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A b s t r a c t  
For a closed Riemannian manifold (M, g) we extend the definition of analytic 
and Reidemeister torsion associated to a unitary representation of r l ( M )  on 
a finite dimensional vector space to a representation on a `4-Hilbert module 
W of finite type where A is a finite von Neumann algebra. If (M, W) is of 
determinant class we prove, generalizing the Cheeger-Miiller theorem, that 
the analytic and Reidemeister torsion are equal. In particular, this proves 
the conjecture that for closed Riemannian manifolds with positive Novikov- 
Shubin invariants, the L2-analytic and L2-Reidemeister torsions are equal. 
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O. I n t r o d u c t i o n  

The purpose of this paper is to prove the equality of L2-analytie and L2- 
Reidemeister torsion. Both torsions are numerical invariants defined for 
closed manifolds of determinant class, in particular for closed manifolds 
with positive Novikov-Shubin invariants. For these manifolds their equality 
has been conjectured by Carey, Mathai, Lott, Liick, Rothenberg and others 
(cf. e.g. [LoLfi, conjecture 9.7]). The interest of the conjecture comes, among 
other issues, from the geometric significance of the L2-analytic torsion and 
the fact that  sometimes the L2-Reidemeister torsion can be computed nu- 
merically in an efficient way. Indeed, if M is a closed hyperbolic manifold of 
dimension 3, the L2-analytic torsion coincides, up to a factor -1/37r, with 
the hyperbolic volume (cf. [Lo]). 

We establish the conjecture by proving a more general result. Given a 
closed Riemannian manifold (M,g), we extend the notion of analytic and 
Reidemeister torsions to unitary representations of the fundamental group 
7rl (M) on a .A-Hilbert module • of finite type (cf. section 4) where .4 is 
a finite van Neumann algebra, and prove the equality of the two torsions 
when (M, I/V) is of determinant class. We point out that  in the case where .4 
is C, we obtain a new proof of the well known result due to, independently, 
Cheeger [Ch] and M/iller [Mfi]. 

From the analytic point of view, the additional complexity and difficulty 
comes from the fact that  the Laplacians associated to such representations, 
may have continuous spectrum and 0 might be in the essential spectrum. 

In order to formulate our results more precisely, we introduce the fol- 
lowing notation. Let M be a closed smooth manifold. A generalized trian- 
gulation of M is a pair 7 = (h, g~) with the following properties: 
(T1) h :  U --* R is a smooth Morse function which is self-indexing ( h ( x )  = 

index(x) for any critical point x of h); 
(T2) gP is a Riemannian metric so that  - gradg, h satisfies the Morse-Smale 

condition (for any two critical points x and y of h, the stable manifold 
W + and the unstable manifold Wy-, with respect to - gradg, h, intersect 
transversely); 
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(T3) in a neighborhood of any critical point of h one can introduce local 
coordinates such that, with q denoting the index of this critical point, 

2 x~)12 h ( z )  = q - (x~ + ... + x~)12 + (xq+ l  + ... + 

and the metric gr is Euclidean in these coordinates. 

The unstable manifolds W~- provide a partition of M into open cells 
where W~- is an open cell of dimension equal to the index of x. The name 
"generalized triangulation" for the pair (h, gr) is justified as a generalized 
triangulation can be viewed as a generalization of a simplicial triangulation. 1 

Let (M, g) be a closed Riemannian manifold with infinite fundamental 
group F = n~(M) and let 7- =_ (h, g') be a generalized triangulation. Note 
that F is countable. Let p : M --~ M be the universal covering of M and 
denote by ~ and ~ = (h, t) r) the lifts of g and T on M. The L_aplace operator 
Aq acting on compactly supported, smooth q-forms on M is essentially 
selfadjoint. Its closure, also denoted by Aq, is therefore selfadjoint; it is 
defined on a dense subspace of the L2-completion of the space of smooth 
forms with compact support with respect to the scalar product induced by 
the metric g- Observe that Aq is F-equivariant and nonnegative. We can 
therefore define the spectral projectors Qq()~) of Aq corresponding to the 
interval ( -oo,  ~]. They are F-equivariant and admit a F-trace which we 
denote by Nq(A). 

Let Cq(~) :=/2(Crq(]~)) where/2(Crq(h)) denotes the Hilbert space of 12- 
summable, complex-valued sequences indexed by the countable set Crq(h) 
of critical points of h of index q. The left action of F on Crq(h) makes 
/2(Crq(h)) the underlying Hilbert space of a unitary F-representation. The 
intersections of the stable and the unstable manifolds of - grad~, h induce 
a bounded, F-equivariant, linear map 

~q: Cq(~) -~ cq+l(~) . 

Let ~ be the adjoint of 6q and introduce 

A omb : =  + 

Observe that A ¢°mb is a F-equivariant, bounded, nonnegative, selfadjoint - - q  

Oq (~) operator on cq(~-). We can therefore define the spectral projectors ~omb 
of A ¢°mb corresponding to the interval (-oc,)~]. These projectors are F- - - q  

equivariant and thus admit a F-trace, which we denote by N~°mb(~) (cf. 
section 1). 

1 Given  a s m o o t h  simplicial  t r i angu la t ion  r s , m ,  one can  cons t ruc t  a general ized t r i angu la -  

t ion r = ( h , g  t)  so t h a t  the  uns t ab l e  mani fo lds  W~- co r respond ing  to gradgt  h, w i t h  x a cr i t ical  

point  of  h, are  the  open  s implexes  of  r s , ,~  (cfl [P]). 
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We say that  
(1) (M, g) is of a-determinant class if -cx~ < f01+ (log)~)dNq(A) for all q. 

(2) (M,r)  is of c-determinant cla s if < J0 ÷(log for all q. 

Here f:+ denotes the Stieltjes integral on the half open interval (0, 1]. 
The following result can be derived from work of Gromov-Shubin [GrSh, 
Theorem 2.1] (cf. also [E1,2]). 

PROPOSITION 1. Let M be a closed manifold equipped with a Riemannian 
metric g and a generalized triangulation v. Then: 
(1) (M, g) is of a-determinant class iff ( U ,  "r) is of c-determinant c/ass. 
(2) Let (M', T') be another manifold with generalized triangulation r'. If  U 

and M p are homotopy equivalent, then (M, T) is of c-determinant class 
iff (M', r p) is. 

A more general statement,  Proposition 5.6, will be proven in section 5. 

DEFINITION. A compact manifold M is of determinant class i f  for some 
generalized triangulation v (and then for any), (M, T) is of c-determinant 
class. 

If M is of determinant class the logarithm of the (-regularized determi- 
nant, logdet N Aq, is a finite real number for all q and one can introduce the 
L~-analytic torsion Tan : 

log T~n := ½ Z( - -1 )q+lq logde tN  A q .  
q 

Similarly, if M is of determinant class, log det N Aq °rob is a finite real 
number for all q and one can define the combinatorial torsion: 

logT¢omb := ½ Z ( - 1 ) q + l q l o g d e t g  A q  ° m b ,  

q 

To define the L2-Reidemeister torsion, Trt~, it remains to introduce an 
additional number Tmct- Notice that  Null(Aq) consists of smooth forms and 
that  integration of smooth q-forms over a smooth q-chain induces (cf. a the- 
orem by Dodziuk [Do]) an isomorphism 0~ -1 : Null(Aq) ~-Hq(C*(~) ,6 , )  = 
Null(Aq °rob) of Af(F)-Hilbert modules where Af(F) is the von Neumann al- 
gebra associated to F. Define 

log Volg (Oq) := ½ log det y (OqOq) 

where we used that  detN(~9~Oq) > 0 as (8~Oq) is a selfadjoint, positive, 
bounded, F-equivariant operator on the F- Hilbert space Null(A~ °~b) whose 
spectrum is bounded away from 0. As a consequence (cf. section 1) 
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log det N (OqOq) is a well defined real number and one introduces 

log T ~ t  := ½ ~--~(-1) q log det g (OqOq). 
q 

Combining the above definitions we define the L2-Reidemeisier torsion Tae 

log TRe = log Tcomb + log Tmet• 

The concepts of L2-analytic and L2-Reidemeister torsion were considered 
by Novikov-Shubin in 1986 [NShl] (cf. also later work by Lott [Lo], Lfick- 
Rothenberg [LiiRo], Mathal  [M] and Carey-Mathal  [CM]). The main objec- 
tive of this paper  is to prove the following: 

T h e o r e m  1. Let M be a closed manifold of determinant class of odd di- 
mension d. Then, for any Riemannian metric g and for any generalized 
triangulation % both Tan and TRe are positive real numbers and 

T~n = T R e  . 

Rather than viewing Theorem 1 as an L2-version of the Cheeger-Mfiller 
theorem, we derive it as a part icular  case of a generalization of the Cheeger- 
M/iller theorem (cf. Theorem 2 below). This generalization concerns the 
extension of the analytic and Reidemeister torsion associated to a closed 
Riemannian manifold and a finite dimensional unitary representation of F 
to a unitary representation of F on a ,4-Hilbert module of finite type. A 
representation of this type is called an (,4, F°P)-Hilbert module of finite 
type. Here ,4 is a finite von Neumann algebra. A similar approach was 
used by Singer (ef. [Sin]) for the proof of the L2-index theorem. 

In order to formulate this generalization we must introduce (cf. sec- 
tion 2) a calculus of elliptic pseudodifferential ,4-operators acting on sec- 
tions of a bundle of ,4-Hilbert modules of finite type over a compact manifold 
and develop a theory of regularized determinants for (nonnegative) elliptic 
pseudodifferential ,4-operators of positive order. Typically the spectrum of 
such an operator  is no longer discrete (cf. section 2). 

Let us now describe Theorem 2 in more detail. 
Assume that  A is an elliptic operator in the new calculus. For an angle 

0 and e > 0 introduce the solid angle 

Vo,, := {z e C :  Izb < e} U {z e C \ 0 :  arg(z) e ( 0 -  e, 0 + e ) }  . 

DEFINITION. (1) 0 is an Agmon angle for A, if  there exists e > 0 so that 

spec(A) N Ve,~ = @ • 

(2) 0 is a principal angle for A if  there exists e > 0 so that 

spec (°A(x,~))  n Vo,, = 0 
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for all (x, ~) E S ; M  where S*M denotes the cosphere bundle and C~A(X, ~) 
is the principM symbol of A. 

It is well known that (1) implies (2) but not conversely. If, in 
addition, A is of order m > 0 and admits an Agmon angle 0, one can 
define the regularized determinant, det0,N A E C. In the sequel, 0 will 
be chosen to be 7r and we will drop the subscript 7r in det~,N. If A is 
of order m > 0, nonnegative and if 0 E spec(A) then the ellipticity of 
A implies that  the nullspace, Null(A), is an A-Hilbert module of finite 
yon Neumann dimension, dimN Null(A). Consider the 1-parameter family, 
A + A, A being the spectral parameter. For A > 0, introduce the function 
logdetN(A + A) - dimN Null(A)logA. We can view this function as an 
element in the vector space D consisting of equivaience classes If] of real 
analytic functions f : (0, ec) ~ R with f ,,~ g iff lim~_0(f(A) - g()~)) = 0. 
The elements of D represented by the constant functions form a subspace 
of D which can be identified with R, the space of real numbers. 

Given a closed Riemannian manifold (M,g), an arbitrary (A, Fop) _ 
Hilbert module of finite type, W, and a generalized triangulation r we 
define (of. section 4) log T~n (M, g, 14;) and log TRe(M, g, 7, W) as elements 
of D. As above we consider the analytic resp. combinatorial Laplacians 
associated to (M, g, 14;) resp. (M, 7, W) and introduce the notion of a triple 
(M, g, 14;) resp. (M, r, IV), of a-determinant, resp. of c-determinant class. 
Proposition 1 can be generalized to say that these two notions are equiva- 
lent and homotopy invariant (Proposition 5.6, section 5). This allows us to 
introduce the notion of a pair (M, l/V) to be of determinant class. We point 
out that  for .4 = C any pair (M, IV) is of determinant class. 

T h e o r e m  2. Let M be a closed manifold of odd dimension d and 14; an 
( A, F°P )-Hilbert module of finite type. If the pair ( M, IV) is of determinant 
class then, for any Riemannian metric g and any generalized triangulation 7 
of M, log T~n (M, g, 14;) and log TRe (M, "r, g, IV) are both finite, real numbers 
and 

log Tan = log TI~¢ • 

Let us make a few comments concerning Theorem 2 and Theorem 1: 
(1) If M is of even dimension, then both torsions are equal to 1 (el. formulas 

4.8). 
(2) If .4 = C, the (C, F°°)-Hilbert modules of finite type are precisely the 

unitary F-representations and Theorem 2 reduces to the Cheeger-Miiller 
Theorem ([Ch], [Mill) and, when specialized to this situation, we thus 
obtain a new proof of their theorem. 

(3) If .4 = A/'(F), the yon Neumann algebra associated to F, and 14; = l~(r) 
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is viewed as a (A/'(F), F°P)-Hilbert module of finite type (cf. section 1.4), 
then Theorem 2 reduces to Theorem 1. 

(4) Lott-Lfick have conjectured (cf. [LoLfi, Conjecture 9.2]) that all compact 
manifolds have positive Novikov-Shubin invariants and, therefore, are of 
determinant class. The conjecture has been verified for many compact 
manifolds and in particular for all compact manifolds whose fundamental 
group is free or free abelian. A weaker conjecture is that all compact 
manifolds are of determinant class. This conjecture has been verified for 
manifolds whose fundamental group is residually finite (cf. [BuFrKa3]). 

(5) Assign to each compact Riemannian manifold (M,g) with M of 
determinant class the Ls-(analytic=Reidemeister) torsion if the fun- 
damental group 7h(M) is infinite and the # ( r l ( M ) ) - t h  root 2 of the 
(analytic=Reidemeister) torsion of the universal cover of (M, g) with 
the one dimensional trivial representation of ~I(M) if 7rl(M) is finite. 
In this way one obtains a numerical invariant T(M, g), which satisfies 
the product formula 

logT(M1 x M2,gl x g2) = x(M2)logT(Mi,gl) + x(M1)logT(A42,g2) , 

and has the property that for any n-sheeted covering (/~/, ~) of (M, g) 

logT(~/ ,  i ) )=  nlogT(M,g).  

Here x(M) denotes the Euler-Poincar~ characteristic of M. For compact 
manifolds with trivial L2 Betti numbers, in particular for manifolds of 
the homotopy type of a mapping toms, this invariant is independent of 
the metric (and is in fact a homotopy type invariant as will be shown in 
a subsequent paper). This invariant was calculated for a large class of 
3-dimensional manifolds; its logarithm is zero for Seifert manifolds (cf. 
[LiiRo]) and (-1/37r)Vol(M, g) for a hyperbolic manifold (M,g), (cf. 
[Lo]). The calculation in [LfiRo] was done for the Reidemeister torsion 
and in [Lo] for the analytic torsion. 

(6) W. L/ick ([Lfi2]) found an algorithm to calculate the L2-Reidemeister 
torsion of a 3-dimensional hyperbolic manifold in terms of a bManced 
presentation of its fundamental group. By Theorem 1 and by remark 
(5) above the algorithm also calculates the hyperbolic volume. 

Theorem 2 is derived from Corollary C (section 6.2), a relative version 
of Theorem 2, using product formulas for the analytic torsion and the Rei- 
demeister torsion (section 4) and the metric anomaly (Lemma 6.11). To 
state Corollary C let M and M r be two closed manifolds of the same di- 
mension with flmdamental groups isomorphic to F, and assume that they 

2#(~rl (M)) denotes the cardinality of 7rl (M) 
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are equipped with generalized triangulations T = (g, h) and T' = (g', h') 
such that the functions h and h ~ have the same number of critical points for 
each index. Then, for an arbitrary (A, F°P)-Hilbert module of finite type 
142, with (M,)4)) and (M',  W) of determinant class 

log Tan - log Tin = log Tar - log T~¢ . 

In order to prove Corollary C we use the Witten deformation of the de 
Rham complex associated with a generalized triangulation T = (g, h) (cf. 
section 5). The Witten deformation permits us to define smooth functions 
log T~n (h, t), log Tsm (h, t) and log Tic (h, t) with log Ta~ (h, 0) = log T~ where 
log Tan(h, t) = log T~m(h, t) + log Tic(h, t) is a decomposition of log T~n(h, t) 
into a part logTsm(h, t) which corresponds to the small spectrum of the 
Laplacians Aq(t) and a complimentary part logT~(h, t). The results pre- 
sented in sections 2 and 3 lead to the conclusion that these three functions 
have asymptotic expansion when t ~ oc. The free term of such an expan- 
sion refers to the 0 ' th order coefficient of the expansion as t --, oo. The 
results from sections 3.2 and the extension of Helffer-Sjhstrand's analysis 
of the Witten complex ([HSjl]) to the analogous complex constructed for 
differential forms on M with coefficients in l& (cf. section 5), permit us to 
show that the free term of 

log T~, (h, t) - log Tsm(h, t) - ( log T~,(h', t) - logTsm(h', t)) 

is equal to 
log T~. - log TRo - ( l og  T'o - log T ~ o ) .  

Finally, using the Mayer Vietoris type formula and the asymptotic expansion 
of the logarithm of the determinant (cf. section 3) we show that the free term 
of log Tl~(h, t) - l o g  Tl~(h', t) is equal to zero and thus conclude Corollary C. 

The paper is organized as follows: 
In section 1 we recall, for the convenience of the reader, the concepts 

of a finite von Neumann algebra A, an .A-Hilbert module of finite type, a 
finite (von Neumann) dimensional representation of a group, determinants 
in the von Neumann sense and the torsion of a finite complex of A-Hilbert 
modules of finite type. This section is entirely expository. 

In section 2 and 3 we describe the theory of pseudodifferential opera- 
tors acting on sections of a given bundle E ~ M of ,4-Hilbert modules of 
finite type. In particular, we extend Seeley's result on zeta-functions for 
elliptic pseudodifferential operators and the corresponding regularized de- 
terminants, as well as the results of [BuFrKa2], to the extent needed in this 
paper, for this new class of operators. The calculus of such operators is not 
new, but we failed to find a reference suited to our needs (cf. e.g. [FMi], 
[Le], [Mo] and [Lu] for related work). 
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In section 4 we define the analytic torsion and Reidemeister torsion and 
we prove a product formula for each of them. These product formulas are 
slight generalizations of the product formulas presented in [Lo] and [CM], 
but for the convenience of the reader we include the proofs. 

In section 5, we discuss the Wit ten  deformation of the de Rham complex 
of M with coefficients in a (A, F°P)-Hilbert module of finite type W and 
show that  the work of Witten-Helffer-Sj6strand can be extended to this more 
general situation where the spectrum of the Laplacian Aq(t) is typically not 
discrete. The main new result is Proposit ion 5.2 (separation of the spectrum 
of Aq(t)) which permits  us to decompose the deformed de Rham complex 
into the direct sum of a ' small '  and a ' large'  subcomplex where the small 
subcomplex is a complex of .A-Hilbert modules of finite type. The very same 
arguments as in the case .A = C (cf. [HSjl,2], [BZ1,2]) can now be used to 
conclude that  the small subcomplex is, up to normalization, asymptotical ly 
isometric to the combinatorial complex associated with 7. 

In section 6 we present the proof of Theorem 2. 
One can generalize the analytic and Reidemeister torsions associated 

to (M~ g, W) to include addit ional  data,  for example a finite dimensional 
hermitian vector bundle on M equipped with a flat connection. By the same 
methods as presented in this paper  one can prove a result which compares 
these two generalized torsions. In the case ,4 = C results of this type were 
first established in [BZ1] (cf. also [nuFrKal]) .  

Using the same arguments as in [Lfil], one can extend Theorem 2 to 
compact manifolds with boundary. Both extensions are useful for the cal- 
culations of the L2 torsions; together with some applications they will be 
presented in a forthcoming paper. 

The authors wish to thank W. Lfick for bringing the conjecture about 
the equality of analytic and Reidemeister torsion to their attention, 3. Lott,  
W. Lfick and M. Shubin for information on related work and D. Gong and 
M. Shubin for comments on a preliminary version of this paper. The authors 
are very grateful to the referee for his careful reading of the manuscript,  
for pointing out a number of incorrect arguments and for suggesting many 
improvements to the manuscript  (including the appendices). 

1. Linear Algebra  in the  y o n  N e u m a n n  Sense  

In this section we collect for the convenience of the reader a number of 
definitions and results concerning linear algebra in the von Neumann sense 
(cf. e.g. [CM], [Co], [D], [GrSh], [LiiRo] for reference). 
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1.1 .A-Hilbert  m o d u l e s .  

DEFINITION 1.1. A finite von Neumann a/gebra .4 is a unitat C-algebra 
with a *-operation and a faithful trace trN : .4 ---* C which satisfies the 
following properties: 
(Trl)  (., . ) :  .4 x ,4  --* C, defined by ( a, b) = tr N ( ab* ), is a scalar product and 

the completion .42 o[ .A with respect to this scalar product is a separable 
Hilbert space. 

(Tr2) .4 is weakly dosed, when viewed as a subalgebra of ~( "Az ):--f~( "A2 , A2), 
the space of linear, bounded operators on .42, where elements of  .4 are 
identified with the corresponding left translations in £('A2) (a sequence 
{an}~>_1 in .4 converges weakly to a E ,42 iflimn_oo(a~x,y) = (ax, y) 
for M1 x, g E "A2). 

(Tr3) The trace is normal, i.e. for any monotone increasing net, (a{)iel, such 
that a{ > 0 and a -- supie t  a{ exists in .4, one has trN a = s u p i e / t r u  a{. 
Here a{ > 0 means that ai = a* and (nix, x) > 0 for a11 x E A2. 

In the sequel, A will always denote a finite yon Neumann algebra. In- 
troduce the opposite algebra .4 °p of A, where A °p has the same underlying 
vector space, [.A°P[ = [AAI, *-operation, trace and unit element as ,4, but the 
multiplication "'op" of the elements a, b E [./top I is defined by a 'op b = b -a .  
Note that  A °p is a finite von Neumann algebra as well. The right trans- 
lation by elements of ,4 induces an embedding r : .4 °p --~ /:(.42) which 
identifies ,4 °p with the subalgebra EA('A2) C ~('A2) of bounded .A-linear 
maps (with respect to the .A-module structure of A2 induced by left multi- 
plication). Therefore we can introduce a trace on L:A('A2), also denoted by 
trN, defined for f E EA(A2) by 

t rN( f )  :-- trN ( r - l ( f ) )  • 

DEFINITION 1.2. (1) PC is an .A-Hilbert modute i f  
(HM1) YV is a Hilbert space with inner product denoted by (., .). 
(HM2) l/Y is a left A-module so that (a 'v ,  w) = (v, aw) (a E "A; v, w E ~/Y). 
(HM3) ]IV is isometric to a dosed submodule of  A2® V where V is a separable 

Hilbert space and the tensor product A2 ® V is taken in the category of 
Hilbert spaces. 
(2) }IV is an .A-Hilbert module o[ finite type ifVY is an A-Hilbert  module 

and 
(HM4) I/Y is isometric to a closed submodule A2 ® V where V is a finite 

dimensional vector space. 
(3) A morpbism f : W1 --~ W2 between A-Hilbert  modules of  finite type, 

)4}1 and I, V2, is a bounded, A-linear operator; f is an isomorphism i f  it  is 
bijective and both f and f - 1  are morphisms. 
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Let W be an A-Hilbert module. An element v in W is called regular 
if the map i ,  : A ~ W, defined by i , (a)  = av, extends to an A-linear 
bounded map A2 --~ W. If 14; = A2 then the set of regular elements of W 
can be identified to A °p. 

DEFINITION 1.3. A collection (ej ) jeg ( J C N), of regular elements  of W is 
called a base of  ~V if 

i :  (9~ej(A2)~ -~ W (1.1) 

is an isomorphism where each (A2)~ is a copy of A2 and i = ~ , ~ j  i~ . The 
base is called orthonormal if, in addition, i is an isometry. A Hilbert module  
is h'ee if it has a base. 

If J is infinite, the direct sum in (1.1) is meant to be a direct sum in 
the category of Hilbert spaces. The base ( e j ) j e j  is orthonormal iff for any 
i , j  E J and a,b E A,  (aci, bej> = (a,b)$id. If (e j ) je  J is a base of W, then 

• . , .  1 

(fJ)jeJ with fv -- z(~ z ) -~e .  is an orthonormal base of 1/Y. This method 
of constructing an orthonormal base is used in subsection 5.2. Let W be 
an A-Hilbert module of finite type. The algebra £A(W) :---- L:A(W, W) of 
bounded A-lineax operators on W is a finite von Neumann algebra, whose 
trace is defined in the following way. First assume that the module }4; is free. 
Choose a basis { e l , . . . ,  ez} (l < cx~). With respect to this basis an operator 
A E /:A(W) has a matrix representation (aij)l<_i,j<t, i , j  = 1 , . . . , I ,  with 

= ~i=1  trNaii" One shows that entries aij in £A(A2) = A °p. Define t rg  (A) l 
trN(A) is independent of the chosen basis and therefore well defined. In the 
general case W is a closed invaxiant subspace of a free A-Hilbert module ]) 
of finite type. We write l; = W (9 W ± and consider .4 = A (9 0 E £n( l ; ,  Y). 
Define trN(A) := trN(A). One shows that trN(A) is independent of the 
choice of V. 

For an A-Hilbert module l/Y of finite type one defines the dimension 
dimN(W) in the yon Neumann sense by dimN W := trN Idw. If W is not 
of finite type one sets dimN W := sup{dimN W';  W ' closed submodule of 
finite type}. The von Neumann dimension is always a nonnegative real 
number or +co. 

REMARK 1.4: Assume W1 and W2 axe A-Hilbert modules, such that W1 
is a closed invaxiant subspace (i.e. a A-submodule) of 14;2 and dimN (W~) = 
dimN(W2) < c~, then W1 = W2 • The von Neumann dimension of a Hilbert 
direct sum is the sum (possibly infinite) of the von Neumann dimension of 
the summands. 

REMARK 1.5: Assume that W1 and W2 axe A-Hilbert modules of finite 
type. 
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(1) If f E £:A(W1, W2) and g E Z:.a(W2, W1) then t rN(fg)  n = t rN(gf )  n for 
any n >_ 1. 

(2) If f : W1 ---+ W2 is an isomorphism and c~i E £A(Wi) ,  i = 1, 2, so that  
f • ~1 = (~2 • f then trN (~1 ~ trN 6~2. 

If .A ~ and .4" are two finite von Neumann algebras the tensor product 
A '  ® A" is defined as the weak closure of the image of the algebraic tensor 
product of ,4' and A"  in £(A~ @ A~') (cf. [D, p. 25]). The algebra ,4' ® 
A" is again a finite von Neumann algebra whose trace has the property 
that  t rN(a '® a ' )  = trN a ' t r g  a". If W '  and Y "  are A'-  resp. A ' -H i lbe r t  
modules of finite type then W ~ ® W" is an A ~ ® `4"-Hilbert module of finite 
type; moreover, given f '  • Z:A,(W') and f "  • £A, , (W") ,  t r g ( f '  ® f " )  = 
t r g  f '  t r y  f " .  

DEFINITION 1.6. A morphism f : WI  --* We is a weak isomorphism iff 
Null(f)  = 0 and Range(f )  = W2. 

REMARK 1.7 (Polar decomposition): A weak isomorphism f : W1 --* We 
can be factored as f = gft  where f~ : W1 --* W1 is a weak isomorphism 
and g : W1 ~ W2 is an isometric isomorphism given by f '  = ( f , f ) l / 2  
g = f .  ( f , f ) - l / 2 .  If f is a weak isomorphism, then dimN ~/~1 ~--- dimN We. 

1.2 D e t e r m i n a n t  in  t h e  y o n  N e u m a n n  sense .  Throughout this sub- 
section we consider only A-Hilber t  modules of finite type. In this subsection 
we define two spectral  invariants for an element f • £.a(W). The first one, 
de tN(f ) ,  is defined for f having 7r as a weak Agmon angle (cf. Definition 1.8) 
where as the second one, VolN(f)  is defined for arbi t rary  f .  

DEFINITION 1.8. (1) r is an Agmon angle for f • £ A ( W )  iff there exists 
e > 0 so that spec(f)  A V~,~ = 0 with V~,~ defined as in the introduction. 

(2) rc is a weak Agmon angle for f • LA(W)  iff rc is an Agmon angle for 
f + A for any A > O. 

Firs t  we consider the case where 7r is an Agmon angle for f .  In this case 
f is an isomorphism. Define the complex powers of f ,  f~ • L:A(W), s • C, 
by the formula 

1 f ) ~ ( ) ~  _ f ) _ l d  ~ (1.2) f~ = ~ /  

where A~ is a branch of the complex power s defined on C~ = C ", {z = 
pei~;p • [0, co)} emd 7 is a closed contour in C~ which surrounds the 
compact set s p e c f  in C,~ with counterclockwise orientation. Notice that  
for ~ s  < 0, by Cauchy's theorem, the contour 7 in (1.2) can be replaced 
by the contour 7 , , ,  = 71 U 72 U 73 where 71 := {z = pei'~; oc <_ p < e/2}, 
72 :=  {z = ~e' i,.,Tr_>c~ > -Tr} and 9'3 := {z = pei(-~); 7" _< p _< ~ } .  



Vol.  6, 1996 T O R S I O N  F O R  R E P R E S E N T A T I O N S  IN F I N I T E  T Y P E  H I L B E R T  M O D U L E S  763 

Notice that f* is an entire function in s C C with values in £~(W)  and 
t rN(f  *) is an entire function on C. Define the determinant detN f in the 
von Neumann sense by 

d 
log det g f = ~s a=0 trN(fs)  ' (1.3) 

We remark that this notion of determinant, in the case when f is positive 
and selfadjoint, coincides with the one introduced by Fuglede and Kadison 
[~K].  

If f E £at(W1, W2) is an isomorphism then f*] is a selfadjoint positive 
isomorphism and one shows that de tN(f*f)  > 0. Define 

VolN f : =  ( det N (f* f)) l /2  . 

PROPOSITION 1.9. (1) Suppose f~ E £A(W), with t in an interval I C R, 
is a family of c/ass C 1 (in norm sense) of morphisms and ;r is an Agmon 
angle for all of them. Then logdetN(f~ ) is of class C 1 and 

dtlogdetN(ft) = trN ( ( d f , )  f;-1) . (1.4) 

(2) Suppose fi E £A(Wi), i = I, 2 with WI and }472 .A-Hilbert modules of 
/~nite type and c~ : W1 -'* )4;2 is an isomorphism so that ~fl = f2a. Then 
the following statements hold: 

(a) spec fl = spec f2 and therefore 7r is an Agmon angle for fl if[it is an 
Agmon angle for f2. In this case log det N fl = log det N f2- 

(b) f l  is an isomorphism if[ f2 is an isomorphism. In this case VolN fl  = 
VO1N f2. 

(3) Suppose f • £A(W1 (~ W2) is of the form 

Then the following statements hold: 
(a) spec f = spec fl  U spec f2 and therefore 7r is an Agmon angle for f iff 

it is an Agmon angle for both fl and f2. In this case 

logdetN f = logdetn fl  + logdetN f2 • (1.SA) 

(b) f is an isomorphism iff f l  and f2 are both isomorphisms. In this case 

logVolN f = logVolN fl + logVolN f2 • (1.5B) 

(4) Suppose W1, W2 and Wa are A-Hilbert modules of finite type. If 
fl • £A(~]I, W2) and f2 • £A(W2, W3) are isomorphisms then f2 " f l  • 
£A(W1, W3) is an isomorphism and 

logVolN(f2, f l )  = logVolN fl + logVolN f2 - (1.6) 



764 D. BURGHELEA,  L. FRIEDLANDER,  T. KAPPELER,  P. MCDONALD GAFA 

(5) I f a i  E £.a(W~), i = 1, 2, are isometries and f : W1 --* 14;2 is an 
isomorphism then v~2fal E/:A(W1, W2) is an isomorphism and 

]ogVolN(a2fch) =- logVolN f .  (1.7) 

Proof. All these statements can be proved in an elementary way. For the 
convenience of the reader we give the proof in Appendix 1. 

Next we consider the case where 7r is a weak Agmon angle for f E 
/2404;). In this case 7r is an Agmon angle for f + ), with any A > 0. One 
verifies that logdetN( f + A) is a real analytic function in A E (0, co). We 
define log det N f as the element in D (cf. Introduction), represented by the 
real analytic function 

log det N ( f  -t- )~) - log )~ dimN Null(f) . (1.8) 

We note that parts (2) and (3) of Proposition 1.9 extend to this case as 
well. 

Let f E £,4(W1, Wz) be a weak isomorphism. For ,k _> 0 denote by PI(A) 
the set of all A-invariant closed subspaces £ C }/~1 such that, for x E £, 
Ilf(x)ll <_ Allxll. Following Gromov-Shubin ([GrSh, formula 3.8, p. 386]) 
introduce the function F I :  [0, oo) -+ [0, oo) defined by 

Ff(;Q := sup { dimN C; Z: e PI(A)} • (1.9) 

Observe that the function F/(A) is nondecreasing, left continuous, Ff(0) = 0 
and F/(A) = d img(W) for A > Ilfll. Note that f is an isomorphism iff there 
exists )~0 > 0 such that  F/(A) = 0 for A < A0. The Novikov-Shubin invariant 
~(f )  associated to a weak isomorphism f e Z:.a0/Yl, ]4]~) is defined by 

c~(f) := liminf logFf(~_____)) e [0, oc] (1.10) 
40 log ~ 

Note that c~(f) = ~x~ if f is an isomorphism. 
If f E Z:.4(W1, ~/V2) is an arbitrary morphism let 

f :  ~V~ = W1/Nul l ( f )  ~ Range f = 14;; . (1.11) 

Note that f is a weak isomorphism and define c~(f) and FI(),) by 

~( f )  := c~(7 ) ; Ff(~) := F/(A) . (1.12) 

PROPOSITION 1.10. (1) For any weak isomorphism f e £A(I/V1, }V2) 

F A ~ )  = V ( r l ) , . ( ~ )  = F r ( ~ )  • 

(2) If  f : "l/Y1 (9 W2 ~ Wl $ ~&'z is a weak isomorphism of the form o) 
f---- f2 ' 

then fl  and f2 are both weak isomorphisms and 

max {Ff , (~) ,Fh(A)}  < Ff(A) < F/, ( ~ ) +  F/~(~) . 
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(3) ff f E E.a(W) is nonnegative and selfadjoint, define the spectral 
projectors Qf(A) c £.4(W) corresponding to the interval ( -oc ,  A] and 
Nf(A) := trN QI(A). For A _> O, and -f given by (I.II) 

NI(A) = dimN (Null(f))  + FZ(A ) . (1.13) 

The verification of these statements is straightforward using the defini- 
tion of FI(A ) (cf. Appendix 1). 

The function Nf()Q is called the spectral distribution function of f .  Note 
that Fy(A ) is nondecreasing and FT(0 ) = 0. Fy(A ) can be used to repre- 

sent l o g d e t N ( T f )  1/2 in D as the function given by the Stieltjes integral 
,f~ log(. + A)dF7(# ). 

Denote by F the set of functions F :  [0, oe) --. [0, ~ )  satisfying 
(Vl) F(0) = 0; 
(F2) F(A) is nondecreasing; 
(F3) F is continuous to the left, 

and recall the following definitions of Gromov-Shubin (cf. [GrSh]). 

DEFINITION 1.11. (1) Functions F ,G E F are said to be dilational equiva- 

lent, denoted F ~ G, iff there exists C > 0 such that for A >_ 0 

G(C-1A) _< F(;~) _< G(C~) . (1.14) 

(2) Functions F, G E F are said to be dilational equivalent near zero, 

denoted F d G iff there exist C > 0 and A0 > 0 such that (1.14) holds for 
0 

)~< M. 

We end this subsection with the following observation. Suppose that  
: A' ~ .,4" is a homomorphism of finite von Neumann algebras which is 

injective and makes .A S' an .A'-Hilbert module of finite type. Then it makes 
any A"-Hilbert  module of finite type 14; an .A'-Hilbert module of finite type 
and we have £~4,, (14;) C £~a, (W). 

REMARK 1.12: Assume that for any f E .A', trN,~,(tb(d) : AS' ~ A'J) = 
r trN,~4,, (v)(f)). Then: 
(1) dimN,.4, (IV) = r dimN,~t,, (132). 
(2) If f ~ £~,,(W) then trN,~,(f)  = rtrN,~a,,(f). 
(3) If 7r is a weak Agmon angle for f then log detN, A, (f)  = r log detN,,4,, (f) .  

1.3 Cochain c o m p l e x e s  of  finite type  and tors ion in the  yon  
N e u m a n n  sense .  

DEFINITION 1.13. A cochain complex in the category of .A-Hilbert mod- 
ules of finite type, C = (Ci, di ), consists of a collection of Hilbert modules 
of finite type Ci, all but finitely many zero, and a collection of morphisms 
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di : Ci -'~ Ci+l which satisfy d idi - t  = O. In the sequel we always assume 
that Ci = 0 for i < 0 and refer to such a complex as a cochain complex of  
finite type over ,4, or s imply  as a cochain complex of finite type. 

The reduced cohomology of C, Hi(c) ,  is defined by 

~ (C) = Nul l (di ) /Range(di_l  ) . 

Define the Betti numbers and Euler-Poincar6 characteristic of C by 

j3i(C) := dimN-Hi(C) ; X(C) := E ( - 1 ) i / 3 i ( C )  , (1.15) 
i 

and introduce a weighted version of the Euler-Poincar6 characteristic, 

¢(C) := ~'~(-1) i i f l i (C)  . (1.16) 
i 

Denote by d r : Ci+l --* Ci the adjoint of di, and consider A i = d*di + 
di_ld*_ 1. The operator Ai is a selfadjoint and nonnegative morphism. 

DEFINITION 1.14. (1) Given two cochain complexes of  finite type over A ,  C' 
and ¢",  a morphism f : C --+ C" is given by a collection of  morphisms 
f i  : C~ --* C~ p which commute  with the differentials dj. 

(2) A homotopy  t_ between morphisms  f and g is given by a collection 
I!  of morphism ti : C~ --* Ci_ 1 satisfying 

, , . -  d" - p ( 1 . 1 7 )  f i  -- :~, -- i - t r i  + ti+tdl . 

(3) Two eochain complexes C' and C" are homotopy  equivMent i f  there 
exist morphisms  (in the category of complexes) f : C' --~ C" and g : C" ---* C' 
so that  g .  f resp. f . g is homotopic  to idc, resp. idc,,. 

Given a morphism f : C' ~ C", denote by H(f ) i  the induced morphisms 

of A-Hilbert modules g ( f ) i  : ~i (C ,  ) __. -~ (C") .  Note that if f~ : C' ~ C", 
r = 1, 2, are two homotopic morphisms then H(f l ) i  = g( f2) i  for all i. Given 
a finite type cochain complex C = (Ci, di), each Ci can be decomposed as a 
direct sum of mutually orthogonal subspaces Ci = 7-li ~ C + $ C~- with 

n i  = Null Ai ; C + = di- l (Ci-1)  , Ci- = d*(Ci+t) • (1.18) 

This decomposition is called the Hodge decomposition. The map di can 
then be described by a 3 x 3 matrix of the form ( 00) 

a ~ =  0 _~ , (1.19) 
0 0 

where d_ i : C~- ~ Ci+l is a weak isomorphism and the combinatorial Lapla- 
eian Ai = di_ld*_ 1 + d*di then takes the form of the diagonal matrix 
diag(O, di_l d~_ t, _d~di). 
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Let f : C 1 --+ C 2 be a morphism. Wi th  respect to the Hodge decom- 
positions of C~ and C 2, the morphism fi : C~ ~ C 2 can be writ ten as a 
3 x 3-matrix of the form 

o f ,13) 
0 fi,33 

1 "4- C2,q-~ C A ( C ~ , - C 2 , -  where fi,ll  E £~t(H~,7-/~), fi,22 E £~t(C i' , i j, fi,33 E ) 
and _d~?. fi,33 = fi+1,22" 4, 
DEFINITION 1.15. A cochaJn complex d is called perfect if, for any i, d i is 
an isomorphism. 

For a perfect cochain complex spec Ai \ {0} is bounded away from zero 
(1_< i<_ d). 

LEMMA 1.16. (1) Given a cochain complexC = (Ci,di) one can find modi- 
fications di's of di's so that d = (Ci, di) is perfect and has the same Hodge 
decomposition as C. 

(2) Given an isomorphism f : C 1 --+ C 2 of cochain complexes C k = 
(C~, di), k = 1, 2, one can find modifications @ of d~ so that 

fi-l-ld~ = d2fi (1.21) 

and the cochain complexes ~k = (C(¢ ~k~ are perfect and have the same \ z ~ z /  

Hodge decompositions as C k (1 < k < 2). 

Proof. Statement  (1) follows by choosing di of the form (000) 
di = 0 0 d-/ (1.22) 

0 0 0 

where d~ is the isometry in the polar decomposit ion of d~ given by d_-~ = 
d~(d~di)-~. 

(2) With  respect to the Hodge decomposit ion of C~ and C/2 define d~ as 
in (1) and choose d 2 to be of the form (o 

d~= 0 
0 

with d~ := fi+1,22" d~. fi,~½" 

0 
0 

In section 6.1 we will need the following: 

PROPOSITION 1.17. Suppose C(t) = (Ci(t),di(t)) is a family of cochain 
complexes of finite type depending on a parameter  t _ 0, and f(t)  : C(t) --+ C 
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is an isomorphism of  cochain complexes for any t. Introduce log V(t )  := 
~']~d=o(-1)qlogVolg-H(f(t))q. Assume that Ci(t) and Ci are free mod-  
ules and that there exist orthonormal bases ei,l ( t ) . . . .  , ei,t, ( t ) for Ci( t ) and 
e l , l , . . . ,  ei,t, for Ci so that f i( t), when expressed with respect to these bases, 
is an 1 i x l i -matrix with entries in A °p of the form I d  + O(1/ t ) .  Then 
log v ( t )  = o (1 / t )  

Proof. In view of Lemma 1.16(1) it suffices to prove the result for the case 
where di(t ) and d i are isometries. In view of (1.20) and Proposition 1.9(3) 

log VolN H( f ( t ) )  i = log V o 1 N  ( f i  ( t ) )  - l o g  Volu (fi,22 (t)) - l og  VolN (fi,33 ( t ) ) .  
(1.23) 

As difi,33(t ) = fi+1,22(t)di(t), Proposition 1.9(5) implies that 

log VolN (fi,33 (t)) = log det N (fi+1,22 (t)) . (1.24) 

Taking the alternating sum of (1.23) therefore leads to 
d d 

~--~(-1)i logVolN (H( f ( t ) )  i) = ~--~(--1)ilogVolN ( f i ( t ))  • (1.25) 
i = 0  i = 0  

The claim now follows from the assumptions made on the asymptotics of 
yi(t). [] 

Given a cochain complex C of finite type, introduce, following Gromov- 
Shubin ([GrSh], cf. also end of section 1.2), the functions Fc,i(X) E F defined 
by Fc,i(A) := Fd_~a_,(A) and the numbers ai defined by ai  := a(di) (cf. 
(1.10)). The following result is due to Gromov-Shubin ([GrSh, Proof of 
Proposition 4.1]). 

PROPOSITION 1.18. Suppose f : C I --* C" and g : C" --* C' are two mor- 
phisms of  cochain complexes so that idc, is homotopic  to gf  by a homotopy  
t = {t~}. Then 

I (1.26) Fc,,i(A) < Fc,,,i(41lfi+tll2ltgill2A) for 0 < A < 41tti+1]l------------ ~ . 

In particular if f : C' ~ C" is an isomorphism then Fc,,i(A) ~ Fc,,,dA) 
d 

(choose t_ = 0); if C' and C" are homotopy equivalent, then Fc,,i(A) o 
I It Fc,,,i(A), and therefore ai = a i .  

The torsion log T(C) is the element in D defined by 

log T(C) = ½ Z ( - 1 ) i + l i l o g  det N A i .  (1.27) 
i 

The spectral distribution functions Ni(A) := N a , ( ~ )  satisfy (cf. [GrSh, 
(3.6)]) 

N~(A) = f l i + Fi_I(A) + Fi(A) (1.28) 
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where Fi = F c d .  Therefore logT(C) can be represented by the real analytic 
function in )~ 

F ½ Z ( - 1 )  I log( .  + A)dFi(l~). (1.29) 
i + 

DEFINITION 1.19. A cochain complex C of finite type is of determinant 
class iff f:+ log()0dNi(~ ) > - o c  for all i, or equivalently f ~  l (trlve-XZx" - 
fli)dx < ~ for a/1 i. 

We point out that  if C is of determinant class, then log T(C) is in R C D, 
and a sufficient condition for C to be of determinant class is that  ak > 0 for 
0 < k < d .  

The following Lemma 1.20 can be used to deduce from Proposition 1.18 
that a cochain complex of finite type which is homotopy equivalent to a 
cochain complex of determinant  class is of determinant class as well. 

LEMMA 1.20. Assume that Na(p) and N2(#) are nonnegative, increasing 
function on (0, 1] such that  NI(0+)  = N2(0+) = 0 and Nl (p )  < N2(#) for 
0 < # <_ 1. Let f(p) be a nonnegative decreasing continuous function on 
(0, 1]. Then 

~o~+f(/~)dNl(/O<f~+f(t~)dN2(t~). 
Proof. Without  loss of generality assume that  fO~ f(u)dN2(u) < c~. Use  

that N2(0+) = 0 and f is decreasing to conclude that  l i ra ._0+ f(p)N2(/~) = 
0 and so l i m . - 0 +  f(l~)Nl(p) = 0 as well. Using the integration by parts 
formula for the Stieltjes integral one concludes that  

f l+ f l+ f(it)dX~(#) < f(p)dN2(p) + f(,)(N2(e) - N~(,)) . 

+ + 

Taking the limit e --~ 0 leads to the conclusion, o 

It will be convenient for the proof of the product  formula below to in- 
troduce for A > 0 and s E C with ~s  > 0 the zeta function associated with 
the complex C, 

(c(),, s) = ½ ~--~(-1) i i t rN ((A, + A) -~) . (1.30) 
i 

This function is real analytic in A, complex analytic in s for ~s  > 0 and 
admits an analytic continuation to the entire s-plane so that  s - 0 is a 
regular point. Notice that  log T(C) is also represented by the real analytic 
function in )~ given by 

as,¢]~=o co( )~' s) - *(C)log A (1.31) 
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where ¢(C) denotes the weighted Euler-Poincar6 characteristic (1.16) (cf. 
also [Go] for (1.31)). Moreover, by the spectral theorem (cf. Appendix 1) 

1 
(c()~, s) ---- 1 ~;-,(_1)ii - f t~_le(_,~ ) trN e-tZ~'dt (1.32) 

2 ~ r(~) J0 

Suppose that  ,4' resp. A" are finite von Neumann algebras. Note that  
A = A ' @ A "  (tensor product in the category of finite yon Neumann algebras) 
is also a finite von Neumann algebra. If )4; p resp. W" are ¢4' resp. .A'-Hilbert  
modules of finite type then the tensor product }/Y' ® 142" (tensor product in 
the category of Hilbert spaces) is an .A-Hilbert module of finite type and 

dimN(l/Y' @ 14;") = dimN )4;' • d img 142" . 

Let C p resp. C' ,  be two cochain complexes of finite type over .A', resp. 
.4". Denote by C = C' ® C" the tensor product of these cochain complexes, 

c~ = ~ c,' ® ¢", ~, = }2 ~ ® ~ + ( - ~ ) ' ~ ® ~ : '  
p + r = i  p+r=i 

Then C is a cochain complex of finite type over .A. 

PROPOSITION 1.21 (cL [CM], [LiiRo]). Let  C', resp. C" be two t~nite type 
cochain complexes over A'  resp. A pp. Then,  with C = C' ® C' ,  

(1) ~ ( C )  = Ep+~=i H-P(C') ® H-r(C") 

(2) ~c(A, 8) = ~c, (x, s)x(c") + ~c,,(A, s)x(c') 
(3) ¢(c) = ¢(c')x(c") + ¢(cP')x(c'). 
Proof. The proof of (1) can be found, e.g. in [LfiRo, Theorem 3.161 and (3) 
follows from (1). To prove (2) (cf. [CM]) let C be a cochain complex of finite 
type over .A', and P be a A ' -Hi lber t  module of finite type. We will show 
below that  

E ( - 1 )  q trN(e - t a ' )  ---- X(C) • (1.33) 
q 

Therefore if fl : P --~ 13 is a morphism, then 

E ( - 1 )  q t rN(e  - tA '  ® fl) = trlv(fl)x(C) . (1.34) 
q 

To prove (1.33) we use the matrix representation of Aq with respect to 
the Hodge decomposition, d i a g ( 0 , ~ _ l ~ _ l , ~ )  and Proposition 1.9 (1); 
they give 

trN e - tAq- '[c~ , = trN e -tAq[c + 

and consequently 
. - - tAq[e + t A b + l i e  + 

trN e - taq = trN(e q ) + t rN(e -  ~+~ ) + dimN Null(Aq) 
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which leads to (1.33). Next, decompose Aq = {~p+r=q Av,r, where Ap,. = 
A ~ ® id + id ® A 7 to obtain 

lfo  2@(~, s) = Z ( -1 ) (P+~) (p  -k r ) ~ ( s  ) tS-le -t~ trN(e - tA; ® e-tA~)dt 
p~r 

lfo  
p r 

1 j o e  t s - l e  - t A  
+~(s )  JO t r N ( { ( ~ ( - 1 ) ' e - t a ' } @ { ( ~ ( - - i ) r r e - ' A " } ) d t  

p r 

which, in view of (1.34), is equal to 

F(s) tS-le -t~ X(C")Z(-- t)PptrNe-t~'p+X(C')Z(--1)~rtrNe-tAr dt 
p r 

= 2¢c,(~, s).  x(C") + 2ffc,,(~, s).  x(C') • n 

COROLLARY 1.22 (cf. [CM], [LfiRo]). With the same assumptions as in 
Proposition 1.21, the following identity, viewed in the vector space D, holds: 

logT(C) = X(C")logT(C') + X(C')logT(C") . 

1.4 (A, F°P)-Hi lber t  m o d u l e s  a n d  bund le s  o f  A - H i l b e r t  m o d u l e s  . 

DEFINITION 1.23. )'V is an (.A, PP)-Hilbert module of finite type if 
(BM1) 142 is an A-Hilbert module of tinite type; 
(BM2) 14; is a F°P-Hilbert module, de/ined by a unitary representation ofF; 
(BM3) the action of A and F °p commute. 

Let X be a countable set. Denote by 12(X) the Hilbert space obtained 
by completion of C(X) = { f  : X ~ C; supp(f) is finite} with respect to 
the scalar product (fl, f2) := ~z f i x  f(x)g(x)" 

EXAMPLE 1.24: Let r be a countable group and C(F) denote the unital 
C-algebra with multiplication defined by convolution and ,-operation in- 
duced by the map, 9 ~ 9 -1. The algebra C(F) has a finite trace given by 
tr(f)  := f(e) where e denotes the unit element in F, and acts from the left 
by convolutions on 12(F). This algebra can be viewed as a *-subalgebra of 
Cr(t2(r), t~(r)). Denote by Af(F) its weak closure in Cr (h ( r ) ,  t2(r)). Then 
Af(F) is a finite yon Neumann algebra referred to as the von Neumann al- 
gebra associated to F. 

EXAMPLE 1.25: Let p : F x X --* X be a left action of F on the set X 
with finite isotropy groups, p induces a left action of F by isometries which 
makes 12(X) an Af(F)-Hilbert module; if the quotient set F \ X  is finite, then 
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this module  is a Hilbert  module  of finite type. Suppose, in addit ion,  tha t  
F ~ is another  countable  group and p~ : X x F t --- X is a right action of 
F I on X so that  p and  p~ commute.  F ~ induces an  action by isometries on 
12(X) which makes l e (X)  an  (A'(F),  F '°P)-Hilbert  module  of finite type. As 
an  example,  consider the case X = [FI, the under ly ing set of F, F = F I 
and p and  p' given by P(gl,g2) = gig2, and P'(g2,gl) = g2g~ 1. Then 12(F) 
is an (Af(F),F°P)-Hilbert  module  of finite type, referred to as the regular 
birepresentation. 

DEFINITION 1.26. A smooth  bundle p : £ --* M over a smooth  manifold M 
is a bundle o f  A-Hi lber t  modules  of  finite type with fiber )/Y i f  
(B1) p : E --~ M is a smooth  bundle o f  topological vector spaces, equipped 

with a Hermit ian s tructure # which makes  each fiber p - l ( x ) ,  x E M ,  
into a separable Hilbert  space; 

(B2) C is equipped with a smooth  fiberwise action p : A × C -~ C which 
makes  each fiber p - l ( x )  an A-Hi lber t  module  of  finite type. 

(B3) lA; is an A-Hi lber t  modu le  of f inite type and p : E ~ M is locally 
isomorphic to Po : 14; x M --* M where the locM isomorphism intertwines 
P, Po, the Hermit ian structures and the A-actions.  

EXAMPLE 1.27: Let M be a closed smooth  manifold with fundamenta l  
group P :=  =k(M) and  let 1/Y be an (A, r°P)-Hi lber t  module  of finite type. 
Let/5 : )IV x M ---* M be the tr ivial  smooth  bundle  of A-Hilber t  modules;  j5 

~ 

is F-equivar iant  w i th re spec t  to the diagonal  act ion of P on ~ x M and  the 
left act ion of P on M.  Therefore ~ induces p : C = l/Y x r M ---* M which 
is a smooth  bundle  of A-Hilber t  modules  of finite type. This bundle  is the 
canonical  bundle  over M, associated to }iV. 

2. Calculus  of  Pseudodi f ferent ia l  Operators  Act ing  on A-Hilbert  
Bundles  of  F in i te  T y p e  

In  this section we construct  a calculus of pseudodifferential operators,  called 
pseudodifferential A-operators ,  on a compact  manifold,  where A is a finite 
von N e u m a n n  algebra (cf. e.g. [FMi],[Le],[Lu] and  [Mo] for related work). 

2.1 S o b o l e v  spaces ,  s y m b o l s  and kernels .  Let B be a Banach space. 
For u E $ (R  d, B),  the  space of functions u : R d --* B of Schwartz class, [[u][, 
denotes the Sobolev s-norm given by 

Ilull~ := ~ .  (1 + 

where ~(~) denotes the Fourier  t ransform of u. 
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DEFINITION 2.1. (1) The Sobolev space tt~(R u,B)  is the completion of 
$(R d, B) with respect to the Sobolev s-norm; equivalently, it can be defined 
as the space of aIl distributions u E $ ' (R d, B) with 

(1 + I~1~)~/~ ~ L2(Rd;B) . 

(2) The space H~°¢(R d, B) is the space of all distributions u • D'(R d, B) 
such that gu • H~(Rd, B) for any ¢ • C~(Rd).  

Most of the properties of the Sobolev spaces H~ (R d, B) are the same as of 
the usual Sobolev spaces for functions with values in finite dimensional vec- 
tor spaces (cf. [Le D. Let kV be an A-Hilbert module. The space Hs(R d, IV) 
is an A-Hilbert module whose dual can be identified with H_~(R ~, )/Y). Note 
also that H~°c(R a l/Y3 is an A-module. Extending the classical case A = C, 
symbols are defined as follows: 

DEFINITION 2.2. (1) A function a E C ~ ( R  d x R a, £.4(W, l/Y)) is a ,symbol of 
order m • R, denoted by a • S~v = S~v(Rd x Rd), i f  the following conditions 
hold: 
(Syl) a(x, ~) has compact support in x; 
(Sy2) for any multiindices, a and/3, there exists a constant, CoZ, such that 

llOZO~a(x,~)tl <_ C ~ ( 1  + I~l) m-'~m . (2.1) 

(2) (cf. [Shl, p. 29]) A symbol a • S~; is classical if it admits an expan- 
sion of classical type Ej>_o ¢(~)am_j(x,~) with ¢ • C ~ ( R  a) given by 

J" 0 ~o~- I,~1 _< ½ ~,(~) 
I, 1 for I,~1 _> 1 .  

This means that: 
(Sy3) am-j  • C ~ ( R  d x (R d \ {0}), £A(W, W)) has compact x-support and 

is positively homogeneous of degree m - j;  
(Sy4) N-1 m-N a(x, ~) - E j=o  ¢(~)am-j (x ,  ~) • S w for MI N >_ O. 

Subsequently, we always assume that all symbols are classical. 
Given a • S~ ,  define a linear operator A :  Cg~(Re,w) ~ Cg~(Re,l,V) 

by 
1 f f 

" ( 2 . 2 )  

The principal symbol of a classical pseudodifferential operator A, aA (x, ~) = 
a.~(x,(), is invariantly defined as a smooth function on T*R d \ {0} with 
values in £A(W, 14.;). 

The operator A is said to be a pseudodifferential .A-operator of order m, 
denoted A • ~DOr~(R d x )d]), and can be extended to a bounded, linear 
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operator (any s E R) 

A :  H~(Rd, W)  -~ H~_m(Rd,W) . 

The Schwartz kernel of A, KA(X, y), is given formally as an oscillatory 
integral 

KA(x,  y) = [ ei(~-Y'~)a(x,~)d~. (2.3) 
JR d 

We note that  if m < - d ,  the kernel KA(X, y) is continuous. 

DEFINITION 2.3. A pseudodifferential operator  A in ~ D O ~ ( R  d x W)  is 
said to be uniformly elliptic on U C R d if the principal .symbol am(x, ~) is 
invertible for ~ E R a \ {0} for all x E U and 

][am(x,5)-l[[<_Cl(l+[~[) -'~ f o r x e U ,  151>1 .  (2.4) 

Note that  as am(X,~) • F-.A(}/V,I'V) the inverse satisfies am(x,~) -1 • 
ca(w, w). 
2.2 P s e u d o d i f f e r e n t i a l  o p e r a t o r s  on  b u n d l e s  o f  H i l b e r t  m o d u l e s .  
Throughout this section let (M, g) denote a compact Riemannian manifold 
of dimension d, possibly with boundary, .A a finite yon Neumann algebra, 
W an .A-Hilbert module of finite type and p : £ -~ M a bundle of A-Hilbert  
modules with fiber ~V. 

Introduce the Banach bundles of bounded linear operators £ --~ M × M 
and B -- £A -~ M x M whose fibers at (x, y) • M x M are given by 

where £(£y, £~) denotes the Banach space of all bounded linear operators 
from the fiber £y to the fiber £x and 

B~y = { f  • £ ~ ;  f is A-linear} . 

The Banach bundle w : B ~ M x M has the following properties: 
( B u l ) / ~ y  is a weakly closed linear subspace of £~y; 
(Bu2) if b • Y~y, then b* E Bye; 
(Bu3) if b E B~ v, b' • Bye, then bb t • B~;  
(Bu4) Id • B ~ ;  
(BUS) if a • B ~  is invertible then a -1 • B ~ .  

Denote by U an open connected subset of M and let X --- R d or, in case U 
is a neighborhood of a boundary point of M, X = R ~ : = { ( x l , . . . ,  xd); Xd>_O}. 

DEFINITION 2.4. A pair (¢, (I)) of  smooth diffeomorphisms ¢ : U -4 X and 
: £[U -* X x )4; is said to be a coordinate chart of (M, £ -* M)  if ¢ is a 

chart of M and • is an A-triviMization of £ --~ M over U. 
In particular, ~ := ¢[p-~(~) : p - l ( x )  ---* )IV is an isometry. 
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In order to define the Sobolev spaces Ha(C) - H~(M,$) we proceed 
as follows: If M is a closed manifold,  define the Sobolev space H~(8) = 
H~(M, E) by a s tandard  localizing procedure,  using the definition of sec- 
tion 2.1 and a smooth  par t i t ion of uni ty  subordinate  to an open cover of 
M which comes from an atlas of E ~ M.  If M is a compact  manifold wi th  
boundary  we first consider the double ~ --~ 2V/of E ~ M,  identify M with  
M+,  one of the two copies of M in -~/, and denote by M _  the closure of 
M\M+. Then  define 

H, (C)  :=  Hs(2VI,~)/{u e H , ( ~ / , ~ ) :  suppu  C M _ }  . 

(Equivalently,  the Sobolev norms with non-negat ive integer indices can be 
defined using a Riemannian  met r ic  on M and a connect ion on C.) We will 
also use L2(E) for Ho(E).  The  inner product  in Hs(E) will depend on the 
part icular  choice of the par t i t ion  of uni ty  of M;  however a different choice 
of par t i t ion of uni ty  will lead to an equivalent  inner product .  The  Sobolev 
s-norm of an element  u E H , (C)  will be denoted by Hull,. We point  out  
that  for s _> t, He(C) embeds into Hi(C). (This embedding,  however, is not  
compact  if 14; is of infinite dimension,  i.e. Rel l ich 's  l emma  does not  hold). 

DEFINITION 2.5. (1) A linear operator A : C~(£)  --* C~(E) is an A- 
smoothing operator, if A is of the form 

= J ,  A'A(X, y)u(y)dy (Au)(x) 

where the Schwartz kernel K A of A is a smooth section of the bundle B --* 
M × M .  The set of these operators is denoted by k~DO~a~(g). 

(2) A / /near  operator A : C a ( C )  --~ C ~ ( E )  is a pseudodifferential A- 
operator  of order  m i f  for some atlas (¢j, ~j)  j e J of E --* M, A = ~-~j Aj + T 
where T is an A-smoothing operator and the operators Aj are operators 
with support in the domain of Cj and, when expressed in local coordinates, 
pseudodifferential A-operators of order m. The set of these operators is 
denoted by ~DO~(C).  

In the case when M is a manifold wi th  boundary,  we will always assume 
that  pseudodifferential  operators  have the t ransmission proper ty  (cf. e.g. 
[Bo, section 2]). 3 One shows tha t  A • fftDO~(E) can be  extended,  for any 

s • R, to a bounded  linear opera tor  

A :  H~(E) --* H~_m(C) .  

aThe transmission property of a pseudodifferential operator can be defined in terms of the 
symbol of this operator: Let x = (x t,xd) be arbitrary local coordinates in a neighborhood 
of the boundary OM with the boundary defined by Xd = O, and denote by ~ -- (~t,~d) the 
dual coordinates. A pseudodifferential operator A with a classical symbol is said to have 
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The principal symbol (7 A of A can be defined invariantly as a smooth func- 
tion aA(X,-): T*M \ {0} --~ Z:A(S,). 

Note that Mm~DO~(C) identifies to ~DO~a°°(E) and, in general, .4- 
smoothing operators are not compact. 

As in the classical theory one develops a calculus for these pseudodiffer- 
ential operators. In particular, one shows that the composition A o B of two 
pseudodifferential operators A and B as well as the adjoint A* (with respect 
to the Hermitian structure on C ---* M) are pseudodifferential operators of 
the expected order. 

2.3 E l l ip t i c  p s e u d o d i f f e r e n t i a l  o p e r a t o r s .  

DEFINITION 2.6. An operator A E ~DO~($)  is said to be elliptic if the 
principal symbol of A, aA(X,~), is invertible for all x E M and all ~ E 
T*M \ {0}. 

To simplify the exposition we assume that M is closed. As in the classical 
case one can construct a parametrix, R(p), for the operator (/z - A) when 
A is elliptic and p E C \ U(x4)eT*M\{0} spec(aA(X, ~)). 

The operator R(/z) is an element of ~JDOA m (E) and represents an inverse 
of (# - A) up to smoothing operators. Let U be a chart of M which belongs 
to an atlas of E ---* M. Denote by ¢ and • the diffeoInorphisms 

¢ : R d - ~ U  C M 

: R d x W--* flu 
where U is an open subset of M and ~2 trivializes the bundle p : E -* M 
over U such that p(I) = ¢Pl with Pl : R d × )42 ---* R d. 

The symbol of R(p) in the chart U has an asymptotic expansion deter- 
mined inductively as follows: 

= ( p  - - t  

and, for j > 1, 

j - 1  

--k=o lal+l+k=j 
(2.5) 

t h e  t r ansmiss ion  p r o p e r t y  if the  homogeneous  c o m p o n e n t s  am-j  (x I, xd;~', ~d) of  t he  symbol  
expans ion  of  A (cf. Defini t ion 2.2) sat isfy 

k ~ , t . D~,~D~,am-j(x , 0 , 0 , 1 )  = e'~(m-3-1°'l)O~dD~,am~j(x',O;O,-1) . 

All pseudodifferential operators that arise from differential elliptic boundary value problems 
have the transmission property. 
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where ~ is a mul t i index,  c~ = ( c t l , . . . , ~ ) ,  (~[ = c~1!~2!---~fi ,  and D~ = 
(~0x) ~. The  t e rm r _ m _ j ( x , ~ , p )  is an element  of E A ( W , W )  and is posi- 

t ively homogeneous  of degree - m  - j in (~, #-~): 

r - m - j ( x ,  = . . . .  Jr-m- (x, (2.6) 

for any ~ • R a \ {0} and )~ > 0. 
As in tile classical case the paramet r ix  of an invert ible elliptic pseudo- 

differential opera tor  is readily used to show tha t  its inverse is also pseudo- 
differential. 

PROPOSITION 2.7. Assume that M is closed and that A • qJDO~(£) is 
elliptic. I r A  considered as a bounded linear operator, A : H.~(g)  --+ L2(£), 
is one-to-one and onto, then A -1 • q~DO~m(g). 

Proof (el. [Sh2]). Denote  by B • gADO3m(g) a paramet r ix  for A. The  
operators  T1 :=  A B  - Id and T2 = B A  - Id are in @DO~a°~(g). From 
this we conclude that  A -1 = B - A-1T1. The s ta tement  follows once we 
prove tha t  A-1T1 • gJDO~°~(g). Firs t  notice that  A-1T1 has a smooth  
Schwartz kernel, KA- ,  71 (x, y) • £;(gy, g~). This  is a consequence from the 
fact tha t  A -1 maps  C ~ ( g )  into itself which can be verified as follows: Let  
u • C°~(g) and set v :=  A - t u .  As B is a pseudodifferential  operator ,  it 
follows from above tha t  s ingsupp(Av) D singsupp(BAv) = singsupp(v + 
T2v) = singsupp(v).  

The  converse inclusion is also true as A is a pseudodifferential  oper- 
ator. Therefore,  s ingsupp(Av) = singsupp(v) and 1~ = singsupp(u) = 
singsupp(Av) = singsupp(v),  i.e. v • C°~(g). 

Having established tha t  A -1 is a pseudodifferential  opera tor  one verifies 
that A -1 is A-linear.  [] 

As in the classical theory one proves the following es t imates  for the 
resolvent: 

PROPOSITION 2.8 (cf. [S1],[Shl, Theorem 9.2]). Assume that A•OdDO.~(£) 
is an elliptic operator of  order m >_ 0 such that A : Hm(g) ~ L2(g) is one- 
to-one and onto. Further ,  assume that rr is an Agmon  angle for A. 

Then for A < 0 with I~l sufticiently large and for 0 _ m' <_ rn, 
m I 

- A)- ll0_m, < cm,  - (2.7) 

for some constants Cm, > O. 

2.4 Zeta- funct ion  and regularized de terminant  o f  an invert ible  el- 
liptic operator .  Let  (M, g) be a closed Riemannian  manifold.  Assume 
that A • ~ D O ~ ( C )  is elliptic and of posi t ive order, m > 0, wi th  7r as an 
Agmon angle; i.e. there exists e > 0 such that  
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(1) V,,~ MspecA = 0; 
As a consequence 7r is also a principal angle 

(2) v~,, n ( U~M,(~,~)ES:M spec(oA(x,~))) = ~. 
The solid angle V=,~ is defined as in the introduction. Note that (1) 

implies the invertibility of A viewed as a bounded linear operator, A : 
Hm(E) ---* L2(E). Moreover, for ~s  < 0, one can define the complex powers 
of A by 

A ~ := ~ #~(# - A ) - l d ,  (2.8) 

where 7,,¢ is a path in C as defined in section 1.2. For s satisfying 0 < 
k - l < ~ s <  k 6 N o n e d e f i n e s  

A ~ = AkA ~-k . 

It follows from Proposition 2.7 using arguments due to Seeley IS1], that 
A ~ • ~ D O ~ ( £ )  (after suitably generalizing the concept of order to complex 
numbers s • C), depending holomorphically on s. Moreover, for ~s < - d ,  
A s has a von Neumann trace 

trN(A s) := JM trNKAs(X'x)dx 

where KA. (x, y) • £(£y, £x) denotes the Schwartz kernel of A ~. 
For (~ • C°°(M, C) and ~s  > _d one defines the generalized zeta-function 

m 

ia,A(S) = trN(OtA -s)  • 

If A is selfadjoint and strictly positive one can derive, as in the classical case, 
the following heat trace representation of the generalized zeta function 

1 t~-le (-¢~) trN ae- tAdt  (2.9) ¢o,~(s) = ~ 

As in [S1] (cf. also [G, Lemma 1.7.7]) one shows 

T h e o r e m  2.9 (cf. [S1]). (1) Assume A • ~DO'~(£)  where m > 0 and A is 
elliptic with ~r as an Agmon angle. I r a  • C ~ ( M ,  C), then (a,A(S) admits 
a meromorphic extension to the entire s-plane. The extension has at most 
simple poles and s = 0 is a regular point. The value o[ ~,A(S)  at s = 0 is 
given by 

~o,A(O) = . / ,  a(x)Id(x)  (2.10) 

where Id(z) is a density on M.  In an appropriate coordinate chart, Id(x) is 
given by 

1 1 ~1=1 d~ ~ °c Id(x) = m (27r) d trs (r-m-d(X,  ~ , - p ) ) d # .  (2.11) 
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f f  A is a differential operator and d = d i m M  is odd, then Id(x) - O. 
(2) Assume that A(t) : Hm(£) ~ L2(£) is a family of classical pseudo- 

differential operators of order m depending in a C~-fashion on a parameter 
t varying in an open set of R. Assume that A(t) is elliptic and that there 
exists e' > 0 such that for all t E A 0 / ,  specA(t) N V~,~, = 0. Then (A(t)(s) 
is a family of functions holomorphic in s in a t-independent neighborhood 
of s = 0 which depends in a C~-fashion on t. 

Theorem 2.9 above allows us to introduce the (-regularized determinant 
of an elliptic operator A E q~DO~(£) of order m > 0 with zc as an Agmon 
angle: 

To treat the case where A is not invertible, first note the following: 

LEMMA 2.10. Assume that A E q~DO~(£), m > O, is elliptic. Then the 
nullspace of A, Null(A), is an A-Hilbert module of finite yon Neumann 
dimension, dimN (Null(A)). 

Sketch of the proof. It is sufficient to prove the statement in the case when 
A is self-adjoint and non-negative because Null(A) = Null(A'A). Let k be 
a positive integer such that km > d. Then, by Proposition 2.7, (I  + A) -k 
is a pseudodifferential operator of order - k in ,  and its Schwartz kernel is 
continuous. Therefore, 

t r N ( I +  A) -k < cx~ . 

On the other hand, 

trN(I + A) -k > dimg (Null(A)) , 

hence the result, n 
Assume that A is an elliptic operator, A E ~DO~(C) ,  of order m > 0 

with 7r as a weak Agmon angle (cf. Definition 1.8). Then the operator A + A 
with A > 0 has Ir as an Agmon angle and logde ty(A + A) is a real analytic 
function in A. Define logdetN(A ) to be the element in D represented by 
the analytic function 

logdetN(A ) := log detN(A + A) - dimN (Null(A))log A. (2.12) 

DEFINITION 2.11. A is of determinant class if 

hm0 (log det N (A + A) - dimN (Null(A))log A) (2.13) 

exists. In this case, log det N A is a real number. 

If A is selfadjoint and nonnegative, there is a functional calculus for A. 
In particular, one can introduce the spectral projections Q(A) corresponding 
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to the intervals ( -co ,  X]. Using Proposition 2.8 and the assumption that 
A is nonnegative, one verifies that Q(A) is in ~PDO~a~(E) for any value of 
A E R. Denote the distribution kernel of Q(A) by K~ and define the spectral 
distribution function 

NA(A) := ./~ trNK~(/,  x ) d x .  (2.14) 

Note that NA(A) is nonnegative, right continuous and monotone increasing 
as a function of A. Moreover, NA(X) = 0 for A < 0 and there exists a 
constant C > 0, so that 

NA(A) < CIA[~ , .k >__ 1 . (2.15) 

The asymptotic estimate (2.15) is obtained by observing that (A-t-1)-~ (A+ 
1 ) ( A + I ) - ~  is an elliptic, selfadjoint, positive operator in ~2DO°A(S). (A is 
the Laplacian acting on C°¢(S) induced by the canonical flat connection of 
g" --~ M and a Riemannian metric g.) Therefore there exists C '  > 0, so that 
C'Id  < ( A + I ) - r ~ / 4 ( A + I ) ( A + I )  -m/4. This implies that C ' ( A + I )  -m/2 < 
(A+I )  or NA+I()~) <_ NC,(A+I)m/2(A) = NA+I(( ~, )2/m) • By the variational 
characterization of N~+I(A), N~+I(A) < C"A a/2 for some constant C" > 0 
and all A _> 1. 

PROPOSITION 2.12. Assume that A • ~ D O ~ ( S )  is an elliptic, setfadjoint, 
nonnegative operator of order m > 1 with 7r as a principal angle. Then the 
following statements are equivalent: 

(1) A is of determinant class. 
(2) f:+ logAdNA(A) > -oc .  

Here the integral f:+ denotes the Stieltjes integral on the half open interval 
(0, 1]. 

(3) f ~  ~(trNe -*A -- dimN(NullA))dx < ~c. 

The proof of the proposition uses the heat kernel representation of the 
determinant which we briefly discuss (ef. [G, section 1.6]). Let 7 be a path 
in C defined by the composition 7 -  o 7+ of two straight half lines: 

7 + : =  { x + i ( x + l ) ;  - l < x < o c }  

7 -  :=  {x - i(x + l); - l < x < o o }  

where 7+ starts at infinity and 7 -  starts at x = -1 .  Using Proposition 2.8 
we may define the following bounded linear operator on L2(E): 

e-tA ._ ~ f e-tA(A -- A)-ld)~ 
" -  2~ri 

One verifies that e -tA • ~PDO~4~(E) for t > 0. Hence, e -tA has a smooth 
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kernel, denoted KA(X, y, t), with values in B and admits a finite von Neu- 
mann trace, trse -tA, given by 

trNe -~a = e-~dNA(A) . 

As in the classical ease one shows that for t ~ 0, the kernel KA(X, y, t) has 
an expansion on the diagonal x = y of the form (N _> 1 arbitrary) 

N--I N 

K(x, x, t) = E tz~-~dlj(x) + E (tj logt)mj(x) + O(t-~-~). (2.16) 
j = 0  j = l  

When A is elliptic nonnegative and selfadjoint then ld = Id; this can be 
verified as in [G, p. 79]. 

Proof of Proposition 2.12. Using the representation (2.9) of the zeta- 
function we deduce that 

d 1 1 
logdetN(A + A) = -~ss s=oF-~ ~o ts-I (trNe-(A+X)tdt) 

/ ~  t -1 (trNe-(A+~)tdt) . (2.17) 

The expansion (2.16) is used to show that 

d ~ [1  t ~-1 ( trNe-(A+~)t _ dimN (Null(A))e-~t)dt 
ds ~=oF(s) J0 

is a continuous function of )~ for A >_ 0. To analyze 

G(~) = t -1 (trNe -(A+~)~ - dimN(Null(A))e-~')dt 

we write, applying Pubini's theorem together with trNe-A~= ~ e-"tdNA(#) 

and dimN (Null(A)) = NA(0), 

G(A) = dNA(#) t-le-("+~)tdt 
+ 

L = dNA+x(#) t- le-"tdt  • 
+ 

For 0 < A < 1, write G(A) = GI(A) + G2()~) where GI(A) and e2()~) are 
given by 

GI()~) = dNA+,~(#) t- le-"tdt  
+ 

G2()~) = dNA+x(#) t-te-"~dt • 
+ 
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The function GI(A) is estimated in a straightforward way. Concerning 
G2(A), note that 

t-le-~'~dt= - l o g #  + (1 - e - " ) l o g #  + e-81ogsds 

and that the function (1 - e - " ) l o g #  + f o~ e_ 8 log sds is bounded for # E 
[0, 1]. This proves the equivalence of (1) and (2). The equivalence of (2) 
and (3) follows by the same estimates. [] 

2.5 El l ip t ic  b o u n d a r y  value  p rob l ems .  The previous discussion on the 
zeta function and the determinants of elliptic differential operators on closed 
manifolds can be extended to elliptic boundary values problems on compact 
manifolds with boundary. In the case A = C this was done by Seeley (cf. 
[$2]). In this paper we will consider only Dirichlet type boundary value 
problems for elliptic differential operators of Laplace-Beltrami type of even 
order. An elliptic operator B of order 2k, k > 0 is of Laplace-Beltrami type 
if the principal symbol is of the form aB(x, ~) = 11~ll2kIdc~. 

Let (M, g) be a compact Riemannian manifold with boundary OM 
0, A a second order positive selfadjoint differential operator of Laplace- 
Beltrami type and let B be an elliptic differential operator of Laplace- 
Beltrami type of order 2k. Denote by J : C~¢(E) --* C°~(EIOM) the trace 
operator which associates to u E C°0(C) its restriction, UlOM. Introduce the 
restriction BD: Cy(E)  --* C°¢(C) of B to C ~ ( ~ )  := {u E C°~(C) : uloM = 
O, AUloM = 0 , ' '  ",Ak-lUlOM = 0}. Notice that C~(C)  depends on A and 
on the order of B. 

Following [$2] one constructs a parametrix, R(#), for It - BD in a similar 
fashion as in the case 0M = 0, describing inductively the asymptotic expan- 
sion of the symbol of the parametrix. The constructions differ, in the case 
of a manifold with boundary, in that each term in the symbol expansion 
includes a term arising from the boundary condition. These added terms 
arising from the boundary conditions only depend on the symbol expansion 
of B, A and its derivatives along the boundary OM. 

The trace operator J : C°°(C) --~ C°¢(E[OM) induces bounded operators 
JA ~ : Hm(C) --* Hm_2r+~(E]OM ) (m e Z,r e N). Propositions 2.7 and 2.8 

remain true if one replaces Hm(C) with {uEgm(E) [ J u = 0 , . . . ,  JAk-lu=O}. 
One can introduce complex powers of BD and, for ~s > ~, the zeta- 

function (BD(S) and its generalized version ~,BD(S) (cf. section 2.4). 
Following Seeley's arguments one obtains the analog of Theorem 2.9. 

T h e o r e m  2.9 ~. Let ( M, g) be a compact Riemannian manifold with bound- 
ary OM ~ O. Assume that A is an A-linear selfadjoint, positive, differential 
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operator of order 2 of Laplace-Beltrami type and B is an A-//near differen- 
tial operator of order 21~ and of Laplace-Beltrami type. (Note that rc is an 
Agmon angle for A and therefore a principal angle as well). Suppose that 
7r is an Agmon angle for BD. The function ~,BD (S) admits a meromorphic 
continuation to the entire s-plane. The continuation has at most simple 
poles and s = 0 is a regular point. The value of (~,BD(S) at s = 0 is given 
by 

l "  ]. + ]oM (2.18) 

where in a coordinate chart of ( M , £  --~ M),  Ia(x) is defined as in (2.11). 
In a coordinate chart of (OM, £]OM ~ OM), /3d(X) is given by a formula 
similar to that found in [$2] involving at most the first d terms of the symbol 
expansion of A and its derivatives up to order d. 

Theorem 2.9 ~ allows us to introduce the (-regularized determinant of BD 
by 

d ~=O~BD(S ) (2.19) logdetg BD = ---~s 

3. Asymptotic Expansion and the Mayer-Vietoris Type Formula 
for Determinants 

3.1 Parametric pseudodifferential operators. Let A0,~ denote the 
solid angle in C given by Ao,~ -- {re~°; r _ 0, 2~r[9[ < e}. Consider a family 
of pseudodifferential operators A(t), t E Ao,~ with A(t) E ~DO'~(£).  

DEFINITION 3.1. Let M be a closed manifold. A(t)  is a 1-parameter family 
of weight X in ~ D O ~ ( £ )  i f  for any chart ¢ : X --~ U of an atlas of £ --* 
M (where X = R d, or in case U is a neighborhood of a boundary point, 
X = R~) and for all h, h' • C~(U) ,  the operator h'Ah, when expressed in 
local coordinates, has an £:A(W, W)-valued symbol a = ah,h,;U satisfying 
the following properties: 
(1) for any multiindices ~,/3 there is a constant C~,~ > 0 such that 

< + + 1ttl) 

where x E X ,  ~ E R d, and t E A0,~; 
(2) a has an asymptotic expansion 

a , v E ¢ ( ~ , t ) a m - j ( x , ~ , t )  
j~o 

(3.1) 
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with ¢ E C ~ ( R  d x Ao,~) satisfying 

.1"o if l(~,t)l  < ½ ¢(~,t) 
t 1 ffl(~,t)l  > 1 

and am-~ ~ C°~( X, Rd\ {0}, A0,,; Z: ~(W, W) ) depending in a Ca-eashion 
on the parameter t, has compact x-support and is positive homogeneous 
of degree m - j in ~,t~ , i.e. 

a m - A z ,  T~, T~t) = r " - ~ a m - A x ,  ~, t) 
for all r > O. 

B y  (3.1) we mean that for any multiindices o~, ~ and any N > 0 there exists 
constants Co,a,N > 0, such that for any t C A0,, 

N - 1  

A similar concept is necessary for compact manifolds with boundary. 
For this paper it suffices to describe such a concept only for differential 
operators. 

DEFINITION 3.1'. Let M be a compact manifold with boundary. A(t) is 
a loparameter family of A-linear differentiM operators of order m and of 
weight X if, in a local chart, 

m 

A(t) = ~ am_j(x, D, t) 
j = O  

where D = !O and am_j(x,  ~, t) is a polynomial in ~ with i x 

j .  
am_j(x,  r~, 7"xt) = "cm-J am-j (x ,~ ,  t) 

for all T > O. 

In the case where M is closed one proves (cL e.g. [Shl, Theorem 9.1]) 
that  for any s 6 R and l > m, A(t)  is a bounded linear operator, A(t) : 
Hs(£)  --* Hs- l (£) .  Denote by IIIA(t)llls-,-,  the operator norm of A(t), 
viewed as an operator A(t) : H~(£) ~ H~-1(£). 

T h e o r e m  3.2 (cL [Shl, Theorem 9.1]). Let M be closed. The following 
estimates hold: 

(1) if m > 0 and l > rn, then llA(t)ll . . . .  ~ < c,,~(1 + Itl~)'~; 
(2) i f m  < 0 and m < l < O, then IIA(t)ll . . . .  ~ < C~,t(1 + IriS) - ( t -m).  

DEFINITION 3.3. A 1-parameter family A(t)  in ~DO'~(£)  is e11iptic with 
parameter, ff for any chart ¢ : X ~ U of  an atlas of £ --* M (where 
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X = R d, or in case U is a neighborhood of a boundary point, X = R~) 
and for all h,h '  E C~(U) ,  the operator h'Ah, when expressed in local 
coordinates, has principal symbol am(x, ~, t) with values in £~(W,  14;) such 
that for all x E X with h(¢(x))h'(¢(x))  ~ O, am(x,~,t)  is invertible for 
(~,t) E (R d x A0,~) \ {(0,0)}. 

Let M be closed. For a 1-parameter family A(t) in ffJDO~(£) elliptic 
with parameter, one constructs a parametrix, R(/2, t), for # - A(t) : Given 
/2 ~ U~eAo., spec(A(t)), R(/2, t) is a 1-parameter family in kODO~4m(£) sat- 
isfying 

R(#,t)(/2 - A(t)) - Id • ~D0~4~(£)  

and 

(/2 - A(t))R(/2, t) - Id • 9DO~°°(£)  . 

In local coordinates the symbol of R(/2, t) is constructed inductively: 

r _ ~ ( x , ( , t , / 2 )  = (/2 - a m ( x , ¢ , t ) )  -1  

r_m_j(X,( , t , /2)  (3.2) 

= r_m(x,~,t , /2) E -~..cg~am_l(x,~,t)D,r_m_k(x,~,t,/2) 
- H+t+k=j 

where D~ = 1-0~ ~. The term r_m-j(x ,~, t , /2)  is positive homogeneous of 

degree - m  - j  in (~, t{,/2-,).± 
In the case where M is compact with nonempty boundary, one can con- 

struct a parametrix R(p, t) for a one parameter family BD(t) with boundary 
conditions defined by A (cf. comment and footnote following Definition 2.5 
and section 2.5) when B(t)  is a family of differential operators of Laplace 
Beltrami type elliptic with parameter. The parametrix is given by a sum of 
a pseudodifferential operator and a singular Green operator. The symbol 
of the pseudodifferential operator is constructed in the same way as in the 
ease of a manifold without boundary. The symbol of the singular Green 
operator only depends on the symbol expansion of B(t)  and A and their 
derivatives along the boundary OM. 

3.2 A s y m p t o t i c  e x p a n s i o n  o f  d e t e r m i n a n t s .  As in [BuFrKa2, Ap- 
pendix], one proves a result concerning the asymptotic expansion for the 
determinant of a 1-parameter family A(t) in ~ D O ~ ( £ ) ,  A(t) elliptic with 
parameter. 

T h e o r e m  3.4. Let M be a cIosed manifold. Assume that A(t)  is a 1- 
parameter family in ~ D O ~ ( $ )  of order m >_ 1, elliptic with parameter 
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of weight X. Further assume that there exists E' > 0 such that for all 
t E Ao,e, spec(A(t)) f3 V~,~, = 0. Then the function logdet N A(t) admits an 
asymptotic expansion for t --* cx~ of the form 

d d 
log det N A(t) ,,~ Z -fJ I tlf + ~ b~ Itlz log Itl (3.3) 

--~O 0 

where -fj = fMaj(x ,  ~3)dx, bj = fMbj(x,  ~ )dx ,  are defined by smooth 
densities aj(x, ~ )  and bj(x, ~ ) ,  which can be computed by a formuIa in- 
volving finitely many terms in the symbol expansion of A(t) and finitely 
many of its derivatives. 

In particular, with respect to a coordinate chart, ao (x, ]~) is given by 

( x , ~ [ )  = d 1 1 . ( r_m_a(x ,~  _~l,#)) o0 t t 

1 - -  --°° \ ~, / /  (r_m_d (X, ,  _~[ _]Z)) (3.4) o 

A similar result holds in the case where M has a nonempty boundary, 
OM ~ 0 (cf. [BuFrKa2]). With the notation introduced in section 2.5, one 
obtains 

T h e o r e m  3.5. Let (M, g) be a compact Riemannian manifold with bound- 
ary OM ~ $. Assume that A is a second order selfadjoint, positive differen- 
tial operator of Laplace Beltrami type and B(t), t E A0,~, is a 1-parameter 
family of order 2k differential operators of Laplace Beltrami type, elliptic 
with parameter of weight X and k > 1. Assume that there exists e' > 0 such 
that for all t E A0,~,, spec BD(t)N V,~,~, = 0 (cf. section 2.5 for the definition 
Of BD). Then the function logdet N Bo(t)  admits an asymptotic expansion 
for t ~ oo of the form 

d d 
l°gdetNBD(t) "~ E ('aJ + ~  )ltl~ +~(bJ +b~ )ltl~l°gltl (3.5) 

j=-oo j=0 

where -fj and -bj are given as in Theorem 3.4. The quantities -fib and -b~ are 
contributions from the boundary and are of the form 

; 

In a coordinate chart of (OM, glOM --* OM) the densities a b (x, ~ )  are given 
by a formu/a each involving only finitely many terms in the symbol expan- 
sion of B(t) while the densities bb(x, ~ )  are given by a formula involving 
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only finitely many  terms in the symbol expansions of B(t)  and A in a neigh- 
borhood of OM. 

3.3 M a y e r - V i e t o r i s  t y p e  fo rm u l a  for d e t e r m i n a n t s .  We restrict 
ourselves to the case needed for this paper. We assume throughout this 
subsection that (M, g) is a closed Riemannian manifold. Let F be a smooth 
embedded hypersurface in M with trivial normal bundle. Consider an el- 
liptic, selfadjoint, positive, differential operator A of order 2, A : C°~(E) --~ 
C°°(E), of Laplace-Beltrami type (i.e. the principal symbol is of the form 
hA(X, ~) = [[~H2IdE~) with spec(A) C [~, oo) for some e > 0. Denote by Mr 
the manifold whose interior is M \ F ,  and whose boundary is OMr = F + tJF-,  
where F + and F -  are both copies of F. Let gr be the Riemannian metric on 
Mr induced by the metric g and let $r --~ Mr be the pullback of the bundle 
C ---* M by the canonical map from Mr to M. The operator A induces the 
operator A r : C°°(Er) ~ C~(Er) .  Denote by A r : C~¢($r) ~ C°°(Cr), 
the restriction of A r to C~(Er )  := {u E C°°($r) : U[OMr = 0}. Then A r 
is elliptic and positive with spec(A r )  C [e, oo). Thus, in particular, 7r is an 
Agmon angle for A r .  

Introduce the Dirichlet to Neumann operator, RDN, associated to a unit 
vector field normal to F. This operator is defined as the composition 

C°°(EIr) ~-~ C ~ ( E I r + ) ~ C ~ ( $ l r  - )  ~ C~(Sr )  

g C ~ ( S I r + ) ~ C ~ ( S { r  _) ~ C ~ ( S { r ) .  

Here Aia is the diagonal operator, Aia(f) -- (f, f) ,  Aif is the difference 
operator, Aif ( f+,  f - )  ---- f+  - f - ,  and PD is the Poisson operator associated 
to A r, i.e. the operator which maps (f+, f_)  • C°°(C]r+) $ C~(E i r  - )  to 
the solution of the problem Au = O, U]r± -- f+. Let n(x),  x • F, be a vector 
field of unit covectors normal to F, pointing outward with respect to F+. 
The operator N is an arbitrary first order differential operator on F with 
the principal symbol aN(X,~) = i(n(x) ,~)Id.  Note that the operator RDN 
does not depend on the choice of N. In fact, on F, two different choices of 
N differ by a zero-order operator, and the contribution of this zero-order 
operator disappears after Air has been applied. The following result is an 
extension of a result proven in [BuFrKa2] for ,4 = C (cf. also ILl). 

T h e o r e m  3.6. Assume that ( M,  g) is a closed Riemannian manifold and A 
is an elliptic, selfadjoint, positive differential operator, A : C ~ (  $) -+ C°°(C) 
of order 2 of Laplace-Beltrami type with spec(A) C [e, oo) /'or some e > O. 
Then RDN is an invertible pseudodifferential operator in @DO~(F). The 
inverse RD~ is given by 

RD1N = J r A - l (  • ® $r) (3.7) 
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where Jr is the trace operator Jr  : Hs($) ~ H~-l(E[r)  and 5r denotes 
the Dirac distribution along F (cf. [BuFrKa2, (4.5)]). As a consequence one 
concludes 
(1) RDN is selfadjoint and positive with speC(RDN) C [e', c¢) for some 

e' > O. In particular, ~r is an Agmon angle for RON. 
(2) The principal symbol, a(RD~v) , of RD~ can be computed in terms of 

the principal symbol a(A -1) of A -1 (cf. [BuFrKa2, (4.6)]): 

1 ~a(A_l ) (x , ,O,~ , ,q )d  ~ (3.8) o(nh~)(x', ~') = 

where x = (x', w) are coordinates in a collar neighborhood o f f  such that 
x t are coordinates o f f  and the normal vector field along F is represented 
by o In a coordinate chart for F which arises from a chart belonging 
to an atlas of C[r ~ F, the symbol of RDN consists of terms which 
depend only on the terms of the expansion of the symbol of A and its 
derivatives in an arbitrarily small neighborhood of F. 

(3) 
det N(A) = ~det N(ArD) det N(RoN) (3.9) 

where e = exp ( f r  c(x)) and the density 4x) ,  when e x p r e s s e d  in  ~ co- 
ordinate chart o f f  which is contained in an atlas of £[r -* F, depends 
only on the symbol of A and its derivatives in an arbitrarily small neigh- 
borhood of F. 

(4) Assume that instead of the single operator A, there is a family A(~) : 
C~(£)  --~ C°°(C) of differential operators of order 2 of Laplace-Beltrami 
type with parameter A 6 A0,~,, e' > O, of weight X such that A(A) is 
elliptic and selfadjoint for each A. Introduce as above A(A)rD, RDN()t) 
and assume that spec(A()t)) N V=,e, -- 0 for some e' > 0 and for all 
A E Ao,~,. Then RDN(A) is an invertible family ofpseudodifferential 
operators with parameter (cf. [BuFrKa2, (3.13)]) of order I and weight X. 

In the remainder of this section we will present a proof of this theorem. 
We begin with some observation about the operator A r .  

LEMMA 3.7. (li). The operator A~ : C ~ ( £ r )  --* C°~(£r) has a self-adjoint 
extension ~ r  with domain dom(fi, D) := {u e H2(£r) [ Ju = 0}. 

lii. ArD induces a quadratic form QA with domain dom(QA) := {u E 
gl (£r )  l Ju = 0}. 

(2) The operator Ar D is positive definite and its spectrum bounded from 
below by e. 

(3) The operator 

(A r, J) :  C°~(Er) ~ C~(~r)~  C°~(Erlr+ur-) 
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defined by (A r,  J)u  = (Aru,  Ju) can be extended to an invertible operator 
(A r,  J ) - ,  

(A r,  J ) - :  H2(£r)  ~ L2(8r) (9 H2_½(Crlr+ur-)  • 

Proof. (1) Using a part i t ion of unity and integration by parts one shows 
that  A r is symmetric.  Clearly, f i r  is well defined and selfadjoint. 

(2) To prove that  f i r  is positive definite and its spectrum bounded away 
from zero, one first notices that  for any u E C ~ ( E r )  with u[ r+ur-  = 0, one 
can find a sequence {¢~} such that  supp(¢~) C M \ F and Cn converges 
to u in g l ( E r ) .  Observe that  ( A r ¢ ~ , ¢ ~ /  = (A¢~,¢n/  _> ell¢,ll 2 since 
the spectrum of A is contained in [e, oc). Then, integrating by parts, one 
concludes that  

QA(U) = lim (A¢n,~n) >- ellull 2 • 
n ~ o o  

(3) As f i r  is injective, so is the extension (A r ,  J ) - .  To prove that  
this extension is onto, consider f E L2(Cr) and ~o E H2_½(£rI r+ur- ) .  

Choose any section v E H2(Sr) so that  J v  = ~o. As .~r  is invertible, 
there exists w • H2(Cr) satisfying .4row = f -- fi, r v  and the boundary 
conditions J w  = O. Therefore u = w + v is an element in H2(Er) with 
(Ar,  J ) - u  = ( f ,  4). Altogether one concludes that  (A r, J ) -  is an isomor- 
phism of Hilbert  modules. [] 

In the proof of Theorem 3.6 we will use the operator A - akt ,  a~ = 
e"  ~ for 0 < k < d -  1, where d = dim(M).  Note that  we have 

LEMMA 3.8. The following operators axe invertible (0 < k < d - 1, and 
t?_o) 

(A r - akt,  J)  : C ~ ( £ r )  ~ C ~ ( E r )  $ C~(Srlr+ur -) • 

Proof. As ¢~k • C \ R + and thus, for t > 0, (~kt ~ spec(ArD), the operator 
(A r - akt ,  J )  is injective. To prove that  this operator is onto and then 
invertible one argues as in the proof of Lemma 3.7 (3). n 

Since (A r - akt,  J)  is invertible, we can define the Poisson operator  
P(akt )  associated to (A r -  akt ,  J), P(ak t )  : C°°(£1r+, , r-)  ~ C°°(Er),  
i.e. for ~o • C~(£1c+ur- ) ,  u = P(ak t ) (~)  is the solution in C°°(Cr) of 
(A r - akt)u  = 0 with boundary conditions u l r+u r -  = ~o. 

Let R(ak t )  : C ~ ( £ [ r )  --* C°°(C[r) be the Dirichlet to Neumann operator  
corresponding to Ar  - akt. Then the following result holds. 

LEMMA 3.9. For 0 < k < d - 1, and t > O, R(~k t )  is an invertible classical 
$ D O  in ~DO~(£1r), which is elliptic with parameter  t of  weight 1. 
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Proof. In a sufficiently small collar neighborhood U of F, choose coordinates 
0 x =- (x ' , s )  such that  (x ' ,0)  E F and ~sl(x,,o) =- n(,,,o). Let ~ -- (~',~) be 

coordinates in the cotangent space corresponding to the coordinates (x', s). 
0 ~ 1 A ou Write (A - akt)  = -A2-g-~s2 + 7 1-g7 + Ao, where the Aj ' s  are differential 

operators of order at  most 2 - j .  The Aj ' s  induce on F differential operators, 
again denoted by Aj ,  A j  : C ~ ( E I r )  --* C°~(E]F). Since the leading symbol 
of A is given by a(A) (x ,  (~', T/)) = H(~',y)H 2 and since n(,,,o) is the unit 
normal to F at  (x', 0), one has d2(x) = Id~ e E n d , ( E , ,  £~) on F. 

For any ~0 e C~°(EIr) and t _> 0 we can choose u e C~°(Er) NC(E)  such 
ou (x' s~ jump that  ( A - a k t ) u  = O o n M \ F  and u]r---- ~0. Then ~--2~ , ~ h a s h  

across F, which is -R(ak t ) (~2) (x ' ) .  Hence 

Ou , 
-~s (X , s) = -R (C~k t ) (~ ) ( x ' ) g ( s )  + v(z ' ,  s) , 

where v(x' ,  s) ~ C~¢(Cr lu)n  C(EIu ) and H ( s )  is the Heavyside function. 
Therefore, on U, 

Ov 1 .  Ou 
( A - ak t )u  -- A 2 R ( a k t ) ( ~ )  ~ ~r - A 2 ~ s  -4- -~ d l -~s  A- d o u  . 

Since (A - ak t )u  = 0 on M \ F, we conclude that,  on U [3 (M \ F), 

Ov 1 A Ou 
- A 2 ~ s  + - ~ 1 - ~ s + A O u = O .  

1A o~ L2(EIu), it follows that  As - - ~  + 7 l ~ T T A o u E  

(A - . k t ) u  = A2 ( n ( ~ k t ) ~  ® ~r) = R(~kt )~  ® ~r 

as A2 = Id  on F. Note that  (A - akt)  : L2(E) --~ H-2(C) is invertible and 
therefore one obtains for ~ E C ~ ( E I r )  

= Jr" (A - akt)  -1 (R(a~t)~p ® 5r) 

where J r  is the restriction operator  to F. From this identity it follows that  
R(ak t )  is invertible. Moreover, setting ¢ = R(ak t )~ ,  

R ( a k t ) - l  ¢ = Jr"  ( A -  akt)  -1 • ( ¢ @ $ r )  

= Jr. f.._, f (("'[(A- 

Hence R ( a k t )  -1 is in ffJDO~l(£]r) with full symbol an(.k~)-~ (x' ,  ~') given 
by 

aR(~ , t ) - , (x ' ,~ ' )  = - ~  a(A-~,t)-,(x' ,O,~',71)d~l . (3.10) 
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Therefore R(akt) is an operator in ODO~(glr) with parameter t of weight 1. 
The ellipticity with parameter of R(akt) follows from the formula (3.10) of 
the symbol and the fact that (A - akt) is elliptic with parameter, o 

LEMMA 3.10. For e' sufficiently small and 0 _< k _< d - 1, the operator 
R(c~kt) does not have any eigenvalues in V~,e, where V~,~, = {z E C [ 

- ~' < a r g ( z )  < ~ + ~' o~ Izl < ~'). n e . c e  n ( ~ t )  has  ~ as  an A g m o n  
~tng]e. 

Proof. By assumption, A : C°°(£) --~ C°~(E) is self-adjoint and positive 
definite and its spectrum is bounded from below by e > 0. Consider 
the spectral projections Q(~) corresponding to the operator A, defined 
in section 2. Notice that Q(A) are smoothing operators and, for A < e, 
Q(A) = 0. Moreover, for any ~ E C°°(EIr), ~®6r is an element in H-I(~ ' ) ,  
thus Q(A)(~; ® 6r) • C°~(C) and (A - a k t ) - t ( ~  ® 6r) • L2(E). Since 
R(akt) -1 = Jr (n  - akt)-x(  • ® 6r), by the spectral representation theorem 
for A, one obtains 

Q~(c~kt)-l~l, ~ )  = (~ - akt)-ld(Q(.X)(~ ® ~r), Q(),)(~2 ® ~ r ) ) ,  

px, c22 • C~(g l r ) .  Together with Lemma 3.9 this implies that V,n~, has an 
empty intersection with spec R(~kt) for 0 < e' sufficiently small. [] 

Using the above formula together with formula (3.10), one obtains as an 
immediate consequence the following: 

COROLLARY 3.11. The operator RDN = R(O) iS essentially self-adjoint 
and positive definite. The principal symbol of RD~ is given by (3.8) and 
its symbol has the property described in part (2) of Theorem 3.6. 

Having thus established parts (1) and (2) in Theorem 3.6 our next task 
is to prove formula (3.9). 

Consider the families of operators A a + t a and (At) d + t a for nonnegative 
real numbers t (d = dim(M)). Then A d + t d and (At) d + t d are elliptic 
differential operators with parameter, where the weight of t is 2. The reason 
for considering these operators comes from the fact that the inverse of Aa+t d 
is of trace class while the inverse of A + t is not if d = dim(M) > 2. If 
the operator A -1 were of trace class, the proof of formula (3.9) would be 
considerably simpler. Our strategy will be to first prove a version of formula 
(3.9) for A d, using the fact that (A~) - t  is of trace class and derive (3.9) 
from it. 

Note that 

= i~-" . i ' + ~  ~-'~ (At) a + t  a (A r - t e i ~ ) ( A  r - t e  ) . . . ( A  r - r e  ) .  
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Let us introduce the boundary operators 

J d ( t ) , N d ( t ) :  C ~ ( £ r )  --* ( ~gd C ~ ( £ r l r + u r - ) )  

Jd(t)  = (J, J ( A  r - c~0t), J ( A  r - c~l t ) (A r - ~ot) ,  

• . . ,  J ( A  r -  C e d _ 2 t ) . . . ( A  r -- ~ot) )  , 

and 
Nd( t )  = ( N ,  N ( A  r - ao t ) ,  N ( A  r - a l t ) ( A  r - ao t ) ,  

• " , N ( A  r -  ~ d - 2 t ) " ' ( A  r -- ~0t)) • 

By Lemma 3.8 

( (At)  d q- t d, Ja( t ) )  : C°~(gr) ~ C ~ ( £ r )  ~ ( ~d C ~ ( £ r l r + u r - ) )  

is invertible. Therefore the corresponding Poisson operator tSd(t) : 
~9aC~(g[r+ur  - )  ~ C ~ ( g r )  is well defined. 

LEMMA 3.12. T h e  Poisson opera tor  Pal(t) assoc ia ted  to ( (At )  d + t d, Ja(t)  ) 
is g iven  by  

Pd( t ) (~o ,"  " , ~d-1)  = P(c~ot)~o + (A r - c ~ o t ) D 1 P ( ~ l t ) ~ l +  

- . .  + (A r - C~DI(A r -- c~lt)D1 . . .  (A r - a a _ 2 t ) D 1 P ( ~ a _ x t ) ~ a _ l )  , 

where (A r - ~ k t ) D  is the  res tr ic t ion  o f  A r - ~ k t  to {u  • C°°(gr)  I J u  = 0}. 

Proo f .  Denoting the right-hand side of the claimed identity by Ld( t ) (~o ,  
• - ' ,  ~d-1) one obtains 

( (Ar)  d + td) • L d ( t ) ( ~ o ,  " " , ~d -1 )  = O . 

Moreover, for 0 g k < d -  2, L d ( t ) ( ~ o , " ' , ~ d - a )  satisfies the boundary 
conditions 

( J (A  r - a k - l t ) ( A  r - a k - z t ) ' "  (A r - a o t ) ) L a ( t ) ( ~ o , ' " ,  ~d-1) = 

J ( A  r - a k - l t )  " " " (A r - a o t ) P ( a o t ) ~ o  + ' "  + 

J (  A r - a k - 1  t ) ' ' '  (A r - a o t ) (  A r - -aot)D 1 ' ' "  (A r - - a k - l  t)  D 1 P ( a k t  )99k + "'" q- 

J ( A  r - a k - l t )  " " (A r - ao t ) (  a r - a o t ) 5 1 ' ' "  (A r - a a - 2 t ) 5 l  P ( a d - l  t )~a-1  

since ( A  r - a j t ) P ( a j t )  = 0 and  J ( A  r - a j t ) D  1 = O. T h e s e  two properties 
of Ld( t )  establish the claimed identity. D 

Further, let us consider the boundary conditions Jd(t)  and Nd( t )  for 
t = 0. Note that  

Jd(O) = (J,  j A r ,  . . .  , j ( A r )  a - l )  ; Nd(O) = ( Y ,  N A r ,  . . .  , N ( A r )  a-x)  • 

by setting 
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Let ~(t) be the following lower-triangular d x d matrix 

~(t) = c~0t 1 .- .  
• . • , .  " 

\C~oa-itd-1 t~-2 V,~-2"c~d-2-k~ 
Z..~k-----0 0 1 " " " 

Then Jd(O) = f~(t)Jd(t) as well as Nd(O) = f~(t)Nd(t). Let Pal(t) := 
Pd(t )~( t )  -1 and notice that Pa(t) is the Poisson operator corresponding 
to ((Ar) d + t d, Yd(O)). 

Consider the operator/~d(t) = lX i f 'Nd( t ) ' thd( t ) 'A i ,  with A i r  := ~ d A i f  
and Ai~ : =  S d / k i a  • Then 

l ~ d ( t ) ( ~ 9 0 ,  " " " , ~ d - 1 )  = 

Z~if - { U, N ( A  r - oot),  . " ,  N ( A  r - c~4_2t)-' '  (A r - c~ot)}. 

{P(crot) l~ia ~o "~- (A r - ~ot)D1P(Crl t) A i .  ~1 + ' "  "+ 

(A r - ~ot)DI(A r -- ~ l t )  D 1. " " ( a  r - Ved_2t)DI P(ved_lt) Zki~ ~d-1}  • 

Thus ha(t)  : s a C ~ ( C I r )  --* SaC~(CIr )  can be represented by a d × d 
matrix of upper triangular form, 

R ( o r )  R ( ~ t )  . . .  

• . . •  ' 

0 . . .  R( i t )  

where R(ak t )  is the Dirichlet to Neumann operator corresponding to A r - ~ k t  
defined earlier• In particular, in view of Lemma 3.10, one concludes that 
t~d(t) is invertible and has r as an Agmon angle. 

Finally introduce the operator Rd(t) associated to (At)  d + t ~, Jd(0) and 
Nd(0). Then 

/~d(t) = E i f "  Yd( t )  • !hd(t) • £ i ,  = ~ i f '  ft(t) - 1 '  Nd(0) • Pa(t)•  f~(t),  z~i, 

= f~(t) -1"  E l f "  Nd(0) '  Pa(t)"  A i , '  ~(t) = ~ ' ~ ( t )  - 1 ,  Rd( t ) .  f~(t) .  

As a consequence, Rd(t) has the same spectrum as /~d(t) and therefore, 
Rd(t) is invertible, has ~r as an Agmon angle and satisfies log detN(Rd(t)) = 
logdety(1~d(t)) .  Since l~d(t) is of upper-triangular form one has 

d - 1  

logdet N (/~d(t)) = Z l°gdetN (n (~k t ) )  . 
k = O  

As A is positive and selfadjoint, the operator A d + t d : C ~ ( g )  --~ C ~ ( g )  is 
invertible for t >_ 0. Using the kernel k~(x, y) of (A d + td) -1 this operator 
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can be extended to C~(Cr )  by setting (u E C~(Er ) )  

((A4 + td) - l ) ru(x)  = / M r  kt(x, y)u(y)dy.  

As already noticed Lemma 3.8 implies that  

((Ar) d + t d, Ja(t)) : C ~ ( E r )  ~ C°¢(Er) ~d C~(Cr l r+u r  - )  

is invertible. Thus, since Jd(O) = 12(t)Jd(t), one concludes that  (A d + t d, 
Jd(0)) is invertible as well. Denote by ((Ar) a + td)D the restriction of 
(Ar) ° + t ° to {u e C¢¢($r) I Jo(O)u = 0} and let ((At) d + tO)D 1 be its 
inverse. 

LEMMA 3.13. ((Ar)a+ta)D1 = ( (Ad+td)- l ) r -po( t ) .Jd(O) . ( (Aa+t°) - l ) r .  

Proof. Denote by L(t) the right-hand side of the claimed identity. One 
verifies that  for u E C~¢(Er) 

( (At)  d + td)L(t)u = u 

and 
J~(O)L(t)u = Jd(O). ((Ar) ~ + t d ) - lu  - Jo(O). ((At)  d + t ° ) -xu = O . 

These two identities imply that  L(t) = ((At)  d + td)D 1. o 

LEMMA 3.14. (i) ~Po(t)  = -d t~ - l ( (Ar )  d + ta)~ 1. P~(t) 
(ii) Rd(t) -1 . ~ R d ( t ) = - d t d - l  R~(t)-l .Aif .No(O).((Ar)°+t~)D1 .Po(t).Aia. 
In particular, d being the dimension of M,  Rd( t ) -1. ~ R~( t ) is of trace class. 

Proof. (i) Differentiate ((At)  d + td) - Pu(t) = 0 with respect to t to obtain 

( ( A r )  ~ + re) • Pd(t)  = - ~ ( ( A r )  d + t°)  • Pe ( t )  = - e t a - l B . ( t ) .  

Similarly, differentiating 3,~(0). Pd(t) = Id with respect to t yields 
J o ( O ) ~ P d ( t )  = o. H e n c e  

((ArV + td)v • ~Pd(t)  = -etd-lPe(t) 
and therefore 

d pd(t ) -~ - e t  d - 1  ((At)  d + td)D 1" Pd(t) . 

(ii) follows from the definition of Rd(t) and (i). o 

Taking into account that ~,ia((gaC~(SIr)) = {(~, ~) I ~ E ~ C ~ ( E I r ) }  
define P r r : / x i ~ ( ~ a C ~ ( C I r ) )  ~ (9~C~(~lr)  by P r r ( ~ , ~ )  = ~. 

COaOLLARY 3.15. 

R~(t) -1 .  ~ R d ( t )  = d td- lPrr  • Jd(O) ' ((A d + t a ) - l )  r"  Po(t) " A~a • 
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Proof. By Lemma 3.13 and 3.14 

Rd(t)  -1"  d Rd(t)  = --dtd-1 ( ~ i f "  Nd(O). Pd(t)" ~i~) 

~ i y  " Nd(O) . ( ( (A ~ + t~)-l)  r - Pd(t) . J~(O) . ( (A d + td ) - l ) r )  - Pd(t) . ~ ia  • 

Clearly ~ i y "  Na(O). ((A a + t a ) - l ) r ( u )  = 0 for u E C ~ ( £ )  and thus ~ i f "  
~ 

Nd(O) . ( (A d + td)- l )  r • P~(t) . /kia = 0. Therefore Ra(t)  -1 . ~ R d ( t )  = 
d td - l (  4 f . Nd(O). Pd(t) .  ~ i ~ ) - '  " ~ , y"  Nd(O). Pal(t)" Bd(O). ( (A d + t a ) - l )  r .  
Pd(t)" n i~ .  

Note that for any u E C~(Sr ) ,  the boundary values of ((A d + td ) - l ) ru  
on F + and F -  are the same, i.e. 

J4(O)((A ~ + t d ) - l ) r u l r .  = Jd(O)((A ~ + t d ) - l ) r u l r -  . 

Hence 

Ja(O). ( ( A d + t d ) - l ) C ' P a ( t ) ' ~ i a  = Aia 'Prr 'Jd(O)"  ((Ad+td)  -1) r ' P d ( t ) ' ~ i a .  
D 

As (A d + td) -1, ( (A d + td) -1 ) r  and Rd(t)  -1 ~R , t ( t )  are of trace class we 
can apply the variational formula for regularized determinants: 

LEMMA 3.16. Let L( t )  denote any o[ the operators A d + t d, (A  d + td)D or 
Rd(t) .  Then, for any t > O, 

d logdetN L(t)  = trN ( Q ( t ) - l  d L ( t ) )  . 

Lemmas 3.13-16 and Corollary 3.15 lead to the following result: 

LEMMA 3.17. Let A d -4- t d and ((At) d + ta)D be as above. Then, for t > 0, 

d d d ~-~(logdetg(A + t d) - logdetN((Ar) d + td)D) = -~ logdet g Rd(t)  . 

Proof. Define w(t) := ~ ( l o g d e t N ( A d  + t d ) - - l o g d e t N ( ( ( A r ) d  +td) ,  Jd(O))). 
By Lemma 3.16 and Lemma 3.13 

= d t d - l t r N ( ( A  d + td) -1 _ ((At) d + td)D 1) 

= d td - l t rN  ( ( (A  ~ + t d ) - l )  r _ ((At) d + td)D 1) 

= d td - l t rN(Pd( t )  • Jd(O)" ((A ~ + td)- l )  r) • 

On the other hand, by Lemma 3.16 and Corollary 3.15 and the 
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commutativity of the trace, 

d logdetN Rd(t) = trN ( d Rd(t) . Rd(t) - 1 )  

= d t d - l t r g ( P r r  . Jd(O)" ((A d + td) - l )  r"  Pal(t)" ~ia) 

= dtd-l trN(Pd(t)  • ~ia" P r r .  Jd(O). ((A d + td)- l )  r)  

= dtd-l trN(Pd(t)  " Jd(O)" ((A d + td)- l )  r) . 

Comparing the above two identities one obtains 
d 

w(t) = -~ log det N Rd(t) . [] 

Since logdet g Rd(t) d-1 = ~k=01°gdetN R(~kt),  one concludes from 
Lemma 3.17 that 

d - 1  

logdet~(A d + t d) - log det N ((At) d + td)D = ~ + ~ log det N R(~kt)  , 
k=0  

where 5 is independent of t. 
Note that logde tg(A  d + td), logdetN((Ar)  d + td, Jd(O)) and 

logdet N R(~kt)  (0 < k < d -  1) have asymptotic expansions as t --- +co. 
Following Voros [V] or Friedlander [Fr], or using Theorems 3.4 and 3.5, 
the constant terms in the asymptotic expansions of log detN(A d + t d) and 
logdetN((Ar) a + td)D are zero. Let 7ro(R(~kt)) be the constant term in the 
asymptotic expansion of log det N (R(akt)).  Then ~ = - ~ - ~  r0(R(c~kt)), 
which is computable in terms of the symbol of Rk(t) (cf. Theorem 3.4). 

LEMMA 3.18. (i) de ty (Ar )  d = (detg ArD)d; 
(ii) detN(A d) = (detN A) d. 

Proof. (i) follows from the following identity for the spectral distribution 
function (~ >_ 0), 

g(ArD, ~) = N((Ar)dD, ~d) . 

(ii) is proved in the same way. [] 

Proof of Theorem 3.6. Statements (1) and (2) are contained in Corol- 
lary 3.11. Concerning statement (3) set t = 0 in Lemma 3.17 to obtain 

log det N A d - log det N (Ar) d = 5 + log det N Rd(O) . 

By Lemma 3.18, log(detN A) d - log(detN A r )  d = 5 + log(detN RDN) d. 
Hence 

log det N A = log(E) + log det NArD + log det N R ow , 

where log(E) _~  d-1 = ~ = O  7ro(R(akt)). Using Theorem 3.4 the result follows. 
Part (4) of Theorem 3.6 follows from formula (3.10) applied to t = 0 and 
the family A(),). 
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4. T o r s i o n s  a n d  W i t t e n  D e f o r m a t i o n  o f  t h e  A n a l y t i c  T o r s i o n  

4.1 Reidemeister  and analytic torsion in the  von N e u m a n n  sense. 
Let M be a connected, closed manifold of dimension d and W an (.4, FoP) - 
Hilbert module of finite type with F = ~rl(M) the fundamental group of M. 
Let p : ~ --* M be the bundle of .4-Hilbert modules over M associated to 
W as described in section 1.4. The fiber of this bundle is isomorphic to the 
.4-Hilbert module W. The smooth bundle p : C ---, M is equipped with a 
flat canonical connection. Both its Hermitian structure # and fiberwise .4- 
action p are left invariant by the parallel transport induced by the canonical 
connection. 

Let h : M --* R be a smooth Morse function. For convenience we assume 
that h is self-indexing, i.e. h(x) = index(x) for any critical point x of h (cf. 
[Mi2]). Let g' be a Riemannian metric so that T -- (h, g') is a generalized 
triangulation. This means that for any two critical points x and y of h, the 
unstable manifold W~- and the stable manifold W +,  associated to the vector 
field -gradg,  h, intersect transversally and, in a neighborhood of any critical 
point x of h, there exist coordinates y l , . . . ,  ya, with respect to which h is of 
the form h(y) = k - (y~ +. . .  + y~)/2 + ~ (Yk+l + "" + y~)/2 with k --- index(x) 

and the metric g' is Euclidean (cf. Introduction). Let ~ /  ---, M be the 
universal covering of M and ~t and ~)' be the lifts of h and g' on/~/. Denote 
by Crq(h) C M, resp. Crq(h) C -~/, the set of critical points of index q of 
h, resp. h, and let Cr(h) -- U a Crq(h). Clearly the group F acts freely on 
Crq(h), for any q, and the quotient set can be identified with Crq(h). 

For each :~ e Cr(h) choose orientations O~ = (O +, O~-) for the stable 
and the unstable manifolds W + and W~', so that they are F-invariant and 
denote 

Oh :=  {O~;~ • Cr(h)} . 

To the quadruple (M, r, Oh, W)  we associate a cochain complex of finite type 
over the von Neumann algebra .4, C(M, T, Oh) = {C q, 6q}. The components 
Cq are the A-Hilbert module of finite type, C q := F(81crq(h)) = (~eCrq(h) $~ 

which can be identified with the module of F-equivariant maps f : Crq(h) --* 
]'Y. To define the maps 6q a few remarks are in order. The orientations Oh 
permit us to define the functions pq : Crq(~t) × Crq_l(]z) ---, Z, #q(~, ~) := 
intersection number (W~- f'l V, W + N V), where Y := ~- l (q  _ 1/2). Notice 
that the functions pq have the following properties: 
(Inl) #q(~,~) = ttq(g~,g~), for all g • r l (M) ;  

(In2) {~ • Crq(h); #q(~, ~) ¢ 0} is finite for any ~) • Crq_l(~t); 
(In3) {~ • Crq-l(h);  pq(~, ~l) ¢ 0} is finite for any ~ • Crq(tt); 
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(In4) ~ECrq_,(h)~q(~,y)" /~q-l(y,Z) = 0 for any ~ E Crq(h) and any 

c Crq_2(i,). 
Properties (Inl)-(In3) imply that for any P-equivariant map f : Crq-1 (h) 

-~ ~IV, we can define the F-equivariant map ~q-l ( f )  : Crq(h) ~ ~V by the 
formula 

{~q-l(f)(~) = Z ~Zq(~7, 9)f(~)) • (4.1) 
~Crq_l(h) 

By property (In4), 6q. $q-1 = 0. 
One defines logTcomb(M, T) E D by (cf. section 1) 

logTcomb(M, T) := logT(C(M, 7", Oh, kV)) . (4.2) 

One can show that log Teomb is independent of the choice of the orienta- 
tions Oh. 

Let (M, g) be a Riemannian manifold and )4; a (,4, F°P)-Hilbert module 
of finite type. Let Aq(M; 8) = C~(C ® Aq(T*M)) be the space of smooth 
q-forms with values in )IV where T*M denotes the cotangent bundle of M 
and p : C --* M is a smooth bundle of ,4-Hilbert modules of finite type 
with fiber W. The Riemannian metric g induces the Hodge * operators 
Rq : Aq(T*M) ---* Ad-q(T*M) and the Hermitian structure # on C together 
with the Hodge operators Rq induce a Hermitian structure on £®Aq(T*M) 
given by (s, s' E C°°(£); w, w' E C~(Aq(T*M))) 

(s ® w, s' ® w')(x) = ^ 

As a consequence, £ ® Aq(T*M) is a smooth bundle of ,4-Hilbert modules. 
The canonical connection in p : £ --~ M can be interpreted as a first order 
differential operator wdq : Aq(M; C) --~ Aq+I(M; E). As the canonical con- 
nection is fiat, wdq+l.wdq = 0 for any q. Notice that wdq is an ,4-linear, 
differential operator. If the action of F on 142 is trivial, then wd  is the usual 
exterior differential Id®d. In case there is no risk of ambiguity we will write 
d instead of wd and continue to call it exterior differential. 

The formal adjoint of wdq with respect to the above defined Hermitian 
structure is a first order differential operator wdq : Aq+I(M; £) -'* Aq(M; C) 
and is again ,4-linear. Introduce the Laplacians, acting on q-forms, 

Aq = dqdq + dq_ldq_ 1 . 

The operators Aq are essentially selfadjoint, nonnegative, elliptic and `4- 
linear. The space Aq(M; C) can be equipped with the scalar product 

(ul, u2)r = ((Id + Aq)r/2(?21), (Id + Aq)"/2(u2)) (4.3) 
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where 
<(Id + &q)~/2(ul), (Id + Aq)~/2(u2)) 

f ra  ((Id + &q)~/2(ul), (Id +&q)'/2(u2) ) (x)dvolg J 

The completion of Aq(M,C) with respect to the scalar product (.,.)~ is 
an A-Hilbert module H~(Aq(M; S)), the space of forms of degree q and of 
Sobolev class of order r. It is well known that the Sobolev norm is equivalent 
to the norm defined by the scalar product (., .)~. In the case where r = 0, 
we write also L2(Aq(M; ~)). Obviously, these Hilbert modules are not of 
finite type. Note that the operators (Id + Aa)~/2 define isometries between 
H~,(Aq(M; C)) and H(r,_r)(Aq(M; C)). Let ~q  be the A-Hitbert module of 
harmonic q-forms 

7"[q = {w e L2(Aq(M;C)); Aq(w) = 0 } .  

Since Aq is elliptic, ~t~q C Aq(M; C). The integration on the q-cells of the 
generalized triangulation r, which are given by the unstable manifolds of 
- g r a d e  h, defines an A-linear map 

Int (q) : Aq(M; £) ~ C a 

so that  6q Int (q) = Int (q+l) dq (cf. Appendix by F. Landenbach in [BZ1]). 
Denote by rq the canonical projection ~rq : C q --* Null(Aq°mb). By a theorem 
of Dodziuk [Do] of de Rham type, the map 

I -~ ' (q )  : "~q  4..-.4 N u l l ( A q ° m b )  , 

defined by the restriction of rrq Int (q) to 7/q, is an isomorphism of Hilbert 
modules. Denote its inverse by 0q. Since Null(Aq °mb) is an A-Hilbert 
module of finite type so is 7-/q. Define Tmet as the positive real number, 
viewed as an element in D (cf. Introduction) by 

logTmet(M,g,}Ad, r) := ½ Z(- -1)q logdetN(0q0q)  • (4.4) 
q 

The Reidemeister torsion TR¢(M, 9,1W, r)  e D is defined (cf. [CM], [LfiRo]) 
by 

logTRe(M,g,W,T)=logTcomb(M,W,'r)+logTmet(M,g,l'V,T) (4.5) 

and the analytic torsion Tan(M,g, }'V) E D (cf. [Lo], [M] and section 2.4 for 
the definition of log det) by 

logTan(M,g,W) = ½ Z(--1)q+lqlogdetN(Aq). (4.6) 
q 

Introduce for A>_0 the functions Fq(A):=Fg;~(A)= sup{dim~ E; EEPq(A)} 
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where 7~q(A) consists of all .A-invaxiant closed subspaces Z: C dq (Aq +I (M; C)) 
C L2(Aq(M; E)), so that for any w E Z:, w is in the domain of definition of 
dq and 

I IG~ l l  _< ,W211~II . (4.7) 
The functions Fq (,k) axe elements in the space F (cf. section 1). By argu- 

ments of Gromov-Shubin (cf. section 1.2) the spectral distribution functions 
Nk(),)=Na~ (~) of the Laplace operator Ak are given by flk+Fk-1 (~)+Fk(,k). 

DEFINITION 4.1. (1) The system (M,T,)'~]) is said to be of c-determinant 
class iff for 0 < k < d, 

log ~dNA~Omb ()~) > - o e  . 
+ 

(2) The system (M, g, W) is said to be of a-determinant class iff [or 
0 < k < d ,  

~ 1 l°g~dNAk()~) > - e ~  , 
+ 

or, equivalently, for 0 < k < d, 

01 log )~dFk( A ) > - o c  . 

It will be shown in Proposition 5.6 that conditions (1) and (2) are equiv- 
alent. 

We finish this subsection with the following observations concerning tor- 
sion and Poincar6 duality. First note that, using the Hodge * operators it 
follows that Aq and Aa-q are isospectral and therefore 

l o g T a , ( M , g , W )  = ( -1 )  a+' logT~n(M,g ,W)  . (4.8') 

The same identity holds for T c o m b .  Let T = (h, g) be a generalized triangu- 
lation of the closed manifold M a. Then TD = ( d -  h, g) is also a generalized 
triangulation. The critical points of index q and the corresponding stable 
manifolds of -gradgh are the same as the critical points of index d - q and 
the corresponding unstable manifolds of - g r a d a ( d  - h). The orientations 

Oh := {Oa; ~ E Cr(h)}U{0} induce the orientations Od_ h. The above iden- 
tification of the critical points of h and d -  h can be used to obtain isometries 
PDq : Cqr ~ Cr~ q where dr q := Cq(M, T, Oh) and Cq~v := Cq(M, TD, Od-h)" 

This leads to 

log Tcomb(U, T, "gY) = (--1) a+l log Teomb(U, "rD, ]4;) . (4.8") 

Finally we derive the corresponding identity for Tmet. The isometries PDq 
d-q * provide a duality between (dq,6q) and (C~. v ,6a_q) and induce isometries 
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between Null(A~°, rob), and Null(A]°_.~b~_ , ). Here _q,,A ¢°mb, i = T, VD, denote the 
Laplacians in the cochain complexes C~. It is shown in Proposition 5.9 that  

.---:(, d-q) , .  1-~(~) n q l n  ` (4.9) (Inter ) . PDq . = 

~in-~t_d-q)~. where (In ~D ) denotes the adjoint ~ v-rAg-q) O I  I n ,  t O  . Thus 

logTm~t(M,g, 'r ,}4])  = ( -1 )  d+l l o g T m ~ ( M , g ,  r D , W )  . (4.8") 

4.2 W i t t e n ' s  d e f o r m a t i o n  o f  t h e  ana ly t i c  to r s ion .  Let w E AI(M) be 
a smooth closed 1-form on M. Introduce a perturbation (Aq(M; E ) , w d q )  
of the de Rham complex (Aq(M; C) ,w dq) with 

dq =-w dq : = w  dq + a~ A (.) . 

The formal adjoint of d~ with respect to the Hermitian structure on E ® 
Aq(T*M) ,  introduced in section 4.1, is a first order A-linear, differential 
operator 

(dq)* : Aq+I(M; g) --* Aq(M; g ) .  

Introduce the perturbed Laplacians, acting on q-forms, 

Aq = (dq) dq + da_l(dq_l)  . (4.10) 

The operators A~ are A-linear, elliptic operators which are positive and es- 
sentially selfadjoint. They are zero'th order perturbations of the Laplacians 
Aq defined above. The case w = tdh where h : M --~ R is a smooth 
function and t e R was considered by Witten (cf. [W]). The multipli- 
cation by e th defines, for any r, a linear operator on the Sobolev space 
H~(Aq(M;  g)) ,  which is an isomorphism of A-Hilbert modules and we have 
dq(t) := d ~dh = e- thdqe th We call the operators Aq(t)  = A ~ah the Witten - -q  • - - q  

Laplacians associated to h. More generally, we will refer to the complex 
(Aq(M; E), d~(t))  with d ~ ( t ) : =  d~ ~, depending on the parameter  t, as the 
Witten complex. Define the perturbed analytic torsion T ~ , ( M , g ,  }/Y,w) as 
an element in the vector space D 

log T, .  (M, g, l/Y, w) := ½ Z ( - 1 ) q + l q  log detN(A~) 
q 

and the Witten deformation of the analytic torsion T~, (M, g, 142, w) 

l o g T ~ , ( M , g , l / Y , ~ ) ( t )  := l o g T , . ( M , g ,  kY, tw) . (4.11) 

If (M, g, W) is of a- de terminant  class and w=dh  then log T~. (M, 9, kY, tw) 
E R C D, for any t. Indeed consider the functions Fd~(0ak(~)(), ) de- 
fined as above by replacing dk with dk(t).  As ( L 2 ( A k ( M ; £ ) ) , d k )  and 
(L2(Ak(M; C)), dk(t)) axe isomorphic, one concludes from Proposition 1.18, 

that F ai(t)dk(t)()~ ) ~ Fk(A) and thus, by Lemma 1.20, Ak( t )  is of determi- 
nant class iff Ak is. 
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4.3 P r o d u c t  and  s u m  formulas .  For i = 1, 2, let Ai be finite yon 
Neumann algebras, (Mi,gi,  Ti) closed Riemannian manifolds of dimension 

h ' d~ (even or odd), equipped with the generalized triangulations r~ = ( ~, g~). 
Let kYi be (Ai, F°P)-Hilbert modules of finite type Fi = 7rl(Mi), and wi e 
AI(M~) closed 1-forms (i = 1, 2). Introduce A := A1 ® A2, kY := kYl ® W2, 
M =  M1 x M2, g = gl ×g2, T := (h := hl Opl + h2op2 ,g '  = g'l ×g~) 
and w = p~(wl) +p~(w2), where pj : M1 x M2 ---+ Mj  are the canonical 
projections. Further denote by g --+ M and gi --* Mi (i = 1, 2) the bundles 
associated to }42i and }V. 

PROPOSITION 4.2 (Product formula) (cf. [CM], [Lo], [LiiRo]). With the 
hypotheses above, the following identities, when viewed in D, hold: 

logTan(M,g, l,'Y, w) = x(M~; }42~). logTan(M2,g2, ~422, ~2) 

+x(M2;W2)  " logT~n(Ml ,g l , ) 'V l ,~ l ) ;  (4.12) 

log TRo ( i ,  g, W, ~) = x(M~; Wl). log TRo(M2, g2, W~, ~:) 
+ x(M:; W2). logTRo(Ml,al, Wl, n )  • (4.13) 

Proof. Formula (4.13) follows from Corollary 1.22 and Proposition 1.21. To 
prove (4.12) observe that 

L2 (A~(M, g)) = $p+q=~L2 (AP(M1, gl)) ® L2 (Aq(M2, g2)) 

and note that Aq ---- (Bp+~=qA(p,~) with 

~(~,~) = (zx; ® Id) + (Id ® ZX") 

is an A-linear, elliptic, differential operator where Ap and A7 denote the 
Laplacians corresponding to gl --* M1, respectively, g2 --* M2. Notice that 
e--tAP. * ----- e--~A~ ® e -*zx7 is of trace class in the yon Neumann sense. As in 
(1.30) introduce 

1 [oo t s-1 
CM(/~,  S) : =  1 Z ( _ l ) q q _ ~ 8 )  trN e- t (a '+X)dt .  (4.14) 

q > l  k ! J 0  

First notice that it follows from a theorem of de Rham type due to Dodziuk 
[Dol that x(M~; 14;i) = }-'~(-1)q dimN(~q(Mi;  gi)), i = 1, 2. In view of 
Proposition 1.21(3), to prove (4.12) it then suffices to verify that for £ > 0 

~ M ( ~ , s ) = i M , ( ~ , s ) . x ( M 2 ; W 2 ) + ~ M 2 ( ~ , s ) . x ( M 1 ; V F 1 ) .  (4.15) 

Following the line of arguments of the proof of Proposition 1.21 it remains 
to show that 

trN e -~A++~ = trN e -tzx; (4.16) 
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where A~ denote the restrictions of Aq to A±'q(M; g). Here 

A+'q(M; E) = closure(dq_lAq-i(i; E)) , 
A-'q(M; g) = closure(d;Aq+l(i; E)) , (4.17) 

where the word closure refers to the closure with respect to the C ~ topol- 
ogy. The operator dq maps the space A- 'q(M; g) injectively onto a dense 
subspace of A+'q+I(M; g). As before denote by d_q the restriction of dq to 
A-'q(M, g). Then 

Aq := d_q(dqd_q)-'/2 : L2 (A- 'q(M; g)) --+ L2 (A +'q+t (M; g)) 

is an isometry and intertwines Aq with Aq+l,+ Aq+IA q +  : AqAq. Thus Aq 
and + Aq+ 1 are isospectral and, therefore ()~ E R) 

N ; ( ~ )  = N~++~(A) (4.18) 

where N~().)  are the spectral distribution functions of A~. By the func- 
tional calculus, equation (4.16) follows from (4.18). [] 

Let A be a finite yon Neumann algebra, (M, g) a closed Riemannian 
manifold equipped with a generalized triangulation % Wi, i = 1,2, two 
(A,V°P)-Hilbert modules of finite type (F = 7rl(M)), and w • AI(M) a 
closed 1-form. Introduce W := IA;1 ® 142, and denote by g --* M and 
gi ~ M (i - 1, 2) the bundles associated to 14; and Wi. 

PROPOSITION 4.3 (Sum formula). With the hypotheses above the following 
identities, when viewed in D, hold: 

log Ta, (M, g, W, w) = log Ta, (M, g, 14;1, w) + log T, ,  (M, g, W2, w) ; 

log TRe(M, g, W, r)  = log TRe(M, g, W1, v) + log TRe(M, g, ~V2, T) . 

Proof. Both equalities follow immediately from the fact that, for 0 < q < d, 

(Aq(M,g),  wdq) = (Aq(M, gl),  w~dq)(9 (Aq(M, g2), w:d~) 

and 

(Cq(M, % Oh, W), W6q) 
= (Cq(M,'c, Oh,W1), W16q) • (Cq(M,%Oh, W2), W26q) • [] 

5. W i t t e n ' s  D e f o r m a t i o n  o f  t h e  d e  R h a m  C o m p l e x  

5.1 T h e  sma l l  s u b c o m p l e x  of the  deformed de R h a m  c o m p l e x .  
Assume that (M, g) is a closed Riemannian manifold and let h : M --+ R 
be a Morse function, so that  ~- = (h, g) is a generalized triangulation. Let 
)~Y be a (A,F°P)-Hilbert module of finite type with r = ~rl(M). To sim- 
plify the exposition we assume throughout this subsection that  ]IV is a free 
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A-Hilbert module (regarding this assumption cf. Proposition 5.6). In fact all 
statements can be formulated and proven by the same arguments without 
the free hypothesis on )IV. Denote by £ --* M the bundle of A-Hilbert 
modules associated to )IV. Let xq;j E Crq(h) be a critical point of index q 
and Uqj all open neighborhood of Xq;j. 

DEFINITION 5.1. Uq. is said to be an H-neighborhood of Xq;j if there is a 
ball B2a : -  {x E R~?; Ix[ < 2c~} and diffeomorphisms ¢ : B2a ---* Uqj and 
¢ : B2~ x VV --~ £1vq~ covering ¢ with the following properties: 

(i) ¢(0) = Xq;j; 
(ii) when expressed in the coordinates provided by ¢, h is of the form 

2 x ~ ) / 2  ; h(x)  = q - (x~ + ... + x q ) / 2  + ( x q + l  + ... + 

(iii) the pullback ¢*(g) of the Riemannian metric g is the Euclidean met- 
ric; 

(iv) • is a trivialization of£1uq, such pairs (¢, ~)are called H-coordinates. 
For later use we detine Uqj := ¢(B~). 

A collection (U~)~ec~(h) of H-neighborhoods is cM1ed a system of H- 
neighborhoods if, in addition, they are pairwise disjoint. 

As in section 4, denote by Aq(M;£) :-- C~(£  ® Aq(T*(M))) the A- 
module of smooth q-forms with values in £ and by L2(Aq(M; f ) )  its L2- 
completion, which is an A-Hilbert module. We write Aq(M; W) for Aq(M; £) 
when £ = M x W is the trivial bundle and Aq(M; R) for the space of 
smooth q-forms on M. Consider the Witten Laplacian Aq(t) : Aq(M; £) 
Aq(M;£) associated to h and observe (cf. [HSjl] or [CyFKS, Proposition 
11.13]) that 

Aq(t) = Aq -1- t2lVhl 2 -{- tLq (5.1) 

where Lq is a zero'th order differential A-operator on Aq(M; 3), hence given 
by a bundle endomorphism, and where IVh[ 2, Vh = gradg h, is a scalar 
valued function on M given by IVhl2(x) = ~l<_ij<dgiJ(x)~7~,Y~Oh Oh with 

(giJ(x)) denoting the inverse of the metric tensor g when expressed in local 
coordinates. Aq denotes the Laplacian on q forms with coefficients in the 
bundle 3 and is a nonnegative, selfadjoint, elliptic differential A-operator. 
Let Aq(M; $)sm be the image (which depends on t) of the spectral projector 
Qq(1, t) of Aq(t), corresponding to the interval ( -oc ,  1]. This space consists 
of smooth q-forms and is an A-Hilbert module. 

The purpose of this subsection is to prove the separation of spectrum 
property of Aq(t), Proposition 5.2, and therefore obtain, for t sufficiently 
large, (Aq(M;£),m,dq(t)) as a smooth family of subcomplexes of 
(Aq(M; £), dq(t)) where dq(t) -- e-thdqe th. Related results have been also 
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obtained by Shubin [Sh3]. In subsection 5.2 we will show that a scaled 
version of this family of subcomplexes converges for t --* oc to the cochain 
complex (C*(M, 7, Oh)~ 6.), introduced in section 4. In the case A = C and 
14; = C this was done by Helffer and SjSstrand [HSjl]. Their arguments are 
still valid in the general case. Bismut and Zhang [BZ1] (cf. also [BZ2] for 
a simplified version) verified this in the case A = C. In subsection 5.2 we 
present a proof for an arbitrary finite yon Neumann algebra A. 

Consider hk:  R a -* R defined by hk(x)  = k +  ½( -  ~ lxi[2 +~-:~d+t Ixi[ 2) 
and denote by/~q : hq(Rd; C) ---* Aq(Ra; C) the flat Laplacian on q-forms on 
R d and by ~q;k(t)  : Aq(Rd; C) ---* Aq(R4; C) the Witten Laplacian associated 
to hk. A straightforward calculation shows that 

2~q,k(t) = hq + t2lxl 2 - t (d - 2k) + 2 t (N+k  - N~.,k ) , (5.2) 

where N+k and N~k are the uumber operators introduced in [HSjl] (cf. also 
[BZ1]), defined by 

N+k(dz~,  A ... A dx~q) = ~ { j l k  + 1 <_ ij < d}dx h A ... A dx~q 

and N~k := qId - N+q;k' Denote by &q(t) E Aq(Rd; C) the q-form defined by 

&q(x, t ) : =  (t l~ )d l4  e-dxl '12 dx l  A ... A dxq . (5.3) 

For ~7 > 0, let v~ : R ~ [0, 1] be a smooth map equal to 1 on the interval 
( - ~ ,  y/2) and equal to 0 on the interval (~, ~ ) .  For e > 0, which we will 
choose later at our convenience, define ~q(t) e Aq(Rd; C) by 

,~(t)  := ~ ( t ) - h , , ( I x l ) ~ ( 0  (5.3') 
where /3(t) = I1~'0(1=1)~(011, with II II denoting the L=-norm. With re- 
spect to the scalar product in Aq(Rd; C) induced by the fiat metric of R d, 
(&k(t),&k(t)) = 1 and (¢k(t),¢k(t)) = 1. Consider Aq ---- /~q ® Id and 
Aq;k(t) = /~q;k(t) ® Id, defined on Aq(Rd;//Y). The operators Aq,k(t) are 
nonnegative, essentially selfadjoint, elliptic A-operators with the following 
properties: 
(HO1) spec Aq;k(t) is discrete and contained in 2tZ>0; each eigenvalue has 

infinite multiplicity if dime .4 = ~ .  
(H02) Null(Aq;k(t)) = 0 if k ¢ q; Null(Aq;q(t)) is an A-Hilbert module 

isometric to ~V. 
(H03) Assume that {Vl, . . . ,  vt} is an orthonormal basis of )4; (cf. Definition 

1.3), i.e. a collection of regular elements which generate ]4; as an A- 
Hilbert module and such that for any a, b E A, 

(avi, bvj) = (a, b)5,j . (5.4) 

Then Wq,i(t) := ~Zq(t) ® vi, 1 < i < I, is a basis for Null(~q;q(t))  and 
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Cq,i(t) := ~bq(t) ~ vi, 1 <_ i <_ l, is an orthonormal basis for the .A-Hilbert 
submodule generated Cq,i(t). 
A straightforward calculation, using (5.2), (5.3) and (5.3'), shows that 

there exist constants to - to(e) > O, C(¢) > 0 and Co(e) > 0, so that, for 
1 < i < l ,  

tAq;q(t)t~q,i(x,t)l <_ Co(e)e -C(e)t (X • M t >_ to) (5.5) 

(with similar estimates for all the derivatives of Cq,/(t)) 

(Aq;k(t)¢q,i(t), Cq,,(t)) _> 2tlq - kl (t > O) (5.6) 

and, in view of (HO1), for any w • Aq(Rd; )42) with compact support and 
(w, tb) = 0 for tb in the Hilbert module generated by Cq;i(t), 1 < i < l, 

(~Xq;q(t)~, ~ )  > c(~)tllo:ll 2 . (5.7) 

(Cf. Appendix 2 for a verification of (5.5)-(5.7).) 
Let x • Crk(h) and U~ be an H-neighborhood as in Definition 5.1 and 

denote by d the distance function on M. Choose ¢ > 0 so that  the balls 
B(x;4e)  = {y • M;d (x ,y )  <_ 4e}, centered at  the critical points x, are 
pairwise disjoint, and B(x; 3e) C U~. Choose once and for all a base point 
x0 • M, an orthonormal basis e l , . . .  ,el of Cxo, and for each critical point 
x = Xq;j • Crq(h) a homotopy class [7~] of paths, joining x0 and x (choose 
7~o = {x0 }). Denote by eq;j,1,... ,  eq;j,l the orthonormal basis of C~ obtained 
by the parallel transport (induced by the canonical flat connection on E) 
of e l , . . . , e l  along 7~. By parallel transport,  one can identify glv .  with 
U~ x 142 and, using a system of H-neighborhoods U~, one can identify the 
forms w • Aq(M; E) having support in U~ with forms in Aq(Ra; 142). In 
this way, for any x • Crq(h), the element Cq,i(t) identifies with an element 
in Aq(M; ~) denoted by ¢, , i( t) ,  with compact support in U~. Since ei are 
regular elements in Cz0, the tb~,i(t)'s are regular elements in L2(Aq(M; C)). 
The forms tb~,i(t) (1 <_ i _< l, x £ Crq(h)) satisfy (5.4), and therefore provide 
an orthonormal basis for the A-Hilbert submodule which they generate. 

PROPOSITION 5.2. There exist positive constants C', C",  and to so that for 
t > to and 0 _< q _< d, spec(Aq(t)) N (e -re ' ,  C"t)  = ¢. 

Proof. In a first step we prove that  there exist to > 0, C '  > 0 and C" > 
0 so that for t _> to there exists a pair of orthogonal closed subspaces 
W1 ~--- Wl(t),  W2 = W2(t) of L2(Aq(M;C)) with W1 C Aq(M;S) with 
the following properties (1) W1 n We = {0}; (2) WI + W2 = L2(Aq(M; g')); 
(3) (Aq(t)w,w) < e - 'C @,w) for w • Wl; and (4) (Aq(t)~,Ld) ~ CHt(03,~ J) 
for w • W2 tq Aq(M; S). 
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In a second step we show that, using step 1, Proposition 5.2 follows. 
Let us prove step 2 first. We claim that Proposition 5.2 holds with the 
constants to, C '  and C" as in step 1. To prove this claim we argue by 
contradiction. Assume that there exist 0 <_ q < d, t > to and a real number 
# E specAq(t) N ( e - tC ' , c " t ) .  Then there exists a sequence (uj)j_>l of 
approximate eigenfunctions uj in Aq(M; g), Ilujll = 1, satisfying 

1 
I I / '~(t)~J - ~ J I I  -< - .  (5.s) ./ 

Decomposing uj = vj + wj G Wl( t )  ~ W2(t), and using the fact that Aq(t) 
is selfadjoint, one obtains 

(Aq(t)~, vj) = (%(t)vj ,  vj) + (~j, Aq(t)v~), (5.9) 
( ~ ( t ) u j ,  w~} = ( ~ ( t ) ~ j ,  w~) + (wj, ~ ( ~ ) ~ ) .  (5.9') 

Further 

Pllvj II = = (puj, vj) = (~q(t)uj ,  vj) - (~q(t)~j - ,~ j ,  vj) , (5.9") 

,llw~ II = = ( ,"~,  wj) = ( ~ ( t ) , j ,  w¢) - (%( t ) ,~  - , , j ,  ~>) .  (5.9"') 

Combine (5.9") and (5.9) to obtain 

,llv> II = - (Aq(t)vj, vj) + (Aq(t)~> - ,~ j ,  vj) = (~j ,  ZX~(t),j) 
and, similarly, combine (5.9"') and (5.9') 

The right-hand sides of the two identities above have the same real part and 
thus, 

~ll~Jll=-(zx~(t)~j, v j)= - R e ( A q ( t ) u j - # u j ,  ~j-wj)+~ltmjll~-(zx~(t)~j, ~oj). 
Using (3), (4) and (5.8) this leads to, with II,~jll  = = 1 - IlvjlI  2 _< 1, 

2 
(~ - e - 'C ' ) l lv j l l=  ___ j + (p - C " t ) ( 1  - I l v j l l  =) . 

Without loss of generality we may assume that l i m j _ ~  NvjH 2 -- a2 exists. 
Then 

( i  ~ - e - ' C ' ) o z  2 <_ ( #  - C " t ) ( 1  - c~ 2) 

which contradicts the assumption e -~C' < # < C ' t .  
It remains to prove step 1. Define W1 := Wi( t )  to be the A-Hilbert 

module generated by ¢=,i(t) (1 < i < l, z e Crq(h)) and W2 :-- W2(t) its 
orthogonal complement in L2(Aq(M; g)). Clearly properties (1) and (2) are 
satisfied. Further note that the space 171 -- 171 (t) of elements of the form 

= ~-~l_<i<t,=eCrq(h)a=,i¢~,i(t) with ax,i ~ .4 is dense in 14;1. Note also 
that Aq(t), when restricted to U~ with x ~ Cry(h) and expressed in local 
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coordinates considered in Definition 5.1, coincides with Aq;k(t). Therefore, 
as Aq(t) is A-linear and in view of (5.4) and the disjointness of the supports 
of ¢x,i and Cv,J for x ~ y E Crq(h) we conclude from (5.5) with C = C(e) 
and to = t0(e) as in (5.5), for t > to and w E Vl(t), 

<,z~(t)~, ~> = ~ <ax,,a~(t)¢~,,(t), a~,,C,,,(t)> 
l<_i<_l;xECrq(h) 

<_ c ~, Ik,=,,ll %-'C <_ c 1 1 ~ 1 1 %  - ' c  . 

By choosing to bigger, if necessary, (3) follows. 
It remains to check the estimate (4). Denote by X= : M ---+ R the smooth 

nonnegative cut-off function with support in Ux defined by u2~ (cf. (5.3')) 
and introduce X := ~eC~(h) X~" For w E W2 M Aq(M; E), define ~d 1 : =  X~d 

and a~2 : -  (1 - X)W and observe that the support of w2 is disjoint from 
the support of any element in W1; therefore ~v 2 E W2 M Aq(M; E) hence 
Wl E W2 M Aq(M; E). Since Aa(t) is essentially selfadjoint one obtains 

< A q ( t ) ~ , ~ >  ~-- < A q ( t ) ~ l , ~ ) l > - F 2 R e < A q ( t ) ~ l , ~ 2 > - ~ - < A q ( t ) ~ 2 , ~ d 2 >  . (5 .10)  

We show that there exist positive constants to, C1, C2, C3, C4 depending 
only on the geometry of (M, E --* M) and the chosen e, so that for any 
w E W2 M Aq(M; E) and t > to the following estimates, (5.11)-(5.14) hold: 

< A ~ ( t ) ~ , ~ )  > (~,,,~,~,~> + c~t21t~ll ~ -c~tll~,~ll ~ ; (5.11) 
(Aq(t)~ , ,wl)  > Gtll~tll 2 ; (5.12) 

(Aq(t)~l,  Wl) _> (iqW1, ~MI> - -  C:t[[wlll: .  (5.13) 

For any ~ > 0, 

Re <A~(t)~, ~ )  > - c ~ ( 1  + ~-~)(11~11P + I1~=11 ~) (5.14) 
- G ~ ( ~ q ~ 2 ,  ~ >  - G ~ < ~ q ~ l ,  ~> 

For any 0 _< ~ _< 1, multiply (5.12) by 1 - ~ and (5.13) by ~ and take the 
sum to get 

(Aq ( t )w l ,M i )  >_ (1 -- (~)<AqO)l, ~1) + t ( ~ C 3  - (1 - ~)C:)I1~,112 . (5.15) 
To complete the proof of property (4) combine (5.10) with the estimates 
(5.15), (5.14), and (5.11) to obtain (for 0 < ~i < 1, ~ > 0) 

(Aq(t)w,~v) > (1 - 2 C 4 0 z 2 ) ( A q ~ J 2 ,  (.d2> "F (1 - -  (~ - -  2 C 4 o l 2 ) ( A q ~ 1 ,  L.d1> 

+(Gt2-c=t-2C,(l+~-2))ll~=lP+(t(,~c~-(1-,~)c=)-2c,(l+~-2)) I1~ II = • 
First choose 0 < / i  < 1 sufficiently close to 1 so that C6 := 6C3 - (1-6)C~ > 
0. Then choose a > 0 sufficiently small so that 1 - 6 - 2C4c~ 2 > 0. With 
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these choices we obtain 

<Aq(t)w, w) > (Clt2-C2t-4C4(1-t-~-2))11~2112+ (tC6-4Ca(l+(~-2))I1~1 II 2 

Together with 2(11~1 tl 2 + 11~2 II 2) _> I1~tl = th is  es tab l i shes  p r o p e r t y  (4). 
To prove (5.11) choose C1 :=  infzeM\u,ec,(h)u . IVh(z)l 2 and C~ = 

sup~eM IlZq(x)ll. The estimate (5.11) then follows from (5.1). 
To prove (5.12) it suffices to notice that  the support  of wl is contained 

in U~eCr(h)U~ and w~ is orthogonal to ~b~,i(x 6 Crq(h), 1 < i < l). Thus 
(5.12) follows from (5.7) with Ca := C0(e). 

Formula (5.13) is a direct consequence of (5.1). 
To find the lower bound (5.14) note tha t  I ae(Lqwl, w2)l _< C21 Re(w1, w2)[ 

= C21(021,/M2)1 and, using that  supp(co2) does not intersect any of the U's, 
(IVht2Wl, w2) >_ C1 (X(1 - X)W, ~o) >_ O. Combining with (5.1) one concludes 
that ( A q ( t ) W l , W 2 )  --~ ( A q W l , W 2 )  " 1 - t 2 ( l V h l 2 W l , W 2 )  + t(LqWl,~d2) c a ~ / b e  es-  

t i m a t e d  

Re (Aq(t)wl,  w2) )_ Re(AqWl, w2) + (Cl t  2 - C2t)<~;1, ~2) • 

As (~vl, ~v2) = <R~, (1 - X)a;) is real and nonnegative, one thus obtains for 
t > C2/C 1 

Re (Aq(t)~'l ,  w2) _> Re(Aq~1, ~2) -  (5.16) 

Therefore, the lower bound (5.14) follows from Lemma 5.3 below together 
with 2(llwlll ~ + [[~2112) > [Iwll 2. o 

LEMMA 5.3. Let the q-forms co, wl and w2 be de/Jned as above. Then there 
exists a constant  C4 > 0 so that, for any (~ > 0, 

Re(Aqw~, wu) > - C 4  (1 + ~-2)11~112 - c ~ o ?  (~xq~_, ~ou) - c ~  2 ( A ~ ,  ~a)  • 
(5.17) 

Proof. Write Aq=dq_ldq_l Tdqd q where dq_l =--(--1)dq+a+ l Rd_q+ l dd_qRq, 
and . = Rq denotes the Hodge • operator. Using that  ~1 = R a; and 
~u = (1 - R)w one obtains 

(Aqwl, ~2) = (d~l, d~2) -t- (d • wl, d • ~2) > A + B - Ildx ^ ~112 - Ildx ^ *~112 
+(X&o, (1 - x)da;) + <xd * w, (1 - x)d * w ) ,  

where 

A:  = <dR ^ ~,  ~(1 - x)d~)  + <dR ^ *~, u(1 - x)d * ~ ) ,  (5.18) 

S : = -(Rdw,  ud R A w) - (Rd * w, udR A *w) , 

where u is the characteristic function of M \  supp X. Notice that  (Rdw, (1 - 
x)d * w) are real and nonnegative and therefore 

Re(AqWl,W2) >_ R e A  + R e B  - Ildx ^ wl[ = - Ildx ^ ,~11 = . 



810 D. BURGHELEA, L. FRIEDLANDER, T. KAPPELER, P. MCDONALD GAFA 

In order to estimate the expressions A and B we introduce the constant 
C5 :---- supl<k< d IIh'kll, where/x 'k:  L2(Ak(M;C)) --~ L2(Ak+I(M;E)) is the 
exterior multiplication by d X. Note that  ]tKkH -- IIK•II where K;  denotes 
the adjoint of Kk and llwll -- II * wll. A straightforward calculation yields 

IAI < ChlIWH (11(1 -x)d~zll + II(1 - x ) d , w l l  ) 

< Csll~ll (lld~211 + Ildx A ~11 + II d * ~211 + ]ldx A *~11) 
< C~II~II (lld~21t + lid * w211 + 2C~11~11) 

_< v~Chl l~ l l<Z,q~2 ,~=)  x/2 + 2C~ll~l l  2 . 

Thus for any cr > 0, and in view of the inequality bc < (b/c~) 2 + (c~c) 2 one 
obtains 

IAt < (2C 2 + Cs~-2)ll~ll  z + or2 {Aqa)2,032) • (5.19) 

A similar computation leads to 

IBI _< (2C~ + cs~-2)ll~ll 2 + ~2{Aqwl, ~1} . (5.20) 

C h o o s i n g  C 4 appropriately leads to the claimed statement. [] 

5.2 A s y m p t o t i c  p r o p e r t i e s  of  t h e  small  subcomplex .  In this sub- 
section we require that Fg is a free .A-Hilbert module. Recall that Proposi- 
tion 5.2 yields, for t sufficiently large, a decomposition of (Aq(M; £), dq(t)) 

(Aq(M; g), dq(t)) = (Aq(M; g)sm, dq(t)) ~ (Aq(M; £)1~, dq(t)) , ( 5 . 21 )  

where Aq(M; g)sm - Aq(M;g)sm(t) is the image of Q(1,t),  the spectral 
projection of Aq(t) corresponding to the interval ( -c¢ ,  1], and hq(M; £)1~ 
denotes the orthogonal complement of Aq(M; g)sm. Accordingly, one can 
decompose Aq(t) -= Aq(t)sm -]- Aq(t)la where Aq(t)sm, resp. Aq(t)la, denotes 
the restriction of Aq(t) to Aq(M; g)~m, resp. the restriction to Aq(M; g)l~. 

Using the forms ¢~,i(t), introduced in subsection 5.1, we will construct, 
following Helffer and Sjhstrand (cf. [HSjl] or [BZI]), an orthonormal base 
(in the sense of Definition 1.3), Tq;j,i(t) (1 < j < mq, 1 < i < l) of the 
.A-Hilbert module Aq(M; g)sm(t). 

Since the ¢,,i(t)  are regular elements of the A-Hilbert module 
L2(Aq(M; g)), and satisfy (5.4), the map 

aECrq(a),i a,i 

(ex,;~,i ---- eq;j,i) extends to a bounded A-linear isometric embedding 

J q ( t ) : c q =  ~ £ , - - . L 2 ( A q ( M ; E ) ) .  (5.23) 
xECrq(h) 

The following proposition is a generalization of [BZ1, Theorem 8.8, p. 128]. 
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PROPOSITION 5.4. For e > 0 (in (5.3')) s u ~ c i e n t l y  smM1, there exists  a 
constant c > O, so that  

H(Qq(1, t )Jq( t )v  - Jq( t )v)(y) t  ] = o(e-c*)llvll  (5.24) 

uniformly for y E M and v 6 C q. Similar es t imates  hold for the derivatives. 

Proof.  We proceed as in [BZ1, p. 128]. In view of Proposition 5.2, for t > to, 
Qq(1, t) is given by the Riesz projector 

1 
Qq(1, t) = ~ f s ,  (;~ - Aq( t ) ) - ld~  (5.25) 

where S 1 is the unit circle in C, centered at the origin and where ( )~-  
Aq(t)) -1 is the resolvent of Aq(t ) .  The operator Qq(1, t )Jq( t )  - Jq(t) can 
therefore be represented by a Cauchy integral whose integrand is given by 

(A - A q ( t ) ) - l  Jq(t) - A-1Jq( t )  = A - l ( A  - A q ( t ) ) - l  Aq( t )Jq( t )  . (5.26) 

By (5.5), for any Sobolev norm ]]. 112~, with r a nonnegative integer, there 
exists a constant c2~ > 0 such that  

]lAq(t)Jq(t)(v)li2r = O(e  . . . .  t)iivi] , (5.27) 

uniformly in v 6 C q. We write ]]. II instead of ]]. I]0. To estimate (A-Aq(t ) )  -1 
first notice that, by the ellipticity of Aq = Aq(0), there exists c ~  so that 

H 2 ~  -< c~(llZ~qull2~-~ + IHI) (5.28) 

for u 6 Aq(M; E). By (5.1) there exists c~'~ so that  for )~ E S 1 and t > 1 
t t  2 t1(~ - z~ ( t )  + z~ )~ l l~  < c~ t  Ilull~ . (5.29) 

Combining (5.28) and (5.29) and using that  ]]uilk _< ]lulik+t, one concludes 
that there exist C ~  and C2~ so that  for u 6 Aq(M; E) 

Ilull~ <_ c;~(ll(~, - A~(t)),,ll=~-2 + t211ull=~-=), 
and, by iterating the estimate and using that  II~ll~ < I1~11~+,, 

I1~11=, -< c=,t=~(ll(~ - ~xq(t))~ll=~-= + I1~11). (5.30) 

We want to apply the estimate (5.30) for u = (A - Aq( t ) ) - t£ t  with h 6 
Aq(M;E). To this end we observe that, by Proposition 5.2, there exists 
to > 0 so that  ()~ - Aq(t ) )  -1 is a L2-bounded operator for t > to uniformly 
in )~ 6 S 1, i.e. there exists C ' "  > 0 so that  for )~ 6 S 1, t > to 

II(A - Aq(t))-t~ll  < C'"ll~ll . (5.31) 

As (A - Aq( t ) ) - l~  E hq(M; E), for ~2 6 Aq(M; C) w e  can apply (5.30) to 
find C~ > 0 so that  for t sufficiently large and A 6 S 1 

I1( - ~q(t))-l '~ll=~ < c,t=ql'~ll =~-2' (5.32) 
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Combining (5.32) and (5.27), one sees that  for any 0 < c' < c2~ there exists 
t 0 > 0 s o t h a t f o r t > t o a n d v E C  q, 

II(A - Aq(t))- l  Aq(t)gq(t)vll2~ =- O(e-C't)llvll . (5.33) 

Choose an integer r > d/2 and use the Sobolev embedding theorem for E- 
valued q forms to obtain (5.24) from (5.26) and (5.33). By choosing r even 
larger one obtains similar est imates for the derivatives. D 

Proposit ion 5.4 insures that ,  for sufficiently small e > 0, there exists 
to so that  for t >_ to, Qq(1, t)Jq(t) is an isomorphism of cq onto Y(t)  := 
Qq(1, t)Jq(t)(cq) with Y(t)  a closed subspace and A-submodule of 
Aq(M; £)sm. We claim that ,  for t large enough, Y(t)  = Aq(M; E)~m. To ver- 
ify this we will show that  u E Aq(M; E)sm and u orthogonal to Y(t)  imply 
u = 0. Indeed, since Qq(1, t) is a selfadjoint projector and Qq(1, t)(u) = u, 
we have (x • Crq(h), 1 < i < l) 

u> = <Qq(1, u> = 0 .  

Then, by (5.7), (Aq(t)u, u) > C(e)tllull 2. On the other hand, (Aq(t)u, u) <_ 
Ilull 2 because u • Aq(M; C)srn and hence u = 0. Let iq(t) := Qq(1, t)Jq(t). 
Then, for t sufficiently large, Qq(1, t)(¢~,i) = iq(t)eq;j,i (z = Xq;j • Crq(h), 
1 < i < l) is a basis of Aq(M; C)~m. By the remark following Definition 1.3, 
this basis can be used to obtain an orthonormal basis 

:= 

The main properties of the base $9q;j,i(t ) are stated in Theorem 5.5 below. 
To formulate Theorem 5.5 we need some addit ional definitions. 

Consider the cochain complex C(M, T, Oh, )IV), which has been intro- 
duced in section 4, and define the orthonormal base of C q, Eq;j,i with 
l < j < m q a n d l < i < l ,  by 

Eq;j,,(Xq;j,)= ( eoq;J" if j ' =  j 
if j '  # j .  

Wi th  respect to this basis the differential ~q can be writ ten as 

l_<j~ _<rnq+ 1,1 < i  ~ < l  

where "Yq;ji,j,i, • - A°p. If one identifies C q to ~-~eCrg(h) £x then the elements 
Eq;j,i correspond to eq;j,i. 

Introduce the .A-linear maps fk(t) : Ak(M; C)sm ---+ C k defined by 

. fk(t)= e - tk  Int(k)e ~h , (5.34) 

where Int (k) : Ak(M; £) --* £k is the integration (considered in section 4) on 
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the k-cells of the generalized triangulation T. The k-cells of this generahzed 
triangulation are the unstable manifolds W~;j. Recall that the closure of 
W~.,j is a compact smooth manifold with conical singularities (cf. Appendix 
by F. Laudenbach in [BZ1]) and therefore the integration makes sense. The 
maps Int (k) are continuous, A-linear and satisfy Int(k+l)dk = 6kInt (k). Con- 
sequently 

{f~(t)} : (Ak(M;E),m,dk(t))  ~ (Ck,6k) , 

where 
It) -i/2 

$(t) := e t 

and d~(t) = e-thdke th, is a morphism of A-cochMn complexes. 
Let 

~q(t) := sup {0, spec(Qq(1, t)Aq(t))} (5.35) 

~q(t) := inf spec ((Id - Qq(1, t))Aq(t)) . (5.36) 

T h e o r e m  5.5 ([HSjl],[BZ1]). (1) For t ~ oo, aq(t) -~ 0 and flq(t) --* oc. 
(2) There exists a constant tl so that for t > tl the elements 9Vq;j,i(t) E 

Aq(M; E)sm (1 <_ j <_ mq, 1 <_ i <_ l) constructed above provide an orthonor- 
real basis for Aq(M; E)sm- Hence Aq(M; E)sm is a free A-Hilbert module of 
rank I x ~ Crq(h). 

(3) There exist r/ > 0, to > 0 and C > 0 such that for t >_ to and 
1 < r <l ,  1 <_j <_ mq, 

sup < Ce-" .  (5.37) 
yEM\Uqj 

(4) When expressed in H-coordinates on W~,j N O(Br), the q-forms 
~q;j,i(y, t) satisfy the estimate 

where 0 < r := min{a,e/2,  ~ } ,  with a as in Definition 5.1 and 
c(e/2) given by Proposition 5.4. 

(5) The bounded A-linear maps fk(t)  : A~(M; £ ) ~  ~ C k, defined above, 
satisfy the estimate 

fk(t) (pk;j,~(t)) = Ek;j,, + O(t - I )  (5.39) 

and therefore, for t sutllciently large, define an isomorphism of cochain com- 
plexes of A-Hilbert modules of finite type. 
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(6) Representing 4( t )  with respect to the ba*es given in (2) 

l (j~ <rnq+1,1<i~ <l 

w i th  Tlq;ji,j, i, E ¢4 °p , the coet~cients  ~q;ji,j,i, satisfy 

l]q;ji,j'i'(t) ~- e--t (~/q;ji,j'i' Jv 0( t - -1 /2) )  

with ~q;ji,j,i, as above. 
Proof. (1) follows from Proposition 5.2, (2) was proven above and (3) fol- 
lows from Proposition 5.4. 

(4) By Proposition 5.4, (iq(t))*iq(t) = Id + O(e-C~), thus it suffices to 
verify (5.38) with Qq(1, t)¢q;j,i(t) instead of pq;j,i(t). By Proposition 5.4, 

Q~(1, t)¢q;~,~(~, t) = ¢~;j,~(y, t) + o(~  - ~ )  , 

uniformly in y, and (4) follows. 
To prove (5.39) we have to show that for any cell WqT. d, 

f%~j,~(~,t)e'h(~) e'q(~ , o ( t - 1 ) ) .  ~-- ~ JJ eq;j,r + 
;jr 

Note that, due to Theorem 5.5 (3) and (4), it suffices to consider the case 
where j = S.  By Theorem 5.5 (4) and Proposition 5.4 we conclude that 
(with B~ as in (4)) 

w -  ~q;j,r(Y, t) eth(y) 
q;) 

/ t \ d/4 f 

;an¢(B,.) 

q- eqt q;fw- \¢(B*) e(h(y)-q)t~gq;j'r(Y' t) 

= eqt ( ~ )  d/4 (~ ) -q /Z  (eq;j,,. + O(t-1)) . 

The second integral on the right-hand side of the above equation decays 
exponentially when t --+ oo because 

t)ll = o ( ~ - " )  
for y e W~.j\¢(B~) (Proposition 5.4) and h(y) -q  g 0 on WqTj. The second 
par t  of the statement follows from (2). (6) follows from (5). c 
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5.3 A pp l i ca t i ons .  We present two applications of Theorem 5.5. We point 
out that  in this subsection we do not assume that W is a free A-Hilbert 
module. First we state and prove Proposition 5.6, a generalized version 
of a result of Gromov-Shubin (cf. [GrSh], also [El,2]) which we stated in 
Proposition 1 in the introduction. 

PROPOSITION 5.6 ([GrSh]). Let M be a dosed manifold and 142 be an 
(A, F°P)-Hilbert module of finite type (not necessarily A-free). Then the 
following statements are true: 

(1) Suppose g is a Riemannian metric and r = (h, g') is a generalized 
triangulation of M. Then the system ( M, g, kV) is of a-determinant class iff 
(M, r, W )  is of c-determinant class. 

(2) If  M1 and M2 are two homotopy equivalent connected manifolds 
and rl and 7-2 are generalized triangulations of M1, respectively M2, then 
( M1, T1, W )  is ore-determinant c/ass iff ( M2, r2, IV) is of c-determinant class. 

Proof. (A) First we prove the two results in the case where 1,V is A-free. 
Notice that statement (2) follows directly from Proposition 1.18. To prove 
(1) consider the cochain complexes 

(Ak(M; $), dk(t)) ; 

(Ak(M; g),dk(t))  ; 

(Ak(M; E), dk) 

( ~ )  --1/2 
gk(t) = e t  dk(t) (5.40) 

dk(t) = e-~hdke th (5.41) 

(5.42) 

and let /kk(t), Ak(t), Ak be the Laplacians of (5.40), (5.41) and (5.42) with 
respect to the Riemannian metric g'. By Theorem 5.5 (5) there exists to > 0 
so that  for t ~ to the maps fk(t) introduced in (5.34) are isomorphisms 
between the cochain complexes (hk(M; E) .... dk(t)) and (C k, 5k). Therefore, 
by Proposition 1.18, (M, r, 142) is of c- determinant class iff there exists t > to 
with 

~01 log)~dg£k(0(A ) > - ~ .  (5.43) 
+ 

As /kk(t) = e 2. ( ~ ) - l A k ( t ) ,  (5.43)is equivalent to 

~ x log)~dNAk(0()~) > - c ~  . 
+ 

(5.44) 

Since multiplication by e th defines a L2-bounded isomorphism between the 
L2-completion of cochain complexes (5.41) and (5.42) we conclude from 
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[GrSh, Proposition 4.1] that  (5.44) holds iff 

9C log),dNak(),) > - ~  • (5.45) 
+ 

As the L2-completions of (5.42) with respect the Riemannian metric g~ and 
g are isomorphic by a bounded isomorphism we apply once more [GrSh, 
Proposition 4.1] to conclude that  (5.45) is equivalent to 

9C log )~dN~, k ()~) > - ~  (5.46) 
+ 

where /k~ denotes the Laplacian with respect to the Riemannian metric g. 
The inequality (5.46) says that  (M, g, W) is of a -de te rminan t  class and 
thus (1) follows. 

(B) To prove (1) and (2) in general let us make the following observa- 
tions: 
(O1) If W is F°P-trivial then any system (M, g, W) resp. (M, T, W) is of a- 

determinant resp. c-determinant class. Indeed in this case the spectral 
distribution functions of the corresponding (analytic resp. combinatorial) 
Laplacians are step functions like in the case ,4 = C. 

(02) Let Wi, i = 1, 2, be two (`4, F°P)-Hilbert modules of finite type. The 
system (M, g, W1 ~ W2) is of a-determinant class resp. (M, T, W1 ~ W2) 
is of c-determinant class, iff the systems (M,g, Wi), i = 1,2, are of 
a-determinant class resp. the systems (M,T, Wi), i = 1,2, are of c- 
determinant class. This equivalence follows by comparing the spectral 
distribution functions of the Laplacians (analytic and combinatorial) 
in the complexes associated to Wi, i = 1,2, and to W1 ~ W2. An 
inequality between these functions in the combinatorial case follows from 
Proposition 1.10 (2). The analogous inequality holds in the analytic case 
as well. (As in the combinatorial case the inequality can be deduced 
easily from the definition of the spectral distribution function.) 

(03) Given an (`4, F°P)-Hilbert module W of finite type there exists an 
(`4, F°P)-Hilbert module W r of finite type, which is F °p trivial so that 
W $ W ~ is .A-free. Indeed it suffices to take an ,4-Hilbert module W ~ of 
finite type so that W ~ W ~ is ,4-free and equip it with the trivial F °p 
action. 

Combine (O1), (O2), (03) to conclude that  ( M , g , W  ~ W') resp. 
(M, T, )4; ~ W') is of determinant class iff (M, g, W) resp. (M, r, W) is. 
In view of (A), we therefore have proved (1) and (2) as stated, o 

Proposition 5.6 suggests the following definition. (cf. Definition 4.1) 
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DEFINITION 5.7. The pair (M, 14;) with M a closed manifold and W an 
(.,4, F°P )-Hilbert module of finite type is of determinant  class iff for some 
(and then for any) Riemannian metric 9, the system (M, 9, ]A;) is of a- 
determinant class. 

Proposition 5.6 is used to reduce the proof of Theorem 2 to the case 
where W is a free A-Hilbert module of finite type. 

PROPOSITION 5.8. Let M be a closed manifold, g a Riemannian metric, 
r a generalized triangulation and A a finite yon Neumann a/gebra. The 
following two statements are equivalent: 
(1) For any free (,4, F°P)-Hilbert module W of finite type, the property 

( M , W )  being of determinant class implies Tan (M,g,VV)=TRe (M,g,r ,W).  
(2) For any ( A, F°P)-Hilbert module )IV of finite type, the property ( M, I,V) 

being of determinant class implies Tan(M, g, W)  = TRe( M, g, r, W) .  

Proof. We have to prove that (1) implies (2). We will do this in four steps. 
($1) When A = C, (M,)d;) is of determinant class and the equality of the 

two torsion holds by (1). 
($2) If 14; is F °p- trivial then by observation (O1) above, (M, 142) is of 

determinant class, and 

log T~n (M, g, IV) = dimN (],V) log T~n (M, g, 1 ¢) , 

where l c  denotes the complex line C with the trivial F °p action. A 
similar formula holds for TRe. Hence the equality of the two torsions 
follows from ($1). 

($3) Let ]'V1 and )'Vz be two (A, F°P)-Hilbert modules of finite type and 
set 14; = W1 ~ Wz. By observation (O2) above, (M, 9, W) is of de- 
terminant class iff (M, 9, Wi), i = 1, 2, are of determinant class, and 
by the sum formula (Proposition 4.3), the analytic torsion of (M, 9, )A;) 
resp. the Reidemeister torsion of (M, 9, T, W) is the product of the an- 
alytic torsions of (M, 9, Fdi), i = 1, 2, resp. the Reidemeister torsions of 
(M, 9, T,I, Vi), i =  1,2. 

($4) Let )4;' be as in observation (03) above. By (O1), (M, IV') is of deter- 
minant class and by (O2), (M, W) is of determinant class iff (M,)4)(~]/Y') 
is of determinant class. Combine statement (1), ($1) and ($3) to con- 
elude the equality of the two torsions for W. [] 
The second application of Theorem 5.5 concerns the proof of the identity 

(4.9) which leads to the formula (4.8"'), 

log Tmet (M, g, "rD, ~2) = ( -- 1)-d+l log Tmet (M, g, r, 1,V) . 

Let (M,g) be a closed Riemannian manifold and h : M ~ N be a 
Morse function so that r = (h, g) is a generalized triangulation. Denote by 
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TD = (d -  h, g) its dual triangulation. Choose orientations Oh (cf. section 4) 
and let )iV be a (,4, F°P)-Hilbert module of finite type with F = 7rl (M). As 

in section 4 denote by I-~(~q) the restriction of :rq,~Int (q) to 7-/q where ~rq,~ 

is the orthogonal projection on iull(A~,°~ b) and by (Fnt-(~q)) • the adjoint of 

I-~(q). With respect to the Hodge decomposition of Aq(M; E) and C q we 

can write F q =- Fr,q := Int(r q) as a 3 x 3 matrix 

o 
F2ql Fq2 Fq31 

o o 

and obtain ~ q )  = Fql =- F~ q. The critical points of h of index q and 
their corresponding unstable manifolds of - gradg h identify to the critical 
points of d - h of index d - q and their corresponding stable manifolds (i.e. 
with respect to - g r a d g ( d -  h)). The orientations Oh induce the orienta- 
tions Oa-h. 

Let Cr resp. CrD be the cochain complex associated to the generalized 
triangulation T and the orientations Oh resp. the generalized triangulation 
TO and the orientations Od-h. The above identification of the critical points 
of h and d - h provides isometries PDq : C q -~ C ~  q which intertwine the 
coboundary operator 6q in C~ with the adjoint ~/6 ~Da_q_lja* of the cobound- 
dry operator in CrD. Similarly the Hodge * operator Rq : Aq(M; E) --+ 

. ~ . 
Ad-q(M;S) intertwines dq resp. dq(t) with da_q_ 1 resp. d(t)d_q_ 1 where 

dq(t) is given in (5.40). 

PROPOSITION 5.9. With the above notation we have 

• ( 5 . 4 7 )  Rq]7~, -~ ( ntrD ) " P D q  

Proof. Let 
Iq(t) : (Aq(M;£),dq(t))  ~ (Aq( i ;£) ,dq)  

denote the multiplication with (~) * e -*q and 

Jq(t) : (Aq(M; £)~m, dq(t)) --+ (Aq(M; ~), dq(t)) 

the canonical inclusion. The Iq (t)'s define a morphism of cochain complexes 
and Fq. Iq(t) = fq(t) with fq(t) defined by (5.34). Notice that the matrix 
representations of PDq and Rq with respect to the Hodge decompositions 
of C* with i = ~-, TD and (Aq(M, S), dq) are of the form 

PDql 0 0 ) 
0 PDqa ; 

PD~2 0 



Vol. 6, 1996 TORSION FOR REPRESENTATIONS IN FINITE T Y P E  HILBERT MODULES 819 

0 

0 0 3 - 

0 R3q2 

Equation (5.47) therefore becomes 

i - ~ t  d - q ) x ,  ~-":', (q) R ~ I = (  ~¢D ) • PD~I • ~n~ . (5.48) 

Consider the (typically not commutative) diagram 

( A q ( M ; E ) s m ,  dq(t)  ) f , ( t )  (cq,~q)  

Rq ~ PDq l 
( A d - q ( M ;  -* ( I?d-q 6" E)srn ,dd-q( t ) )  ' , ~ rD,  d--q, 

f~_~(~) 

Notice that with respect to the bases considered in Theorem 5.5 the map 
RqlA(M,C). m (by Theorem 5.5(3) and (4)),the maps f q ( t )  and f d -q ( t )*  (by 
Theorem 5.5(5)) are of the form I d + O ( ~ )  and P D q  is equal to the identity. 
Therefore 

RqlA~(M;E). m = ( F T o , d _ q . I d _ q ( t ) . J 4 _ q ( t ) ) * . P D q . F ~ , q . I q ( t ) . J q ( t ) + O ( 1 / t )  . 
(5.49) 

The representation of Rq with respect to the Hodge decomposition of 
(Aq(M, C), dq(t))  is again of the form 

and 

(RL(t) o o ) 
o ° 0 R~(t )  

R~(t)  o 

J~(t)  = I ~ ,  (5.50) 

Then (5.49) and (5.50)imply 

R~l(t ) = ( I ~ [ q ( t ) )  * . ( F [ F ' d - q )  * . P D ~ I  . F[{ q . Iq l ( t )  + O ( 1 / t )  , (5.51) 

Notice 
R ~ l ( t  ) = ( Id~q( t ) )  * . R~I . I~ l ( t  ) . (5.52) 

and therefore (5.51) and (5.52) imply 

RL - ~n~To'~(d-q)'* - PD~I " r ~ J ) J  = O(1/ t ) .  (5.53) 

Since the left side of the equality (5.53) is independent from t, (5.48) fol- 
]OWS. ra 
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6. T h e  M a i n  R e s u l t s  

6.1 A s y m p t o t i c  expans ion  of  W i t t e n ' s  d e f o r m a t i o n  of  t he  ana ly t i c  
to rs ion .  Let (M, g) be a closed Riemannian manifold with fundamental 
group F = 7c1(M) and h : M --* R a Morse function so that T = (h,g) is a 
generalized triangulation. Let .4 be a finite yon Neumann algebra and l/Y 
an (,4, F°P)-Hilbert module of finite type. The bundle p : C ~ M associated 
to ]/V (cf. section 1.4) is equipped with a canonical flat connection and a 
Hermitian structure # on C ~ M. Throughout this subsection we assume 
that (M, 14;) is of determinant class. 

DEFINITION. A function a : R ---* R is said to have an asymptotic expansion 
for t ---* oe i f  there exists a sequence il > i2 > . . .  > iN = 0 and constants 
(ak)x_<k<N, (bk )l <_k<_N such that 

N N 

a(t) = Z akti~ + E bkti~ logt + o(1) .  (6.1) 
1 t 

For convenience we denote by FT(a(t)) the coefficient aN in the asymp- 
totic expansion of a(t) corresponding to t °. 

Recall that in section 4 we introduced Tan(h, t) --- Tan(g, h, t), TRe(v) = 
TRe(g, T), Tcornb(V) and Tmet (T) -~ Tmet (g, 7-), and in section 5 we introduced 
Tsm(h,t) - T~m(g,h,t) and Tla(h,t) =- Tl~(g,h,t). In this subsection we 
prove the following: 

T h e o r e m  A. Let (M, g) be a dosed Riemannian manifold of odd dimen- 
sion, kV an (A, F°P)-Hilbert module of finite type with l = dimN 14) and 
h : M --* R a Morse function. Assume that (M, W )  is of determinant c/ass 
and that T = (h, g) is a generalized triangulation. Denote by mq the number 
of critical points of index q of h and let flq := dimN Hq(M; W) .  Then the 
following statements hold: 
(1) The functions log Tan (h, t), log Tsm (h, t) and log Tla (h, t) admit asymp- 

totic expansions for t ---* oo. 
(2) The asymptotic expansion of log Tan (h, t) is of the form 

log Ta. (h, t) = log Tan(h, 0) - logTm~t (7) (6.2) 
d 

+ ½(~_~( -1 )q+lq f lq~ (2 t - log t  + logu) + 0 ( t - l )  • 
q=o / 

(3) The asymptotic expansion oflogTsm(h, t) is of the form 

logTcomb(,)+l(~(-1)q+l(qflq-qmql)= ( 2 t - l o g t + l o g r r ) + o ( 1 )  . 

(6.3) 
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Using the same arguments as in the proof of Proposition 5.8 one can 
show that  it suffices to prove the statements for W a free A-module. 

We begin by deriving an alternative formula for the analytic torsion (cf. 
[aSin] ,[Ch] and [BuFrKal]). The space of q-forms can be decomposed into 
orthogonal subspaces: 

Aq(M; E) = A~+'q(M; E) @ A;-'q(M; ~) @ ~ (6.4) 

where 

A+'q(M , ,C) :--- closurc(dq_l(t)Aq-l(M;E)) 
= closure(e-thdq_lAq-l(M; C)) ; (6.5) 

A~-'q(M; ~) :  = closure(dq(t)*Aq+l(M; S)) 
= closure(e'hd*qAq+l(M; S)) ; (6.6) 

/-/7: = {w • Aq(M;e) ;Aq(t)w = 0}, (6.7) 

where the word closure refers to the closure with respect to the C ~ topology. 
Note that  the spaces A+'qtM " ~  ~ , S) are invariant with respect to the Laplacian 
Aq(t). Denote by A~(t)  the restriction of Aq(t) to A~'q(M;E) given by 
Aq+(t) = dq-l(t)dq-l(t)* and Aq( t )  = dq(t)*dq(t). The operator dq(t) maps 
the space A;-'q(M; C) injectively onto a dense subspace of A+'q+I(M; C) and 
it intertwines A~-(t) and A++l(t). By the same arguments as for (4.18), 

Nj( ,t) = ( 6 . 8 )  

Note that  both A+ (t) and Aq (t) are of determinant class, more precisely, 
for a given compact interval I C [0, ~ )  there exists B > - c ~  so that  for 
t E I  

fo 1 log dN:( ,t) > (6.9) B .  
+ 

Using formula (6.8) one obtains 

~°°~trN(e_za~(~) )=~°~dx  . -zA+ -~--trN (e q+ l(t) ) (6.10) 

and, for ~s  sufficiently large, 

/ol dXxS-ltrN(e-Za~(')) = /ol dxx~-ltrN(e-~A ++'(O) . (6.11) 

The integrals in formula (6.10) converge because the operators Aq=e(t) are 
of determinant class (Proposition 2.12 (3), cf. also [Lo]), and the integrals 
in (6.11) converge because f :  dxxS-ltrN(e -za(t)) < oo, as can be seen 
from the heat trace expansion of trN(e -zaq(t)) at x = 0 (cf. (6.22) below). 
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Introduce 

~t,q(S) := - ~  x~-ltrN ( e - ~ ( O ( I d  - Qq(0, t ) ) )dx  (6.12') 

+ s f ~  ltrN(e-~,(')(Id-Qq(O,t)))dx 
1 1 

~ q ( S )  := F - ~  f0 x~- l t rN(e-~A~( t ) )dx  

S o¢ 1 xA+.t. 
+ s xtrN(e - ,~ ))dx . (6.12") 

The functions ~t,q(S) and ~ q ( S )  are defined for t > 0 and ~s  > d 
smooth in t , s  and holomorphic in s. Further, as Aq(t) is a differential 
operator the fimction ~t,q(S) is meromorphic and has s = 0 as a regular 
value. From (2.17), 

d 
log det y A q( t ) = -- -~s ~=o ~t'q( s ) " (6.13) 

Denote by logTan(h , t , s )  and l o g T ~ ( h , t )  the functions defined by 

d 

'ogYan(h, ' ,8): :~E(-1)q+lq(-~ '~t ,q(8))  ( 6 . 1 4 ' )  

q=0  

and 
÷ 1 
z...., ( -  1) q --~s~,,e(S ) (6.14") l o g T ~ ( h , t , s )  := 2q=0 

In view of (6.10) and (6.11) we have ~,q(S) = + ~,,q+l(s). As ~,q(s) = ~+q(~)+ 
~,q(S) this leads to (~s > ~) 

l o g T ~ , ( h , t , s ) =  - l o g T + ( h , t , s ) = l o g T ~ ( h , t , s )  . (6.15) 

Although we do not know if ~q ( s )  have an analytic continuation at s = 0 
it follows from (6.15) that l o g T ~ ( h , t , s )  have. By (6.13), logT~. (h , t )  = 
log Tan (h, t, 0) and therefore 

logT~, (h , t )  = :F logT~(h , t ,O)  . 

Our first goal is to compute ~ logT~n(h, t, s). To analyze the t-depend- 
ence of ~t,~q(S) we treat  the two terms on the right-hand side of (6.12") 
separately. To illustrate the new difficulties which arise (as compared with 
the classical situation) we point out that  the differentiability of 
f l  x-atrNe-*~x+(t)dx with respect to t is far from being obvious. 
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We begin by computing d(trNe-~ZX+(t)). Note that A+( t ) :  A+'q(M; g) 
--* A+'q(M;E) where the space A+'q/Mg)t  ~ , =~e- thA+ 'q(M;C)  depends 

on t. It is therefore convenient to introduce A+(t)  -= ethA+(t)e-th : 
A + ' q ( i ; g )  --* A + ' q ( i ; g )  which is isospectral with A+(t).  Hence, 

trNe -xA+(t) ---- t r i e  -xA+(t). Now one computes ~t rNe -xh+(0 using Du- 
hamel's formula and the identity 

iTq (t) -~ e2 th (dq_ ld ;_ l  q- 2 tdh  /k dq_ i ) e  -2th , 

one obtains 

= trN (2[h, -xA~-~(t)l e-x~'+(t)) 

- 2xtrN(e2~hdh A dq_le-2the -~z~+(t)) 

where [A, B] denotes the commutator  of the two operators A and B. Using 

trN (2[h,--xA~q(t)]e -~A +(t)) = O, 

ethdq_le-¢h = dq-l(t)* and that  e-~he-xZ~+(t)eth = e -~A+(t) we obtain 

d (trN (e--XA+(t))) = --2xtrN (dh A dq_l(t)*e -~A+(~)) . 

Further observe that, despite of the fact that  dq_l(t) : A~- 'q-l(M;g) --~ 
A+'q(M; g) is not invertible (it might not be onto), we can form 

=dq_l( t )  dq_l(t)dq_l(t) = dq_l(t)* -1 • dq_l( t )- lA+(t)  

where the domain of definition of dq_~(t) -~ is the range of dq_~(t). We note 
that 

dh A dq-1 ( t ) - i  A+ (t) = (dq-1 (t)hdq_l (t) -1 - h) A~+ (t) . 

This leads to the following formula 

d (trN(e_~A+(~))) = --2xtrN (dq_l(t)hdq-1 ( t ) - lA+(t)e  -xA+(~)) 
dt 

+ 2xtrN (hA + (t)e -xA+(t)) • 

Next we observe that 

trN (hA + (t)e -~a+ (t)) = - d (trN (he -~a+~ (t))) 
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and that 

trN (dq-1 (t)hdq-1 (t)-1A+q (t)e--xA+ (t)) 

= trN (hdq-1 ( t )-I  A+q (t)e-X&+ (t)dq_ 1 (t)) 

= trN (hAq_l(t)e -xA~-'(t)) 

_ d (trN(he_~_l(t))) 
dx 

We have therefore proved that 

d(trN(e-~At(t))) = 2 x d  (trN(he-~a;-l(t))) _ 2 x d  (trN(he-X~+q(t))) 
dt 

This leads to 
d 

~ E ( -  1)q+l d (trN (e-~n~+(t))) 
q=O 

d 

_ - ,  E(-1)q+l 
q=O 

d 

_ x~-~(l~q+lCI(trN(he-X~+(t))) 
z_.,,- : dx q..---O 
d 

---- x d E ( - 1 )  q (trN (he-~:'+(t)t) + trN (he -~-~ (t))) 
q=0  

d 

Xddx (E(-1)qtrN(he-xaq(t)(Id-Qq(O't))) ) (6.16) 
q=0  

We use the above formula to prove that -fecal L!x2 ~q(-1)q+ltrN( e-xA+(~))dx 
has a continuous derivative with respect to t as follows. By the Leibniz 
rule for improper integrals, it suffices to verify that f(x,t) := 

11 q(_l)qtrN(e-~A+(t)) --7~ • and °o~t(x,t ) axe both continuous and the in- 

tegrals . ~  f(x, t)dx and f ~  °o~t(x , t)dx are both convergent uniformly with 
respect to t (t varying in a compact interval). Using Duhamel's formula for 
e -~x+(t) one sees that f(x, t) is continuous and, by the above formula, 

d 

~-(x,Of t) = -~xd E ( _ l ) q t r  N (he_,adt)(id _ Qq(O, t))) 
q-~O 

is continuous too. The uniform convergence of the integrals f ~  f(x, t)dx 
and f F  °o-~t(x, t)dx follows from 
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LEMMA 6.1. Let I be an arbitrary compact interval contained in [0, e~). 
Then 

(1) lim~_o~ f~  ~trN(e-X~+(0)dx exists uniformly in t for t E I. 
(2) l im~oo  f~  °o-~t (x, t)dx exists uniformly in t for t E I. 

Proof. (1) Note that the integrand ~trN(e-XAq +(0) is positive. Thus, for 
u _> 1, 

o<_ Z JoT 
~ u  ¢¢ e - p u  

_ dNA+(0(f,) 

OF-u-½ 1 ~fle_Sd8 ) Jo+ dNA+(t)(P)(~in(1, ,~ ,  l d s +  

_1 

fo °" + dN/,+(t)(p) ( - log(rain(i, #u)) + e -1) 
+ 

<_ A(u, t) + B(u, t) 
where 

~00 °¢3 
A -- A(u, t ) :=  u -1/2 dNa+(O(p)e-~ , 

+ 
_1 

fo B =- B(u, t) := dNA+(t ) (#)( - log(,) + e -1) . 
+ 

To obtain the inequalities in (6.17) we used that for 0 < / J  < u -1/2 we have 
I log(pu)l< Ilogpl In fact, 1 < u <  ~ and t h u s # < # u <  L. _ _  • _ _  - -  # - -  - -  # 

The terms A and B are estimated separately. Integrate by parts and use 
the asymptotics (2.15) to conclude that there exists C > 0 so that for t E I 

dNa+(O(#)e-Ud # = (~)(#)e-Ud# <_ C < c~ . 
, + + + 

This shows that l im~_~ A(u, t) = 0 uniformly in t E I. Concerning B(u, t) 
note that by Proposition 1.18, there exists C > 0 so that for t E I,  
Na+(O(# ) <_ Na+(o)(Cp). By Lemma 1.20 it then follows that 

u-1/2 
B(u , t )  <_ foo d N A + ( ° ) ( C P ) ( - l ° g p + e - 1 )  " + 

As (M, }4;) is of determinant class one concludes that lim~--.~ B(u, t) = 0 
uniformly for t in I. 
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(2) From (6.16), f l  aa-~t(x, t)dx=-~-~Jq=O(-1)qtrN(he-~+~(t)(Id-Qq( O, t)))l~" 
Therefore it suffices to prove that, for 0 <_ q _~ d and uniformly for t in I, 

limo~ (he-XAq(t)(Id - Qq(O, t))) = 0.  (6.18) 

To prove (6.18) note that, according to (2.15), there exists C > 0, so that 
for t E I we obtain, integrating by parts, 

o~ 

ttrN(he-~Z~,(t)(Id -Qq(O, t)))l (]lhHL~/e-~XdNq(A,t) 
O+ 

o ~  

f e-x)~ <_ IlhllL~ ---ff-- Nq( A, t )dA 
O+ 

7e-X;~ <- IlhllL~J x cAd/2dA+IIhHL~I Nq(I't) 
1 

and (6.18) follows, o 
By Leibniz rule and Lemma 6.1 we have thus shown that 

f~z175 ~q(-1)qtrN(e-~a+q(t))dx has a continuous derivative with respect 
to t given by 

d ~¢ - ~ ( /  x211E(--1)qtrN(e-*a+(t))dx) 
q 

d (6.19) 

= E(--1)qtrN (he-~q(t)(Id-Qq(O, t))). 
q=O 

Next we analyze the t-derivative of ~ r---~ f 0 1 °  1 x~-ll~ ~q(_l)qtrN (e-~+(t))dx. 
We first apply formula (6.16) and then integrate by parts to obtain for 

~s > d/2 
1 1 

d _.,1, f x ~ _ l  ~ -1  qtrN e -~A~+(') dx~ 
- --(I'(s)dt Jo 2 "--~( ) ( ) / 

q 

= 1 ~0~ (q~--0 ) x " d  (-1)qtrN(he-*%(t)(Id - Qq(O,t)))dx 
r(s) dx 

d 
= 1 E(_l)qtrN(he_~,(t)(id_ Qq(O,t))) 

F(8) q=O 

8 ~01 d 
- F(s) x ~-1 E(--1)qtrN (he-*%(0(Id - Qq(0, t)))dz. 

q=0 
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Both terms on the right-hand side of this last equation are smooth functions 
in s and t, meromorphic in s and holomorphic in a neighborhood of s = 0 
independent of t, and therefore so is the left-hand side. These properties 
are obvious for the first term. For the second one they follow from Theorem 
2.9 (2) and formula (2.9). In view of r(ls) - -  F ( h l )  and r ( 1 )  = 1, we  obtain 

1 1 
d ( O-~-I 1--~- fo X~-l~ E(-1)qtrN(e-~+(t))dx ) (6.20) dt \ Os Is=0F(s) q 

d 
= E ( - - 1 ) q t r N  (he-Aq(t)(Id - Qq(O: t))) 

q=0 

1 f l  d 
x s-1 E ( - - 1 ) q t r N  ( h e - * ~ q ( t ) ( I d -  Qq(0, t)))dx, 

F 'Ps=°  ~ ~oj ao q=0 

where F.p.s=of  denotes the constant term of the Laurent series expansion 
of a meromorphic function f at  0. Combining (6.15), (6.19) and (6.20) we 
conclude that  log Tan (h, t) = log Tan ( h ,  t ,  0 )  is continuous, has a continuous 
derivative with respect to t and 

d logT~n(h,t) 

1 /1  d 
= F.p.s=o F- ~ x ~-1 E ( - - 1 ) q t r N  (he-~q(t)(Id - Qq(0, t)))dx. 

q=0  

(6.21) 
Next, tri(he-XAq(t)(Id - Qq(0, t))) = trN(he -~Aq(0) - tri(hQq(O, t)). We 
want to verify that  

1 f l  d 
x s-1E(-1)qtrN(he-~Aq(t))dx = 0 .  (6.21') 

F 'P 's=° F(-s) Jo q=o 

To verify this, note that  

p - ~ o  I F'p's=O[~(s ~ 1 - 1  F.P.s=0 xS-ldx = 1) s 

and the heat kernel expansion for the Schwartz kernel Kq(y,y',x,t) of 
e -~%(t)  on the diagonal y = y' is of the form 

d 

= E X  ~ lq,j(y,t) ~-Ot(x ~) ( 6 . 2 2 )  Kq(y, y, X, t) ~ 
j=0 

where lq,j(y, t) are densities defined on M with values in /~ and the er- 
ror term Or(x½) is a density which can be bounded by Cx 1/2, where C is 
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independent of t E I .  Thus 
d d 

fo x~-I Z(-1)qtrN(he-X~x'(t))dx = y~.(--1)qtrN (hlq,a(., t)) .  F'P'~=° r@s) 1 
q=0 q=0  

which by Theorem 2.9 (2) and (2.16) is zero. This proves (6.21'). As Qq(O, t) 
is a projection trs(hQq(O,t)) = trN(Qq(0, t)hQq(O,t)) and thus (6.21) and 
(6.21') lead to the following: 

PROPOSITION 6.2. ~ logTan(h, t) = Edq=o(--1)q+ltrN(Qq(O, t)hQq(O, t)). 
Next, we express the terms trN (Qa(O, t)hQq(O, t)) in a more explicit way. 

It is convenient to introduce Pq(t) = Qq(O, t). Consider gq(t): 7-/q(M; C) --~ 
7"tq(M; E) defined by 

Kq(t)(w) := Pq(O)ethw . 
Using the decomposition (~ • Tlq(M;E)) e-~hw = e-~hw+(t) + To(t) • 
h+'q(M; E) @ 7~tq(M; E) where w+(t) • A+'q(M; ~) and To(t) • 7-/~(M; C), 
one verifies that Pq(t)e -th is the right inverse of Kq(t). Therefore, Kq(t) 
is an isomorphism. This implies that  (Kq(t)Kq(t)*)½ is a selfadjoint, pos- 
itive, A-linear operator on 7-lq(M; E) and thus admits a determinant with 
detlv(Kq(t)Kq(t)*) 1/2 > 0. Note that Kq(t)* is given by Pq(t)e th and thus 
Kq(t)Kq(t)* can be written as 

Kq(t)Kq(t)* = Pq(O)etheq(t)ethpq(o) • (6.23) 

LEMMA 6.3. trN(Pq(t)hPq(t)) = ~ logdetN(Kq(t)Kq(t)*)½. 
Proof. Using Proposition 1.9 we note that  
d l°gdetN (Kq(t)Kq(t),)½ 1 d = ~-~  logdet N (Kq(t)Kq(t)*) (6.24) 

1 
= ~ t r N  ( d  (Kq(t)Kq(t)*)(Kq(t)Kq(t)*)-l) . 

Notice that  Pq(t) = P+(t)Pq(t) where P+(t), respectively Pq(t), de- 
note the orthogonal projection onto Null(dq (t)), respectively Null(dq-1 (t)*). 
Therefore, Pq(t) is smooth in t as both P~(t) are smooth as can be deduced 
from the representation 

P~ (t) = ~il / c  (~ - eV'h Pq~(O)e=~th )--l d)~ 

where C is a circle in C centered at the origin with radius r > e ttLh]]z~ • 
Using (6.23) and writing f~q(t) = dpq(t), we obtain 

d d-t (Kq(t)gq(t)*). = Pq(O)hethpq(t)ethPq(O) + Pq(O)ethpq(t)ethPq(O) 

+ pq(O)ethpq(t)he'hPq(O). (6.25) 
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To compute/~q(t) = ~(Pq(t)  2) = Pq(t)Pq(t) + Pq(t)_Pq(t) we consider the 
orthogonal decomposition Aq(M; g) = ~ ( M ;  C)~A~+'q(M E)~AT'q(M E). 
An element w E Aq(M; g) can be uniquely written as (cf. (6.4)-(6.7)) 

= ~o(t) + e-'h~+(t) + ~'h~-(t) 

where w±(t)  ~ A+'q(M;g) and wo(t) = Pq(t)w. We conclude that 

0 =  ~wd = &o(t )+e- th&+(t )+e~h&_( t ) - -he- thw+( t )+he thw_( t )  . (6.26) 

Note that &±(t) E A±'q(M;S) and therefore e-th&+(t) E A+'q(M;g)  and 
eth&-(t) E A~-'q(M; g), Applying Pq(t) to (6.26) leads to 

0 = Pq(t)&o(t) - Pq( t )he- thw+( t )+ Pq(t)hethw-(t)  • 

In terms of P~( t ) ,  the orthogonal projectors Aq(M; g) --~ A~'q(M; g), the 
above equality becomes 

Pq(t)[gq(t) = Pq(t)hP+(t)  - Pq( t )hPq (t) . (6.27) 

Observe that the projectors Pq(t) and therefore /bq(t) are selfadjoint to 
conclude that 

Pq(t)Pq(t) = P+(t)hPq(t)  - P q  (t)hPq(t) . (6.28) 

Combining (6.27) and (6.28) we obtain 

Pq(t) = [:'q(t)Pq(t) + Pq(t)T'q(t) 

= Pq(t)hP+(t)  + P+(t)hPq(t)  - Pq( t )hPq( t )  - P~-(t)hPq(t) . (6.29) 

Compose (6.29) to the left with Pq(O)e th and to the right with ethpq(o) to 
get 

Pq (0)e ~h.pq (t)e th Pq (0) 
= Pq(O)ethpq(t)hP+(t)ethpq(O) + Pq(O)ethp+(t)hPq(t)e*hpq(o) 

- Pq(O)ethpq(t)hPq (t)ethpq(O) 

- Pq(O)ethp~ - (t)hPq(t)e~hPq(O) . (6.30) 

To simplify (6.30), notice that dq(t)* = e~hdqe -th and therefore eth~q(M; g) 
C n~(M;  8 ) $ A T ' q ( u ;  E) which implies that P+ (t)e*hpq(O) = 0. Taking the 
adjoint, we conclude that Pq(O)ethp+(t) = 0. Thus, the first two terms on 
the right-hand side of (6.30) are zero. Note also that P~-(t)ethpq(o) = ( I d -  
Pq(t))ethpq(o) and Pq(O)ethpq(t)  = Pq(O)eth(Id - Pq(t)). Applying these 
three observations to (6.25) and taking into consideration the definition of 
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Kq(t)  one obtains 

d (Kq(,)ICq(t)*) 

= Pq(O)hethpq(t)ethPq(O) - pq(O)ethpq(t)h(Id - Pq(t))ethpq(O) 

+ Pq(O)e'hpq(t)hethpq(o) - pq(O)eth(Id - Pq(t))hPq(t)e*hpq(o) 

= 2Pq(O)ethPq(t)hPq(t)ethpq(O) 

= 2I(q(t)Pq(t)hPq(t)Kq(t)* . (6.31) 

Substituting (6.31) into (6.24) one obtains 

d tog det~ (Kq( t )Kq( t )*)  ½ =trN (Kq( t )Pq( t )hPq( t )Kq( t )* ) (Kq( t )Kq( t )* )  -1 
dt 

=trN ( Kq( t )Pq( t ) hPq( t ) Kq( t ) - l  ) 

=trN (Pq(t)hPq(t))  

which concludes the proof of the lemma, o 
Using that Kq(O) = Id and therefore that detg(I ia(O)Kq(O ) ) :  = 1~ 

Proposition 6.2 together with Lemma 6.3 lead to 

d fot d logTan(h, t )  = logTa~(h, 0) + ~"~(-1) q+: ~ logdetlv (Kq(t)Kq(t)*)½dr 
qm0 

d 
q + l  = logTan(h,0) + ~ ( - 1 )  logdet N (Kq(t)h 'q( t)*)  ½ (6.32) 

q=0 

In section 4.1 we introduced the .A-linear isomorphisms 

0q : NullA c°mb --+ 7-/q(M; C) 

the inverse of ~t-(q) and the metric part of the Reidemeister torsion Tm~t (T) 
= Tmet(M,g,  7, YY), cf. (4.4), defined by 

d 
logTrnet(7) = 1 E ( _ l ) q l o g d e t N ( O q O q )  " 

q=0 

By applying Theorem 5.5 (5) we show that 

LEMMA 6.4. For t sufBeiently large, the following s ta tements  hold: 

log det N (Kq( t )Kq( t )*)  ½ 

=logdetN(OqOq)~ +q/3qt+/3q log + O ( t  -1) (6.33) 
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d 

~-~(-1) q+l logdet N (Kq(t)Kq(t)*) ½ 
q=0 

d 

= -- l og  Zmet ( M ,  g, T, ]/~) q- y~(--1)q+lqt~qt 
q=0 

a 2 

q=O 

(6.34) 

Proof. Summing with respect to q, statement (6.34) follows directly from 
statement (6.33) and the definition logTmet(r)=½~-~=o(-1)q logdetN(OqOq). 
To prove (6.33) observe that if one represents Fq = Int (q) : Aq(M,E) --~ 
C q, Mq : Aq(M,C) ~ Aq(M,E), the multiplication by e th, and fq(t) : 
Aq(M, £)sm ~ C q (cf. Theorem 5.5 (5)) as 3 x 3 matrices, with respect to 
the Hodge decompositions, cf. (1.20), then (0q) -1 = Flql, Kq = Mqn and 
fqn(t) = (~d~,~-~qpq a%q Theorem 5.5 (5) implies that \-{1 - ~ ~ 1 1 ~ 1 1  • 

log det N (flql(t)fqa (t)*) = O(t-1), (6.35) 

which combined with Proposition 1.9 implies that 

logdetN (I(q(t)I(q(t)*) - / ~ q ~ l O g ( t )  

- ~q2qt -log det N (Oq(t)Oq(t)*) = O(t -1) . (6.36) 

hence (6.33). 

LEMMA 6.5. For t ~ ~ ,  

logTsm(h, t) = logTcomb(7") 
d 

-k-~ (--1) q(/3q--mql) (2t-- logt+logr)+o(1).  
" q=O 

(6.37) 

Proof. Recall that  log Tsm (h, t) is a real number defined by 

d 

logTsm(h,t)= ½(q~=o(-1)q+lql°gdetNAq(t)sm ) (6.38) 
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and that for any 0 < C < co (cf. (6.13)) 

0 
logdetN Aq(t)~m = - -~s s=o F-~  L c  d---~xS(trN(e-~q(t)'m)- ~q) 

_ f $  dXx (trN(e-~A~(t)'m) --/3q) (6.39) 

where/~q = dims Null A~ °rob =dimN Null Aq(t). 

Consider Aq(t)s m the Laplacian of the cochain complex 

(ha(M, E)sm(t), dq(t)) and note that 

7re2t /k (t~ (6.40) A(t)q'sm = t q\ ]sm • 

Note also that 

io (l; 1 ) o~ dX (trN(e_,A) _/3q) = e- 'Xdx dFA(,)  
X + 

where FA(#) has been introduced in (1.9) and A is A(t)q . . . .  h(t)q . . . .  oi" 
Acomb The last equality follows from integration by parts. q 

t e - 2 t x  By a change of variable of integration, y = ~ , and in view of (6.41) 
we obtain 

o~ dX (trN(e_:aq(t).:) flq) e-gVdY Fx,(t),: (tt)dlx 
~e i t  X + 

(6.42) 
From Theorem 5.5 (5) and Proposition 1.18 we conclude, arguing as in 
Proposition 5.6, that  there exists to > 0 such that, for t >__ to and 0 <_ 
q < d, F~q(~), (#) < FA~omb(10p). For t > to and 0 _< q < d, the above 

computations lead to 

trN(e -*A,(O'm) -- fTq) < dx,  . _:a¢o:b 
_ - - t t r N ( e  , ) -  flq) . (6.43) 

~e2t X 

Taking into account that (M, kV) is of determinant class, one can choose 
C > 0 such that 

/ ~  ?(trN(e-XA:°mu) - l~q) ~_ e . (6.44) 

Therefore, for all t _> to, 0 < q < d, it suffices to consider 

0 1 c ~ J '  
--~s s=o~(s) L -e dXxs(trN(e-*a'(t)'~)x - -- ~q) " (6.45) 
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When expressed with respect to the basis given in Theorem 5.5, Aq(t)sm is 
of the form * -2~ comb _ !  -4e (Aq + O(t 2)). By a change of variable of integration, 

t e-2tx Y = 7 , the expression (6.45) can be written as a sum of two terms, 
Iq + IIq, where 

zq = - ( l o g  ~- - log t + 2 t ) z u q ( s ) l . =  o 

IIq = _ d  ,=oiiiq(s) (6.47) 

and 
1 f c  

= ~ (8 )  JO Y ys(trN(e-y(Acq°mb+O(t-½)))- ~q) " (6.48) IIIq(s) 

We first evaluate IIIq(s) at s = 0. Use r-77~1 = r(8+1)* and integrate by parts 
to obtain, for arbitrary 5 > 0, 

_ 1 ~o uY-'~Y ty )t~rl~t~ IIIq(s)l*=° r(s + 1) e , .  d , . . , , t . .  l~-y(a;°=b+o(,-½))~ ] -- /~q) ls=O 

= trN(e-6(A~°mb+o(~-½))) _ ~q 

1' + dytrN ( ( A q  ° m b  -~- O ( t - ½ ) ) e  -y(Acq°mb+O('-½))) • ( 6 . 4 9 )  

Taking the limit as 6 --+ 0 in (6.49) leads to 

I I I q ( s ) l , =  o = mq l  - / 3 q .  ( 6 . 5 0 )  

To compute IIq = - ~1~=0 IIIq(s) recall that  

logdetN Ac°mu O =0 1 f c  ~ --q - -  r (s )  y*(trN(e-Y(ACq °rob)) -/3q) 

- y ( t r i  (e-Y(a; °mb) -/~q) (6.51) 

and use the estimate (0 _< y < C) 

ItrN(e-~(~7~)) - tr~(e-~(~?~%°(<½)))l _< yO(t-{) (6.52) 

to conclude, together with (6.49), that  

]IIq - logdet N A~°mb I < e + O(t-{)  (6.53) - - q  _ 

Combining (6.40)-(6.43) and (6.50)-(6.53) we conclude that  for given e > 0, 
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there exists te > 0 so that for all t > t~, 

I log Tsm (h, t) - log Tcomb(T) 

--1--~(--1)q+lq(~q--mql) ( 2 t - - l o g t )  l <_3¢. (6.54) 
2 q=0 [] 

Proof of Theorem A. First note that  log Tl~(h, t )=log T~n ( h, t )-log Tsm ( h, t ). 
Therefore the asymptotic expansion of log T~(h, t) is obtained from the ex- 
pansions of log T~n(h,t) and log T~m(h,t). The asymptotic expansion for 
log Tan(h, t) follows from (6.32) and Lemma 6.4 together with the fact that, 
since d is odd, x(M, T) = ~"]~=0(--1)q/3q = 0. The asymptotic expansion for 
logTsm(h, t) is contained in Lemma 6.5. n 

6.2 C o m p a r i s o n  t h e o r e m  for  W i t t e n ' s  d e f o r m a t i o n  of  t h e  ana ly t i c  
to r s ion .  The family of operators Aq(t) is a family with parameter  of order 
2 and weight 1 (cf. [Shl] and section 3). It fails to be elliptic with parameter, 
but only at the critical points of the Morse function h. We can therefore use 
the Mayer-Vietoris type formula for determinants (cf. section 3) to localize 
the failure of the family Aq(t ) to be elliptic with parameter  and thus ob- 
tain a relative result which compares the asymptotic expansions of Witten's 
deformation of the analytic torsion corresponding to two different systems 
( M d, h, g, 14;) and ( M 'd, h', g', W) where the manifolds M and M'  have the 
same fundamental group F and (h, g) and (h', g') are generalized triangula- 
tions for M respectively M ' .  

T h e o r e m  B. Let d be odd. Suppose that r = (h,g) and T' = (h',g') 
are generalized triangulations with #Crq(h) : # Crq(h') (0 < q < d), and 
that (M, }&) and (M', }IV) are of determinant class. Then the following 
statements hold: 
(1) The free term FT(log Tl~ (h, t ) - l og  2qa(h', t)) of the asymptotic expansion 

oflogTl~(h, t) - log T~(h' ,  t) is given by 

J i 
M \ C r ( h )  M ' \ C r ( h ' )  

(6.55) 
where the densities ao(h,e = O) and ao(h',e = O) are smooth forms 
of degree d and are given by explicit local formulas and the difference 
appearing in the right-hand side of (6.55) is taken in the sense (6.56) 
explained in the remark below. 

(2) Due to the assumption that d is odd, 
ao(h,e = O,x) + no(d-  h,e = 0, x) = O. 
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REMARK: The integral fM\Cr(h)ao(h,~ = 0) need not be convergent and 
the difference on the right-hand side of (6.55) should be understood in the 
following sense: In view of the definition of a generalized triangulation, 
there exist neighborhoods V of Cr(h) and V ~ of Cr(h'), a diffeomorphism 
f : V ~ V ~ and a smooth bundle isomorphism F : glv ~ g(v, so that f and 

F intertwine the functions h and h ~, the metrics g and g~ and the Laplace 
I operators Aq and Aq. Define 

i ao(h,z=O)- ff ao(t,',.=O)=iao(h,c=O)-i ao(h',.=O). 
M \ C r ( h )  M '  \ C r ( h ' )  M\V M' \U' 

(6.56) 
Clearly, the definition is independent of the choice of V and W. 

As an application of Theorem A and Theorem B we obtain the following 
result: 

COROLLARY C. Let M and M t be two dosed manifolds with the same 
fundamental group F and the same dimension d and let W be an ( A, FoP) - 
Hilbert module of finite type. Suppose that 7 = (h, g) and v' = (h', g') are 
generalized triangulations with #Crq(h) = 7P Crq(h') (0 < q <_ d), and that 
(M, W) and (M',  W) are d determinant class. Let Tin = T~n (M', g', W)  
and T~e = TRe(M', r', W).  Then 

log Tan - log T:n = log TRe -- log Ti~ e . 

In the remainder of this subsection we prove Theorem B and Corollary C. 
Let M be a manifold equipped with a generalized triangulation r = 

(h,g). Let Xq;j E Crq(h) be a critical point of h of index q and Uqj a system 
of H-neighborhoods of :cq;j (of. Definition 5.1). Introduce the manifolds 

Ms := M \  LJq,j gq j  ; Mjs : =  LJq , jU; j  , 

where Uqj is defined as in Definition 5.1. Both manifolds MI and Mtt  have 
the same boundary, given by a disjoint union of spheres of dimension d - 1. 

To make the notation more pleasant, we will write, as in section 5, Vh 
for gradgh. Fix c > 0 and consider the operator Aq(t) + ~. Its symbol with 
respect to arbitrary coordinates (~2, ~) of (M, E ---+ M) is of the form 

a2(x, ~) + t 2 I lVhl l  2 + al (x, ~) Jr tLq(x) + c (6.57) 

where ai : R d x R a --~ End(Aq(R d) ® W) (i = 1, 2) are homogeneous of 
degree i in ~, where IlVhll~ : R d --+ R is given by 

• . Oh Oh 
IlVhll 2 =  ~ g'3oxiOx--- ~. 

l<i,j~d 

and where Lq : fi d --+ End( Aq(lia) ) is the operator Lq = f~Vh + £~Th of order 
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0 with £:Vh denoting the Lie-derivative of q-forms along the vector field 

• .Oh 0 
Vh  = ~ g '30xi Oxj " 

The operator £~7h is the adjoint of £Vh with respect to the metric g and is 
given by (cf. [HSjl, Appendix formulas A.1.9, A.1.6]) 

f~Zh -~ --(--1)q( d+q) Rd-q~'Vh Rq (6.58) 

where Rq : Aq(R d) ---* Ad-a(R d) is the Hodge operator associated to the 
metric ~*g. Recall that we have denoted by Cr(h) the set of all criti- 
cal points of h. Set M* := M\Cr (h ) .  For an arbitrary chart (~ ,~)  of 
(M*,~ClM • --* M*), define, as discussed in section 3.2, the symbol expan- 
sion Y]j>o r_2_j(h, E, x, ~, t, p) of the resolvent (# - -Aq( t ) -~) - I  inductively: 

r_2(h ,e ,x ,~ , t ,#)  = (# - a2(x,~) - t21}Vhll2) -1 

and, for j > 1, 

r -2- j  = (It -- a2 -- t2HVhll2) -1 Z ~.0~ a2(Dx)~r-2-1 (6.59) 
<_1~t_<~ 

+ ( .  - a~ - t~lLVhll ~ ) -1  ~ 0 [ ( a l  + tL.)(Dx)~r-~-~ 
o<l~l<a  
,'+l~l=J 

+ (p - a2 - d l l V h t l  2) - ~ e r _ j  . 

Note that r-2- j  has the following homogeneity property: for A E R \ {0} 

r_2_j(h,e,x,A~,M,)~2#) = ~-2-Jr_2_j (h ,~ ,x ,~ , t ,p  ) . (6.60) 

For later use, we introduce the densities a0(h, e, x) on M* with values in R 
(cf. (3.4)), defined with respect to the chart (~, ~) and arbitrary e as 

0 ( 1 \ 1 f a0(h,~,x/= X ~--0 ~ d~ (6.61) 

" ~ dpp -s trN r_2_d(h, e, x, ~, t = 1, #) 

--1 d~ d#trN (r_2_d(h,e,x,~, t  = 1 , - p ) )  
= (2~)~ ~ 

Since we will be obliged to work with two functions h and h' at the same 
time we will write Aq(H, t) instead of (the abbreviated form) Aq(t). 

PROPOSITION 6.6. Assume that (Md,T=(h,g),W) and (M'd,T'=(h',g'),W) 
satisfy the hypothesis of Theorem B except with d not necessarily odd. 
Then for any e > 0 
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(i) log det N ( A q( h , t) A- ~ ) - log detN(Aq(h' ,  t) A- 6 ) has a asymptotic ex- 
pansion for t --* ~x) whose free term is denoted by -ao := ~o(h, ht,~). 

(ii) The coefficient ao can be represented in the form 

~ o =  L a o ( h , ~ , x ) -  L ao(h' ,c ,x ')  (6.62) 

where ao(h, ¢, x) and ao(h', z, x') are the densitiesintrodueed in (6.61) 
for arbitrary 6. 

(iii) If  d i m M  = d is odd then for arbitrary ¢ > O, x E M 

ao(h, E, x) + ao(d - h, c, x) = 0 .  (6.63) 

With the same identity for h' one then obtains 

-do(h,h',¢) +-do(d - h , d -  h',c) = O . 

Proof. The proof is based on Theorem 3.6 (Mayer-Vietoris type formula). 
Note that Aq(h, t) + ~ is a family of invertible, selfadjoint, elliptic operators 
with parameter t of order 2 and weight 1 for any c > 0. The same is true for 
the operators (A~(h, t) -t- C)D and (A~'(h, t) + ¢)D obtained by restricting 
Aq(h, t) + e to ]141 and ]VIII, respectively, and imposing Dirichlet boundary 
conditions. We can therefore apply Theorem 3.6. Denote by RDN(h, t,E) 
the Dirichlet to Neumann operator defined in section 3.3. We conclude 
from Theorem 3.6 (4) that RDN(h, t, ~) is an invertible pseudodifferential 
operator with parameter t of order 1 and weight 2 and from Theorem 3.6 
(2) we conclude that RDN(h, t , c )  is elliptic with parameter t. It follows 
from Theorem 3.2 (2), in view of the fact that RDlv(h, t ,e)  is elliptic with 
parameter, self adjoint, positive and invertible that 7r is an Agmon angle 
uniformly in t for a fixed e. According to Theorem 3.4, logdetN RDN(h, t, 6) 
has an asymptotic expansion for t --* cx~. Inspecting the principal symbol of 
(A~(h,t) + 6)0 one observes that (AqX(h,t) + Z)D is a family of invertible, 
selfadjoint differential operators with parameter of order 2 and weight 1 
which is elliptic with parameter. From Theorem 3.5 we therefore conclude 
that logdety(Alq(h, t)  + C)D admits an asymptotic expansion as t --* ~ .  
Finally (AqtI(h, t) + ¢)D is a family of invertible selfadjoint operators with 
parameter of order 2 and weight 1, which is, however, not elliptic with 
parameter. 

Of course the same considerations can be made for the system (M r, h r, gr) 
to conclude that log detN RDN (h', t, c) and log detN(A~(h', t) + E')D have 
both asymptotic expansions for t ~ c¢. Applying the Mayer-Vietoris type 
formula (Theorem 3.6 (3)) for logdetg(Aq(h, t)+z)  and logdetN(Aq(h' , t)+c) 
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we obtain for the difference 

log det N ( Aq( h, t) + ~) -- log det N ( Aq( h', t) + ~) (6.64) 

= log det N (A~(h, t) + e)u - log det N (At(h ', t) + e) D 

+ log det N (A~ t (h, t) + e) D -- log det N (A~' (h', t) + e)D 

+ log det N RDN ( h ,  t ,  #)  - log det NRDN ( h ' ,  t ,  g)  

+ log e(h, t, e) - log ~(h', t, e ) .  

Note that Mit  and M~t are isometric and g lM,  as well as g'lM b are trivial. 
Consequently 

log det N (A~I(h, t) + e) D = log det N (A~'(h',  t) + c) D" 

Due to our definition of H-coordinates the isometry between MII and MJt 
extends to neighborhoods of MII and M~II . As a consequence we conclude 
from Theorem 3.6(3)and Theorem 3.4 that 6(h, t, e) = e(h', t, e) and that 
log detN RDN (h, t, g) and log det N RDN (h t, t, e) have identical asymptotic 
expansions. We have therefore proved that 

log det N (Aq(h, t) + e) - log det N (Aq(h', t) + ~) 

has an asymptotic expansion as t ~ c~ which is identical to the asymp- 
totic expansion for log det N(A/(h, t) + e)D -- log det N(A~(h', t) + e)D. Ac- 
cording to Theorem 3.5 the free term in the asymptotic expansions of 
both logdetN(A~(h,t)  + ~)D and log detN(A~(h', t) + S)D consists of a 
boundary contribution and a contribution from the interior. Recall that 
OMx and OM~ are isometric and that in collar neighborhoods of OMi and 
of OMtl the symbols of (A~(h,t) + e)D and (A~(h',t) + e)D are identi- 
cal when expressed in (H)-coordinates. Therefore the boundary contri- 
butions are the same and the free term in the asymptotic expansion of 
log detx (A~(h, t) + ~)o - log detN(A~(h', t) + e)D is given by (cf. formula 
(3.4)) 

fM ao(h' ,e,x ')  (6.65) 

where the densities ao(h, c, x) and ao(h', ~, x') are given by (6.61). 
Noting that ao(h, ~, x) and ao(h', e, x') are identical on Mr1\ Cr(h) - 

MJI \ Cr(h') statement (ii) follows. Towards (iii), observe that as M is of odd 
dimension, the quantity r -d-2  (h, e, x, ~, t, p) defining a0(h, e, x) satisfies, 
according to (6.57) and (6.59), 

r -d-2(d- -  h ,~ ,x ,~ , t ,p )  = r_d_2(h ,~ ,x ,~ , - t ,  tt ) (6.66) 

and, according to (6.60) 

r _ a _ 2 ( h , c , x , - ~ , - t , p )  = - r_d_2 (h , e , x ,~ , t , # )  . (6.67) 
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Therefore, r - d - 2  (h, e, x, ~, t, tz) + r-d-2(d - h, e, x, ~, t, p) is an odd function 
of( .  Integrat ing over Iq = 1 we conclude that  ao(h, e, x)+ao(d-h,  e, x) = O. 

[] 

For any e > 0 introduce the following per tu rbed  version of logT(h ,  t) 

A(h, t, e) :=  21 ~ - ~ ( _ l ) q H q l o g d e  t N (Aq(h, t) + e) . (6.68) 
q=O 

Note that  A(h, t, e) can be wri t ten  as a sum 

A(h, t, ~) = A~m(h, t, ~) + A,~(h, t, e) (6.69) 

where Asm is defined in a fashion analogous to logT~m(h, t), 

d 
1 

A~m(h,t,e) :=  ~ Z ( - 1 ) q H q l o g d e t  N(Aq(h,t)~m + e) 
q----0 

with 
Aq(h,t)sm :=  Aq(h,t)lhq(M;E)s m 

and Ala(t, h, c) is given by A(h, t, e) - Asm(h, t, E). Observe that  the spec- 
t rum of the operator Aq,~m(h,t) tends to 0 as t ~ ~c and therefore, by 
Theorem 5.5 (6) 

logdet N( Aq(h,t)~m + e) =rnqlloge + O ( ~te -2~) 

for t ~ ec where l = dimN }4;. This  shows that  Asm(h, t, e ) -  A~m(h', t, e) is 
exponential ly small  as t --, ec and  hence, for any fixed c > 0, it has a tr ivial  
asymptot ic  expansion for t -~ ~c. In view of (6.69) and Proposi t ion 6.6 
we conclude that  for any e > 0, A(h, t, s) - A(h', t, e) and An(h, t, e) - 
Ala(h ~, t, ¢) have asymptot ic  expansions for t --* oc and,  moreover, these 
expansions are identical.  In part icuIar  we conclude that  the free terms of 
the two expansions are identical  

FT(A1~(h, t, ~) - Au(h',  t, e)) = FT(A(h ,  t, ~) - A(h', t, e)) . 

Using Proposi t ion 6.6 (ii) and the fact tha t  the densities ao(h,e,x) and  
ao(h', e, x), defined in (6.61), are continuous in e we obta in  

LEMMA 6.7. (i) For any  e > 0, Al~(h, t, c) - Au(h',  t, ~) has a asymptotic 
expansion for t --* oc which is identical to the asymptotic expansion for 
A(h, t, ¢) - A(h', t, e). 

(ii) The limit 

lin~ FT(A,~(h, t, e) - A,~(h', t, e)) 
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exists and is given by 

!ira FT(AI~(h, t, e) - Al~(h', t, c)) (6.70) 

= /M a°(h 'c=O'x)- -  /M ao(h',~=O,x') . 

We proceed to investigate the left-hand side of (6.70). For this we 
need the following estimate for the spectral distribution function Nq(t, ~) 
of Aq(t) - Aq(h, t). 

LEMMA 6.8. There exist a constant C > 0 and to > 0 so that for t >_ to 
and& >_ 1 

N q ( t ,  :~) < C ~  ~ . 

Proof. Denote by Aq/N(t), resp. AIqlN(t), the operator Aq(t) restricted 
to M I, resp. M H, with Neumann boundary conditions, i.e. restricted to 
C~(£1M,) := {u E C°°(£1M,) I Nu  = 0} resp. C~(£1M,, ) := {u e 
C~(£[M ")  I Nu  = 0} where Nu denotes the covariant derivative of u with 
respect to the unit (inward) vector field normal to the boundary. A~,N(t ) 
and A II [~ have well defined spectral distribution functions denoted by q ,N~/  
A~(t,A) and II N~ (t, ~), and in view of their variational characterization one 
has 

Nq(t, ~) < NI(t  , ~) + Nit( t ,  A) . (6.71) 

We estimate NI(t  ,~) and H N~ (t ,)0 separately. For t sufficiently large, 
Aq(t) > Aq(O) = Aq on MI and thus NI(t  ~) < NI(O,/~). The asymp- 
totic estimate (2.15) (by the same arguments used to verify (2.15)) is also 
valid for NI (0  , ~), NI(0,  A) _< C~ d/z. Therefore there exist to > 0 and 
C1 > 0 such that  for t _> to, )~ _> 1 

N~(t, ~) < Ct~ d/2 . (6.72) 

Now let us estimate Nil(t,/~). Recall that MII = UkjU~j. On each of the 

discs Ukj, when expressed in (H)-coordinates (0, ~), Aq;k(t) = /~q;k(t) ® Id 
with /~q;k : Aq(Rd; R) --~ Aq(Ra; R) given by (cf. (5.2)) 

2xq;k(t) = 2xq + t21x l  ~ - t(d - 2 k )  + 2t(N+k - N ~ )  . 

Note that  the spectral distribution function of Aqdc(t ) on B~ (c~ as in Def- 
inition 5.1) with Neumann boundary conditions is equal to the product 
of dimN W and the spectral distribution function of Aq;k(t) on B~ with 
Neumann boundary conditions. Introduce the scaling operator St defined 
by 

Sff(x) := ta/zf(tx) . 
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Then S,1/~ . t K .  S ~ :  =/Xq;k(t) where 

K - I(q;k := ~Xq + [xl 2 - (d - 2k) + 2(N+k - N~;k) . 

Therefore the Neumann spectrum of ~q;k(t) On B~ is the same as the Neu- 
mann spectrum of t K  when considered on Bvq ~. Denote by N~n-;vq(A ) the 
spectral distribution function of the operator t K  on By7 ~ with Neumann 
boundary conditions. Using the variational characterization of a spectral 

N distribution function one can compare Nth-;vq(~)(= x;vq(7)) with the 
spectral distribution function of K on the whole space R d to conclude that  
there exists Cz > 0 so that  for t > 1,/~ >_ 1, 

NtA-;,n(),) < C2 < Cz~ d 

Hence we have shown that  for the spectral distribution function Nlqt(t, )~) of 
the operator Aq(t) on MII  with Neumann boundary conditions there exists 
Ca > 0 so that  for A > l ,  t _> l ,  

NlqI(t, ~) <, C3~ d . (6.73) 

The claimed result now follows from (6.71), (6.72) and (6.73). [] 

For t sufficiently large we introduce the tra~e of the heat kernel of 
~Xq;la(t), 

where Nl~(t, ~) is the spectral distribution function of Aq;la(t). 

COROLLARY 6.9. (i) There exist to > 0 and a constant C > 0 such that, 
for t_>t0  a n d p > 0 ,  

Oq(t, •) ~_ Cp  -d . (6.74) 

(ii) There exist constants to > O, C > 0 and/3 > 0 such that, for t > to 
and ~ > 1/ v5, 

Oq(t, , )  < Ce -a'u . (6.75) 

Proof. (i) By Proposit ion 5.2 there exist to > 0 and a constant CI > 0 such 
that for t _> to spec(Aq;ta(t)) C [Clt, oc) and therefore 

/? Oq(t, #) = e-U~dNtq~(t, )~) . 
it 

Integrating by parts  we obtain 

Oq(t, p) < ~t f ~ ¢  e-U~N~(t ,  )Qd)~ . (6.76) 
JC1t 

Notice that  Nlq~(t, ~) < Nq(t, )Q and therefore, by Lemma 6.8, one concludes 
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that 

/2 C e_X)~ed. ~ <_ d /~e .  0q(t,~) _< 7 , , ,  

(ii) F rom (6.76) and L e m m a  6.8 we obta in  
~ /; Oq(t,#) < Cpe -c'~"/2 e-"X/21edA < Ce-c '¢" /2  

-- ~ -- pd " 

By choosing/3 < C1/2  and C > 0 sufficiently large we obta in  (ii). D 

Recall  from Theorem A tha t  log Tla(h, t) has an a sympto t i c  expansion 
for t ---+ co. 

PROPOSITION 6.10. 

! i~FT(Al~(h,  t, s) - Au(h', t, s)) = FT(  log ~q~(h, t)) - FT(  log Tla(h' ,  t ) ) .  

(6.77) 

Proof. We verify below tha t  the function,  defined for c > 0 and t sufficiently 
large by 

H ( t ,  c) := Au(h,t ,~) - Ata(h',t,e) - logTl~(h, t) + logTl~(h',t) 
is of the form 

d 

H(t, e) = ~ ~kfk(t) + g(t, e) (6.78) 
k = l  

where g(t, e) = o(1) uniformly in e. The  s t a t emen t  of the propos i t ion  can 
be  deduced from (6.78) as follows: Recal l  t ha t  for e > 0, H(t, ~) has an 
a s ympt o t i c  expansion for t ~ co. As g(t, e) = o(1) uni formly in s we 

d conclude t ha t  for any e > 0, ~k=l skfk(t) has an a sympto t i c  expansion for 
t ---+ co. By  taking d different values 0 < s l  < . . .  < Ed for s and  using tha t  
the  Vandermonde  de te rminan t  is nonzero 

det  ' ¢ 0 

• . .  

we conclude tha t  for any 1 < k < d, fk( t )  has  an a sympto t i c  expans ion  for 
t ~ co and tha t  for any s > 0 

d 

FT(H(t ,  e)) = ~ skFT(fk(t))  . 
k----1 

Hence lim~--,0 FT(H(t ,  s)) exists and  l im~_0 FT(H(t ,  e)) = 0. To prove 
(6.78) we in t roduce  the ze t a  function (H~ of zkq(t)l~ + ~, 

// 1 # ' - 1 0 q ( t  ' p)e-~,d# (6.79) 
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with Oq(t, it) given as above. 
parts 

1 its_loq(t,  #)e_~Udi t 

and 
d.,;~(t, ~, 8) = 1_!_ [1/ .z. ._tOq( t, U)e- '" , t . .  

£(s)  Jo 
First let us consider 

1 ffl °° s e -~u - 1 d# . (I ' la(t 'C'S)--(Iq'la(t'c=O'8) = ~(s) /vqit Oq(t, it) i t 

Note that 
~/,la ( t ,  £, 8) 1 - ~q,l,,(t, ~ = o, s) 

is, by Corollary 6.9 (ii), an entire function of s. Recall that 

d (F-~s)) 1 1 
ds s=o 

and that 1 - e -~" _< Eit, we obtain 

- q,~,(t,~ o, s)) 
s -O 

f ~  e -~u - 1 d# 
= Jl /vOq( t ,  it) it  

< eC e_~tUdit = ¢C -~vq 
- ~vii -~e 

where we have used Corollary 6.9. To analyze the term 

d u s) II 
~ 8  s=0 ( ( q ' l a ( t '  E, - -  ~q,la(t ,  E = 0, S))  , 

first expand (e -~u - 1)lit  

(e - s " -  1)/it = L ~ ok#k-1 + ed+t#de(c'it) 
k = l  

where the error term is given by 

(--1)kek k - 1  ed+l d 

k = d + l  

Note that, by Corollary 6.9, #dOq(t, it) <_ C and therefore 

fo l lvq itSOq( t, #)ed+litde(e, it)dit 

The integral in (6.79) can be split into two 

(6.80) 

(6.81) 

(6.82) 
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is a meromorphic function of s, with s = 0 a regular point and, for t suffi- 
ciently large 

. = o  Jo 

where C is independent of t and E, 0 < e < 1. Oq(t, #) admits an expansion 
for # ---* 0+ of the form 

d 

j=O 

where 0~(t, #) is continuous in p _> 0, because so does Aq(t). Therefore, for 
l < k < d ,  

1/,V7 k 
1 fo # 8 0 q ( t , P ) ~ e ~ P ~ - l d #  r(8) 

is analytic in s at s = 0 and 

(J-- 

is of the form ~]d=l ekfk(t). This establishes (6.78). [] 

Proof of Theorem B. From Theorem A we know that logTla(h,t) - 
logTla(h', t) has an asymptotic expansion for t --~ oc. By Proposition 6.10, 
the free term if0 of the asymptotic expansion is given by 

~0 = lim FT(Ala(h, t, e) - Al~(h', t, e)) . 
e--o0 

By Lemma 6.7 (ii) we conclude that 

 o=jM a o ( h , s = O , x ) - / M  ao(h' ,e=O,x') .  

which proves part 1 of Theorem B. Part (2) follows from (6.63). u 

Proof of Corollary C. Choose a bijection O : Cr(h) --~ Cr(h') so that 
O(xq;j) is a critical point xrq;j of h' of index q. By assumption O extends 
to an isometry O :  Uq,jUqj --~ Uq,jU~j where (Uqj) and (U~j) are systems 
of H-neighborhoods for h, respectively h'. Denote by T, respectively, T' the 
triangulation induced by (h, g), respectively (h', g'), and by Tg, respectively 
r~ the triangulations 7-v = (d - h, g), respectively T~ = ( d -  h', g'). It 
follows from (4.8')-(4.8'") and d odd that logTmet(T) = logTmet(rg) and 
logTcomb( ) --- ]ogTcomb( v) 
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Using Theorem A for both h and d - h, we obtain 

2log T~n - 2 logT:n = FT( logT~n(h, t) - logT~n (h', t)) 

+ FT(logT~n(d- h,t) - log Tan(d - h',t)) 

+ 2 logTmet(7) - 2 logTmet (r ' )  . 

Decomposing logT~.(h, t) = logTl~(h, t) + logT~m(h, t) and taking into ac- 
count the definition of the Reidemeister torsion (4.5) and the asymptotics 
of logTsm(h, t) (cf. Theorem A) we conclude that 

2 logT~. - 21ogT" n = 21ogTRe(r) - 2 log TRy(7') 

+ FT( log 7ia(h, t) - log Tla(h', t)) 

+ FT(IogTj~(d - h,t) - log  Tl~(d-  h',t)) 

from which Corollary C follows by (6.55) and statement 2 of Theorem B. o 

6.3 P r o o f  o f  T h e o r e m  2. In this subsection we provide the proof of 
Theorem 2 using Corollary C of subsection 6.2 together with the product 
formulas for the Reidemeister torsion and the analytic torsion established 
in Proposition 4.1. 

First we need the following result concerning the metric anomaly of the 
analytic torsion, which is a generalization of a classical result due to Ray- 
Singer (cf. [RSin, Theorem 2.1]), and can be proved by the same arguments 
used to verify Proposition 6.2. (For the convenience of the reader, a proof 
is included in Appendix 3.) 

LEMMA 6.11. Let M d be a dosed manifold of odd dimension d such that 
(M, W) is of determinant c/ass. Assume that g(u) is a smooth one-parameter 
family of Riemannian metrics on M. Then logTan(M, g(u), 1,V) is a smooth 
function of u whose derivative is given by 

d 

1 d E ( _ l ) q l o g d e t N  (aq(u)*aq(u)) (6.83) ddu log T~n (M, g(u), IV) = ~ ~u 
q = 0  

where aq(u) is the A-linear, bounded isomorphism aq(u) : NullAq(U0) --* 
Null Aq(u) (the projection on Null Aq(u)), provided by Hodge theory and 
Uo is arbitrary but fixed. 

Given generalized triangulations 7 = (h, g') and r '  = (h', g") of M, r '  is 
called a subdivision of r if 

Cry(h) c Cr (h') (0 _< < d) 
(2) c W (h,g ) for x e Crq(h). 

The following result can be found in [Mi2]. 
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LEMMA 6.12. Let T = (h,g') be a generalized triangulation, q an integer 
0 <_ q <_ d - 1 and x, y two distinct points in M \ Cr(h) .  Then there exists 
a generalized triangulation v'  = (h' ,  g") with the following properties 

(1) Crk(h ' )  = Crk(h)  for k ¢ q, q + 1; 
(2) Crq(h') = Crq(h) U {x}; Crq+l (h ' )  = Crq+l(h) U {y}; 
(3) T' is a subdivision of z; 
(4) W ~  n W + is connected. 

Since the Reidemeis te r  torsion does not  change under  subdivis ion (cf. 
[Mil]),  one obta ins  

T R e ( M , g , W , T ) =  TRe(M,g ,W,T ' )  . 

Proof of Theorem 2. By Propos i t ion  5.6 it suffices to consider  the case 
where ]42 is free. Fur ther ,  by L e m m a  6.11 and in view of the definit ion (4.4) 
of Tmet, it  suffices to prove Theorem 2 in the case where g = g' ,  r = (h, g').  

Consider  the sphere S 6 = {x = (Xl . . . .  ,x7) E R T ; ~ x  2 = 1} with 
an a rb i t r a ry  general ized t r iangula t ion  71 = ( h l , g i ) .  Let  T = (h,g) be 
a general ized t r iangula t ion  for M and consider M x S 6, endowed with  the 
Pdemannian  metr ic  g x gl  and  the t r iangula t ion  ~" x vt = (hTh l ,  g x gl). Note 
tha t  F = 7rl(M) = 7rl(M x $6). By assumpt ion ,  (M, W )  is of de te rminan t  
class and  thus ( M  x S 6, W )  is of de te rminan t  class as well. Moreover,  by 
the p roduc t  formulas of Propos i t ion  4.2, 

log Tan ( M  x S 6, g x gl ,  }/V) = 2 log Tan(M, g, W )  (6.84) 

and 

logTRe(M x S6,g x gl,]/~,T X V l )  --~ 21ogTRe(M,g,I/V, 7) (6.85) 

where we used t ha t  x ( S  6) = 2 and tha t  x (M,  VV) = 0 (as M is of odd 
dimension) .  

Next ,  consider  the p roduc t  S 3 x S 3 of the  3-spheres,  S 3 = { x = ( x l , . . . ,  x4) 
2 1}, with an a rb i t r a ry  general ized t r i angula t ion  T2 = (h2, g2)- E R 4 ; ~ X j  = 

Arguing as above,  we conclude t ha t  ( M  x S 3 x S 3, )IV) is of de te rminan t  
class and  tha t ,  by the p roduc t  formulas of Propos i t ion  4.1, 

l o g T a n ( M  x S 3 x $3,9 x g2, W)  = 0 

and 

logTRe(M x S 3 x S3,g x g2,1tY, r x Te) = 0 

where we used tha t  X(S 3 × S 3) - 0 and tha t  x ( M ,  H/V) = 0. 
Choose a subdivis ion r '  = (h ~, g") of the  general ized t r iangula t ion  ~- x ~-1 

in M x S 6 and a subdivis ion T" = (h",  gn) of the  general ized t r iangula t ion  
T X T2 in M x S 3 x S 3 so tha t ,  for 0 < q <: d + 6 ,  ~ Crq(h ')  = #Crq(h") .  In 
view of L e m m a  6.12 this is poss ible  because  M x S 6 and M x S 3 x S 3 are both  
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of odd dimension and therefore x ( M  x S a x S 3, la]) = )~(M x S 6, W)  = 0. 
We conclude from the above, Corol lary C, L e m m a  6.11 and L e m m a  6.12 
that  

2 log Tan (M, 9, W)  - 2 log TRe (M, 9, I/V, r )  

= l o g T a . ( M  x S6,g x gl ,  IV) - l ogTRe(M x S6,g x gl ,  W, r x r l )  

= logTan(M x $6,9 ' ,1&) - logTI%(M x $6,9','1A2,7 ') 
= logTan(M x S 3 x $3,g",],32) - l o g T a ¢ ( M  x S 3 x S3 ,g" ,W,v  t') 

= l o g T a , ( M  x S 3 x S3,g x g z , W )  

- logTFt~(M x S 3 x S3,g x g2 ,W,r  x 72) = 0 . 

This proves Theorem 2. 

A .  A p p e n d i c e s  

A.1  A p p e n d i x  1. In this appendix  we prove Proposi t ion 1.9, Proposi t ion 
1.10 and formula (1.32) s ta ted  in section 1. 

Proof of Proposition 1.9. Proof  of (1): Firs t  we show that  for any s E C 

d-~trN(f~)~ = strN (ft) ~-1 . (A1.1) 

As the  interval  I can be assumed to be  compac t  one can wri te  

1 f c  ~ ' ( ~ -  fO-ld~ 

where C,  a circle centered at zero, contains spec ft  for t C I.  Then  

d-t trN(ft)~ ---- zTrz Jc  

= trN , 2,i :,)-' @ 
Integrating by parts  one obtains  

: c  1 / c s ) ~ s - l ( ~ -  ft)-ld)~ = s(ft)~-I 1 ~ ( ~ _  fO ,2d ~ = 
27ri 

and ( t l . 1 )  follows. Using ( n l . 1 )  one obtains 

d logdetg(f t)  d d 
dt~ss s=o ( t r N ( f t ) )  

= .=o  ( S t r : ' ( : ' )  - = t r N  .,: 
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Proof of (2). Since f l  ~" o~--lf2 ~ one has specf l  = specf2 and, for 
~ specf2,  (), - f l )  -1 = ~ - I ( A  - f2)-1~.  If 0 ~ spec f2 

d 1 f 
l °gde tN(f l )  = ~ss s=o2~i ./r. )t~ trN()t -- fl)-ld)~ 

d 1 
= ~ ~=o~i/c )ctru ( ~ - 1 ( ~ -  f2)-1c~) d$ 

d 
= ~ssl~=0 trN(f2) = log detg(f2  ) . 

Proof of (3) (a). For A ~ spec f lUspec  f2, both ()~- f l )  -1 and ( ) t -  f2) -1 
exist and (A - f )  has an inverse given by 

(/~ -- f l )  -1 0 ) 
(,~ _ f ) - I  = - - ( ~  _ f z ) - l g ( / ~  _ f l )  - 1  (,X - -  f 2 )  - 1  " 

This shows that  spec f C_ spec f l  U spec f2. Reversing the argument one can 
see that  spec f l  O spec f2 C_ spec f .  Further, with C a circle which contains 
spec f 

d 1 f 
l °gde tN(f )  = ~ss , = 0 ~ / . / r :  A~ trN(A -- f)-ld$ 

d 1 f 
= ~ss ~=02~/_/p A' t ru(A - f l ) - l dA  

d 1 
+ -~slS=°~i fc  As trN(X - -  f2)- ldA 

= log d e t g ( f l  ) + log detN(f2 ) . 

Proof of (3) (b). Notice that  f is an isomorphism if 0 ~ spec(f). There- 
fore, in view of (a), it remains to check (1.5B). Consider a one parameter  
family 

Then 
2 log VOlN (f)  = log det N (hi) (A1.2) 

and 

logdetN(ho)=logdetN(f~ofl g ' f 2 )  * ]~ f2 = log det u(f~ fl ) -{-log detN(f  ~ f2) 
(A1.3) 

where for the last inequality we used (3) (a) . According to (1.4) we have 
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0 - t  d 
d l ° g V ° l N ( h t ) = t r N ( h 7 1 d h ~ )  = t r N ( ( t f ;  f2)  ~(f l tg ~ 2 ) )  

= t r N ( ( f ~  -1 0 0 0 0 ) ) _ _ 0  

and (1.5B) follows from ( A l . 1 ) - ( A 1 . 3 ) .  
Proof of (4). We have to prove 

logdetjv f~ f~f2fl - logdetN f~ fl = logdetN f~ f2 • 
Consider the 1-parameter family C(t) of positive, selfadjoint operators, 
C(t) := f{(f~f2)tfl ,  defined on 14;1. Using formula (1.4) one verifies that 

d log det N * * t d - -  = log detN(f~ f~ ) f l( f~f2) fl * * * dt ~ " 
This leads to the claimed formula, 

~0 1 d * * t 
logdetN f~f~f2fl  - logdetN f~fl  = ~ l°gdetN (fl (f2 f2) fl)dt 

fox l°gdetN(f~f2) tdt = l°gdetN(f~f2) 
d = -~ 

Proof of (5). Note that  (5) follows from (4) by observing that  for an 
isometry o/1, spec(a~al)  = {1} and therefore logVolN(al)  = 0. = 

Proof of Proposition 1.10. (1) is obvious from the definition. In order to 
check (2), first note that  f is a weak isomorphism iff both f l  and f2 are 
weak isomorphisms. Using special elements of the form u + 0 and 0 + v of 
14;1 (9 1422, one concludes that  FI ; (£ )  < Ff.(A) and Fh($ ) <_ Ff($) which, 
by (1), implies max{Ff~ (A), Ff~ ($)} _< Ff(A). For any w = u+v E 1421~1422, 
one has the inequality 

(f*fw, w) >_ Hflu[[ 2 + Ilgu + f2vl] 2 ~_ HfluH 2 • (A1.4) 

Let £ be a A-Hilbert submodule of W1 • W2 with [If(w)l[ <_ £[[wll, w • £. 
Let £:t := 7r1(£:) where ~rl : 14;1 ~ W2 --* 14;1 is the canonical projection, 
and let £2 := Nult(Th Ic)- Then dimN/~ = dimN £:1 + dimN/22. By (A1.4), 
Ilfl(u)H < A]]u][ for u • £:1 and, by the definition of £2, ]tfz(w)]l <_ )q[w]l 
for w • £:2. Therefore (j = 1, 2) 

dimN £:j <_ F£ ($) . 
As £: is arbitrary one then concludes that  FI( X ) ~_ FI, ($) + FI~ ($). [] 

Finally we prove formula (1.32) 

1 ~ (  1)iiFis) fo¢¢ ,_ltrNe_~(A,+~)d~. (1.32) ~ c ( ~ , ~ ) = ~  - - -  



8 5 0  D.  B U R G H E L E A ,  L. F R I E D L A N D E R ,  T .  K A P P E L E R ,  P. M C D O N A L D  G A F A  

Proof of (1.32). It suffices to show that for X > 0 and ~s  > 0 

t rN(Ai  + A)-s = F(s) t s - l e ( - t~ ) t rNe-~A 'd t  " 

By the spectral theorem 

trN e -~(A'+~) = e(-"")dNA,+~(l t) 

and thus 

trN(Ai + A)-~ = #-~dNA,+~(#) . 

Use that 

'/5 I'(s) TlS-le-~gdrl = #-~ 

to conclude from (A1.7) and (A1.6) that 

) t rg (Ai  + A) -s  -= rfl-le-'~Udrl dNA,+~,(p) = 

(AI.5) 

(A1.6) 

(A1.7) 

(AI.S) 

(fo ) F(s) Jo zIs-1 e-nUdNA,+~(p) dq = ~s-1 trN e-~(A'+~)dq • 

O 

A.2 Appendix 2. In this appendix we prove formulas (5.5)-(5.7). Recall 
that (ef. section 5 for complete statements) 

}aq;q(~)¢q,~(x, t)l <_ c0(E)~-c(~)  ' ; (5.5) 

(~q;k(t)Oq,~(t), Cq,~(t)> > 2tlq - kl ; (5.6) 

( % ; q ( t ) ~ , ~ )  > c(¢)t l l~l l  2 . (5.7) 
To prove these formulas first notice that 

(N+k - N~.,k)(dxl A ... A dxq) = nq;kdxa A ... A dxq 

where 
n q ; k = - q  i f k > q  and n q ; k = q - 2 k  i f k < q .  

Thus, with h := - ~  02 
T 3 

(£ + t~lxl ~ - t ( d -  2k) + 2t~a,k)~ - 'M~/~  = 2ttq - kl~ -'1~1~/~ . (A2.1) 

Write 
d 

~ , ( v J I x l ) e - ' l ' e / ~ )  = e-*:l~/~ ~,(,,~(txl)) - 2 y:~ a~ ~,,(Ixl)O, e- ' l ' l ' /~ 
1 

+ ,~jlxl)£(~-,I-I'/~). (A2.2) 
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Proof of (5.5). Use k = q to conclude from (A2.2) and (A2.1) that 

J(A + t21xl 2 - t ( d -  2k) + 2tnq;q)(~(Ixl)~-'J'l~12)l 

<_ - 2 ~_o~, (.¢(Ixl))a.,~ -¢j~''/: + - ~ a~, (~(Ixl))e - ' ' '1' /2  
1 1 

I~(Ixl)12tlxle -''.i~l~ + I~(Ixl)ldl~l---~le -'i~i:l~ + I~(Ixl)le-'i~l'/~ <_ 

d 2 where i,o(t) = ~,~(t)  and ~( t )  = ~ ,~ ( t ) .  Use that supp(~<) ~ d  supp@D 
are contained in [el2, el to conclude that 

I ( i  + t~lxl 2 - t(d - 2k) + 2tnq;q)(v~(Ixl)e-'l~lW2)l (A2.3) 

< (ll~.eI, L~ (2etc-t<2116-t-2d71e-te2116) -I-I,i)~l,L~ete~i'6)e -tJI16 . 

To estimate the normalizing constant/7(t) (el. (5.3')), notice that with to := 
(2/e) 2, one obtains for t > to, 

L , .  . - . . - , . .  
v~(Ixl)2e-"~l~dx >_ e-~H~ dx >_ C t - ,  

I<~12 

Combining (A2.3), (A2.4) one concludes that there exists C > 0 so that for 
t > t0(~) 

(Ares) 
This leads to the estimate (5.5). 

Proof of (5.6). Integrating by parts, we obtain 

d 

illa e-tlxl:/2(al]e)eitlxl2/2tQdx = - ~l illa e-tlxl'l]eO21]edx (A2.6) 

d d 

.zi.....>. _,.,..x+Zi.. o. 
Combining (A2.2) and (A2.6)one obtains 

i~. £ (~ '  , e - ' l ' l '  l ' ) ~ '  < e - ' l ' l '  l '  dx  
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Combining (A2.1) and (A2.7) one obtains 

fRd (7, + t21xl 2 _ t(d - 2k) + 2tnq;k)(v~e-tl*l~/2) • (t,~e-tlxl~/Z)dx (A2.8) 

=iRe (2tlq-klu~e-tM2 + ~--~.(O. ue)2e-*'xl~)dx 
1 

>_ 2tiq - k[ S~d(u~)~e-~l~12 dx J 

Taking into account the normalization factor ~(t) we obtain 

(Aq,k(t)eq,~(t), ~q,~(t)) = 

fRd ( A + t21xl 2 -- t( d - 2k) + 2 t n q ; q ) ( . ~ e - ' l ' l ~  / 2 )  • (vee-tl*12 /2)dx >_2tlq - kl. 
fR,(u~)2e-tl~Pdx 

This proves (5.6). 

Proof of (5.7 t. It  suffices to consider ~ E Aq(Rd; )4;) of the form w : 
~dxi~ h. . .Adxi~ ®v with v E )IV and ~ E C~(Rd;c) with compact 
support.  Thus it remains to show that  there exists to = to(e) and Co(e) so 
that  for any ~v E C~(Ra;  C) with compact support ,  satisfying 

fR, ~(x)u¢(Ixl)e-tl~l~/2dx = 0 (A2.9) 

the following est imate holds 

9fRd (A + t2M 2-  td)~(x).~(x)dx >_ Co(e)t ],d IP(x)12dx" (A2.10) 

To prove (A2.10) introduce ~2 := p - ~1 with 

~ l (x)  := fRd ~°( x )e-tl~l~12 dX e-tl~:i~12 
.fli<~,e-~M2 dx 

being the orthogonal projection of ~o onto the function e -tl~l~12. Notice that 
( £  + t21xl 2 - td)pl = 0 and, due to (HO1), spec(/X + t21xl ~ - td) c tZ> o. 
Therefore 

l iR~ (A + t2ixl2- td)~(x) "~(x)dx >- 9fR ~ (A + t2ixi2 - td)~2(x)~(x)dx 
(A2.11) 

> t f~ i~12dx=t( fn< l~12dx- iR I~,t~dx ) • 
It remains to est imate fii~ I~,12dx = I$,d ~e-'l:l=12dxl ~" Use (A2.9) to 
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conclude, by the Cauchy-Schwaxtz inequality, 

~d ~(x)e_tlzl~ /2d x 2 =  ]jRd C2(X)(I_ v~('x'))e-tlzl~/2dx 2 (A2.12) 

<_ ~ ,~,2dx ~d (1-  v~(,x,))2e-t'Xl2dx . 

Further, with to - to(c) > (2)2 and t > to 

fu (1-y,(Ixl))2e-tlxl2dx ~ j[ixl> e-t°l~12 < Ctoa/2 /~e-~2sa-lds . 

(A2.13) 
By (A2.13) we can choose to > (~)2 so large that 

~ a (1 - u~([xl))2e-~lxl~dx < 1/2 .  (A2.14) 

Combine (A2.11), (A2.12) and (A2.14) to see that for t > to 
t 

j.. (A + t'l-l'- t.)~(.). ~.(.).. _ ~ J.. I~'I". - ° 

A.3 A p p e n d i x  3. 

Proof of Proposition 1.6. We follow the line of arguments given in [RSin]. 
Let Tan(U) := Ta~(M, g(u), 14;) and denote by Aq:e(u) the restrictions of the 
Laplacians to A~'q(M; S) (defined in (4.17)) with respect to the Riemannian 
metric g(u). By (6.15) (and the argument which follows it), logTa~(u) = 
- log T + (0, u) where T + (s, u) is given by 

d 

logT~(s,u) := 1 E(-1)q (-~=(s)) (A3.1) 
q=0 

with ~ , ( s )  given by (6.12") (for t = 0, g = g(u)) 

= x "-I trN(e-'~±('))dx+s trN(e-'a±('))dx . (A3.2) 
r(s) 

We want to comp~te & l o g T : . ( s , ~ ) .  Notice that A~+'~(/;E) = 
d~-i(Aq-~(M;C)) does not depend on the metric and therefore is inde- 
pendent of u. By Duhamel's formula 

d _xA+.u, ~ ))= -xtrN te-' '+(')~uA+(u)) . (A3.3) ~u tr~(~ 

To compute ~ q~ j = dq_ld-~(d*q_i(u)) write for w E Aq(M;E) and ~? E 
Aq-i(M; S) 

(dq_ 1 (u)w, 0)~ = (w, dq-iO)= (A3.4) 
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and define Rq(u): Aq(M;E) --+ Aq(M;~) by (w,w' E Aq(M;$)) 

d<~, ~,>~ = (Rq(u)~, ~ ' >  (aa.5) 

Taking the derivative of (A3.4) and using (A3.5) one obtains (w e Aq(M; g)) 
d 

~ud*q_l(U)W + Rq_l(u)a*q_l(U)UJ = d*q_l(U)Rq(u)~ . (A3.6) 

Recall that A+dq_l = dq_lAq_l and thus, by functional calculus, 

e-XA+(~)dq_l = dq_le-XZx~-t (u). 
Substituting (A3.6) into (A3.3) and using that trN(AB) = trg(BA) then 
leads to 

d -~utrN (e-xA+ ) = xtrN (Rq_l(u)/kq_l(u)e-X~(u)) 

- x trN (Rq(.)~+~ ( ~ ) - x ~ ( u ) )  

and, summing up, 
d 

q----0 

d 

0 

d 

= - ~  )--:1-1)~ tr~ (R~(.I(~-~,(~)A~(~))) (aa.7) 
0 

d 

---- Xd- ~ E ( - 1 )  q trN (Rq(u)(e-~a'(u)(Id - Qq(o, u)))) 
0 

where Qq (0, u) denotes the orthogonal projection onto the space of harmonic 
q-forms Null(Aq(u)). By assumption, (M, 14;) is of determinant class and 
therefore 

- ~  < log#dNA.(.)(p) o 

+ 

We now compute 

d iogT+(s,u)= d 0 d d-'~ "~u ~s I(s' u) + II(u) 

for s = O, where 
d 1 

1 1 f0 x~-i I(s, u) := --~ E ( - 1 ) q  F - - - ~  trN(e-*a+(~))dx 
q=O 
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and 
1 d 

II(u) := - 2  E ( - l ) q  ~ ltrN(e--xA+(u))dx" 
q=-0 

In view" of (A3.7) we get 

d l I ( u )  = -21 ~ ( - l ) q  Jl°~ d q = 0  ~XX trN (Rq(u)e-~(u)(Id-Qq(O,u)))dx 

d 

= ~ E ( - 1 )  q t r i  (Rq(u)e-Aq(~)(ld- Oq(0, u)))dx (A3.S) 
q=0  

where we used that 

lim trN (nq(u)e-ZAq(u)(Id - Oq(0, u))) = 0 .  
2 ~ o c  

Again applying (A3.7), and integrating by parts 

1 0  1 1 d 
d ~-s ~=oI (S ,U)=-~s  s=o~(s) ~o x~-l E(--i)qdtrN(e-~A+(=))dx 

q=0 

d 

= _ 1  E ( _ l ) q  trN (Rq(u)e-A'(~)(Id - Qq(O, u)))+ (A3.9) 
2 

q--0 

F 1 ~o  1 s 1 1 d -4- .p.~=oF- ~ x - ~ E ( - - X ) q t r N  (Rq(u)e-A'(~)(gd - Qq(O,u)))dx. 
q=0 

Combining (A3.8) and (A3.9) one obtains 

d d + 0 
~uu log T~.(u) = -~uu l°gT2n(0' u) = -~ss ~=o I(s' u) - II(u) = (A3.10) 

1 f01 s 1 1 d - F.p.~=o F-- ~ x - ~ E ( - 1 )  q trN (Rq(u)e-Aq(U)(Id - Qq(O, u)))dx. 
q=O 

The same arguments which were used to verify (6.21') can be applied in 
this situation as well: Note that the heat kernel expansion for the Schwartz 
kernel Kq(y, y', x, u) of e -x%(~) on the diagonal y = yP is of the form 

d 

y,  x,  = + o (S 
j=0 

where lq,j(y,u) are densities defined on M with values in B and the er- 
ror term O~(xl/2) is a density which can be bounded by Cx 1/2 with C 
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independent of u in a compact subset of the parameter domain. Thus 

1 ~0 t d x s-1 E ( - - 1 )  q trN (Rq(u)e-A~(U))dx F'P'~=° ~ q=O 

d 

= t r N  

q=0  

Taking into account that M is of odd dimension and the operator Aq(U) is 
of even order one sees by a parity argument that trN(Rq(u)lq,d(-, u)) = O. 
Therefore 

1 
/o 1 x 0 F.p.~=o F - ~  t r y  -= 

and (A3.10) leads to 

d 

1 E ( _ l ) q  trN (Qq(0, u)Rq(u)Qq(O, u)) (A3.11) d logT~n(u) = ~ 
q=0  

Let Pq(u) := Qq(O, u) and define (for u0 E R arbitrary, but fixed) 

aq(u): ?-/q,o (M; ~) --+ ?-/q(M; S) (A3.12) 

where ?/q,(M;C) denotes the nullspace Null(Aq(u)) and aq(U)(W) is the 
unique element in ?-/q(M; E) satisfying [w] = [aq(U)(W)]. Thus daq(U)(W) 
is cohomologous to 0, i.e. there exists a sequence (rlj(u))j>l in Aq-I(M; C) 
such that 

d --~uaq(u)(w) = lim dq_l~j(u) . 
y~Oo 

To prove the lemma it remains to show that  

d 
trN (Rq(u)Pq(u)) = ~u l°gdetN ( C r q ( U ) * O ' q ( I t ) )  " (A3.13) 

To verify this identity notice that aq(U) is an isomorphism. Therefore 

logdet N (aq(u)* aq(U)) > -c¢ 
and thus 

d~lOgd~t (aq(U)*aq(U)) = trN ((aq(U)*aq(U))-l d (crq(U)*O'q(U))) 
(A3.14) 

To compute d(aq(U)*aq(u)), consider (w, w' E 7-/~0 (M; C)) 

d . , d 
~uu (aq(u) aq(u)w, w )uo = ~(aq(u)w, aq(u)w'),, = I(u) + II(u) + III(u) 



Vol. 6, 1996 TORSION FOR REPRESENTATIONS IN FINITE TYPE HILBERT MODULES 857" 

where 

and 

u 

III(u) :=  <Rq(u)aq(U)W, aq(u)J>~ . 
In view of (A3.12), I(u) = 0 and II(u) = 0 and thus 

d(oq(~)*~q(u)) = oq(~)*R~(u)~(u). 

Subst i tut ing this into (A3.14) leads to 

d 
d-'-u l ° g d e t N  (aq(U)*aq(U)) = t r g  (a(u)-l(aq(U)*)-laq(u)*Rq(u)aq(u)) 

= trN (Rq(u)Pq(u)) 
which establishes (A3.13). 
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