [] 

The Lie algebra g(A) C E n d ( H * ( M ) )  is equipped with a natural grad- 
ing, induced by the grading on H*(M)  = (~H~(M) .  Let k be the one- 
dimensional Lie subalgebra of E n d ( H * ( M ) )  spanned by Id. 

T h e o r e m  2.3. The Lie subalgebra 

9M ~ k C E n d ( H * ( M ) )  

coincides with the grading-zero part of fl(A). [] 

Let Comp be a (coarse, marked) moduli space of M. We have a period 
map Pc : Comp -~ PH2(M,C)  associating a line H2'°(M) C H2(M,C)  to 
a complex structure I. Complexifying H2(M, 1~), we can consider (., .)n as 
a complex-linear, complex-valued form on H2(M, ~). For all I E Comp, 
Pc(I) belongs to a conic hypersurface C c PH2(M,  C), 

c = {t I (l, l ) ~  -- 0} 

The Torelli principle (proved by Bogomolov in the case of holomorphically 
symplectic manifolds, [Bo]) implies that Pc : Comp --* C is etale. 

Let ~ = ~ HP,q(M) be a variation of Hodge structures (VHS) on Comp 
associated with the total cohomology space of M. Theorem 2.2 implies that 
there exist a VHS 7 /on  C, such that  ~ is a pullback of a variation of Hodge 
structures 7-/: 7 / =  P*(T/). Let GM be the Lie group associated with gM, 
GM = Spin(H2(M,  JR), (., .)~). The set C is equipped with a natural action 
of a group GM. This group also acts in the total cohomology space H* (M) 
of M. This defines an equivariant structure in the bundle 7-/. The chief idea 
used in the proof of Mirror Symmetry is the following theorem: 

T h e o r e m  2.4. The VHS 7-I is GM-equivariant, under the natural action 
of  GM on C and 7"l. 

Proof. See IV4, Theorem 2.2]. D 

To make this statement more explicit, we recall that  the variation of 
Hodge structures is a flat bundle, equipped with a real structure and a 
holomorphic filtration (Hodge filtration), which is complementary to its 



Vol.6, 1996 COHOMOLOGY OF HYPERKJ~HLER MANIFOLDS 605 

complex adjoint filtration. Then, Theorem 2.4 says that  the action of GM 
on 7-I maps flat sections to fiat sections, and preserves the real structure 
and the Hodge filtration. 

3. T h e  T w i s t o r  L i n e s  

The main technical tool used in the proof of above results is the knowledge 
about the (coarse, marked) moduli space Comp of complex structures on 
a holomorphically symplectic manifold M. Let w be a K/ihler class on M 
and 7-/= (I,  J, K, (., .)) be the corresponding hyperk/ihler structure. Then, 
for every triple of real numbers (a, b, c), a 2 + b 2 -t-c 2 = 1, the operator  
aI  + bJ + c K  defines an integrable complex structure 2 on M. Identifying 

the set of such triples with C P  1, we obtain a map C P  1 LL Comp where 
Comp is a connected component of the coarse moduli  space of M. 

CLAIM 3.1. The map i~  is a holomorphic embedding of  complex analytic 
varieties. 

Proof. Well known (see for example IT]). 

Let P : Comp -~ C be the period map assigning a line H2,°(M, I)  to a 
complex structure I .  Let C C ~ I ( H 2 ( M ,  C) = P(Comp) .  According to [B], 
P is etale. The projective line i n ( C P  1) C Comp is called a twistor line, 
and is denoted by Rn .  Twistor lines were extensively studied by Todorov 
(IT]). 
T h e o r e m  3.2. Let  I1, I2 6 Comp. Then there exist a sequence of  inter- 
secting twistor lines which connect 11 with 12. 

Proof. To prove Theorem 3.2, we have to show tha t  a set £0 of all twistor 
lines ino (CP  1) which are connected to i ~ ( C P  1) with intersecting twistor 
lines is open. Since P : Comp --~ C is etale, it suffices to show that  I1,/2 
can be connected with twistor lines li such that  P(li)  intersect P(I~+J. 

With  every twistor line R n ,  we associate a 3-dimensional plane ~ C 
H 2 ( M , ~ )  which is spanned by the Kghler classes o2i,wj,o2 K. A linear 
algebraic argument shows that  the twistor lines RTt, and R~  2 intersect if 
and only if dim(g~ 1 N g ~ )  >_ 2. Hence we need to show tha t  

T h e o r e m  3.2 ' .  Each pai r  of  twistor lines Ru ,  R~, can be connected 
with a sequence of  twistor lines R u  = R u l , . . . , R ~  n = Ru,  such that  
d i m ( g ~  A gn,+~) _> 2. 

2This complex structure is called a complex structure induced by a hyperkiihIer struc- 
ture. 
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LEMMA 3.3. Let H be a hyperkghler structure on M, iT~(CP 1) c Comp 
be the set of all induced complex structures, and Kah(~)  be the set of all 
K[thler classes corresponding to L • i~(CP1).  Then Kah(7/) is open in 
H2(M, ~). 

Proof. IV1, Claim 6.6]. o 
Let L: be the space of all triples odi,cgg,o) K in H2(M) which are or- 

thonormal with respect to the pairing (., ")n of Theorem 2.1, and Hyp 
be the connected component of the set of all hyperk/ihler structures. Let 
Ph : Hyp -* £. be the natural period map. Comparing dimensions and us- 
ing Calabi-Yau, we observe that  Ph is etale. Let £0 be the space of twistor 
lines corresponding to L0. Using Lemma 3.3, we find that the differential 
of Ph [Co is surjective. Therefore,/:0 is open in £,  and/~0 is open in the set 
of all twistor lines. This proves Theorem 3.2. o 

4.  A n  O u t l i n e  o f  P r o o f s  

Let (I, J, K, (.,-)) be a hyperk~hler structure on M. One can check that  
the cohomology classes o~i, w j ,  WK E H2(M, ]~) are orthogonal with respect 
to the pairing (., .). Let Hyp be the classifying space of the hyperk/ihler 
structures on M. Let Phyp : Hyp -* H2(M) × H2(M) × H2(M) be the 
map which associates with the hyperk/~hler structure 7-/= (I, J, K, (., .)) the 
triple (WX,wj,wK). Then the image of Phyp in H2(M) × H2(M) × H2(M) 
satisfies 

(x ,y)~ = (x ,z )~  = (y ,z)~  = 0 , 
V (x, y, z) E imPhyp (4.1) 

(x, x)~ = (y, ~)~ = (z, z ) ~ ,  

where (., .)~ is the canonical pairing defined above. Let D C H2(M) × 
H2(M) × H2(M) be the set defined by the equations (4.1). Using Torelli's 
theorem and Calabi-Yau, we prove the following statement: 

T h e o r e m  4.1. The image of Phyp is Zariski dense in D. 

Theorem 4.1 shows that all algebraic relations which are true for 

(x, y, z) • Phyp(Hyp) 

are true for all (x, y, z) E D. Computing the Lie algebra a as in Theorem 1.3, 
we obtain a number of relations between x,y ,  z • H2(M) which hold for 
all (x, y, z) • Im(Ph~p). Using the density argument, we obtain that these 
relations are universally true. This idea leads to the proof of Theorem 1.4. 

The proof of Theorem 2.1 is deduced from the standard period argu- 
ment and Theorem 3.2. Let 7t be a hyperk/ihler structure corresponding 
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to I and aJ. Clearly from the definition, the form (-, .)~ depends only on the 
twistor line 7-/, and not on the choice of particular I and w. A computation 
shows that  (-, .)~ depends on P(I) and not on w. Using the fact that  C is 
completely connected with twistor lines (Theorem 3.2), we prove that (., ")n 
is independent of 7-/. 

5. Implications 
This section contains implications of our results. 

5.1 M i r r o r  s y m m e t r y  (IV4]). Using Theorem 2.2 and Theorem 2.3, we 
compute the variation of Hodge structures corresponding to the universal 
VHS over tile moduli space Comp. In IV5], it is proven that for "suffi- 
ciently generic" deformation W of a given compact holomorphically sym- 
plectic manifold M, the manifold W admits no closed holomorphic curves. 
Therefore, using the definition of quantum cohomology from [KM], we can 
easily compute the quantum variation of Frobenius algebras. Comparing 
these computations, we find that  Mirror Conjecture is true for holomorphi- 
cally symplectic manifolds, which are Mirror self-dual. 

In the proof of Mirror Symmetry, we use the fact that  the tangent bundle 
TM of a holomorphically symplectic manifold is isomorphic to its cotangent 
bundle f~l(M). For every Calabi-Yau manifold M, d i m M  = n, the Serre's 
duality induces an isomorphism 3 

HP(~q(M)) '~ HP(An-q(TM)) (5.1) 

between cohomology of the holomorphic differential forms and cohomol- 
ogy of exterior powers of the holomorphic tangent bundle. Using the iso- 
morphism TM ~- f~l(M), we interpret the isomorphism (5.1) as a map 
77 from the total cohomology space H*(M) to itself. A linear-algebraic 
check ensures that this map is involutive. A slightly less elementary con- 
sideration shows that  77 : H*(M) ---+ H*(M) belongs to the Lie group 
G C End(H*(M)) corresponding to the Lie algebra g(A) from Theorem 1.4. 
Clearly, the Yukawa multiplication is equal to the cup-product in cohomol- 
ogy twisted by r/. This gives a way to describe the Yukawa product explicitly 
in terms of Lie algebra action. 

5.2 T w i s t o r  pa th s .  

DEFINITION 5.2.a: Let M be a holomorphically symplectic manifold, 
Comp be its moduli space, and P0 , . . . ,  Pn c Comp be a sequence of twistor 
lines supplied with an intersection point xi+l E Pi NPi+I for each i. We say 

3 Canonical up to a choice of a non-degenerate section of f~n (M).  
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that  ~ /=  P 0 , . . . ,  P~, x l , . . . ,  xn is a twistor path. Let I ,  F E Comp. We say 
that  ~/is a twistor path connecting I to I t if I E P0 and F E P~. The lines 
Pi are called the edges, and the points xi the vertices of a twistor path.  

Theorem 3.2 proves that  every two points I ,  F in Comp are connected 
by a twistor path.  Clearly, each twistor pa th  induces a diffeomorphism p~ : 
(M, I)  -~ (M, It). We are interested in the algebro-geometrical properties 
of this diffeomorphism. 

For every hyperk~hler structure 7-/on M, let 9~ C End(H*(M) )  be the 
corresponding su(2) embedded to End(H* (M)).  Let H* (M) gn be the 9n- 
invariant part  of H* (M).  Let I E Comp and 7-/be a hyperk£hler structure 
which induces I .  We say that  I is of general type with respect to 7-I if 

n H*(M, Z) = @ HP,p n H*(M, Z). 

In [V5], we prove that  for every hyperk~hler structure, all induced complex 
structures are of general type, except perhaps a countable number of them. 
Results of [V3] and [Vb] can be compressed down to the following statement.  

T h e o r e m  5.2 .b .  Let ~ be a hyperk~hler structure on M and I be an 
induced complex structure of general type. 

(i) ([Vb]) Let N be a closed complex analytic subset of  (M, I). Then N is 
complex analytic with respect to J, for all induced complex structures 4 J. 

(ii) ([V3]) Let  Bun1 be the tensor category of polystable 5 holomorphic 
vector bundles of  slope 0 over (M, I). For an arbitrary induced com- 
plex structure J, there exists a natural injective tensor [unctor (PI-~J : 
B u n i  -* B u n  j ,  which is an equivalence of J is of general type with 
respect to Tl. For I, J, Jt being induced complex structures and I, J of 
general type, we have 

~I---*J 0 ( ~ j _ _ , j ,  ~- ~ l - - * J '  • 

REMARK ON PROOF OF THEOREM 5.2.b(ii): Theorem 5.2.b (ii) is an im- 
plication of the  following result from IV3]. Let  B be a polystable bundle on 
a holomorphically symplectic K~hler manifold M. We associate with the 
K£hler structure on M a canonical hyperk~hler structure 7-/ as in Calabi- 
Yau theorem. Assume that  the first and second Chern classes of stable 
summands of B are invariant under the natura l  action of SU(2) in coho- 
mology. Then there exist a unique holomorphic connection on B which is 
holomorphic under each of complex structures induced by 7-/. This lets one 

4In [Vb], such subsets axe called trianalytic. 
5polystable means direct sum of stable. Stability understood in the sense of Takemoto- 

Mumford. 
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identify the categories of polystable bundles for different complex structures 
L induced by T/, provided that  L is of general type with respect to 7-/. 

DEFINITION 5.2.c: Let I, J E Comp and 7 -- P 0 , . . - ,  P~ be a twistor pa th  
from I to J,  which corresponds to the hyperk~hler structures 7-/0,. . . ,  7-/n. 
We say that  7 is admissible if I is of general type with respect to P0, J to P~, 
and all vertices of ~/are of general type with respect to the corresponding 
edges. 

COROLLARY 5.2.d. Let I, J E Comp, and ~ be admissible twistor path 
from I to J. 

(i) Let #~ : (M, I)  -~ (M, J )  be the corresponding diffeomorphism. Then, 
for every complex ana]ytic subset N C (M, I), p~(N) is complex analytic 
with respect to J , /or  all induced complex structures. 

(ii) There exist a natural isomorphism of tensor categories 

g~ : Bunt  ~ B u n j  . 

Proof. Follows from Theorem 5.2.b. [] 

To sum up, whenever we can connect two complex structures by an 
admissible twistor path,  these complex structures are quite similar from 
the algebro-geometrical point of view. There is a cohomological criterion 
of existence of an admissible twistor path,  which is proven in the similar 
fashion to Theorem 3.2. 

For I E Comp, denote by NS(I ,  Q) the space H I ' I ( M ,  I)  A H2(M, Q) c 
H2(M).  Let Q c H 2 ( M , Q )  be a subspace of H2(M,Q) .  Let 

Co ;Q := {I e Co. p I Ns(z,Q) = Q} 

T h e o r e m  5.2.e.  Let TI, 7-I ~ be hyperk~hler structures, and I, I ~ be complex 
structures of general type to and induced by TI, TIt. Assume that NS( I, Q) = 
NS(F, Q) = Q, and I, I ~ lie in the same connected component of CompQ. 
Then I, I' can be connected by an admissible path. 

Proof. Follows the proof of Theorem 3.2. D 

For general Q, we have no control over the number of connected compo- 
nents of CompQ (unless the global Torelli theorem is proven), and therefore 
we cannot directly apply  Theorem 5.2.e to obtain results from algebraic 
geometry. 6 However, when Q = 0, CompQ is clearly connected and open 
in Comp, assuming tha t  Comp is connected, which we assmned. On the 
other hand, for I E Compo, and every 7-/ inducing I ,  I is of general type 

6An exception is a K3 surface, where Torelli holds. For K3, Compq is connected for all 
Q c H2(M,•). 
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with respect to 7-/ (this is essentially an implication of Theorem 2.2). This 
proves the following corollary. 

COROLLARY 5.2.f. Let I, F E Comp¢. Then I can be connected to F by 
an admissible twistor path. 

REMARK: We obtain that  for all I C Comp O, the closed complex analytic 
subsets of (M, I)  have the same real analytic structure,  and categories of 
polystable holomorphic vector bundles are isomorphic. There are non-trivial  
polystable holomorphic vector bundles over such manifolds (tangent bundle 
and its tensor powers come to mind). I t  is not completely clear if mani- 
folds (M, I )  with I E Compo have any closed complex analytic subvarieties, 
except points. 

5.3 G e n e r a l i z a t i o n  o f  ( . , - )n.  Unlike the (otherwise clearly superior) 
approach used by Beauville and Bogomolov, our way of constructing the 
form (., ")~t lends itself to an immediate generalization. Let g0(A) be the 
grading-zero part  of g(A) computed in Theorem 2.3, and H*(M) ~°(A) be 
the space of all vectors invariant under go(A). Let H*(M) be a subal- 
gebra of cohomology generated by H2(M) and H*(M)~°(A). 7 Let H be a 
hyperk~ihler structure on M. Consider the corresponding action of SU(2) 
on H*(M). Let Hi(M)  = ~ H~ , (M)be  an isotypic decomposition of 
Hi(M)  corresponding to this action. By definition, H~(M) is a direct sum 
of isomorphic SU(2)-representat ion of weight w, where w, 0 _< w _ i runs 
through the natural  numbers of the same par i ty  as i. Let (., ")Her be the 
Hermit ian metrics on cohomology induced by the Riemannian structure on 
M,  and (., .)~ be the pairing which is equal to ( - 1 ) ~ - ~  ( ., ")Her on H~(M).  

T h e o r e m  5.3.a.  Consider the restriction of (., .)~ to H*(M). This re- 
striction ( . , - )n  is non-degenerate and independent of T-I (up to a constant 
multiplier). 

Proof. For i = 2, this s ta tement  coincides with the s tatement  of Theo- 
rem 2.1. For general i, the proof is essentially linear-algebraic and identical 
to the proof of IV1, Theorem 6.1]. D 

A c k n o w l e d g e m e n t s .  I am grateful to my advisor David Kazhdan for 
warm support  and encouragement, P. Deligne and F. Bogomolov for their 

7There are only two known series of compact hyperkiihler manifolds: Hilbert schemes 
of Artinian sheaves on K3 surfaces, and Hilbert schemes of Artinian sheaves on compact 2- 
dimensional tori, factorized by free action of a compact torus. In both cases, the cohomology 
algebra is computed by Naknjima ([N]). It seems reasonable to conjecture that, in either of 
these cases, H* ( M) = Hr ( M ). 
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suggestions and corrections, D. Kaledin and T. Pantev for stimulating dis- 
cussions. Also I am indebted to Julie Lynch and IP Press for providing me 
with employment. 
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