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Abstract

For a closed Riemannian manifold (M, g) we extend the definition of analytic
and Reidemeister torsion associated to a unitary representation of 7, (M) on
a finite dimensional vector space to a representation on a A-Hilbert module
W of finite type where A is a finite von Neumann algebra. If (M, W) is of
determinant class we prove, generalizing the Cheeger-Miiller theorem, that
the analytic and Reidemeister torsion are equal. In particular, this proves
the conjecture that for closed Riemannian manifolds with positive Novikov-

Shubin invariants, the L,-analytic and L,-Reidemeister torsions are equal.
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0. Introduction

The purpose of this paper is to prove the equality of Ls-analytic and Lo-
Reidemeister torsion. Both torsions are numerical invariants defined for
closed manifolds of determinant class, in particular for closed manifolds
with positive Novikov-Shubin invariants. For these manifolds their equality
has been conjectured by Carey, Mathai, Lott, Liick, Rothenberg and others
(cf. e.g. [LoLii, conjecture 9.7]). The interest of the conjecture comes, among
other issues, from the geometric significance of the Ly-analytic torsion and
the fact that sometimes the Lo-Reidemeister torsion can be computed nu-
merically in an efficient way. Indeed, if M is a closed hyperbolic manifold of
dimension 3, the Lo-analytic torsion coincides, up to a factor —1/3w, with
the hyperbolic volume (cf. [Lo]).

We establish the conjecture by proving a more general result. Given a
closed Riemannian manifold (M, g), we extend the notion of analytic and
Reidemeister torsions to unitary representations of the fundamental group
71 (M) on a A-Hilbert module W of finite type (cf. section 4) where A is
a finite von Neumann algebra, and prove the equality of the two torsions
when (M, W) is of determinant class. We point out that in the case where A
is C, we obtain a new proof of the well known result due to, independently,
Cheeger [Ch] and Miiller [Mi].

From the analytic point of view, the additional complexity and difficulty
comes from the fact that the Laplacians associated to such representations,
may have continuous spectrum and 0 might be in the essential spectrum.

In order to formulate our results more precisely, we introduce the fol-
lowing notation. Let M be a closed smooth manifold. A generalized trian-
gulation of M is a pair 7 = (h, ¢’) with the following properties:

(T1) h: M — R is a smooth Morse function which is self-indexing (h(z) =
index(z) for any critical point z of h);

(T2) ¢’ is a Riemannian metric so that — grad,, h satisfies the Morse-Smale
condition (for any two critical points z and y of k, the stable manifold
W} and the unstable manifold W, with respect to ~ grad,, h, intersect
transversely);
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(T3) in a neighborhood of any critical point of h one can introduce local
coordinates such that, with ¢ denoting the index of this critical point,

h(z)=q—(z} + .. +22)/2+ (22 + -+ z3)/2
and the metric ¢’ is Euclidean in these coordinates.

The unstable manifolds W provide a partition of M into open cells
where W is an open cell of dimension equal to the index of x. The name
“generalized triangulation” for the pair (h,g’) is justified as a generalized
triangulation can be viewed as a generalization of a simplicial triangulation.!

Let (M, g) be a closed Riemannian manifold with infinite fundamental
group I' = 7;(M) and let 7 = (h,g’) be a generalized triangulation. Note
that T is countable. Let p: M — M be the universal covering of M and
denote by § and 7 = (k, §') the lifts of g and 7 on M. The Laplace operator
A, acting on compactly supported, smooth g-forms on M is essentially
selfadjoint. Its closure, also denoted by Ag, is therefore selfadjoint; it is
defined on a dense subspace of the Ls-completion of the space of smooth
forms with compact support with respect to the scalar product induced by
the metric §. Observe that Ay is I'-equivariant and nonnegative. We can
therefore define the spectral projectors Q4(A) of A, corresponding to the
interval (~o0, A}. They are I'-equivariant and admit a U'-trace which we
denote by Ny(A).

Let C9(7) := I2(Crq(h)) where 1?(Cry(h)) denotes the Hilbert space of lo-
summable, complex-valued sequences indexed by the countable set er(ﬁ)
of critical points of h of index g. The left action of I' on Cry(h) makes
12(er(h ) the underlying Hilbert space of a unitary ['-representation. The
intersections of the stable and the unstable manifolds of — grad,, h induce
a bounded, I'-equivariant, linear map

bq: CI(F) = CIL(F) .
Let 67 be the adjoint of 6, and introduce
Acomb 6* 6 4+ (Sq 1-

q 1

Observe that A°°mb is a T-equivariant, bounded, nonnegative, selfadjoint
operator on C'?(T) We can therefore define the spectral projectors Q“”“b()\)
of A“’mb corresponding to the interval (—oo,A]. These projectors are I'-

equlvanant and thus admit a I-trace, which we denote by NN, °°mb()\) (cf.
section 1).

LGiven a smooth simplicial triangulation 7s,m, one can construct a generalized triangula-
tion 7 = (h,g') so that the unstable manifolds W, corresponding to gradg k, with r a critical
point of h, are the open simplexes of 75,ym (cf. [P]).
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We say that
(1) (M, g) is of a-determinant class if —oo < f01+ {log M\)dNg(A) for all ¢.
(2) (M, ) is of c-determinant class if —o0 < f01+ (log \)dNZemb () for all q.

Here f01+ denotes the Stieltjes integral on the half open interval (0,1].
The following result can be derived from work of Gromov-Shubin [GrSh,
Theorem 2.1] (cf. also [E1,2]).

PropPOSITION 1. Let M be a closed manifold equipped with a Riemannian

metric g and a generalized triangulation 7. Then:

(1) (M, g) is of a-determinant class iff (M, 7) is of c-determinant class.

(2) Let (M’, ') be another manifold with generalized triangulation 7'. If M
and M' are homotopy equivalent, then (M, 1) is of c-determinant class
ff (M, 7') is.

A more general statement, Proposition 5.6, will be proven in section 5.

DEFINITION. A compact manifold M is of determinant class if for some
generalized triangulation 7 (and then for any), (M, ) is of c-determinant
class.

If M is of determinant class the logarithm of the {-regularized determi-
nant, logdet y Ag, is a finite real number for all ¢ and one can introduce the
Lo-analytic torsion Ty, :

log Top = %Z(—l)‘”’lqlog dety Ay .
q

Similarly, if M is of determinant class, logdety Afl"mb is a finite real
number for all ¢ and one can define the combinatorial torsion:

10g Teomb = § Y _(—1)"'qlogdety AL™ .
q

To define the Ls-Reidemeister torsion, Tge, it remains to introduce an
additional number Tpe.. Notice that Null(A,) consists of smooth forms and
that integration of smooth g-forms over a smooth g-chain induces (cf. a the-
orem by Dodziuk [Do]) an isomorphism ;! : Null(A,) — H(C*(),6,) =
Null(Age™®) of A(T)-Hilbert modules where N(T) is the von Neumann al-
gebra associated to I'. Define

log Voly(6,) := § logdet y(6;8,)
where we used that dety(836,) > 0 as (6384) is a selfadjoint, positive,

bounded, ['-equivariant operator on the I'- Hilbert space Null(Affmb) whose
spectrum is bounded away from 0. As a consequence (cf. section 1)
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log det 5 (676,) is a well defined real number and one introduces

108 Tmet = § Y _(—1)?log det v (676,) .
q
Combining the above definitions we define the Ly-Reidemeister torsion Tge

log Tre = IOg Teomnb + IOg Tret -

The concepts of Lo-analytic and Le-Reidemeister torsion were considered
by Novikov-Shubin in 1986 [NSh1j (cf. also later work by Lott [Lo], Lick-
Rothenberg [LiiRo], Mathai [M] and Carey-Mathai [CM]). The main objec-
tive of this paper is to prove the following:

Theorem 1. Let M be a closed manifold of determinant class of odd di-
mension d. Then, for any Riemannian metric ¢ and for any generalized
triangulation 1, both T,, and Tge are positive real numbers and

Tan = TRe .

Rather than viewing Theorem 1 as an Lo-version of the Cheeger-Miiller
theorem, we derive it as a particular case of a generalization of the Cheeger-
Miiller theorem (cf. Theorem 2 below). This generalization concerns the
extension of the analytic and Reidemeister torsion associated to a closed
Riemannian manifold and a finite dimensional unitary representation of I'
to a unitary representation of I' on a A-Hilbert module of finite type. A
representation of this type is called an (A,I'P)-Hilbert module of finite
type. Here A is a finite von Neumann algebra. A similar approach was
used by Singer (cf. [Sin]) for the proof of the Lj-index theorem.

In order to formulate this generalization we must introduce {cf. sec-
tion 2) a calculus of elliptic pseudodifferential A-operators acting on sec-
tions of a bundle of A-Hilbert modules of finite type over a compact manifold
and develop a theory of regularized determinants for (nonnegative) elliptic
pseudodifferential .A-operators of positive order. Typically the spectrum of
such an operator is no longer discrete (cf. section 2).

Let us now describe Theorem 2 in more detail.

Assume that A is an elliptic operator in the new calculus. For an angle
# and € > 0 introduce the solid angle

Vo= {z eC: |z <6}U{z € C\0:arg(z) € (9—6,0+e)} .
DEFINITION. (1) 6 is an Agmon angle for A, if there exists € > 0 so that
spec(A)NVp=0.
(2) 6 is a principal angle for A if there exists € > 0 so that
spec (g a(x,£)) N Vg, =0
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for all (z,£) € S:M where S*M denotes the cosphere bundle and o 4(z, £)
is the principal symbol of A.

It is well known that 1) implies (2) but not comversely. If, in
addition, A is of order m > 0 and admits an Agmon angle 6, one can
define the regularized determinant, detg y A € C. In the sequel, 8 will
be chosen to be m and we will drop the subscript 7 in det, n. If 4 is
of order m > 0, nonnegative and if 0 € spec(A) then the ellipticity of
A implies that the nullspace, Null(A4), is an A-Hilbert module of finite
von Neumann dimension, dimy Null(A). Consider the 1-parameter family,
A+ A, X being the spectral parameter. For A > 0, introduce the function
logdet (A + A) — dimy Null(A)log A\. We can view this function as an
element in the vector space D cousisting of equivalence classes [f] of real
analytic functions f : (0,00) — R with f ~ g iff limy_o(f(A) — g(A)) = 0.
The elements of D represented by the constant functions form a subspace
of D which can be identified with R, the space of real numbers.

Given a closed Riemannian manifold (M,g), an arbitrary (A,T°P)-
Hilbert module of finite type, W, and a generalized triangulation 7 we
define (cf. section 4) log Tpn (M, g, W) and log Tge(M, g, 7, W) as elements
of D. As above we consider the analytic resp. combinatorial Laplacians
associated to (M, g, W) resp. (M, 7, W) and introduce the notion of a triple
(M, g, W) resp. (M, 7,W), of a-determinant, resp. of c-determinant class.
Proposition 1 can be generalized to say that these two notions are equiva-
lent and homotopy invariant (Proposition 5.6, section 5). This allows us to
introduce the notion of a pair (M, W) to be of determinant class. We point
out that for A = C any pair (M, W) is of determinant class.

Theorem 2. Let M be a closed manifold of odd dimension d and W an
(A, T°P)-Hilbert module of finite type. If the pair (M, W) is of determinant
class then, for any Riemannian metric g and any generalized triangulation 7
of M, log T,n (M, g, W) and log Tre(M, 7,9, W) are both finite, real numbers
and

logTon = logThe -

Let us make a few comments concerning Theorem 2 and Theorem 1:

(1) If M is of even dimension, then both torsions are equal to 1 (cf. formulas
4.8).

(2) If A = C, the (C,I'°P)-Hilbert modules of finite type are precisely the
unitary I'-representations and Theorem 2 reduces to the Cheeger-Miiller
Theorem ([Ch], [Mii]) and, when specialized to this situation, we thus
obtain a new proof of their theorem.

(3) If A= N(I), the von Neumann algebra associated to ', and W = I5(T)
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is viewed as a (NV(I'),I'°P)-Hilbert module of finite type (cf. section 1.4),
then Theorem 2 reduces to Theorem 1.

(4) Lott-Liick have conjectured (cf. [LoLii, Conjecture 9.2]) that all compact
manifolds have positive Novikov-Shubin invariants and, therefore, are of
determinant class. The conjecture has been verified for many compact
manifolds and in particular for all compact manifolds whose fundamental
group is free or free abelian. A weaker conjecture is that all compact
manifolds are of determinant class. This conjecture has been verified for
manifolds whose fundamental group is residually finite (cf. [BuFrKa3]).

(5) Assign to each compact Riemannian manifold (M,g) with M of
determinant class the Ls-{analytic=Reidemeister) torsion if the fun-
damental group m,(M) is infinite and the #(m(M))-th root? of the
(analytic=Reidemeister) torsion of the universal cover of (M, g) with
the one dimensional trivial representation of ny(3f) if m(M) is finite.
In this way one obtains a numerical invariant T'(M, g), which satisfies
the product formula

log T(My x My, g1 % g2) = x(M2)log T(My, g1) + x(M1)log T(Ma, g2) ,
and has the property that for any n-sheeted covering (M, g) of (M, g)
log T(M, §) = nlog T(M,g) .

Here x(M) denotes the Euler-Poincaré characteristic of M. For compact
manifolds with trivial L, Betti numbers, in particular for manifolds of
the homotopy type of a mapping torus, this invariant is independent of
the metric (and is in fact a homotopy type invariant as will be shown in
a subsequent paper). This invariant was calculated for a large class of
3-dimensional manifolds; its logarithm is zero for Seifert manifolds (cf.
[LiiRo}) and (—1/3x) Vol(M, g) for a hyperbolic manifold (M, g), (cf.
[Lo}). The calculation in {LiiRo] was done for the Reidemeister torsion
and in [Lo] for the analytic torsion.

(6) W. Liick ([Lii2]) found an algorithm to calculate the Lo-Reidemeister
torsion of a 3-dimensional hyperbolic manifold in terms of a balanced
presentation of its fundamental group. By Theorem 1 and by remark
(5) above the algorithm also calculates the hyperbolic volume.
Theorem 2 is derived from Corollary C (section 6.2), a relative version

of Theorem 2, using product formulas for the analytic torsion and the Rei-

demeister torsion (section 4) and the metric anomaly (Lemma 6.11). To

state Corollary C let M and M’ be two closed manifolds of the same di-

mension with fundamental groups isomorphic to I', and assume that they

23(my (M)) denotes the cardinality of 73 (M)
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are equipped with generalized triangulations 7 = (g, h) and 7/ = (¢’,h’)
such that the functions h and A’ have the same number of critical points for
each index. Then, for an arbitrary (A, T"°P)-Hilbert module of finite type
W, with (M, W) and (M’, W) of determinant class

log Ty, — logT,, = logThe — log T}, -

In order to prove Corollary C we use the Witten deformation of the de
Rham complex associated with a generalized triangulation T = (g, h) (cf.
section 5). The Witten deformation permits us to define smooth functions
log Tn (R, t), log Tum(h, t) and log T, (h, t) with log Taq(h,0) = log T, where
log Ton(h,t) = log Tum(h, t) + log Ta(h, t) is a decomposition of log Ton (b, t)
into a part log Tym(h,t) which corresponds to the small spectrum of the
Laplacians A4(t) and a complimentary part logTia(h,t). The results pre-
sented in sections 2 and 3 lead to the conclusion that these three functions
have asymptotic expansion when t — co. The free term of such an expan-
sion refers to the 0’th order coefficient of the expansion as ¢ — oo. The
results from sections 3.2 and the extension of Helffer-Sjostrand’s analysis
of the Witten complex ([HSj1]) to the analogous complex constructed for
differential forms on M with coeflicients in W (cf. section 5), permit us to
show that the free term of

log Tan{h, t) = log Tam(h,t) — (log Tan(h', t) — log Ty (R, 1))

is equal to
log Tan — log Tre — (logTh, — log Th,) -

Finally, using the Mayer Vietoris type formula and the asymptotic expansion
of the logarithm of the determinant (cf. section 3) we show that the free term
of log T}, (R, t) —log Tia (P, t) is equal to zero and thus conclude Corollary C.

The paper is organized as follows:

In section 1 we recall, for the convenience of the reader, the concepts
of a finite von Neumann algebra A, an A-Hilbert module of finite type, 2
finite {(von Neumann) dimensional representation of a group, determinants
in the von Neumann sense and the torsion of a finite complex of A-Hilbert
modules of finite type. This section is entirely expository.

In section 2 and 3 we describe the theory of pseudodifferential opera-
tors acting on sections of a given bundle £ — M of A-Hilbert modules of
finite type. In particular, we extend Seeley’s result on zeta-functions for
elliptic pseudodifferential operators and the corresponding regularized de-
terminants, as well as the results of [BuFrKa2], to the extent needed in this
paper, for this new class of operators. The calculus of such operators is not
new, but we failed to find a reference suited to our needs (cf. e.g. [FMi],
[Le}, [Mo] and [Lu] for related work).
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In section 4 we define the analytic torsion and Reidemeister torsion and
we prove a product formula for each of them. These product formulas are
slight generalizations of the product formulas presented in [Lo] and [CM],
but for the convenience of the reader we include the proofs.

In section 5, we discuss the Witten deformation of the de Rham complex
of M with coefficients in a (A, '°P)-Hilbert module of finite type W and
show that the work of Witten-Helffer-Sjostrand can be extended to this more
general situation where the spectrum of the Laplacian A ,(t) is typically not
discrete. The main new result is Proposition 5.2 (separation of the spectrum
of A4(t)) which permits us to decompose the deformed de Rham complex
into the direct sum of a ‘small’ and a ‘large’ subcomplex where the small
subcomplex is a complex of A-Hilbert modules of finite type. The very same
arguments as in the case A = C (cf. [HSj1,2], [BZ1,2]) can now be used to
conclude that the small subcomplex is, up to normalization, asymptotically
isometric to the combinatorial complex associated with 7.

In section 6 we present the proof of Theorem 2.

One can generalize the analytic and Reidemeister torsions associated
to (M, g, W) to include additional data, for example a finite dimensional
hermitian vector bundle on M equipped with a flat connection. By the same
methods as presented in this paper one can prove a result which compares
these two generalized torsions. In the case A = C results of this type were
first established in [BZ1] (cf. also [BuFrKal]).

Using the same arguments as in [Lil], one can extend Theorem 2 to
compact manifolds with boundary. Both extensions are useful for the cal-
culations of the L, torsions; together with some applications they will be
presented in a forthcoming paper.

The authors wish to thank W. Liick for bringing the conjecture about
the equality of analytic and Reidemeister torsion to their attention, J. Lott,
W. Liick and M. Shubin for information on related work and D. Gong and
M. Shubin for comments on a preliminary version of this paper. The authors
are very grateful to the referee for his careful reading of the manuscript,
for pointing out a number of incorrect arguments and for suggesting many
improvements to the manuscript (including the appendices).

1. Linear Algebra in the von Neumann Sense

In this section we collect for the convenience of the reader a number of
definitions and results concerning linear algebra in the von Neumann sense

(cf. e.g. [CM], [Co], [D], [GrSh], [LiiRo] for reference).



760 D. BURGHELEA, L. FRIEDLANDER, T. KAPPELER, P. MCDONALD GAFA

1.1 A-Hilbert modules.

DEFINITION 1.1. A finite von Neumann algebra A is a unital C-algebra
with a x-operation and a faithful trace try : A — C which satisfies the
following properties:

(Tr1) {.,.) : Ax A — C, defined by (a, b) = try(ab*), is a scalar product and
the completion As of A with respect to this scalar product is a separable
Hilbert space.

(Tr2) A is weakly closed, when viewed as a subalgebra of L(Az):=L(Az, As),
the space of linear, bounded operators on Az, where elements of A are
identified with the corresponding left translations in L£(A3) (a sequence
{@n}np1 in A converges weakly to a € Ag if lim,_,oo{anz,y) = (az,y)
for all z,y € A3).

(Tr3) The trace is normal, i.e. for any monotone increasing net, (a;);er, such
that a; > 0 and a = sup;¢; a; exists in A, one has try a = sup;¢; try a;.
Here a; > 0 means that a; = a} and (a;z,z) > 0 for all z € As.

In the sequel, A will always denote a finite von Neumann algebra. In-
troduce the opposite algebra A°P of A, where A°P has the same underlying
vector space, |A°P| = |A|, ¥-operation, trace and unit element as .4, but the
multiplication “,,” of the elements a,b € |A°P| is defined by a oy b=1b-a.
Note that A°P is a finite von Neumann algebra as well. The right trans-
lation by elements of A induces an embedding r : A°® — £(A>) which
identifies A°P with the subalgebra £4(A2) C £(A2) of bounded A-linear
maps (with respect to the A-module structure of A, induced by left multi-
plication). Therefore we can introduce a trace on £4(Az), also denoted by
try, defined for f € L4(Az) by

try (f) = tow (P H(S))

DerFINITION 1.2. (1) W is an A-Hilbert module if
(HM1) W is a Hilbert space with inner product denoted by {.,.).
(HM2) W is a left A-module so that {a*v,w) = (v,aw) (a € A; v,w € W).
(HM3) W is isometric to a closed submodule of Ay®V where V is a separable
Hilbert space and the tensor product A; ® V' is taken in the category of
Hilbert spaces.
(2) W is an A-Hilbert module of finite type if W is an A-Hilbert module
and
(HM4) W is isometric to a closed submodule Ay ® V where V' is a finite
dimensional vector space.
(3) A morphism f : W, — W, between A-Hilbert modules of finite type,
W, and W, is a bounded, A-linear operator; f is an isomorphism if it is
bijective and both f and f~! are morphisms.
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Let W be an A-Hilbert module. An element v in W is called regular
if the map 4, : A — W, defined by i,(a) = av, extends to an A-linear
bounded map A; — W. If W = A, then the set of regular elements of W
can be identified to A°P.

DEFINITION 1.3. A collection (e;)jes (J C N), of regular elements of W is
called a base of W if

i @ues(Az), =W (1.1)

is an isomorphism where each (Az), is a copy of Ay andi =) ¢ ic,. The
base is called orthonormal if, in addition, i is an isometry. A Hilbert module
is free if it has a base.

If J is infinite, the direct sum in (1.1) is meant to be a direct sum in
the category of Hilbert spaces. The base (e;);¢s is orthonormal iff for any
i,j € J and a,b € A, (ae;,bej) = (a,b)d;;. If (e;)jes is a base of W, then
(fi)jes with f, = i(i*i)~ 7e, is an orthonormal base of W. This method
of constructing an orthonormal base is used in subsection 5.2. Let W be
an A-Hilbert module of finite type. The algebra £L4(W) := LA(W, W) of
bounded .A-linear operators on W is a finite von Neumann algebra, whose
trace is defined in the following way. First assume that the module W is free.
Choose a basis {ey,..., e} (I < co). With respect to this basis an operator
A € L4(W) has a matrix representation (a;;)1<ij<t, &J = 1,...,1, with
entries a;; in £L4(A2) = A°P. Definetry(4) = Zi'=1 trya;;. One shows that
try(A) is independent of the chosen basis and therefore well defined. In the
general case W is a closed invariant subspace of a free A-Hilbert module V
of finite type. We write V = W@ W+ and consider A = A®0 € L4(V, V).
Define try(A) := try(A). One shows that try(A4) is independent of the
choice of V.

For an A-Hilbert module W of finite type one defines the dimension
dimy (W) in the von Neumann sense by dimy W := try ldyy. If W is not
of finite type one sets dimy W := sup{dimy W'; W’ closed submodule of
finite type}. The von Neumann dimension is always a nonnegative real
number or +00.

REMARK 1.4: Assume W, and W, are A-Hilbert modules, such that W,
is a closed invariant subspace (i.e. a A-submodule) of Wh and dimy (W) =
dimy (W;) < 0o, then Wy = W, . The von Neumann dimension of a Hilbert
direct sum is the sum (possibly infinite) of the von Neumann dimension of
the summands.

REMARK 1.5: Assume that W, and W, are A-Hilbert modules of finite
type.
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(DI f e LaWi,Wa) and g € LA(Wa, W) then try(fg)™ = try(gf)™ for
any n > 1.
(2) If £ : Wy — W is an isomorphism and «; € L4(W);), ¢ = 1,2, so that
froy =ay- fthen try a; =try os.
If A’ and A” are two finite von Neumann algebras the tensor product
A’ ® A" is defined as the weak closure of the image of the algebraic tensor
product of A’ and A" in £(A}, ® AY) (cf. [D, p. 25]). The algebra A’ ®
A” is again a finite von Neumann algebra whose trace has the property
that try(a’ ® @) = try @’ trye”. If W' and W” are A'- resp. A”-Hilbert
modules of finite type then W @ W' is an A’ ® A”-Hilbert module of finite
type; moreover, given f' € L4 W) and ' € LaW"), tin(f' @ f’) =
try f’ try f7.

DEFINITION 1.6. A morphism f : Wy — W, is a weak isomorphism iff
Null(f) = 0 and Range(f) = Wa.

REMARK 1.7 (Polar decomposition): A weak isomorphism f : Wi — Wh
can be factored as f = gf’ where f' : W, — W), is a weak isomorphism
and g : W, — W, is an isometric isomorphism given by f' = (f* Y2,
g=f-(f*f)~Y2. If f is a weak isomorphism, then dimy W; = dimy Wh.

1.2 Determinant in the von Neumann sense. Throughout this sub-
section we consider only .A-Hilbert modules of finite type. In this subsection
we define two spectral invariants for an element f € L4(W). The first one,
dety(f), is defined for f having 7 as a weak Agmon angle (cf. Definition 1.8)
where as the second one, Voly (f) is defined for arbitrary f.

DEFINITION 1.8. (1) 7 is an Agmon angle for f € La(W) iff there exists
€ > 0 so that spec(f) NV . = 0 with V, . defined as in the introduction.

(2) 7 is a weak Agmon angle for f € La(W) iff 7 is an Agmon angle for
f+ X forany A > 0.

First we consider the case where 7 is an Agmon angle for f. In this case
f is an isomorphism. Define the complex powers of f, f* € L4(W), s € C,

by the formula
1

8 8 - -1

f'= g YO0 (1.2)
where )* is a branch of the complex power s defined on C, = C\ {z =
pei™;p € [0,00)} and 7 is a closed contour in €, which surrounds the
compact set spec f in C, with counterclockwise orientation. Notice that
for ®s < 0, by Cauchy’s theorem, the contour -y in (1.2) can be replaced
by the contour yx . =71 U7z U7ys where 7, := {z = pei™;00 < p < €/2},
yo 1= {z = §e’%m > o > -} and 73 := {z = pel=™;§ < p < oo}
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Notice that f* is an entire function in s € C with values in £4(W) and
try(f*) is an entire function on €. Define the determinant detxn f in the
von Neumann sense by

d
logdety f = e T trn(f°) . (1.3)

We remark that this notion of determinant, in the case when f is positive
and selfadjoint, coincides with the one introduced by Fuglede and Kadison
If f € La(W1,Ws) is an isomorphism then f*f is a selfadjoint positive
isomorphism and one shows that dety{f*f} > 0. Define
12

Voly f = (det n(f*f)) '~ .
PRroOPOSITION 1.9. (1) Suppose f; € L4(W), with t in an interval I C R,
is a family of class C' (in norm sense) of morphisms and © is an Agmon
angle for all of them. Then logdet y(f;) is of class C! and

%mgdetN(ft) =try ((%ﬂ) f;‘) . (1.4)

(2) Suppose f; € La(W;), 1 = 1,2 with Wy and W, A-Hilbert modules of
finite type and o : Wy ~— Wh is an isomorphism so that af; = fyo. Then
the following statements hold:
(a) spec fi = spec f and therefore © is an Agmon angle for f, iff it is an
Agmon angle for fy. In this case logdety fi = logdety fs.
(b) f1 is an isomorphism iff fo is an isomorphism. In this case Voly fi =
VOIN fg.
(3) Suppose f € LA(W, @ W>) is of the form

_(Hh O )
f ( 9 f2)°
Then the following statements hold:

(a) spec f = spec fi Uspec f; and therefore 7 is an Agmon angle for f iff
it is an Agmon angle for both f, and f,. In this case

logdety f = logdety fi + logdety fa . (1.5A)
(b) f is an isomorphism iff fi and f; are both isomorphisms. In this case
log Voly f = log Volx fi + log Voly fa . (1.5B)

(4) Suppose W;,Wo and W; are A-Hilbert modules of finite type. If
fi € La(W1,Wy) and f2 € La(W,,W;) are isomorphisms then f; - f €
L4{W), W) is an isomorphism and

log Voln(f2 - f1) = log Voly fi +log Voly f5 . (1.6)
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(5) If oy € La(W;), @ = 1,2, are isometries and f : Wi — W, is an
isomorphism then asfay € £L4(Wi, Ws) is an isomorphism and

log Voly(azfoy) = log Voly f . (1.7
Proof. All these statements can be proved in an elementary way. For the
convenience of the reader we give the proof in Appendix 1.

Next we consider the case where 7 is a weak Agmon angle for f €
L4(W). In this case 7 is an Agmon angle for f 4+ A with any A > 0. One
verifies that logdet y(f + A) is a real analytic function in A € (0, 00). We
define log det  f as the element in D (cf. Introduction), represented by the
real analytic function

logdet y(f + A) — log A dimy Null(f) . (1.8)

We note that parts (2) and (3) of Proposition 1.9 extend to this case as
well.

Let f € £ (W1, Ws) be a weak isomorphism. For A > 0 denote by P¢())
the set of all A-invariant closed subspaces £ C W; such that, for z € L,
lf(z)]| € A||z)||. Following Gromov-Shubin ([GrSh, formula 3.8, p. 386])
introduce the function Fy : [0, 00) — [0, 00) defined by

Ff(k) 1= sup{dimN iy E'Pf(/\)} . (1.9)
Observe that the function Fy(A) is nondecreasing, left continuous, F{0) = 0
and Fp(A) = dimy (W) for X > || f||. Note that f is an isomorphism iff there
exists Ao > 0 such that Fy()A) = 0 for A < Ap. The Novikov-Shubin invariant
a(f) associated to a weak isomorphism f € £ a4(W1, Ws) is defined by
log Fr(})
log A
Note that aff) = oo if f is an isomorphism.
If f € £L4(W1,W,) is an arbitrary morphism let

o(f) = lif\n_f(x)lf € [0,00] . (1.10)

F: W, =W,/ Null(f) — Range f = W, . (1.11)
Note that f is a weak isomorphism and define a(f) and Ff()) by
olfy=a(f);  FyN) = Fp) . (112)

PROPOSITION 1.10. (1) For any weak isomorphism f € £ 4(Wy, Wa)
(2) If f : Wy @ Wo — Wy @ W, is a weak isomorphism of the form
_(Hh D )
f ( g f2)’
then f; and f, are both weak isomorphisms and
max {Fy, (A), Fr,(A)} < F(A) < Fr,(A\) + Fr, (M) .
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(3) If f € LA(W) is nonnegative and selfadjoint, define the spectral
projectors Qf(\) € La(W) corresponding to the interval (—o0,}] and
Ni(A) :=tra Qf(X). For A >0, and f given by (1.11)

Ny(A) = dimy (Null(f)) + F5(}) - (1.13)

The verification of these statements is straightforward using the defini-
tion of F¢(A) (cf. Appendix 1).

The function N¢(A) is called the spectral distribution function of f. Note
that F7(A) is nondecreasing and F#(0) = 0. F5(A) can be used to repre-

sent logdet N(??)l/ ? in D as the function given by the Stieltjes integral
fo": log(p + )‘)dFj(H)~
Dencte by F the set of functions F : [0, 00) — [0, 00) satisfying
(F1) F(0) = 0;
(F2) F()) is nondecreasing;
(F3) F is continuous to the left,
and recall the following definitions of Gromov-Shubin (cf. [GrSh]).

DEFINITION 1.11. (1) Functions F,G € F are said to be dilational equiva-
lent, denoted F 2 G, iff there exists C > 0 such that for A > 0
G(C'A) S F(A) < G{CN) . (1.14)

(2) Functions F,G € F are said to be dilational equivalent near zero,
denoted F' '34 G iff there exist C > 0 and g > 0 such that (1.14) holds for
A< A

We end this subsection with the following observation. Suppose that
y: A" — A" is a homomorphism of finite von Neumann algebras which is
injective and makes A} an A’-Hilbert module of finite type. Then it makes
any A”-Hilbert module of finite type W an A’-Hilbert module of finite type
and we have £ 4 (W) C La(W).
REMARK 1.12: Assume that for any f € A, try 4 (¥(f) : A — A7) =
riry,an((f)). Then:
(1) dimpy s (W) = rdimy_an (W).
(2) If f € Lan(W) then try a(f) =rtry,a0(f).
(3) If 7 is a weak Agmon angle for f then logdety 4(f) = rlogdety 4 (f).

1.3 Cochain complexes of finite type and torsion in the von
Neumann sense.

DEFINITION 1.13. A cochain complex in the category of A-Hilbert mod-
ules of finite type, C = (C;,d;), consists of a collection of Hilbert modules
of finite type C;, all but finitely many zero, and a collection of morphisms
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d; : C; — C;4, which satisfy did;—y = 0. In the sequel we always assume
that C; = 0 for i < 0 and refer to such a complex as a cochain complex of
finite type over A, or simply as a cochain complex of finite type.

The reduced cohomology of C, Fi(C), is defined by
H'(C) = Null(d;)/Range(d;_1) .
Define the Betti numbers and Euler-Poincaré characteristic of C by
Bi(C) =dimyH(C);  x(C) = (-1)'8:(C) , (1.15)
and introduce a weighted version of the Euler-Poincaré characteristic,
P(C) =D (-1)'iBi(C) - (1.16)
Denocte by df : Ciy1 — C; the adjoint of d;, and consider A; = did; +
d;—1d}_;. The operator A; is a selfadjoint and nonnegative morphism.
DEFINITION 1.14. (1) Given two cochain complexes of finite type over A,C’
and C”, a morphism f : C' — C" is given by a collection of morphisms
fi : Ct — Y which commute with the differentials d;.
(2) A homotopy t between morphisms f and g is given by a collection
of morphism t; : C! — C!'_ satisfying
fi—gi=di_iti +tind; . (1.17)
(3) Two cochain complexes C' and C" are homotopy equivalent if there
exist morphisms (in the category of complexes)f:C' — C" andg:C" — ('
so that g - f resp. f - g is homotopic to id¢ resp. ider.
Given a morphism f : C' — C", denote by H(f) the induced morphisms
of A-Hilbert modules H(f)' : H (C') — H (C"). Note that if f, : ¢' — C”,
r = 1,2, are two homotopic morphisms then H(f})* = H(f,)" for all i. Given
a finite type cochain complex C = (C;, d;), each C; can be decomposed as a
direct sum of mutually orthogonal subspaces C; = H; @& C,~+ & C; with

Hi=Null A;; CF=diy(C1), CF=diCp1).  (118)

This decomposition is called the Hodge decomposition. The map d; can
then be described by a 3 x 3 matrix of the form

00 0
g=]0 0 4], (1.19)
00 0

where d; : €] — CJr 1 is a weak isomorphism and the combinatorial Lapla-
cian A; = d, 1d}_; + dfd; then takes the form of the diagonal matrix
diag(0,d;_,di_ 1,d"d)

-1 =1
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Let f : C' — C? be a morphism. With respect to the Hodge decom-
positions of C} and C?, the morphism f; : C} — C? can be written as a
3 x 3-matrix of the form

fimi 0 fins

fi=\|fin fize fizs (1.20)
0 0 fiss

where fi11 € La(H}, HE), fioe € L:A(Cl'l’+,c,-2’+)7 fizs € La(CP™,C07)

and d? : fi,33 = fi+1,22 411

DEFINITION 1.15. A cochain complex C is called perfect if, for any ¢, d; is

an isomorphism.

For a perfect cochain complex spec A; \ {0} is bounded away from zero
(1<i<d).
LEMMA 1.16. (1) Given a cochain complex C = (C;,d;) one can find modi-
fications d;’s of d;’s so that C = (Ci,d;) is perfect and has the same Hodge
decomposition as C.

(2) Given an isomorphism f : C* — C2 of cochain complexes C* =
(Ck,d;), k = 1,2, one can find modifications Jf of d¥ so that

fiprd} = di f; (1.21)

and the cochain complexes C* = (C¥,d¥) are perfect and have the same

Hodge decompositions as C*¥ (1 < k < 2).
Proof. Statement (1) follows by choosing d; of the form

. 0 0 0
d={0 0 4}|. (1.22)
00 0

where d; is the isometry in the polar decomposition of d; given by d;, =
di(d;d;)%. .

(2) With respect to the Hodge decomposition of C} and C? define d} as
in (1) and choose d? to be of the form

0 0 0
Z=[0 0 ¢
0 0 O
with d2 = fi41 90 -d> - fi—,_313‘ °

In section 6.1 we will need the following:

ProposITION 1.17. Suppose C(t) = (C;i(t),di(t)) is a family of cochain
complexes of finite type depending on a parametert > 0, and f(t) : C(t) — C
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is an isomorphism of cochain complexes for any t. Introduce logV(t) :=
Z:zo(——l)qlogVolN H(f(t))?. Assume that Ci(t) and C; are free mod-
ules and that there exist orthonormal bases e; 1(t), ..., e;,,(t) for C;(t) and
€1, --,¢ei1 forC; so that fi{t), when expressed with respect to these bases,
is an l; x l;-matrix with entries in A°P of the form Id + O(1/t). Then
log V{(t) = O(1/1).

Proof. In view of Lemma 1.16(1} it suffices to prove the result for the case
where d;(t) and d; are isometries. In view of (1.20) and Proposition 1.9(3)

log Vol H (£(£))" = log Vol (fi(t)) —log Vol w (f; 2(t)) —log Vol (f: s3(t)) -

(1.23)
As d; fi 33(t) = fit1,22(t)d;(t), Proposition 1.9(5) implies that
log VOlN (fi,33(t)) = log detN (f,'+1,22(t)) . (124)
Taking the alternating sum of (1.23) therefore leads to
d d
> (1) log Voly (H(f(2))') = > _(=1)"log Voly (£i(2)) . (1.25)
i=0 i=0
The claim now follows from the assumptions made on the asymptotics of
fi(®). o

Given a cochain complex C of finite type, introduce, following Gromov-
Shubin ([GrSh], cf. also end of section 1.2), the functions F¢ ;(A) € F defined
by Fci(A) := Fgrg (A) and the numbers o; defined by o; := o(d;) (cf.
(1.10)). The following result is due to Gromov-Shubin ([GrSh, Proof of
Proposition 4.1}).

ProprosITiON 1.18. Suppose f : ¢’ — (" and g : (" — C' are two mor-
phisms of cochain complexes so that id¢s is homotopic to gf by a homotopy
t = {t;}. Then
1
Feri(N) € Feri(4llfinPlgil®y)  for 0< A< Wl (1.26)

In particular if f : ¢’ — C” is an isomorphism then Fe ;(A) ~ Fcu ()
(choose t = 0); if ' and C” are homotopy equivalent, then Fer ;()) 5/
Fer ;(X), and therefore o} = of.

The torsion log T(C) is the element in D defined by

logT(C) = 1 Z (-1)*ilogdety A (1.27)

The spectral distribution funcmons Ni(A) := Na, () satisfy (cf. [GrSh,

(3.6)])
Ni(A) = Bi + Fi1(A) + Fi(}) (1.28)
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where F; = Fe ;. Therefore log T(C) can be represented by the real analytic
function in A

3 Z(—l)i /(: log(p + N)dF;(p) . (1.29)

DEFINITION 1.19. A cochain complex C of finite type is of determinant
class ifff01+ log(A)dN;(X) > —oo for all i, or equivalently flco Ltrye =8 -
Bi)dz < oo for all 4.

We point out that if C is of determinant class, then log T(C) is in R C D,
and a sufficient condition for C to be of determinant class is that oy > 0 for
0<k<d.

The following Lemma 1.20 can be used to deduce from Proposition 1.18
that a cochain complex of finite type which is homotopy equivalent to a
cochain complex of determinant class is of determinant class as well.

LEMMA 1.20. Assume that N;(p) and No{p) are nonnegative, increasing
function on (0, 1] such that N;(04+) = No(0+) = 0 and Ny(p) < Na(p) for
0 < p < 1. Let f(u) be a nonnegative decreasing continuous function on

(0,1]. Then
1+ 1+

fl)dNy(p) < f(w)dN2(p) -
0+ 0+

Proof. Without loss of generality assume that fol: F(p)dNz{p) < oo, Use
that N,(04) = 0 and f is decreasing to conclude that lim, o4 f(u) No(p) =
0 and so lim,—o4 f(#)N1(p) = 0 as well. Using the integration by parts
formula for the Stieltjes integral one concludes that

1+ 1+
FdNy () < / F)dNa () + F(&) (Nae) = Ni(€)) -
€+ €4

Taking the limit ¢ — 0 leads to the conclusion. o

It will be convenient for the proof of the product formula below to in-
troduce for A > 0 and s € C with Rs > 0 the zeta function associated with
the complex C,

Ce(A,s) = %Z(—nimN (A +X)7%) . (1.30)

This function is real analytic in ), complex analytic in s for £s > 0 and
admits an analytic continuation to the entire s-plane so that s = 0 is a
regular point. Notice that log T'(C) is also represented by the real analytic
function in X given by

-j— Ce(Xy s) — ¥(C)log A (1.31)
S is=0
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where 9(C) denotes the weighted Euler-Poincaré characteristic (1.16) (cf.
also [Go] for (1.31)). Moreover, by the spectral theorem (cf. Appendix 1)

1 i B 1

) =52 (igey |
Suppose that A’ resp. A” are finite von Neumann algebras. Note that
A= A'®A" (tensor product in the category of finite von Neumann algebras)
is also a finite von Neumann algebra. If W' resp. W are A’ resp. A”-Hilbert
modules of finite type then the tensor product W @ W” (tensor product in

the category of Hilbert spaces) is an A-Hilbert module of finite type and

dimy(W @ W) = dimy W' - dimy W .

Let C' resp. C", be two cochain complexes of finite type over A’, resp.
A”. Denote by C = ' ® C" the tensor product of these cochain complexes,
C= Y Cec!, d=)Y deidt(-1)lided .

ptr=i pt+r=i
Then C is a cochain complex of finite type over A.

ProposiTioN 1.21 (cf. [CM], {LiRo|). Let C', resp. C" be two finite type
cochain complexes over A’ resp. A". Then, with C = ' ® C”,

oo
21N fry et dt (1.32)

(1) H(C) =Y, B (C)OH (C)
(2) Ce(A8) = Cer (A, 8)X(C) + Cen (A, 5)X(C)
(3) ¥(€) = $(C)x(C") + B(C")x(C') -

Proof. The proof of (1) can be found, e.g. in [LiiRo, Theorem 3.16] and (3)
follows from (1). To prove (2) (cf. [CM]) let C be a cochain complex of finite
type over A’, and V be a A”-Hilbert module of finite type. We will show

below that
Y (-1) (e 40) = x(0) (1.33)
q
Therefore if 3:V — V is a morphism, then

Y (1) trw(e™ @ B) = trn (B)x(C) - (1.34)
q
To prove (1.33) we use the matrix representation of A, with respect to

the Hodge decomposition, diag(0,d,_,d;_;,dyd,) and Proposition 1.9 (1);
they give

try e~ 1Bt e~ = try et qu+
o

and consequently
=tAgt1f.+

—A
try e~ = try(e 1) trn(e T+1) + dimy Null(A,)
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which leads to (1.33). Next, decompose A, = P
A;, ® id + td ® A/ to obtain

2e(Ns) =Y () (p+7)

ptr=q Apr, where A, . =
1
I'(s)

g [ e e ({@ v} o { @y is ar
4 % /0oo p=lg=th gy ({ @(_1)pe—m;} ® {@(_1)rre—tA',.’})dt

which, in view of (1.34), is equal to

F(ls)/ 3= 1le—tA (X(C”)Z("l)pptrN e-—tA',,_}_X(CI)Z(_l)rT try e_tAlf’)dt
0 - ~

= 2er(A, 5) - x(C") + 2¢en (X, 8) - x(C) - o
COROLLARY 1.22 (cf. [CM], [LiiRo]). With the same assumptions as in
Proposition 1.21, the following identity, viewed in the vector space D, holds:

log T(C) = x(C") log T(C') + x(C') log T(C") .
1.4 (A,I°P)-Hilbert modules and bundles of A-Hilbert modules .

DEFINITION 1.23. W is an (A, T'°P)-Hilbert module of finite type if
(BM1) W is an A-Hilbert module of finite type;

(BM2) W is a I'°P-Hilbert module, defined by a unitary representation of I';
(BM3) the action of A and T'°? commute.

Let X be a countable set. Denote by l2(X) the Hilbert space obtained
by completion of C(X) = {f : X — C; supp(f) is finite} with respect to
the scalar product (f1, f2) := Y cx f(2)g(2).

EXAMPLE 1.24: Let I' be a countable group and C(I') denote the unital
C-algebra with multiplication defined by convolution and *-operation in-
duced by the map, g — ¢~!. The algebra C(T") has a finite trace given by
tr(f) := f(e) where e denotes the unit element in I', and acts from the left
by convolutions on l5(I'). This algebra can be viewed as a *-subalgebra of
Lr(15(T),12(T)). Denote by N (T) its weak closure in Lr(l2(T),l2(T")). Then
N(T) is a finite von Neumann algebra referred to as the von Neumann al-
gebra associated to I

ExAMPLE 1.25: Let p: T x X — X be a left action of T on the set X
with finite isotropy groups. p induces a left action of I by isometries which
makes ly(X) an A(T)-Hilbert module; if the quotient set ['\ X is finite, then

o0
/ tolemtA trN(e'tA;’ ® e_tA/rl)dt
0
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this module is a Hilbert module of finite type. Suppose, in addition, that
I’ is another countable group and p' : X x I — X is a right action of
IV on X so that p and p’ commute. I"” induces an action by isometries on
Io(X) which makes I5(X) an (NV(T),I'°")-Hilbert module of finite type. As
an example, consider the case X = |I'|, the underlying set of T', I' = T”
and p and ' given by p(g1,92) = 9192, and p'(g2,91) = gag7'. Then I5(T)
is an (NV(T),[°P)-Hilbert module of finite type, referred to as the regular
birepresentation.

DEFINITION 1.26. A smooth bundle p : £ — M over a smooth manifold M

is a bundle of A-Hilbert modules of finite type with fiber W if

(Bl) p: £ — M is a smooth bundle of topological vector spaces, equipped
with a Hermitian structure y which makes each fiber p~!(z), z € M,
into a separable Hilbert space;

(B2) £ is equipped with a smooth fiberwise action p : A x £ — £ which
makes each fiber p~'(z) an A-Hilbert module of finite type.

(B3) W is an A-Hilbert module of finite type and p : £ — M is locally
isomorphic to p, : Wx M — M where the local isomorphism intertwines
P, Po, the Hermitian structures and the A-actions.

EXAMPLE 1.27: Let M be a closed smooth manifold with fundamental
group I' := (M) and let W be an (A,I'°P)-Hilbert module of finite type.
Let p: W x M — M be the trivial smooth bundle of .A-Hilbert modules; p
is -equivariant with respect to the diagonal action of I on W x M and the
left action of ' on M. Therefore p induces p : £ = W xp M — M which
is a smooth bundle of A-Hilbert modules of finite type. This bundle is the
canonical bundle over M, associated to W.

2. Calculus of Pseudodifferential Operators Acting on A-Hilbert
Bundles of Finite Type

In this section we construct a calculus of pseudodifferential operators, called
pseudodifferential A-operators, on a compact manifold, where A is a finite
von Neumann algebra (cf. e.g. [FMi],[Le],[Lu] and [Mo] for related work).

2.1 Sobolev spaces, symbols and kernels. Let B be a Banach space.
For u € S(R?, B), the space of functions u : R? — B of Schwartz class, ||ul|s
denotes the Sobolev s-norm given by

ul? = /R (14 1€2)°[la(©)|de

where () denotes the Fourier transform of u.
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DerINITION 2.1. (1) The Sobolev space H,(R% B) is the completion of
S(R?, B) with respect to the Sobolev s-norm; equivalently, it can be defined
as the space of all distributions v € 8'(R?, B) with
(1+1€2)**a € L,(R% B) .
(2) The space H'*°(R?, B) is the space of all distributions u € D'(R¢, B)
such that ¢u € H,(R?, B) for any ¢ € C(RY).

Most of the properties of the Sobolev spaces H,(R¢, B) are the same as of
the usual Sobolev spaces for functions with values in finite dimensional vec-
tor spaces (cf. [Le]). Let W be an A-Hilbert module. The space H (R?, W)
is an A-Hilbert module whose dual can be identified with H_ (R¢, W). Note
also that H!°¢(R¢, W) is an A-module. Extending the classical case A = C,
symbols are defined as follows:

DEFINITION 2.2. (1) A function a € C®°(R¢xRY, £L4(W, W)) is a symbol of
order m € R, denoted by a € S}, = S{,"V(Rd x R?), if the following conditions
hold:

(Sy1) a(z,&) has compact support in «;

(Sy2) for any multiindices, o« and 3, there exists a constant, Cng, such that

0288 a(z, &) < Cap(1+1E)™ . (2.1)

(2) {cf. [Sh1, p. 29]) A symbola € S}, is classical if it admits an expan-
sion of classical type ijo Y(€)am-j(z,€) with ¢ € C°(R?) given by

This means that:
(Sy3) am—; € C=(R? x (R?\ {0}), L4(W,W)) has compact z-support and
is positively homogeneous of degree m — j;

(Sy4) a(z,€) = LIy $(E)am—;(2,€) € Sy for all N > 0.

Subsequently, we always assume that all symbols are classical.

Given a € S}, define a linear operator 4 : C§°(R?, W) — C§°(R4, W)
by

1 .
=—— [ df | dze'®¥Oq(z, : 2.2
Au(e) = oo [ de [ drerOate uty) (22)

The principal symbol of a classical pseudodifferential operator A, 0 4(z,€) =
am(z,€), is invariantly defined as a smooth function on T*R¢ \ {0} with
values in £ 4(W, W).

The operator A is said to be a pseudodifferential A-operator of order m,
denoted A € ¥DOZ(R? x W), and can be extended to a bounded, linear
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operator (any s € R)
A:H,RLW) — Ho_(REW) .

The Schwartz kernel of A, K4(x,y), is given formally as an oscillatory
integral

Kae,9) = [ e Oa(a i (2.3)

We note that if m < —d, the kernel K 4(z,y) is continuous.

DEFINITION 2.3. A pseudodifferential operator A in WDOR(R? x W) is
said to be uniformly elliptic on U C R® if the principal symbol am(z,£) is
invertible for £ € R\ {0} for all z € U and

lam(z, O < CLA+ )™ forzelU, Jg|>1. (2.4)

Note that as a,(r,£) € La(W, W) the inverse satisfies a,,(z,£)™" €
LaW,W).

2.2 Pseudodifferential operators on bundles of Hilbert modules.
Throughout this section let (M, g) denote a compact Riemannian manifold
of dimension d, possibly with boundary, A a finite von Neumann algebra,
W an A-Hilbert module of finite type and p : £ — M a bundle of A-Hilbert
modules with fiber W.

Introduce the Banach bundles of bounded linear operators £ — M x M
and B= L4 — M x M whose fibers at (z,y) € M x M are given by

Loy=LEyE);  Bay=B(Ey,E)

where £(€,, &,) denotes the Banach space of all bounded linear operators
from the fiber &€, to the fiber £, and

By = {f € Loy; f is A-linear} .

The Banach bundle w : B — M x M has the following properties:

(Bul) B,y is a weakly closed linear subspace of £;,;

(Bu2) if b € By, then b* € By,;

(Bu3) if b € Byy, b’ € By, then bb' € B,.;

(Bu4) Id € B,,;

(Bu5) if @ € By, is invertible then a=! € Bi,.

Denote by U an open connected subset of M and let X = R? or, in case U
is a neighborhood of a boundary point of M, X=Rd:={(z1,...,z4); 2a>0}.
DEFINITION 2.4. A pair (¢,®) of smooth diffeomorphisms ¢ : U — X and
®: £|U — X x W is said to be a coordinate chart of (M, — M) if ¢ is a
chart of M and ® is an A-trivialization of £ — M over U.

In particular, ®; := ®|,-1(,y : p~1(x) = W is an isometry.
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In order to define the Sobolev spaces H () = Hy{(M,E) we proceed
as follows: If M is a closed manifold, define the Sobolev space H,(£) =
H(M,E) by a standard localizing procedure, using the definition of sec-
tion 2.1 and a smooth partition of unity subordinate to an open cover of
M which comes from an atlas of £ — M. If M is a compact manifold with
boundary we first consider the double £ — M of £ — M, identify M with
M, one of the two copies of M in M, and denote by M_ the closure of
M\M,. Then define

H (&) := HS(J\;I,(‘:')/{U € H(M,E) : suppu C M_} .

(Equivalently, the Sobolev norms with non-negative integer indices can be
defined using a Riemannian metric on M and a connection on £.) We will
also use Ly(€) for Hg(€). The inner product in H (&) will depend on the
particular choice of the partition of unity of M; however a different choice
of partition of unity will lead to an equivalent inner product. The Sobolev
s-norm of an element u € H,(€) will be denoted by |lull;. We point out
that for s > t, H,(E) embeds into H,(). (This embedding, however, is not
compact if W is of infinite dimension, i.e. Rellich’s lemma does not hold).

DerFiNtTION 2.5. (1) A linear operator A : C™(€) — C*(£) is an A-
smoothing operator, if A Is of the form

(Au)(x) = /M K a(z,y)u(y)dy

where the Schwartz kernel K 4 of A is a smooth section of the bundle B —
M x M. The set of these operators is denoted by ¥ DO3*(£).

{2) A linear operator A . C®(£) — C®(£) is a pseudodifferential A-
operator of order m if for some atlas (¢;,®;);eg of E = M, A= E]‘ A;+T
where T is an A-smoothing operator and the operators A; are operators
with support in the domain of ¢; and, when expressed in local coordinates,
pseudodifferential A-operators of order m. The set of these operators is
denoted by WDO(E).

In the case when M is a manifold with boundary, we will always assume
that pseudodifferential operators have the transmission property (cf. e.g.
[Bo, section 2]).> One shows that A € ¥DO(£) can be extended, for any
s € R, to a bounded linear operator

A:H (&) — H_n(E) .

3The transmission property of a pseudodifferential operator can be defined in terms of the
symbol of this operator: Let z = (z',z4) be arbitrary local coordinates in a neighborhood
of the boundary &M with the boundary defined by zq = 0, and denote by £ = (¢',&q) the
dual coordinates. A pseudodifferential operator A with a classical symbol is said to have
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The principal symbol 4 of A can be defined invariantly as a smooth func-
tion galx,) : T*M \ {0} — La(&).

Note that N, TDOZ(E) identifies to ¥DO,*(£) and, in general, A-
smoothing operators are not compact.

As in the classical theory one develops a calculus for these pseudodiffer-
ential operators. In particular, one shows that the composition Ao B of two
pseudodifferential operators A and B as well as the adjoint A* (with respect
to the Hermitian structure on & — M) are pseudodifferential operators of
the expected order.

2.3 Elliptic pseudodifferential operators.

DEFINITION 2.6. An operator A € $DOR(E) is said to be elliptic if the
principal symbol of A, o4(x,£), is invertible for all x € M and all § €
T: M\ {0}.

To simplify the exposition we assume that M is closed. Asin the classical
case one can construct a parametrix, R(p), for the operator (1 — A) when
Ais elliptic and g € €\ U, g)er m\ [0} SPeC(04 (2, §)).

The operator R() is an element of ¥ DO ;™ (£) and represents an inverse
of (1~ A) up to smoothing operators. Let U be a chart of M which belongs
to an atlas of £ — M. Denote by ¢ and ® the diffeomorphisms

6:RIUCM

P Rd xXW — 5|U
where U is an open subset of M and @ trivializes the bundle p : £ = M
over U such that p® = ¢p; with p; : R x W — R<

The symbol of R(p) in the chart U has an asymptotic expansion deter-
mined inductively as follows:

T—m(x751 f") = (p; - am(m’g))_l
and, for j > 1,
-1
r—m—j(magv M):T_m(l‘, gv ﬂ) (Z Z gTa?am_l(x’ {)Dgr_m_k(x,ﬁ, N)>

k=0 |o|+1+k=5 )
(2.5

the transmission property if the homogeneous components @y, —; (z',24; €', &4) of the symbol
expansion of 4 (cf. Definition 2.2) satisfy

D, Dt (e!,0:0,1) = em(m=i=leD pk D% ap-i(a’,0;0,-1) .

All pseudodifferential operators that arise from differential elliptic boundary value problems
have the transmission property.
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where « is a multiindex, @ = (aq,...,q4), o = ajlant---ay!, and D2 =
(38:)%. The term r_p,_;(z,&, p) is an element of £4(W, W) and is posi-
tively homogeneous of degree —m — j in (€, u#):

P (2 A AT ) = AT (0,6, ) (2.6)

for any £ € R%\ {0} and X > 0.

As in the classical case the parametrix of an invertible elliptic pseudo-
differential operator is readily used to show that its inverse is also pseudo-
differential.

PROPOSITION 2.7. Assume that M is closed and that A € WDOTHE) is
elliptic. If A considered as a bounded linear operator, A : Hp,(€) — Lo(£),
is one-to-one and onto, then A~ € WDO™(€).

Proof (cf. [Sh2]). Denote by B € $DO,™(&) a parametrix for A. The
operators Ty := AB — Id and T» = BA —1d are in ¥DO,*(£). From
this we conclude that A=! = B — A™'T}. The statement follows once we
prove that A=17} € ¥DO,™(€). First notice that A™'T; has a smooth
Schwartz kernel, K 4-17,(z,y) € L{&y, ;). This is a consequence from the
fact that A~ maps C°°(€) into itself which can be verified as follows: Let
u € C®(£) and set v := A~ lu. As B is a pseudodifferential operator, it
follows from above that singsupp(Av) O singsupp(BAv) = singsupp(v +
T,v) = singsupp(v).

The converse inclusion is also true as A is a pseudodifferential oper-
ator. Therefore, singsupp(Av) = singsupp(v) and @ = singsupp(u) =
singsupp( Av) = singsupp(v), i.e. v € C®(£).

Having established that A1 is a pseudodifferential operator one verifies
that A-1 is A-linear. o

As in the classical theory one proves the following estimates for the
resolvent;:

ProposiTiON 2.8 (cf. [$1],[Sh1, Theorem 9.2]). Assume that A€¥DO}(E)
is an elliptic operator of order m > 0 such that A : H,,(€) — Lo(£) is one-
to-one and onto. Further, assume that = is an Agmon angle for A.

Then for A < 0 with || sufficiently large and for 0 < m’ < m,

O = 4y < CorAI 5 (2.)
for some constants Cpy > 0.

2.4 Zeta-function and regularized determinant of an invertible el-
liptic operator. Let (M,g) be a closed Riemannian manifold. Assume
that A € ¥DO7(€) is elliptic and of positive order, m > 0, with 7 as an
Agmon angle; i.e. there exists ¢ > 0 such that
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(1) Vi,eNspecA=0;

As a consequence 7 is also a principal angle

(2) V7r,e N ( U:GM,(E,E)ES;M spec(aA(x,f))) =0.

The solid angle V; . is defined as in the introduction. Note that (1)
implies the invertibility of A viewed as a bounded linear operator, A :
H,,(£) — Ly{(E). Moreover, for s < 0, one can define the complex powers
of A by

A= — (p—A)"'d .
omi ), p(p— A)dp (2.8)
where vr . is a path in € as defined in section 1.2. For s satisfying 0 <
k—~ 1< Rs < k € N one defines
A® = AkpsF

It follows from Proposition 2.7 using arguments due to Seeley [S1], that
A*® € $DO%(E) (after suitably generalizing the concept of order to complex
numbers s € C), depending holomorphically on s. Moreover, for Rs < —i,;‘;,
A® has a von Neumann trace

trn(A®) :=/ trnK 40 (x, z)dz
M

where K 4-(z,y) € £(£,,&;) denotes the Schwartz kernel of A*.
Fora € C*{M,C)and Rs > % one defines the generalized zeta-function

Co,a(8) = trn(ad™%) .

If A is selfadjoint and strictly positive one can derive, as in the classical case,
the following heat trace representation of the generalized zeta function

Ca,a(8) = %3)/0 271"t try e~ Adt (2.9)

As in [S1] {cf. also [G, Lemma 1.7.7]) one shows

Theorem 2.9 (cf. [S1]). (1) Assume A € WDOR(E) where m > 0 and A is
elliptic with = as an Agmon angle. If & € C*°(M,C), then (,,4(s) admits
a meromorphic extension to the entire s-plane. The extension has at most
simple poles and s = 0 is a regular point. The value of {4 4(s) at s =0 is
given by

Ca,a(0) = /M alz)I4(z) (2.10)

where I(z) is a density on M. In an appropriate coordinate chart, I(z) is
given by

Iy(z) = ;15(—2‘71?)7 /|‘5|=1 d¢ /000 trN (T—m-a(2, &, —p))dps . (2.11)
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If A is a differential operator and d = dim M is odd, then I4(z) = 0.

(2) Assume that A(t) : H(£) — Lo(€) is a family of classical pseudo-
differential operators of order m depending in a C"-fashion on a parameter
t varying in an open set of R. Assume that A(t) is elliptic and that there
exists € > 0 such that for all t € Ag e, spec A(t) NV o = 0. Then Ca(y)(s)
is a family of functions holomorphic in s in a t-independent neighborhood
of s = 0 which depends in a C"-fashion on t.

Theorem 2.9 above allows us to introduce the (-regularized determinant
of an elliptic operator A € ¥DOZ(E) of order m > 0 with = as an Agmon
angle:

d
det A = exp { — | :
e exp{ 7 s:oCA(s)}
To treat the case where A is not invertible, first note the following:

LEMMA 2.10. Assume that A € YDO%(E), m > 0, is elliptic. Then the
nullspace of A, Null(A4), is an A-Hilbert module of finite von Neumann
dimension, dimy (Null(4)).
Sketch of the proof. It is sufficient to prove the statement in the case when
A is self-adjoint and non-negative because Null(4) = Null{(A*A). Let k be
a positive integer such that km > d. Then, by Proposition 2.7, (I + A)~*
is a pseudodifferential operator of order —km, and its Schwartz kernel is
continuous. Therefore,
try(I+ A)~F < o0 .
On the other hand,
trn (I + A)~F > dimy ( Null(4)) ,

hence the result. o

Assume that A is an elliptic operator, A € WDO7%Z(E), of order m > 0
with 7 as a weak Agmon angle (cf. Definition 1.8). Then the operator A+ X
with A > 0 has 7 as an Agmon angle and logdet (A4 + A) is a real analytic
function in A. Define logdet y(A) to be the element in D represented by
the analytic function

log det y (A) := logdet y (A + A) — dimy ( Null(4)) log A . (2.12)
DEFINITION 2.11. A is of determinant class if
13}{)1 (logdet y (A + A) — dimn (Null(A4)) log A) (2.13)

exists. In this case, logdety A is a real number.

If A is selfadjoint and nonnegative, there is a functional calculus for A.
In particular, one can introduce the spectral projections Q(X) corresponding
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to the intervals (—oc, A]. Using Proposition 2.8 and the assumption that
A is nonnegative, one verifies that Q(A} is in WDOZ*(€) for any value of
X € R. Denote the distribution kernel of Q(A) by K, and define the spectral
distribution function

Na(A) = /M tenKa(z, 2)dx . (2.14)

Note that N4()) is nonnegative, right continuous and monotone increasing
as a function of \. Moreover, N4(A) = 0 for A < 0 and there exists a
constant C' > 0, so that

NsA) <CA=,  A>1. (2.15)
The asymptotic estimate (2.15) is obtained by observing that (A+1)~ ¥ (A+
1)(A+1)~ 7 is an elliptic, selfadjoint, positive operator in ¥DO%(E). (A is
the Laplacian acting on C'*°(£) induced by the canonical flat connection of
£ — M and a Riemannian metric g.) Therefore there exists C’ > 0, so that
C'Id < (A+1)"™/*(A+1)(A+1)~™/4. This implies that C'(A-+1)"™/2 <
(A+1) or Ngp1(A) € Nevagrymra{A) = Na+1((#)*™). By the variational
characterization of Nay1(}A), Nay1(A) < C”A%/2 for some constant C* > 0
and all A > 1.
PROPOSITION 2.12. Assume that A € $DO(E) is an elliptic, selfadjoint,
nonnegative operator of order m > 1 with 7 as a principal angle. Then the
following statements are equivalent:

(1) A is of determinant class.

(2) [ log AdNa(}X) > —cc.

Here the integral f01+ denotes the Stieltjes integral on the half open interval
(0,1].
(3) [ Ltrye~*# — dimy (Null A))dz < oo.

The proof of the proposition uses the heat kernel representation of the
determinant which we briefly discuss (cf. [G, section 1.6]). Let v be a path
in C defined by the composition v o 74 of two straight half lines:

Y4 = {x+i(z+l); ~1<z < oo}
voi={z—i(z+1); -1 <z < oo}

where 7, starts at infinity and y_ starts at z = —1. Using Proposition 2.8
we may define the following bounded linear operator on Lo(&):

et = —}-— e A - A) M.
27 J,

One verifies that e~'4 € ¥DO;>°(€) for t > 0. Hence, e~'4 has a smooth
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kernel, denoted K 4(z,y,t), with values in B and admits a finite von Neu-
mann trace, trye ™4, given by

trye 4 = /0 e"dNa()) .

As in the classical case one shows that for ¢ — 0, the kernel K 4(z,y,t) has
an expansion on the diagonal z = y of the form (N > 1 arbitrary)
N~1 N
K(z,z,0)= Yt () + Y (t logtym;(z) + O(t™=") . (2.16)
j=0 j=1
When A is elliptic nonnegative and selfadjoint then l; = Iy; this can be
verified as in [G, p. 79].

Proof of Proposition 2.12. Using the representation (2.9) of the zeta-
function we deduce that

d
ds

1 1
ts—l t ~(A+ M)t
s=0r($) _/(; ( e dt)

—/ t~! (trye~ (At VGL) (2.17)
1

The expansion (2.16) is used to show that
d 1

" dsls=0T(s)

is a continuous function of A for A > 0. To analyze

G\ = / ™1 (trye~ (AN — dimy (Null(A))e™*)dt
1

logdety(A+ ) = —

1
/ 1 (trNe_(M"\)’ — dimy (Null(4))e~*")dt
0

we write, applying Fubini’s theorem together with trye~4t= [ e #*dN ()
—o0
and dimN (Null(A)) = NA(O),

GO\ = / AN a() / $=1e=(B+Ntgs
0+ 1

=/ dNA+A([I)/ t_le_“'dt .
At 1

For 0 < X < 1, write G(A) = G1(A) + G2()) where G1(A) and G2(}) are
given by

00 =}
Gl(A) =-/l‘+ dNA+A(ﬂ)[ t—le_utdt

1 o)
GQ()\) = /;+ dNA.Q.)\([L)/; t~leTHidt |
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The function G1(\) is estimated in a straightforward way. Concerning
G2()\), note that

/ tle #idt = —logpu+ (1 — e *)logpu + f e °log sds
1 H

and that the function (1 — e™#)logp + f:o e~*log sds is bounded for p €

[0,1]. This proves the equivalence of (1) and (2). The equivalence of (2)
and (3) follows by the same estimates. o

2.5 Elliptic boundary value problems. The previous discussion on the
zeta function and the determinants of elliptic differential operators on closed
manifolds can be extended to elliptic boundary values problems on compact
manifolds with boundary. In the case A = C this was done by Seeley (cf.
[S2]). In this paper we will consider only Dirichlet type boundary value
problems for elliptic differential operators of Laplace-Beltrami type of even
order. An elliptic operator B of order 2k, k > 0 is of Laplace-Beltrami type
if the principal symbol is of the form og(z, &) = ||£||?*Ide, .

Let (M, g) be a compact Riemannian manifold with boundary 6M #
#, A a second order positive selfadjoint differential operator of Laplace-
Beltrami type and let B be an elliptic differential operator of Laplace-
Beltrami type of order 2k. Denote by J : C*®(£) — C*(€|am) the trace
operator which associates to u € C*() its restriction, ulgy. Introduce the
restriction Bp : CF(E) = C®(€) of B to CF(E) :={u € C®(&) 1 ulom =
0, Au|gpr = 0,---, A*"lu|pp = 0}. Notice that C3(€) depends on A and
on the order of B.

Following [S2] one constructs a parametrix, R(u}, for p— Bp in a similar
fashion as in the case M = @, describing inductively the asymptotic expan-
sion of the symbol of the parametrix. The constructions differ, in the case
of a manifold with boundary, in that each term in the symbol expansion
includes a term arising from the boundary condition. These added terms
arising from the boundary conditions only depend on the symbol expansion
of B, A and its derivatives along the boundary M.

The trace operator J : C®(€) — C™(€|snm) induces bounded operators
JA" : Hy(€) = Hyppogry 3 (Elom) (m € 2,7 € N). Propositions 2.7 and 2.8
remain true if one replaces H,,,(€) with {u€H,,(€) | Ju=0, ..., JAF"1u=0}.

One can introduce complex powers of Bp and, for Rs > %, the zeta-
function (p,(s) and its generalized version (a,p,(s) (cf. section 2.4).
Following Seeley’s arguments one obtains the analog of Theorem 2.9.

Theorem 2.9'. Let (M, g) be a compact Riemannian manifold with bound-
ary OM # 0. Assume that A is an A-linear selfadjoint, positive, differential
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operator of order 2 of Laplace-Beltrami type and B is an A-linear differen-
tial operator of order 2k and of Laplace-Beltrami type. (Note that 7 is an
Agmon angle for A and therefore a principal angle as well). Suppose that
7 is an Agmon angle for Bp. The function {,,p,(s) admits a meromorphic
continuation to the entire s-plane. The continuation has at most simple
poles and s = 0 is a regular point. The value of {4 B, (s) at s = 0 is given
by

oo ®) = [ ala)luta) + / al@)fi(o) (2.18)

where in a coordinate chart of (M, — M), I;(z) is defined as in (2.11).
In a coordinate chart of (OM,E|egm — OM), B4(z) is given by a formula
similar to that found in [S2] involving at most the first d terms of the symbol
expansion of A and its derivatives up to order d.

Theorem 2.9’ allows us to introduce the (-regularized determinant of Bp
by

d
logdety Bp = - s=0<BD(s) . (2.19)

3. Asymptotic Expansion and the Mayer-Vietoris Type Formula
for Determinants

3.1 Parametric pseudodifferential operators. Let Ay, denote the
solid angle in C given by Ag = {re‘®;r > 0, 27|0] < €}. Consider a family
of pseudodifferential operators A(t), t € Ag,e with A(t) € YDOR(E).

DEFINITION 3.1. Let M be a closed manifold. A(t) is a 1-parameter family
of weight x in ¥DO(E) if for any chart ¢ : X — U of an atlas of £ —
M (where X = R, or in case U is a neighborhood of a boundary point,
X= Ri) and for all h, b’ € C§°(U), the operator h' Ah, when expressed in
local coordinates, has an £ 4(W, W)-valued symbol a = ap .y satisfying
the following properties:

(1) for any multiindices a, 3 there is a constant C, g > 0 such that

10208a(z.£, ]| < Cap(1 + le] + 111%) ™!

where x € X, £ € R%, and t € Ap,;
(2) a has an asymptotic expansion

a~ 3 U(E Dan-i(@,6,1) (3.1)

720
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with 1 € C*(R? x Ay ) satisfying

_fo &<t
’““)’{1 HED|> 1

and ap,—j € C®(X,R4\ {0}, Ag,; La(W, W)) depending in a C*-fashion
on the parameter t, has compact z-support and is positive homogeneous
1
of degree m — j in &,tx, i.e.
am—j (11, Tfa T!it) = Tm—ja’m"j (1‘, 51 t)
for all T > 0.

By (3.1) we mean that for any multiindices o, 8 and any N > 0 there exists
constants Co g § > 0, such that for any t € Ao

m~N~|g]|

N-1
020 [a(a,6,6)- 3 ¥lEam—s(2.60] | < Copn 111117
=0
A similar concept is necessary for compact manifolds with boundary.
For this paper it suffices to describe such a concept only for differential
operators.
DEFINITION 3.1’. Let M be a compact manifold with boundary. A(t) is
a ]-parameter family of A-linear differential operators of order m and of
weight x if, in a local chart,

m

A(t) =) am-j(z,D,1)

j=0
where D = 18, and am-;(z,§,t) is a polynomial in £ with
am—j(z, TE, r%t) =1 a,,_i(z,£,1)
for all T > 0.
In the case where M is closed one proves (cf. e.g. [Shl, Theorem 9.1])
that for any s € R and { > m, A(f) is a bounded linear operator, A(t) :

H, () - H,_i(€). Denote by ||A(t)|l|s—s—t the operator norm of A(t),
viewed as an operator A(t) : H,(£) — H,_i(€).

Theorem 3.2 (cf. [Shl, Theorem 9.1]}. Let M be closed. The following
estimates hold: ,

(1) ifm > 0andl>m, then |A(t)s—s—t < Cop(1 + t|X)™;

(2) ifm < 0and m <1 <0, then J|A(t)]|smsmt < Cap(1+ [t]%)=0—™.
DEFINITION 3.3. A 1-parameter family A(t) in WDO(E) is elliptic with
parameter, if for any chart ¢ : X — U of an atlas of £ — M (where
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X = RY, or in case U is a neighborhood of a boundary point, X = Ri)
and for all h,h' € C§°(U), the operator b’ Ah, when expressed in local
coordinates, has principal symbol am(z, €, t) with values in L4(W, W) such
that for all z € X with h{¢(z))h'(¢(2)) # 0, am(x,&,t) is invertible for
(§7t) € (Rd X AO,E) \ {(0,0)}.

Let M be closed. For a l-parameter family A(t) in $DOZ(E) elliptic
with parameter, one constructs a parametrix, R(p,t), for g — A(t) : Given
# ¢ Uien, . spec(A(t)), R(p,t) is a 1-parameter family in ¥DOZ™(€) sat-
isfying

R(u,t)(1 = A(t)) ~ 1d € ¥DOZ®(€)
and

(2 — A(®))R(p,t) —1d e ¥DO>(E) .

In local coordinates the symbol of R(y,t) is constructed inductively:

rom(z, 6t ) = (1 — am(z,6,8)) 7
rom-j{%, & 1, ) (3.2)

3-1
= r—m(‘rafvtv,u)(z Z ﬁa?am‘l(-l',f, t)Dgr—m-k(Lﬁ,t’ N))

k=0 |a|4+l+k=]

where D, = %8,. The term r_p,—;(z,&,t, p) is positive homogeneous of
degree —m ~ j in (f,t%,u%).

In the case where M is compact with nonempty boundary, one can con-
struct a parametrix R(u, t) for a one parameter family Bp(t) with boundary
conditions defined by A (cf. comment and footnote following Definition 2.5
and section 2.5) when B(t) is a family of differential operators of Laplace
Beltrami type elliptic with parameter. The parametrix is given by a sum of
a pseudodifferential operator and a singular Green operator. The symbol
of the pseudodifferential operator is constructed in the same way as in the
case of a manifold without boundary. The symbol of the singular Green
operator only depends on the symbol expansion of B(t) and A and their
derivatives along the boundary M.

3.2 Asymptotic expansion of determinants. As in [BuFrKa2, Ap-
pendix|, one proves a result concerning the asymptotic expansion for the
determinant of a 1-parameter family A(t) in $WDOR(E), A(t) elliptic with
Parameter.

Theorem 3.4. Let M be a closed manifold. Assume that A(t) is a I-
parameter family in WDO7(E) of order m > 1, elliptic with parameter
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of weight x. Further assume that there exists € > 0 such that for all
t € Ag,er, spec(A(t)) NVy,o = 0. Then the function log det y A(t) admits an
asymptotic expansion for t — oo of the form

log det y A(t) ~ Z a;lt|x + Z b;1t|x log [¢] (3.3)

where @; = fM aj(a:, m)dz, b fM (z, i )dm are defined by smooth
densities a; (a:, ]%[) and b; (:c, 1;‘—), which can be computed by a formula in-

volving finitely many terms in the symbol expansion of A(t) and finitely
many of its derivatives.

In particular, with respect to a coordinate chart, ao(x, ﬁ[) is given by

t d 1 1
—_ = = —— d -s —n—-
o (x |t|) dsls=0 (2m)d 2mi /.,,, ¢ . dpp"ton (’" d(”” 5’||’“)>

= _(2_7165/!!4 de /000 dutry (r_m_d (I,f,rzlru)) . (34

A similar result holds in the case where M has a nonempty boundary,
OM # 0 (cf. [BuFrKa2]). With the notation introduced in section 2.5, one
obtains

Theorem 3.5. Let (M, g) be a compact Riemannian manifold with bound-
ary OM # 0. Assume that A is a second order selfadjoint, positive differen-
tial operator of Laplace Beltrami type and B(t), t € Ao, is a 1-parameter
family of order 2k differential operators of Laplace Beltrami type, elliptic
with parameter of weight x and k > 1. Assume that there exists ¢ > 0 such
that for allt € Ag e, spec Bp(t)NVy o+ = 0 (cf. section 2.5 for the definition
of Bp). Then the function logdety Bp(t) admits an asymptotic expansion
for t — oo of the form
d d

logdety Bp(t) ~ 3 (@ +a)llt + 3 (5 +5)|t ¥ loglt]  (3.5)
j=0

j==o0

I . I, 3b
where @; and b; are given as in Theorem 3.4. The quantities a’ and b; are
contributions from the boundary and are of the form

=) 8= [ 8(m) 69

In a coordinate chart of (OM, E|ay — OM) the densities a’(z, m) are given
by a formula each involving only finitely many terms in the symbol expan-
sion of B(t) while the densities b%(x, ff7) are given by a formula involving
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only finitely many terms in the symbol expansions of B(t) and A in a neigh-
borhood of 3M.

3.3 Mayer-Vietoris type formula for determinants. We restrict
ourselves to the case needed for this paper. We assume throughout this
subsection that (M, g) is a closed Riemannian manifold. Let I be a smooth
embedded hypersurface in M with trivial normal bundle. Consider an el-
liptic, selfadjoint, positive, differential operator A of order 2, A : C*®(£) —
C>(£), of Laplace-Beltrami type (i.e. the principal symbol is of the form
oa(z,€) = ||€)2Idg, ) with spec(A) C [e, o) for some € > 0. Denote by Mr
the manifold whose interior is M\T', and whose boundary is M = 'Y U~
where I't and I'~ are both copies of I'. Let gr be the Riemannian metric on
My induced by the metric g and let & — Mt be the pullback of the bundle
£ — M by the canonical map from Mt to M. The operator A induces the
operator AT : C=(&r) — C*°(€r). Denote by AL : C¥(&r) — C=(&r),
the restriction of A' to C¥(€r) := {u € C®(&r) : ulom, = 0}. Then AL
is elliptic and positive with spec(A4})) C [e, 00). Thus, in particular, 7 is an
Agmon angle for AL,.

Introduce the Dirichlet to Neumann operator, Rpy, associated to a unit
vector field normal to I. This operator is defined as the composition

C™(Er) A C®(E|r+) ® C=(Elr-) L2 C=(&r)
I, c(Elr+) @ C®(Elp-) &5 C=(£]r) -

Here A;, is the diagonal operator, Ay, (f) = (f, f), Air is the difference
operator, Ay (ft, f7) = ft—f, and Pp is the Poisson operator associated
to AT, i.e. the operator which maps (fy,f-) € C®(€|p+) & C=(€|r-) to
the solution of the problem Au = 0, u|r+ = f4. Let n{z), z € ', be a vector
field of unit covectors normal to I', pointing outward with respect to I'y.
The operator NV is an arbitrary first order differential operator on I' with
the principal symbol o 5 (z,£&) = i(n(z),£)Id. Note that the operator Rpy
does not depend on the choice of N. In fact, on ', two different choices of
N differ by a zero-order operator, and the contribution of this zero-order
operator disappears after A;; has been applied. The following result is an
extension of a result proven in [BuFrKa2] for A = C (cf. also [L]).

Theorem 3.6. Assume that (M, g) is a closed Riemannian manifold and A
is an elliptic, selfadjoint, positive differential operator, A : C*°(£) — C®(£)
of order 2 of Laplace-Beltrami type with spec(A) C [e, 00) for some € > 0.
Then Rpy is an invertible pseudodifferential operator in WDOX(T'). The
inverse Ry is given by

RBR, = JFA-I(- ® ér) (3.7
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where Jr is the trace operator Jr : Hs(£) — H,_i{€|r) and ér denotes

the Dirac distribution along T" (cf. [BuFrKa2, (4.5)]). As a consequence one

concludes

(1) Rpy is selfadjoint and positive with spec(Rpny) C [¢/,00) for some
€ > 0. In particular, © is an Agmon angle for Rpy.

(2) The principal symbol, 6(RLY), of R\ can be computed in terms of
the principal symbol 5(A™') of A™! (cf. [BuFrKa2, (4.6)]):

SR = 5= [0 man @)

where x = (z’, w) are coordinates in a collar neighborhood of " such that
2’ are coordinates of I' and the normal vector field along T' is represented
by 3%. In a coordinate chart for T' which arises from a chart belonging
to an atlas of €| — T, the symbol of Rpy consists of terms which
depend only on the terms of the expansion of the symbol of A and its
derivatives in an arbitrarily small neighborhood of T'.
®3)
det y(A) = Edet y(A},) det N(RpN) (3.9)

where € = exp ( Jr ¢(z)) and the density c(z), when expressed in a co-
ordinate chart of I' which is contained in an atlas of £|r — T', depends
only on the symbol of A and its derivatives in an arbitrarily small neigh-
borhood of T.

(4) Assume that instead of the single operator A, there is a family A()) :
C>(&) — C=(€) of differential operators of order 2 of Laplace-Beltrami
type with parameter A € Ag ¢, € > 0, of weight x such that A(A) is
elliptic and selfadjoint for each \. Introduce as above A(N)Y,, Rpn())
and assume that spec(A(A\)) OV, o = @ for some € > 0 and for all
X € Aoe. Then Rpn(]) is an invertible family of pseudodifferential
operators with parameter (cf. [BuFrKa2, (3.13)]) of order 1 and weight x.

In the remainder of this section we will present a proof of this theorem.
We begin with some observation about the operator AL

LemMA 3.7. (1i). The operator Alé : C (Er) — C=(€r) has a self-adjoint
extension A}, with domain dom(4}) := {u € Ha(€r) | Ju =0}.

lii. A}, induces a quadratic form Qa with domain dom(Q,) := {u €
Hi(ér) | Ju=0}.

(2) The operator AL, is positive definite and its spectrum bounded from
below by e.

(3) The operator

(4T, 7): C®(€r) = C=(€r) ® C*(£rlr+ur-)
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defined by (AY, J)u = (ATu, Ju) can be extended to an invertible operator
(at, 0",

(AT, J)7 : Ha(r) — L*(ér) @ Hy_y (rlr+ur-) -

Proof. (1) Using a partition of unity and integration by parts one shows
that AI;) is symmetric. Clearly, AE) is well defined and selfadjoint.

(2) To prove that AY, is positive definite and its spectrum bounded away
from zero, one first notices that for any u € C*°(&r) with ulp+yp- = 0, one
can find a sequence {¢,} such that supp(¢,) C M \T and ¢, converges
to w in Hq1(&r). Observe that (AL by @) = (Adn, dn) > €||¢n||? since
the spectrum of A is contained in [€,00). Then, integrating by parts, one
concludes that

Qa(w) = lim (46n, ¢u) 2 efull® .

(3) As A} is injective, so is the extension (A%, J)~. To prove that
this extension is onto, consider f € L?*(¢r) and ¢ € H,_y(€r|r+ur-)-
Choose any section v € Ho(Er) so that Ju = ¢. As A} is invertible,
there exists w € Hy(€r) satisfying ALw = f — ALv and the boundary
conditions Jw = 0. Therefore v = w + v is an element in Hy(r) with
(Ar,J)~u = (f, ). Altogether one concludes that (A", J)~ is an isomor-
phism of Hilbert modules. o

In the proof of Theorem 3.6 we will use the operator A — axt, ax =
e ™ F= for 0 < k <d-1, where d = dim(M). Note that we have

LEMMA 3.8. The following operators are invertible (0 < k < d ~ 1, and
t>0)

(AT — agt, J) : C=(Er) - C=(&r) ® C™(Er|r+ur-) -

Proof. As oy, € C\ R* and thus, for t > 0, axt ¢ spec(AL), the operator
(AT — a4t,J) is injective. To prove that this operator is onto and then
invertible one argues as in the proof of Lemma 3.7 (3). o

Since (AT — ayt,J) is invertible, we can define the Poisson operator
Py t) associated to (AT — ayt, J), Plaxt) : C®(E]p+ur-) — C=(&r),
Le. for ¢ € C®(Elp+ur-), u = Plaxt)(y) is the solution in C(€r) of
(A - axt)u = 0 with boundary conditions u|r+ur- = .

Let R(axt) : C=(E|r) — C=(€]|r) be the Dirichlet to Neumann operator
corresponding to Ar — ait. Then the following result holds.

LEMMA 3.9. For0< k<d—1, and t > 0, R(at) is an invertible classical
¥DO in YDOY,(€|r), which is elliptic with parameter t of weight 1.
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Proof. In a sufficiently small collar neighborhood U of I, choose coordinates
z = (2, s) such that (2/,0) € T and %kz,’o) = n(y ). Let & = (€',n) be
coordinates in the cotangent space corresponding to the coordinates (z’, s).
Write (A — axt) = —A, 2 57 + 1A1 L + Ao, where the A;’s are differential
operators of order at most 2— j. The A sinduceon T’ dlfferentlal operators,
again denoted by A;, 4; : C>*(&|r) — C°°(€|r). Since the leading symbol
of A is given by o(A)(z,(&',n)) = |(¢',n)||*> and since n(, g) is the unit
normal to T at (2',0), one has Ay(x) = Id, € End.(£,,E,) on T.

For any ¢ € C®(&|r) and t > 0 we can choose # € C*(€r) N C(E) such
that (A — apt)u = 0 on M\ T and ulr = ¢. Then 2%(z',s) has a jump
across I', which is —R{axt)(p)(z’). Hence

0
52(a,8) = —R(ext)(9)(@' ) H(s) + v, 9)
where v(z',5) € C®(&r|y) N C(E|y) and H(s) is the Heavyside function.
Therefore, on U,
v Ou
(A — oxt)u = AsR(axt)(¢) @ ér — Ao s + A1 95
Since (A — axt)u = 0 on M \ T, we conclude that, on U N (M \T),
v du
A — 4+ Apu=0.
)N + -A Ds + Apu =
As -2+ 14,8 4 Aqu e L2(5|U) it follows that

(A — axt)u = Az (R(ct)p ® 8r) = R(ot)p ® br

as Ay = Id on I'. Note that (A — ayt) : L*(&) — H_5(€) is invertible and
therefore one obtains for ¢ € C*™(&|r)

o=Jr- (A - Otkt)_l (R(akt)cp ® 51‘)

where Jr is the restriction operator to I'. From this identity it follows that
R(cyt) is invertible. Moreover, setting ¢ = R(oxt)y,

R(Ozkt) 1(25 Jr-(A- ait)” (¢®5r)
= Jp- / / e EM (A — )~ (6 @ b)) (€, m)dnd€’
Ri-1 JR

+ Aou

— Ay

— iz’ ¢ _ _1 , , _— _}_ ,
_/Rd_le /RG((A oty (2, 0,8, (&) \/2_1rdnd§ .

Hence R(o4t)~! isin \IIDO;1(5|1—) with full symbol o g(q,1)-1(2’, ') given
by

1
O R(art)—? (z,afl) = ELU(A—akt)"’(I,’O» f’»’l)dn . (310)
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Therefore R(ct) is an operator in ¥DOL (£|r) with parameter ¢ of weight 1.
The ellipticity with parameter of R{cat) follows from the formula (3.10) of
the symbol and the fact that (A — o4t) is elliptic with parameter. =

LEMMA 3.10. For € sufficiently small and 0 < k < d — 1, the operator
R(at) does not have any eigenvalues in Vi o, where Ve o = {z € C |
T —¢€ < arg(z) < m+¢€ or|z| < €}. Hence R(ayt) has w as an Agmon
angle.

Proof. By assumption, 4 : C®(€) — C>(£) is self-adjoint and positive
definite and its spectrum is bounded from below by ¢ > 0. Consider
the spectral projections @(A) corresponding to the operator A, defined
in section 2. Notice that Q()) are smoothing operators and, for A < ¢,
Q()\) = 0. Moreover, for any ¢ € C®(€]r), ¢ ® ér is an element in H™(£),
thus Q(\)(¢ ® ér) € C®(€) and (A — axt) Y ® ér) € L*(€). Since
R(apt)~' = Jp(A — axt)"1(- ® ér), by the spectral representation theorem
for A, one obtains

(R(akt) o1, p2) = /ow('\ — at) ' d(Q(A) (01 ® 61), Q(A) (02 ® 1))

v1, 92 € C*(&|r). Together with Lemma 3.9 this implies that Vi o has an
empty intersection with spec R{a4t) for 0 < € sufficiently small. D

Using the above formula together with formula (3.10), one obtains as an
immediate consequence the following:

CoROLLARY 3.11. The operator Rpy = R(0) is essentially self-adjoint
and positive definite. The principal symbol of Ry}, is given by (3.8) and
its symbol has the property described in part (2) of Theorem 3.6.

Having thus established parts (1) and (2) in Theorem 3.6 our next task
is to prove formula (3.9).

Consider the families of operators A4+ t? and (AT)?+t¢ for nonnegative
real numbers ¢ (d = dim(M)). Then 4% + t¢ and (AT)¢ + t¢ are elliptic
differential operators with parameter, where the weight of ¢ is 2. The reason
for considering these operators comes from the fact that the inverse of A%¢+t¢
is of trace class while the inverse of A + ¢ is not if d = dim(M) > 2. If
the operator A~! were of trace class, the proof of formula (3.9) would be
considerably simpler. Our strategy will be to first prove a version of formula
(3.9) for A¢, using the fact that (A%)~! is of trace class and derive (3.9)
from it.

Note that

(AT 4 14 = (AT — 1 F)(AT = 1) o (AT = g
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Let us introduce the boundary operators
Ja(t), Na(t) : C=(€r) — ( ®a C®(Er|r+ur-))
by setting
Ja(t) = (J, J(AT = agt), J(AT — a1 t)(AT - aot),
e J(AT = agot) - (AT - aot)) ,

Na(t) = (N,N(A" = apt), N(A' — ayt)(AT - aot),
o, N(AT — ag_pt)--- (AT — aot)) .
By Lemma 3.8
(AT + 1%, Ja(t)) : C=(€r) — C=(ér) ® (®a C(Erlr+ur-))
is invertible. Therefore the corresponding Poisson operator Isd(t)
@4C®(€|r+ur-) — C=(€r) is well defined.
LEMMA 3.12. The Poisson operator Py(t) associated to ((AT)* + t4, Ju(t))
is given by
Py(t)(o, -, pa—1) = Plaot)po + (A" — aot) ' Plart)pr+
ot (AT - ap (AT - ant) 5t - (AT - agat) ' P(@a-1t)pat)
where (AT — ayt)p is the restriction of AT — oyt to {u € C®(€r) | Ju = 0}.
Proof. Denoting the right-hand side of the claimed identity by L4(t){0,
-++,p4-1) one obtains
((AT)? + %) - La(t)(¢0, -, pa-1) =0 .
Moreover, for 0 < k < d — 2, La(t)(po," -+, pa—1) satisfies the boundary
conditions
(J(AT = oo t)(A” = gzt -+ (AT = aot)) La(6)(0, -+, pac1) =
J(AT — ap_1t) -+ (AT — apt) P(aot)po + - - +
J(AT —ap_1t)- - (AT —agt) (AT —aot) ' - - (AT — 01 t) 5 Plat) pr 4+ - - +
J(AF — Qp1t)- - (AF - Otot)(AF — aot)Bl cee (AF - Otd—zt)BIP(G’d—lt)Wd—l

=Pk
since (AT — ;t)P(a;t) = 0 and J(AT - a;t)5' = 0. These two properties
of L4(t) establish the claimed identity. o

Further, let us consider the boundary conditions J4(t) and Ng4(t) for
t = 0. Note that

Jd(O) = (J, JAF,~--,J(AF)d_1) : Nd(O) — (N’NAF’. . .,N(Ar)d—l) .
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Let Q(t) be the following lower-triangular d x d matrix

1 0 e 0
apt 1 - 0

Q) = . .
ag—ltd—l $d-2 21—2 ag —2-k ak .1

Then J4(0) = Qt)Ju(t) as well as Ng(0) = Q(t)Nd(t). Let Py(t) :=
P;(t)Q(t)~! and notice that Py{t) is the Poisson operator corresponding
to ((AT)? + 4, Ja(0)). L -

Consider the operator Ry(t) = ;- Nu(t)- Py(t)- Liq with Ais = @aDiy
and Ajp := @aiq. Then

Ra(t)(o, "> pa-1) =
Lip- {N,N(A" — agt), -, N(A" — agat) - (AT — ant) }-
{P(cot) Dia o + (AT - apt) gt Plent) Dia o1 + -+ +
(AT — aot) pH(AT — i)' -+ (AT = ayat) ! P(ta-1t) Dig a1} -

Thus Re(t) : ®aC®(Elr) — ®aC=(€|r) can be represented by a d x d
matrix of upper triangular form,

R(Olot)
0 R(alt)
0 0 - Rlogit)

where R(at) is the Dirichlet to Neumann operator corresponding to Al—ayt
defined earlier. In particular, in view of Lemma 3.10, one concludes that
Ry(t) is invertible and has 7 as an Agmon angle.

Finally introduce the operator R4(t) associated to (AT)? +¢¢, J4(0) and
N4(0). Then

Ry(t) = &yg Nd(t) Bi(t) - LNig = g - Q(8)™1 - Na(0) - Pa(t) - Qt) - LNig
= Q)1 Aip - Na(0) - Pa(t) - D - Qt) = Q)™ - Ry(t) - Q1) .

As a consequence, Ry(t) has the same spectrum as Iid(t) and therefore,
Ry(t) is invertible, has = as an Agmon angle and satisfies log det v (Ra(t)) =
log det 5 (R4(%)). Since Ry(t) is of upper-triangular form one has

log det y (Ra(t) Z logdet y (R(axt)) .

As A is positive and selfadjoint, the operator A% +t¢: C=(£) - C=(€) is
invertible for ¢ > 0. Using the kernel k;(x,y) of (A? + ¢%)~! this operator
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can be extended to C*°(£r) by setting (u € C*(&r))
-\ T
(4 +19™) ule) = [ ke muwdy

r

As already noticed Lemma 3.8 implies that
(AN + %, Ju(t)) : C®(€r) = C=(&r) ®a C=(Erlr+ur-)

is invertible. Thus, since J4(0) = Q(#)J4(t), one concludes that (A% + t9,
J4(0)) is invertible as well. Denote by ((AT)? + t?)p the restriction of
(ATYe 4+ 19 to {u € C®(&r) | Ja(0)u = 0} and let ((AT)? + t9)5' be its

inverse.
LEMMA 3.13. ((AT)4 4195t = ((A%+14) 1) = Py(t)- Ja(0)- (A% +t4) 1)L,

Proof. Denote by L(t) the right-hand side of the claimed identity. One
verifies that for u € C*=(&r)

(A" +19) L(t)u =

and
Ja(0)L(t)u = J4(0) - ((AT) + 9) "'u = Ju(0) - ((AT)* + 1) u=0.
These two identities imply that L(t) = ((A")? +t¢)p}. o

LEMMA 3.14. (i) £Pa(t) = —dt*~ ((AT)* + 495} - Pu(t)

(i) Rd(t)_l Rd(t)-——dtd le(t)_l Alf N4(0)- ((AF) +td) Py(t) Am
In particu]ar d being the dimension of M, Ry(t)~* Rd (t) is of trace class.
Proof. (i) Differentiate ((AT)¢ + td) -Py(t)=0 with respect to t to obtain

((AT)? +124)- —Pd( )= ((Ar)d +1%) - Pa(t) = —dt* " Pa(t) .
Similarly, differentiating Jd(O) Py(t) = Id with respect to t yields
Jd(O)Ed;Pd(t) = 0. Hence

d
Tyd , 4d — _ qpd—
((ATY! 4 19) - S Palt) = =dt* Pat)
and therefore
d _ d—1(; AT\d | 4dy~1
dth(t)_ dt?=H((AD) + 1Y) - Pa(t) -
(ii) follows from the definition of R4(t) and (i). o

Taking into account that Lia(@®aC(EIr)) = {(¢,9) | ¢ € BaC=(Er)}
define Prr 1 Ao (@®4C®(€|r)) — ©4C=(€|r) by Prrle, @) =

COROLLARY 3.15.
Ry(t)~" - %Rd(t) = dt?=1 Prp - J4(0) - (A% + 191 Py(t) - Mg -
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Proof. By Lemma 3.13 and 3.14
Ry(t)7"- %Rd(t) = —dt*™ (D - Ny(0) - Pa(t) - &8:0) ™

Ais - Na(0) - (A% + 47 = Pa(t) - Ja(0) - (A% +¢)™H)T) - Pa(t) - A4 -
Clearly Az - Ng(0) - (A% + )71 (u) = 0 for u € C=(€) and thus Ay -
N4(0) - (A% 4 t4) "1 . Py(t) - Dia = 0. Therefore Ry(t)™* - £Ry(t) =
dt?= (D - Na(0) - Pa(t) - Dia) ™1 - Aip- Na(0) - Pu(t) - Ba(0)- (A% +1%)~1)T-
Pd(t) AV

Note that for any u € C*(£r), the boundary values of ((A? + t4)~1) 'y
on 't and '™ are the same, i.e.

Ta(0)((A% + 97 ulrs = J4(0) (A + %)) - .
Hence

Ta(0)- (A% ™))" Py(t)- B850 = Aia- Pro-Ja(0)- (A% 1) - Py(t)- i -

a

As (A% 41971, ((A? +1%)~1)T and Ry(t)~! £ Ry(t) are of trace class we
can apply the variational formula for regularized determinants:

LEMMA 3.16. Let L(t) denote any of the operators A? + 1%, (A% +t%)p or
R,(t). Then, for any t > 0,

d _ 1 d
T logdety L(t) =try (Q(t) pr (t)) .
Lemmas 3.13-16 and Corollary 3.15 lead to the following result:
LEMMA 3.17. Let A% +t? and ((A¥)?+?)p be as above. Then, fort > 0,
d d
Ei(log det y(A¢ + t%) — logdet y ((AT)? +t%)p) = 7 logdety Ru(t) .

Proof. Define w(t) := %(logdetN(Ad+td) ~logdet 5 (((AT)? +1¢), J4(0))).
By Lemma 3.16 and Lemma 3.13
d d -
’w(t) =try (E(Ad-*_td) i (Ad+td)—1 _ E{((Ar)d_i-td)D . ((Ar)d+td)D1)
—_ dtd—ltT‘N((Ad + td)-—l _ ((AF)d + td)l_)l)
= dtd—ltTN(((Ad + td)—l)r - ((Ar)d + td)l_)l)
= dtd_ltT'N (Pd(t) . Jd(O) : ((Ad + td)_l)r) .
On the other hand, by Lemma 3.16 and Corollary 3.15 and the
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commutativity of the trace,
d d -
5 logdetN Rd(t) =try (aRd(t} . Rd(t) 1)
= dtd—ltT‘N (PTF - Ja(0) - ((Ad + td)_l)r - Py(t) - Az‘a)
= dt?  ry (Pa(t) - Dia - Prr - Ja(0) - (A% + t9)~H)T)
= dt*Vry (Pa(t) - Ja(0) - (A% +¢9)~H)) .

Comparing the above two identities one obtains

w(t) = %log dety Ra(t) . o
Since logdety R4(t) = ZZ;(I) logdety R{ait), one concludes from
Lemma 3.17 that
d—1
logdety (A% + t4) —logdety (AT)* +¢%) ) =é+ ) logdety Rlaxt) ,
k=0

where ¢é is independent of t.

Note that logdety(A4? + t9), logdety((AT)? + t4 J4(0)) and
logdet y R(axt) (0 < k < d — 1) have asymptotic expansions as t — +00.
Following Voros [V] or Friedlander [Fr], or using Theorems 3.4 and 3.5,
the constant terms in the asymptotic expansions of logdet y(A? + ¢¢) and
log det 5 {((AT)? +#¢) p are zero. Let wo(R(cyt)) be the constant term in the
asymptotic expansion of logdet (R(axt)). Then é = — E 7r0 (R(axt)),
which is computable in terms of the symbol of Ry(¢) (cf. Theorem 3.4).
LEMMA 3.18. (i) dety(AD)4, = (detNA )4;

(ii) dety(A?) = (dety A)%.
Proof. (i) follows from the following identity for the spectral distribution
function (A > 0),
N(AD,X) = N((41)5,27) .

(ii) is proved in the same way. o
Proof of Theorem 3.6. Statements (1) and (2) are contained in Corol-
lary 3.11. Concerning statement (3) set ¢ = 0 in Lemma 3.17 to obtain

log det y A? — log det 5 (AT)% = &+ log det y R4(0) .
By Lemma 3.18, log(dety A)? — log(dety AL)¢ = & + log(dety Rpn)?-
Hence

log detN = log(c) + log det y A%, + logdety Rpy ,

where log(¢) = —1 5 mo(R(axt)). Using Theorem 3.4 the result follows.
Part (4) of Theorem 3 6 follows from formula (3.10) applied to ¢t = 0 and
the family A(X). a
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4. Torsions and Witten Deformation of the Analytic Torsion

4.1 Reidemeister and analytic torsion in the von Neumann sense.
Let M be a connected, closed manifold of dimension d and W an (A, T°P)-
Hilbert module of finite type with T’ = 71 (M) the fundamental group of M.
Let p: £ — M be the bundle of A-Hilbert modules over M associated to
W as described in section 1.4. The fiber of this bundle is isomorphic to the
A-Hilbert module W. The smooth bundle p : £ — M is equipped with a
flat canonical connection. Both its Hermitian structure u and fiberwise A-
action p are left invariant by the parallel transport induced by the canonical
connection.

Let h : M — R be a smooth Morse function. For convenience we assume
that h is self-indexing, i.e. h{z) = index(z) for any critical point z of h (cf.
[Mi2]). Let g’ be a Riemannian metric so that 7 = (h,¢') is a generalized
triangulation. This means that for any two critical points z and y of h, the
unstable manifold W~ and the stable manifold Wt associated to the vector
field —grad,, h, intersect transversally and, in a neighborhood of any critical
point z of h, there exist coordinates y1,. .., y4, with respect to which h is of
the form h(y) =k~ (33 + ... +42)/2+ (v}, + .. +¥5)/2 with k = index(z)
and the metric ¢’ is Euclidean (cf. Introductlon) Let M — M be the
universal covering of M and h and § be the lifts of A and ¢’ on M. Denote
by Crq(h) C M, resp. er(h) C M, the set of critical points of index ¢ of
h, resp. h, and let Cr(h) = U er(h) Clearly the group I' acts freely on
er(iz), for any g, and the quotient set can be identified with Crq(h).

For each & € Cr(h) choose orientations Oz = (OF,07) for the stable
and the unstable manifolds W7 and W, so that they are I-invariant and
denote

Oy := {03;% € Cr(R)} .

To the quadruple (M, 7,0, W) we associate a cochain complex of finite type
over the von Neumann algebra A, C(M, 7,04) = {C%,6,}. The components
C? are the A-Hilbert module of finite type, C9 := ['(Elcr,(r)) = Doecr,(n) Ex
which can be identified with the module of I'-equivariant maps f : er(fz) —
W. To define the maps é, a few remarks are in order. The orientations Oy,
permit us to define the functions p, : Crg(h) x Cro-1(h) — Z, py(%,7) :=
intersection number (W; NV, W} NV), where V := h=1(g — 1/2). Notice
that the functions g4 have the following properties:

(Inl) pg(%,§) = pqlg, 97), for all g € w1 (M); i

(In2) {& € Cry(h); pq(%,§) # O} is finite for any § € Cre-1(h);

(In3) {§ € Crq—1(h); g%, §) # O} is finite for any & € er(iz);
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(Ind) Ysece,_o(h) PalE,8) - pq-1(§, Z) = O for any & € Crq(h) and any
7 € Crg-2(h).

Properties (In1)-(In3) imply that for any I'-equivariant map f : Cry_y (;z)

— W, we can define the I'-equivariant map §,_1(f) : Crq(h) — W by the

formula
bi(DE) = D m(E D) - (4.1)

§€Crq_1(R)

By property (Ind), 64 84—y = 0.
One defines log Teomb (M, 7) € D by (cf. section 1)

log Teomb(M, ) :=log T(C(M, 7,04, W)) . (4.2)

One can show that log Teomb is independent of the choice of the orienta-
tions Oy,

Let (M, g) be a Riemannian manifold and W a (A, I'°P)-Hilbert module
of finite type. Let AY(M;E) = C=(£ @ AYT*M)) be the space of smooth
g-forms with values in W where T*M denotes the cotangent bundle of M
and p : £ = M is a smooth bundle of A-Hilbert modules of finite type
with fiber W. The Riemannian metric g induces the Hodge * operators
R, : AY(T*M) — A?~9(T*M) and the Hermitian structure x on & together
with the Hodge operators R, induce a Hermitian structure on £ @ AY(T* M)
given by (s,s’ € C®(€);w,w’ € C(AY(T*M)))

(s @ w5’ ®w)(x) = pz(s(a), #'(2)) Ra(w(x) A Ru'(2)) .

As a consequence, £ @ AY(T*M) is a smooth bundle of A-Hilbert modules.
The canonical connection in p : £ — M can be interpreted as a first order
differential operator yd, : AYM;E) — AT (M;E). As the canonical con-
nection is flat, wdg41.wdq = O for any q. Notice that ydg is an A-linear,
differential operator. If the action of I' on W is trivial, then wd is the usual
exterior differential Id®d. In case there is no risk of ambiguity we will write
d instead of yyd and continue to call it exterior differential.

The formal adjoint of yd, with respect to the above defined Hermitian
structure is a first order differential operator wdj : A7} (M; £) — AYM;€)
and is again A-linear. Introduce the Laplacians, acting on g-forms,

Ay =didg +dgrdl_; .

The operators A, are essentially selfadjoint, nonnegative, elliptic and A-
linear. The space A(M;E) can be equipped with the scalar product

(u1, uz)r = {(1d + A)"*(w), (Id + Ag)"*(uz)) (4-3)
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where
(M + Ag) 2 (ur), (1d + Ag)*(ua))

= ./M ((1d + Aq)r/z(ul),(Id+Aq)r/2(uz))(z)dvolg .

The completion of A?(M, &) with respect to the scalar product (.,.), is
an A-Hilbert module H,.(A%(M;£)), the space of forms of degree g and of
Sobolev class of order r. It is well known that the Sobolev norm is equivalent
to the norm defined by the scalar product {.,.),. In the case where r =0,
we write also L(A(M;&)). Obviously, these Hilbert modules are not of
finite type. Note that the operators (Id + A,)"/? define isometries between
Ho(AYM;E)) and Hipw_n)(AYM; E)). Let H, be the A-Hilbert module of
harmonic g-forms
Hy = {w € Lo(AY(M; E)); Agw) =0} .

Since A, is elliptic, Hq C AY(M;E). The integration on the g-cells of the
generalized triangulation 7, which are given by the unstable manifolds of
—grad, h, defines an A-linear map

Int (@ : AYM;E) - C?

so that &, Int'? = IntletD dq (cf. Appendix by F. Laudenbach in {BZ1}]).
Denote by 7, the canonical projection 7 : C? — Null(AfI""‘b). By a theorem
of Dodziuk [Do] of de Rham type, the map

Tt @ : H, — Null(Acmb) |

defined by the restriction of w4 Int(? to Hg, is an isomorphism of Hilbert
modules. Denote its inverse by 8,. Since Null(A;""‘b) is an A-Hilbert
module of finite type so is H,. Define Tmet as the positive real number,
viewed as an element in D (cf. Introduction) by

log Tmet (M, g, W, 7) 1= $ Y _(~1)?log det y(6;6,) - (4.4)
q
The Reidemeister torsion Tre(M, g, W, 7) € D is defined (cf. [CM], [LiiRo])
by
log Tre(M, g, W, 7) = log Teomp (M, W, 7) +log Tnet (M, g, W, 7)  (4.5)
and the analytic torsion Tyn(M, g, W) € D (cf. [Lo], [M] and section 2.4 for
the definition of log det) by

log Tan (M, g, W) = 1 3 (~1)""'qlogdet (A,) . (4.6)
q
Introduce for A>0 the functions Fy(A):=Fg:g (A)=sup{dimy £; LEP,(A)}
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where Pg()) consists of all A-invariant closed subspaces £ C d}(A9+1(M; )

C La(AY(M; E)), so that for any w € £, w is in the domain of definition of
d, and

lldgwll < A72Jjw] . (4.7)

The functions F,()) are elements in the space F (cf. section 1). By argu-

ments of Gromov-Shubin (cf. section 1.2) the spectral distribution functions
Ni{))=Na, ()) of the Laplace operator A are given by Bp+Fg—1 (A)+Fe(X).

DEFINITION 4.1. (1) The system (M, 1, W) is said to be of c-determinant
class iff for 0 < k < d,

1
/ log AdN pcoms (A) > —00 .
o+ *

(2) The system (M, g, W) is said to be of a-determinant class iff for
0<k<d,

1
/ log MdNp, (A) > -0,
0+

or, equivalently, for 0 < k < d,

1
/ log AddFy(A) > —o0 .
0

It will be shown in Proposition 5.6 that conditions (1) and (2) are equiv-
alent.

We finish this subsection with the following observations concerning tor-
sion and Poincaré duality. First note that, using the Hodge * operators it
follows that A, and Ag_, are isospectral and therefore

log Tan(M, g, W) = (1) log Ton (M, g, W) . (4.8

The same identity holds for Teompb. Let 7 = (h,g) be a generalized triangu-
lation of the closed manifold M?. Then 7p = (d— h, g) is also a generalized
triangulation. The critical points of index ¢ and the corresponding stable
manifolds of —grad h are the same as the critical points of index d — q and
the corresponding unstable manifolds of — grad,(d ~ h). The orientations
On := {03; F € Cr(h)}U{O} induce the orientations O4_p. The above iden-
tification of the critical points of h and d—h can be used to obtain isometries
PD, : €3 — C%>9 where CZ := C%(M,7,04) and C4 := CI(M,7p, O4-h)-
This leads to

log Teomb(M, T, W) = (_1)d+1 log Tcomb(M3 7D, W) . (4-8”)
Finally we derive the corresponding identity for Tinet. The isometries PDq

provide a duality between (C§,8,) and (CZ59,6;_,) and induce isometries
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between Null(AS°™P) and Null(A™P ). Here Afl‘f{“b, i =T, Tp, denote the

9,7 d—q,7p
Laplacians in the cochain complexes C{. It is shown in Proposition 5.9 that
d—
(Tt )" . PD, - Tt = Ry, (4.9)

where (TIRS.‘Z-?))* denotes the adjoint of E‘(Ti_q}. Thus
log Tpnet(M, g, 7, W) = (=1)4 1 log Tyet(M, g, Tp, W) . (4.8

4.2 Witten’s deformation of the analytic torsion. Letw € A'(M) be
a smooth closed 1-form on M. Introduce a perturbation (A(M;E),wdy)
of the de Rham complex (AY(M; E),wd,) with
‘;Ey\)d;‘Y :=qu+w/\(.) .
The formal adjoint of d‘; with respect to the Hermitian structure on £ ®
AYT*M), introduced in section 4.1, is a first order A-linear, differential
operator
(d)": AT (M E) = AYM;E) .

Introduce the perturbed Laplacians, acting on g-forms,

Ay = (dg)dy +dg_y(dy_,)" - (4.10)
The operators AY are A-linear, elliptic operators which are positive and es-
sentially selfadjoint. They are zero’th order perturbations of the Laplacians
A, defined above. The case w = tdh where h : M — R is a smooth
function and ¢ € R was considered by Witten (cf. {W]). The multipli-
cation by e** defines, for any r, a linear operator on the Sobolev space
H.(AY(M;£)), which is an isomorphism of A-Hilbert modules and we have
dy(t) 1= di®h = e~ thd,e™. We call the operators A,(t) = Al the Witten
Laplacians associated to h. More generally, we will refer to the complex
(AY(M; E),ds(t)) with dy(t) := dy*, depending on the parameter ¢, as the
Witten complex. Define the perturbed analytic torsion Ton (M, g, W,w) as
an element in the vector space D

log Tan(M, g, W,w) := } ) (=1)**'qlogdet y(A%)
q

and the Witten deformation of the analytic torsion Ton{M, g, W, w)
log Ton(M, g, W,w)(t) :=log Tan (M, g, W, tw) . (4.11)
If (M, g, W) is of a-determinant class and w=dh then log Tun (M, g, W, tw)
€ R C D, for any t. Indeed consider the functions Fys(1)g,(1)(A) de-
fined as above by replacing di with di(t). As (L2(A*(M;E)),di) and
(Ly(A*(M; £)),dk(t)) are isomorphic, one concludes from Proposition 1.18,

that Fyz(yg,y(A) ~ Fk()) and thus, by Lemma 1.20, A(t) is of determi-
nant class iff Ay is.
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4.3 Product and sum formulas. For i = 1,2, let \A; be finite von
Neumann algebras, (M, g;, ;) closed Riemannian manifolds of dimension
d; (even or odd), equipped with the generalized triangulations 7, = (h;, g}).
Let W; be (A;, I';P)-Hilbert modules of finite type T; = m(M;), and w; €
AL(M;) closed 1-forms (i = 1,2). Introduce A := A; @ Ao, W := W, @ W,
M=M xM,g=g xg7:=(h:=hop+hop,g = g| xgj)
and w = p}(w;) + p4(ws), where p; : My x My — M; are the canonical
projections. Further denote by £ — M and &; — M; (i = 1,2) the bundles
associated to W; and W.

PRrROPOSITION 4.2 (Product formula) (cf. [CM], [Lo], [LiRo]). With the
hypotheses above, the following identities, when viewed in D, hold:
log Ton(M, 9, W, w) = x(M1; Wh) - log Tan (M2, g2, Wa, w2)
+ x(Ma; Wa) -log Ton( My, g1, Wi,w1) 5 (4.12)
log Tre(M, g, W, 7) = x(M1;Wh) - log Tre(Ma, g2, W2, T2)
+ x(Ma; Wa) - log Tpe (M1, g1, Wi, 11) . (4.13)

Proof. Formula (4.13) follows from Corollary 1.22 and Proposition 1.21. To
prove (4.12) observe that

Lo(A(M,E)) = @pyq=rLz (AP (Mi, £1)) ® Lo (A (My, &)
and note that Ay = @p4r=qA(p,r) With

is an A-linear, elliptic, differential operator where A}, and AJ denote the
Laplacians correspondmg to & — M., respectively, £&s — M,. Notice that

e~t8rr = ¢~tA; @ e~!AY s of trace class in the von Neumann sense. As in
(1.30) introduce

(A, 8) =3 —l)qq—l—— 5 try e HAH NGy (4.14)
I'(s) Jo

g1

First notice that it follows from a theorem of de Rham type due to Dodziuk
[Do] that x(Mi;W;) = Y (~1)7dimy(He(M;; &), ¢ = 1,2, In view of
Proposition 1.21(3), to prove (4.12) it then suffices to verify that for A >0

(X, 8) = (A 8) - x{Ma; Wa) + (ar, (X, 8) - x(Mys W) (4.15)

Following the line of arguments of the proof of Proposition 1.21 it remains
to show that + _
try e a1 = try ey (4.16)



Vol. 6, 1996 TORSION FOR REPRESENTATIONS IN FINITE TYPE HILBERT MODULES 803

where Aqi denote the restrictions of A, to A*9(M;£). Here

At M; E) = closure(d,—1 AT (M;E)) ,

A™I(M; E) = closure(d;ATT (M £)) (4.17)
where the word closure refers to the closure with respect to the C* topol-
ogy. The operator d, maps the space A~9(M;E) injectively onto a dense

subspace of AT 9*1(M; ). As before denote by d, the restriction of dg to
A™YM,E). Then

A= dq(d;dq)—lﬂ :LZ(A‘—’Q(M;S)) N LZ(A+YQ+1(M;£))
is an isometry and intertwines Ay with A;'H, A;HAq = A4A7. Thus Ay
and A:;_H are isospectral and, therefore (A € R)

N7 () = NV (4.18)
where Nf(/\) are the spectral distribution functions of Af. By the func-
tional calculus, equation (4.16) follows from (4.18). o

Let A be a finite von Neumann algebra, (M, g) a closed Riemannian
manifold equipped with a generalized triangulation 7, W;, ¢+ = 1,2, two
(A,T°P)-Hilbert modules of finite type (I' = m(M)), and w € AY(M) a
closed 1-form. Introduce W := W; @ W, and denote by £ — M and
& — M (i =1,2) the bundles associated to W and W;.

PROPOSITION 4.3 (Sum formula). With the hypotheses above the following
identities, when viewed in D, hold:
logTan(M g, W w) logTan(M 9, Wla ) + 10gTan(M1gy Wva) )
log Tre(M, g, W, 7) = log Tre(M, g, W1, 7) + log TRe(M, g, Wa, 7) .
Proof. Both equalities follow immediately from the fact that, for 0 < ¢ < d,
(A%(M,E), Wd‘;) = (AYM, &), w, ‘;) ® (AUM, &), w, q)
and
(Cq(M, T, Oh,W), Wéq)
= (CUM,7,0h, W1), w,bq) ® (CU(M, 7,01, W2), w, bq) - D

5. Witten’s Deformation of the de Rham Complex

5.1 The small subcomplex of the deformed de Rham complex.
Assume that (M, g) is a closed Riemannian manifold and let A : M — R
be a Morse function, so that 7 = (h,g) is a generalized triangulation. Let
W be a (A,T°P)-Hilbert module of finite type with T' = m(M). To sim-
plify the exposition we assume throughout this subsection that W is a free
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A-Hilbert module (regarding this assumption cf. Proposition 5.6). In fact all
statements can be formulated and proven by the same arguments without
the free hypothesis on W. Denote by £ — M the bundle of A-Hilbert
modules associated to W. Let z4; € Crq(h) be a critical point of index ¢
and Uy; an open neighborhood of ;.

DEFINITION 5.1. U?ii is said to be an H-neighborhood of z,;; if there is a
ball By, = {z € R% |z| < 2a} and diffeomorphisms ¢ : Byo — Uy; and
®: Byo X W — £ly,, covering ¢ with the following properties:

(i) #(0) = zq;5;

(ii) when expressed in the coordinates provided by ¢, h is of the form
h(z) =q - (23 + ...+ 22)/2 + (@2 + .+ 23)/2;

(iii) the pullback ¢*(g) of the Riemannian metric g is the Euclidean met-
ric;

(iv) @ isa trivialization of £|y,,. such pairs (¢, ®)are called H-coordinates.
For later use we define U, ; := ¢(B,)-

A collection (Uz) ecrny of H-neighborhoods is called a system of H-
neighborhoods if, in addition, they are pairwise disjoint.

As in section 4, denote by AYM;E) = C=(£ ® AYT*(M))) the A-
module of smooth g-forms with values in £ and by Lo(A9(M;E)) its Lo-
completion, which is an A-Hilbert module. We write AY(M; W) for AY(M; £)
when & = M x W is the trivial bundle and A?(M;R) for the space of
smooth g-forms on M. Consider the Witten Laplacian Ay(t) : AY(M;E) —
AY(M; €) associated to h and observe (cf. [HSj1] or [CyFKS, Proposition
11.13]) that

Al(t) = Ag + 2|VR|2 + tL, (5.1)
where L, is a zero’th order differential A-operator on A9(M; £), hence given

by a bundle endomorphism, and where [Vh([%, VA = grad, h, is a scalar

valued function on M given by |Vh|*(z) = ZISi’j<dgij(z)§£:-§;"J— with

(¢¥(z)) denoting the inverse of the metric tensor g when expressed in local
coordinates. A, denotes the Laplacian on ¢ forms with coefficients in the
bundle £ and is a nonnegative, selfadjoint, elliptic differential .A-operator.
Let AY(M; £)sm be the image (which depends on t) of the spectral projector
Q4(1,t) of Ay(t), corresponding to the interval (—co, 1]. This space consists
of smooth g-forms and is an A-Hilbert module.

The purpose of this subsection is to prove the separation of spectrum
property of A,(t), Proposition 5.2, and therefore obtain, for ¢ sufficiently
large, (AY(M;E)em,dy(t)) as a smooth family of subcomplexes of
(AY(M;£),dy(t)) where dy(t) = e""dye'®. Related results have been also
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obtained by Shubin [Sh3]. In subsection 5.2 we will show that a scaled
version of this family of subcomplexes converges for ¢ — oo to the cochain
complex (C*{M, 1,04),6.), introduced in section 4. In the case 4 = C and
W = C this was done by Helffer and Sjostrand [HSj1]. Their arguments are
still valid in the general case. Bismut and Zhang [BZ1] (cf. also [BZ2] for
a simplified version) verified this in the case A = C. In subsection 5.2 we
present a proof for an arbitrary finite von Neumann algebra A.

Consider hy : RY — R defined by hi(z) = k+ (- >F |x,|2+2k+1 |z:]%)
and denote by A, : A%R% C) — AY(R%; C) the ﬂat Laplacian on g-forms on
R¢ and by Aq;k(t) : AY(R%;C) — A9(R?; C) the Witten Laplacian associated
to hy. A straightforward calculation shows that

Ag(t) = Ay + 2]z|* — t(d — 2k) + 26(N 1 — N (5.2)

where N;;k and N_, are the number operators introduced in [HSj1] (cf. also
[BZ1]), defined by

NY (dzil A A da:iq = #{j|k +1 <i; < d}dzi, A... Adz,
and N, = gld - . Denote by @,(t) € AYR?; C) the g-form defined by

wq(m, t) o= (t/m) e Py AL A day (5.3)
For 7 > 0, let v, : R — [0, 1] be a smooth map equal to 1 on the interval

—oc,n/2) and equal to 0 on the interval (7,00). For € > 0, which we will
choose later at our convenience, define ¥,(t) € A¢(R% C) by

Pa(t) = B() " we(lzl)dq(t) (5.3")
where 3(t) = ||ve(z])@q(t)|], with || || denoting the Ly-norm. With re-
spect to the scalar product in A9(R%; C) induced by the flat metric of R?,
{Or(t),0k(t)) = 1 and (¢i(t),¥e(t)) = 1. Consider A; = A, Q@ Id and
Aur(t) = Agk(t) ® Id, defined on A%R?; W). The operators Ay (t) are
nonnegative, essentially selfadjoint, elliptic A-operators with the following
properties:

(HO1) specAg.k(t) is discrete and contained in 2¢Z; each eigenvalue has
infinite multiplicity if dim¢ A = oo.

(HO2) Null(A,k(t)) = 0 if k # ¢; Null(Agq(t)) is an A-Hilbert module
isometric to W.

(HO3) Assume that {v;,...,v;} is an orthonormal basis of W (cf. Definition
1.3), i.e. a collection of regular elements which generate W as an A-
Hilbert module and such that for any a,b € A,

{avs, buj) = (a,b)i; - (5.4)
Then wgi(t) 1= @o(t) ®v;, 1 < i < 1, is a basis for Null(A 4,4(2)) and
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Pq,i(t) = 1/3q(t) ®uv;, 1 €7 <1, is an orthonormal basis for the A-Hilbert

submodule generated v,i(t).

A straightforward calculation, using (5.2), (5.3) and (5.3'), shows that
there exist constants to = to(e) > 0, C(€) > 0 and Cy(e) > 0, so that, for
1<i<l,

[Bgiq(¥gi(z,1)] < Col)e™ " (zeM t21)  (55)
(with similar estimates for all the derivatives of g ;(t))

(Bge(t)q,i(t) Yoi(t)) 2 2tlg— k| (¢20) (5.6)

and, in view of (HO1), for any w € AY(R% W) with compact support and
{w,v¥) = 0 for ¢ in the Hilbert module generated by 1qi(t), 1 <i <,

(Agig(thw,w) > Ce)t|w]|” - (5.7)

(Cf. Appendix 2 for a verification of (5.5)-(5.7).)

Let = € Cri(h) and U, be an H-neighborhood as in Definition 5.1 and
denote by d the distance function on M. Choose € > 0 so that the balls
B(z;4¢) = {y € M;d(z,y) < 4€}, centered at the critical points z, are
pairwise disjoint, and B(z;3¢) C U,. Choose once and for all a base point
zo € M, an orthonormal basis eq,...,e; of £, and for each critical point
z = 24 € Crq(h) a homotopy class [y,] of paths, joining o and x (choose
Yzo = {Zo}). Denote by eg;; 1, ..., €q;,1 the orthonormal basis of £, obtained
by the parallel transport (induced by the canonical flat connection on &)
of ey,...,e; along y,. By parallel transport, one can identify £}y, with
U, x W and, using a system of H-neighborhoods Uy, one can identify the
forms w € A?(M;€) having support in U, with forms in AR W). In
this way, for any z € Cry(h), the element 9, ;(t) identifies with an element
in A%M;€) denoted by 1, ;(t), with compact support in U.. Since e; are
regular elements in £,,, the ¥ ;(t)’s are regular elements in Lo(A9(M; E)).
The forms ¢, ;(t) (1 < i < I, z € Cry(h)) satisfy (5.4), and therefore provide
an orthonormal basis for the A-Hilbert submodule which they generate.

PROPOSITION 5.2. There exist positive constants C’,C", and ty so that for
t >t and 0 < g < d, spec(Ay(t)) N (e7t¢,C"t) = 0.

Proof. In a first step we prove that there exist tp > 0, C' > 0 and C" >
0 so that for t > t, there exists a pair of orthogonal closed subspaces
W, = Wl(t), Wy = Wz(t) of Lg(Aq(M; 8)) with W, C Aq(M,S) with
the following properties (1) Wy NW, = {0}; (2) Wy + Wy = Lo(AY(M; £));
(3) (Ag(tw,w) < €7 (w,w) for w € Wy; and (4) (A(t)w,w) > C"t{w,w)
for w € Wa N AYM;E).
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In a second step we show that, using step 1, Proposition 5.2 follows.
Let us prove step 2 first. We claim that Proposition 5.2 holds with the
constants tg,C’ and C"” as in step 1. To prove this claim we argue by
contradiction. Assume that there exist 0 < g < d, t > t; and a real number
i € specAg(t) N (€7t ,C"t). Then there exists a sequence (u;)j>1 of
approximate eigenfunctions u; in A%(M;E), ||lu;|| = 1, satisfying

1
| Aqg(t)u; — pujf| < ik (5.8)
Decomposing u; = v; + wj € Wi(t) @ Wa(t), and using the fact that A (t)
is selfadjoint, one obtains
(Aqg(tuj,vi) = (Aq()vy, v5) + (ws, Ag(t)vy) (5.9)
(BalOus w5) = (Agtyvg,w) + (wy, Aglwy) . (5.9)
Further
ullo;l? = (puj, v5) = (Ag(t)ujy v;) = (Bg(tu; = puj,v5) - (5.97)
pllw;|? = (g, wi) = (Ag(t)uj,w;) = (Aq(thu; = puj,w;) - (5.9")
Combine (5.9"") and (5.9) to obtain
pllviII® = (Ag(8)ws, v5) + (Aqg(thu; — muj,v;) = (wj, Ag(t);)
and, similarly, combine (5.9"’) and (5.9")
pllw;l* = (Ag(tyws, wy) + (Aq(thuj — puj,wi) = (Ag(t)vj, w)) -
The right-hand sides of the two identities above have the same real part and
thus,

llo; 1P = (A ()v;, v;)= ~ Re(Bq(t)uj—puj, vj—w;)+pllw; |* = (Aq(t)ws, wj) -
Using (3), (4) and {5.8) this leads to, with f|w;}|> =1 - flv;||* < 1,

e 2
(1= e Nwsll* < 5+ (u = C"O(1 = sl -

2

Without loss of generality we may assume that lim;_. ||v;]|? = o exists.

Then
(n~e")a < (u=C"t)(1 - o?)
which contradicts the assumption e~'C" < p < C"'t.

It remains to prove step 1. Define W := Wi(t) to be the A-Hilbert
module generated by 1.:(t) (1 < i <1, ¢ € Crg(h)) and Wy := Wy(t) its
orthogonal complement in L2(A9(M; £)). Clearly properties (1) and (2) are
satisfied. Further note that the space V; = Vi(t) of elements of the form
w = Zl<i<l,zEer(h) azi¥s,i(t) with a,; € A is dense in W;. Note also
that Aq(?): when restricted to U, with z € Cri(h) and expressed in local
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coordinates considered in Definition 5.1, coincides with Agx(t). Therefore,
as Ag(t) is A-linear and in view of (5.4) and the disjointness of the supports
of ¥, ; and ¢, ; for z # y € Cry(h) we conclude from (5.5) with C = C(e)
and tg = to(€) as in (5.5), for t > ¢y and w € V4(2),

(Agtyw,wy = Y (aziBg(e,i(t), azithzi(t))
1<i<lz€eCr,y(h)
<CY llazl’e™ < CllwfPe™ .
i,z
By choosing ¢y bigger, if necessary, (3) follows.

It remains to check the estimate (4). Denote by x, : M — R the smooth
nonnegative cut-off function with support in U, defined by vy, (cf. (5.3'))
and introduce X := 3> ccn(n) Xz- For w € Wa N AYM; E), define wy 1= xw
and wy = (1 — x)w and observe that the support of w; is disjoint from
the support of any element in W;; therefore wy € Wi N AY(M;E) hence
w; € Wy NAY(M; E). Since Ag(t) is essentially selfadjoint one obtains

(Ag(Hw,w) = (Ag(t)wr, w1 ) +2Re (Ag(Dwr,wa) + (Aq(t)we,ws) . (5.10)
We show that there exist positive constants ty,Cy,Cq,Cs,Cy depending

only on the geometry of (M, — M) and the chosen €, so that for any
w € Wy NAYM;E) and t > g the following estimates, (5.11)-(5.14) hold:

(Ag(twz, w2) 2 (Aqwz,wa) + Cit*fwa|* = Cotllwnlf? 5 (5.11)
(Ag(®)wr,wr) 2 Catllwy ) (5.12)
(Ag(t)wr,wi) 2 (Agqwr,wr) — Cotllwy ||? . (5.13)

For any o > 0,
Re(Aq(t)on,wa) 2 ~Cal1+a~2) (o + flel?) (5.14)

e C4QZ<AqL4J2, (4)2> hand C4oz2(Aqw1,w1) .

For any 0 < 6 < 1, multiply (5.12) by 1 — é and (5.13) by é and take the
sum to get

(Ag(t)wr,w1) > (1= 6)(Agwr,wr) +1(6Cs = (1= 6C)Jan|> . (5.15)

To complete the proof of property (4) combine (5.10) with the estimates
(5.15), (5.14), and (5.11) to obtain (for 0 < 6 < 1, o > 0)

(Ag(Dw,w) > (1 - 2C40®)(Aqwa, wa) + (1 — 6 ~ 2C,0%)(Aqwi, w1)
+(Clt2—02t—204(1+a—2))“L/.)z||2+(t(5C3—(1—6)C2)——2C4(1+a_2)) Ilu-’1||2 .

First choose 0 < § < 1 sufficiently close to 1 so that Cg ;= 6C5 — (1~ 6)C2 >
0. Then choose a > 0 sufficiently small so that 1 — § — 2C,a? > 0. With
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these choices we obtain
(Ag(Hw,w) 2 (C112—Cat~4Cs(1+07%))||lwa|®+ (tCs~4Cs(1+a2)) lun |2 .

Together with 2(||w1 ]2 4 [we)}?) > H|wl|? this establishes property (4).

To prove (5.11) choose C) := inf,em\u,cc,nyv. IVA(2)|? and Cy =
sup, e | Lg(2)||. The estimate (5.11) then follows from (5.1).

To prove (5.12) it suffices to notice that the support of w; is contained
in Uzecr(n)Uz and w) is orthogonal to 4, ;(z € Cre(h),1 < i < I). Thus
(5.12) follows from (5.7) with C3 := Cq(e€).

Formula (5.13) is a direct consequence of (5.1).

To find the lower bound (5.14) note that | Re{L w1, ws)| < Ca| Re{w, we)|
= Ca|(w1,w2)| and, using that supp(ws) does not intersect any of the Uls,
(|VR{2wi,wa) > C1{x(1 — x)w,w) > 0. Combining with (5.1) one concludes
that (Ag(t)wi,ws) = (Aqwr,ws2) + t2(|Vh|?wi,ws) + t{Lew;,ws) can be es-
timated

Re (Aq(t)wl,wg> Z Re(Aqwl,wz) + (Clt2 - Czt)((dl,WQ) .

As (w1, ws) = (xw, (1 — x)w) is real and nonnegative, one thus obtains for

t> Cz/Cl

Re(Aq(t)wl,wz> > Re{Agqwy,ws) . (5.16)
Therefore, the lower bound (5.14) follows from Lemma 5.3 below together
with 2([[wn[[? + flz]l?) > [l o

LEMMA 5.3. Let the g-forms w, wy and ws be defined as above. Then there
exists a constant Cy > 0 so that, for any o > 0,

Re(A wr,wa) > ~Cy(1 + a7 2)||lw||? — Cac®{Aqwa,wa) — Cyd® (Agwi,w) .
{(5.17)

Proof. Write Ag=d,_1d;_,+d;d, where d;_1=—(—1)dq+d+1Rd_q+1dd-qRq,
and * = R, denotes the Hodge * operator. Using that w; = xw and
wy = (1 — x)w one obtains

(Agwr,wa) = (dwy, dws) + (d ¥ w1, d*wa) > A+ B — ||dx Awl|® = ||dx A*w|?
+{xdw, (1 = x)dw) + (xd*w, (1= x)d*w),
where
A= (dx Aw,u(l = X)dw) + {dx A +w,u(l — x)d*w) ,  (5.18)
B: = —{xdw,udx Aw) — (xd * w,udx A +w) ,

where u is the characteristic function of M\ supp x. Notice that {xdw, (1 —
X)d * w) are real and nonnegative and therefore

Re(Aqwy,we) > Re A+ Re B — |ldx A wl? = ldx A *wl]? .
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In order to estimate the expressions A and B we introduce the constant
Cs = sup; cr<q | Kkll, where Ky : Ly(A*(M; E)) — Lo(AF*Y1(M;E)) is the
exterior multiplication by dx. Note that || K|l = ||A}|| where K} denotes
the adjoint of K} and {|w|| = || *w||. A straightforward calculation yields

4] < Csllwll (11 = x)dwlf + lI(1 ~ x)d * wl)
< Csllwll (lldwall + lldx Awl + lld * wall + [ldx A xw]])
< Csllwll (lldwalf + [1d * w2l + 2Cs lwl)
< V2Cs 0| (Bqwz, wa) 12 + 2CE |l -

Thus for any o > 0, and in view of the inequality be < (b/a)? + (ac)? one
obtains

|4} € (2C% + Csa™?)||w||? + o* (Aqws, ws) . (5.19)
A similar computation leads to

|B| < (2C% + Csa™?)||w|l® + o (Aguwr, w1) - (5.20)
Choosing C, appropriately leads to the claimed statement. o

5.2 Asymptotic properties of the small subcomplex. In this sub-
section we require that W is a free A-Hilbert module. Recall that Proposi-
tion 5.2 yields, for ¢ sufficiently large, a decomposition of (A%(M;E),dg(2))

(AUM;€),dy(1)) = (AUM; E)om, do(t)) & (AT(M; E)ra, (1)), (5:21)
where AYM;E)gm = AYM; E)em(t) is the image of Q(1,¢), the spectral
projection of A,(t) corresponding to the interval (—oo,1], and AY(M; &)
denotes the orthogonal complement of A?(M;&)sm. Accordingly, one can
decompose Ag(t) = Ag(t)em + Ag(t)1a Where Ay(t)m, resp. Ag(t)ia, denotes
the restriction of Ay(t) to AY(M;E)sm, resp. the restriction to AYM; & )a.

Using the forms ¥, ;(t), introduced in subsection 5.1, we will construct,
following Helffer and Sjostrand (cf. [HSj1] or [BZ1]), an orthonormal base
(in the sense of Definition 1.3), ¢g.;,i(t) (1 < j < mg, 1 < ¢ < I) of the
A-Hilbert module AY(M; E)sm(t).

Since the ¢ (t) are regular elements of the A-Hilbert module
Ly(AY(M;E)), and satisfy (5.4), the map

Jq(t)< Z ax,ie:c,i) = Z a:r:,z'"ab:c,i(t) (522)
2€Cr (), x,i
(€z,,,i = €q;j,i) extends to a bounded A-linear isometric embedding
J():Cl= @@ & — L(AY(M;E)) . (5.23)
z€Crq(h)
The following proposition is a generalization of [BZ1, Theorem 8.8, p. 128].
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PROPOSITION 5.4. For € > 0 (in (5.3')) sufficiently small, there exists a
constant ¢ > 0, so that

[(Qa(1, ) Tg(t)v — Jo(t)o)(w)]| = Oe=)]v|| (5.24)
uniformly for y € M and v € C9. Similar estimates hold for the derivatives.
Proof. We proceed as in {BZ1, p. 128]. In view of Proposition 5.2, for t > to,
Q4(1,¢) is given by the Riesz projector

1 -1
Qullt) = 5 [ (A= Agft) ™' ar (5.25)
™ Js1

where $* is the unit circle in C, centered at the origin and where (X —
A (1)) is the resolvent of Ay(t). The operator Qg(1,)J4{t) — Jo(t) can
therefore be represented by a Cauchy integral whose integrand is given by

(A= Ag(1) 7 g(1) = ATHg(1) = AT (A = Ag(1) T Ag()y(t) . (5.26)

By (5.5), for any Sobolev norm || - ||2-, with r a nonnegative integer, there
exists a constant cs, > 0 such that
44(&)Jo(H()|l,, = O™ )]l , (5.27)

uniformly in v € C?. We write ||-|| instead of || [|o. To estimate (A—Ay(t))™?
first notice that, by the ellipticity of A, = A,(0), there exists ¢5,. so that

llullzr < 5, (1A gull2r—2 + llull) (5.28)
for u € AY(M;€). By (5.1) there exists cj, so that for A€ S? and t > 1
”()‘ - Aq(t) + Aq)“‘“z,- -—<- c’2’rt2”u”27‘ . (529)

Combining (5.28) and (5.29) and using that ||ullx < j|u|lt+1, one concludes
that there exist C5,. and Cs, so that for u € AY(M;E)

llullar < Con (X = Ag(t)ullzr-2 + ]full2r-2) ,
and, by iterating the estimate and using that |jujlx < |jullk+1,
llullzr < Cort® (II(X = Ag(®)ullzr—2 + full) - (5.30)

We want to apply the estimate (5.30) for u = (A — Ag(t))™'a with @ €
AI(M; ). To this end we observe that, by Proposition 5.2, there exists
to > 0 so that (A — Ay(t))~! is a Ly-bounded operator for ¢ > to uniformly
in X € S, i.e. there exists C" > 0 so that for A € S, ¢ >t

(A = Aqe)~ all < "l - (5.31)

As (A — A () ra € AYM;E), for & € AYM;E) we can apply (5.30) to
find C,. > 0 so that for t sufficiently large and ) € S!

| = Ag®) 1|, < Cot? |lilzr-2 - (5.32)
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Combining (5.32) and (5.27), one sees that for any 0 < ¢/ < ¢, there exists
tg > 0 so that for t > tq and v € C9,
(A = Ag() T Ag(D)To(t)v]],, = O]l - (5.33)

Choose an integer » > d/2 and use the Sobolev embedding theorem for £-
valued g forms to obtain (5.24) from (5.26) and (5.33). By choosing r even
larger one obtains similar estimates for the derivatives. )

Proposition 5.4 insures that, for sufficiently small € > 0, there exists
to so that for t > 2o, Qq(1,1)Jy(t) is an isomorphism of C? onto Y (t) :=
Qq(1,1)J,(t)(C?) with Y(t) a closed subspace and A-submodule of
AY(M; EYgrm. We claim that, for ¢ large enough, Y (t) = AY(M; E)sp. To ver-
ify this we will show that u € AY(M; E)sm and u orthogonal to Y(t) imply
u = 0. Indeed, since Q4(1,t) is a selfadjoint projector and Qq(1,%)(u) = u,
we have (z € Crq(h), 1 i< 1)

<¢z,i(t)su> = <Qq(17t)(¢z,z(t)), U) =0.
Then, by (5.7), (Aq(t)u,u) > C(e)t||u]|®. On the other hand, (Ay(t)u,u) <
{lul|* because u € AY(M;E)sm and hence u = 0. Let ¢,(t) := Qq(l t) J(1).
Then, for ¢ sufficiently large, Qq(1,t)(¥2,:) = ig(t)eg;ji (x = 2455 € Cry(h),
1< ¢ <) is a basis of AY(M;&)sm. By the remark following Definition 1.3,
this basis can be used to obtain an orthonormal basis
Pajilt) = iq(t)(iq(t)*iq(t)) 1/2iq(t)(eq;j,i) .

The main properties of the base g ;(t) are stated in Theorem 5.5 below.
To formulate Theorem 5.5 we need some additional definitions.

Consider the cochain complex C(M, 7,0, W), which has been intro-

duced in section 4, and define the orthonormal base of (4, E;; with
1<j<myand1<i<I, by

) ey
Egji(zgq) = {gq;“ g ';: ;; )
With respect to this basis the differential 8, can be written as
6q(Eg;ji) = Z Vaigingtit Eqr 1t
1<5' Smg1,1<i7 <1
where vgji jo € A°P. If one identifies C? to Za.-eCr.,( ») €= then the elements
E,;,i correspond to eg; ;.

Introduce the A-linear maps fi(t) : A¥(M; E)sm — C* defined by
4=k
fu(t) = (G) * e-‘*) Int®eth | (5.34)

where Int™®) : A¥(M; €) — C* is the integration (considered in section 4) on
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the k-cells of the generalized triangulation 7. The k-cells of this generalized
triangulation are the unstable manifolds W, ;. Recall that the closure of
Wy.; is a compact smooth manifold with comcal singularities (cf. Appendix
by . Laudenbach in [BZ1]) and therefore the integration makes sense. The

maps Int™® are continuous, A-linear and satisfy Int**+V g, = 6, Int'’™. Con-
sequently

{fk(t)} (Ak(M g)smydk(t)) C 6k)

di(t) =’ (;)—1/2 de(t) ,

and di(t) = e"**die'”, is a morphism of A-cochain complexes.
Let

where

It

arg(t) == sup {0, spec(Qq(1, 1)Ag (1)) } (5.35)
Bq(t) := inf spec ((1d — Q4(1,1))A4(?)) - (5.36)

Theorem 5.5 ([HSj1],[BZ1]). (1) For t — 00, ag(t) — 0 and B4(t) — oo.
(2) There exists a constant t1 so that for t > t; the elements oq;;,(t) €
AIM; E)em (1 € j € my, 1 < i < 1) constructed above provide an orthonor-
mal basis for AY(M; £)sr. Hence AY(M;E)sy is a free A-Hilbert module of
rank I x # Crq(h).
(3) There exist n > 0, to > 0 and C > 0 such that for t > t, and
I1<r<1<5<my,

sup H(,oq;jyr(y,t)u < Ce M, (5.37)
yEM\Uy;

(4) When expressed in H-coordinates on W, . N ¢(B,), the g-forms
¥g:5,i{y, t) satisfy the estimate

d/4
t 2 -
Pagily,t) = (;) eI 2 (dy, Ndys - Ady®eq;;i+O(71)) . (5.38)

where 0 < r = min{a,€/2,/2c(e/2)}, with a as in Definition 5.1 and
c(e/2) given by Proposition 5.4.

(5) The bounded A-linear maps f(t) : A¥(M; E)gm — C*, defined above,
satisfy the estimate

Fel)(@h55,r (1)) = Bsjir +O(t71) (5.39)

and therefore, for t sufficiently large, define an isomorphism of cochain com-
plexes of A-Hilbert modules of finite type.
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(6) Representing d4(t) with respect to the bases given in (2)
do(t)g;,i(t) = Z Ngijiier (V) Pat150,(t)
14! Smgps AKH <

with ng,ji joi+ € A°P, the coefficients 1y, ;i j1sr satisfy

S\ _
Ngsjiiri (1) = e ! (;) (‘Yq;ji,jw + Oft 1/2))

with v4,ji,j:i as above.
Proof. (1) follows from Proposition 5.2, (2) was proven above and (3) fol-
lows from Proposition 5.4.
(4) By Proposition 5.4, (i4(t))*ig(t) = Id + O(e~), thus it suffices to
verify (5.38) with Qg(1,t)tg;;.:(t) instead of ¢g.; :(t). By Proposition 5.4,
Qq(1, )9gi5i(y, 1) = Yaiji(y, ) + O(e™)

uniformly in y, and (4) follows.
To prove (5.39) we have to show that for any cell W,

£\ d-20)/4
/W' SOQ;j,r(yat)eth(y) = (_) etq(‘sjj'eq;j,r+0(t—])) .
937

7r

Note that, due to Theorem 5.5 (3) and (4), it suffices to consider the case
where j = j'. By Theorem 5.5 (4) and Proposition 5.4 we conclude that

(with B, as in (4))
/ sz r(ys 1)e* )
W

;7

d/4
= <ﬁ> et / et v (dyi A .. Adyy ® g, + O™H))
T W, né(By)

+ et /W_ \&(B )e(h(y)_q”@q;j,r(%t)
937 r

i (1)‘“"(.{) o).

w T

The second integral on the right-hand side of the above equation decays
exponentially when ¢ — oo because

”¢‘1§j,1‘(y, t)” = O(e—Ct)

for y € W ;\ ¢(B;) (Proposition 5.4) and h(y)~g < 0 on W ;. The second
part of the statement follows from (2). (6) follows from (3). B
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5.3 Applications. We present two applications of Theorem 5.5. We point
out that in this subsection we do not assume that W is a free A-Hilbert
module. First we state and prove Proposition 5.6, a generalized version
of a result of Gromov-Shubin (cf. [GrSh], also {E1,2]) which we stated in
Proposition 1 in the introduction.

ProprosiTiON 5.6 ([GrSh]). Let M be a closed manifold and W be an
(A, T°P)-Hilbert module of finite type (not necessarily A-free). Then the
following statements are true:

(1) Suppose g is a Riemannian metric and 7 = (h,¢’) is a generalized
triangulation of M. Then the system (M, g, W) is of a-determinant class iff
(M, 7, W) is of c-determinant class.

(2) If M, and M, are two homotopy equivalent connected manifolds
and 7, and 1 are generalized triangulations of M, respectively Ms, then
(M1, 11, W) is of c-determinant class iff (M, 7o, W) is of c-determinant class.

Proof. (A) First we prove the two results in the case where W is A-free.
Notice that statement (2) follows directly from Proposition 1.18. To prove
(1) consider the cochain complexes

-1/2
(AM(M; ),di(1)) 5 di(t) =€ (%) di(t) (5.40)
(AR(M; 6),di(t)) 3 de(t) = e Pdiet” (5.41)
(AR(M;€),di) (5.42)

and let Ag(t), Ap(t), Ay be the Laplacians of (5.40), (5.41) and (5.42) with
respect to the Riemannian metric ¢’. By Theorem 5.5 (5) there exists 2y > 0
so that for t > to the maps fi(t) introduced in (5.34) are isomorphisms
between the cochain complexes (A*(M; £)om, di(t)) and (C*,8x). Therefore,
by Proposition 1.18, (M, 7, W) is of c-determinant class iff there exists t > o
with

1
/ log AN, (A) > —00 (5.43)
o+

As Au(t) = eZ’(%)”lAk(t), (5.43) is equivalent to
1
/ log )\dNAk(t)()\) > —00 . (5.44)
o+

Since multiplication by e'* defines a Ly-bounded isomorphism between the
La-completion of cochain complexes (5.41) and (5.42) we conclude from
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[GrSh, Proposition 4.1] that (5.44) holds iff

1
/ log AdNa, (A) > —c0 . (5.45)
0+

As the Ly-completions of (5.42) with respect the Riemannian metric g’ and
g are isomorphic by a bounded isomorphism we apply once more [GrSh,
Proposition 4.1] to conclude that (5.45) is equivalent to

1
] log AdNa; (1) > —o0 (5.46)
o+

where A} denotes the Laplacian with respect to the Riemannian metric g.
The inequality (5.46) says that (M, g, W) is of a—determinant class and
thus (1) follows.

(B) To prove (1) and (2) in general let us make the following observa-
tions:

(O1) If W is I'®P-trivial then any system (M, g, W) resp. (M, 7, W) is of a-
determinant resp. c-determinant class. Indeed in this case the spectral
distribution functions of the corresponding (analytic resp. combinatorial)
Laplacians are step functions like in the case A = C.

(02) Let W;, i = 1,2, be two (A, I'°P)-Hilbert modules of finite type. The
system (M, g, W) @ Ws) is of a-determinant class resp. (M, 7, W; & Wa)
is of c-determinant class, iff the systems (M, g, W;), i = 1,2, are of
a-determinant class resp. the systems (M,7,W,), i = 1,2, are of ¢
determinant class. This equivalence follows by comparing the spectral
distribution functions of the Laplacians (analytic and combinatorial)
in the complexes associated to W;, i = 1,2, and to W; @ W». An
inequality between these functions in the combinatorial case follows from
Proposition 1.10 (2). The analogous inequality holds in the analytic case
as well. (As in the combinatorial case the inequality can be deduced
easily from the definition of the spectral distribution function.)

(03) Given an (A,I°P)-Hilbert module W of finite type there exists an
(A, TI°P)-Hilbert module W' of finite type, which is I'°? trivial so that
W W is A-free. Indeed it suffices to take an A-Hilbert module W’ of
finite type so that W @ W' is A-free and equip it with the trivial I'?
action.

Combine (01), (02), (03) to conclude that (M,g,W @ W') resp.
(M, 7, W @ W') is of determinant class iff (M, g, W) resp. (M, 7, W) is.
In view of (A), we therefore have proved (1) and (2) as stated. o

Proposition 5.6 suggests the following definition. (cf. Definition 4.1)
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DEFINITION 5.7. The pair (M, W) with M a closed manifold and W an
(A,T°P)-Hilbert module of finite type is of determinant class iff for some
(and then for any) Riemannian metric g, the system (M,g,W) is of a-
determinant class.

Proposition 5.6 is used to reduce the proof of Theorem 2 to the case
where W is a free A-Hilbert module of finite type.

PROPOSITION 5.8. Let M be a closed manifold, g a Riemannian metric,

7 a generalized triangulation and A a finite von Neumann algebra. The

following two statements are equivalent:

(1) For any free (A,T°P)-Hilbert module W of finite type, the property
(M ,W) being of determinant class implies T, (M ,g,.W)=Tgr.(M .g,7,W).

(2) For any (A, T°P)-Hilbert module W of finite type, the property (M, W)
being of determinant class implies T,n (M, g, W) = Tg(M, g, 7, W).

Proof. We have to prove that (1) implies (2). We will do this in four steps.

(S1) When A = C, (M, W) is of determinant class and the equality of the
two torsion holds by (1).

(S2) If W is [°P- trivial then by observation (O1) above, (M, W) is of
determinant class, and

log Ton (M, g, W) = dimy (W) log Ton(M, g, 1¢) ,
where 1¢ denotes the complex line € with the trivial T'°P action. A
similar formula holds for Tr.. Hence the equality of the two torsions
follows from (S1).

(S3) Let W; and W, be two (A,T°P)-Hilbert modules of finite type and
set W = W, @ W,. By observation (02) above, (M, g, W) is of de-
terminant class iff (M, g, W:), i = 1,2, are of determinant class, and
by the sum formula (Proposition 4.3), the analytic torsion of (M, g, W)
resp. the Reidemeister torsion of (M, g, 7, W) is the product of the an-
alytic torsions of (M, g, W;), 1 = 1,2, resp. the Reidemeister torsions of
(M,g,T,W,'), 1= 1,2.

(S4) Let W' be as in observation (03) above. By (O1), (M, W) is of deter-
minant class and by (02), (M, W) is of determinant classiff (M, WeW')
is of determinant class. Combine statement (1), (S1) and (S3) to con-
clude the equality of the two torsions for W. o
The second application of Theorem 5.5 concerns the proof of the identity

(4.9) which leads to the formula (4.8"),

IOg TmEt(Ma g,TD, W) = (—1)~d+1 108 Tmet(M7 9T, W) .
Let (M, g) be a closed Riemannian manifold and A : M — R be a
Morse function so that 7 = (h, g) is a generalized triangulation. Denote by
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1p = {d—h, g) its dual triangulation. Choose orientations Oy, (cf. section 4)

and let W be a (A, T'°P)-Hilbert module of finite type with I' = m (M). As

in section 4 denote by E(Q) the restriction of g . It to ‘H, where 7, .

is the orthogonal projection on Null(A“"mb) and by (Int(Q)) the adjoint of

Ef(q). With respect to the Hodge decomposition of A%(M; &) and CI we

can write F'9= F, 4= Int(r“) as a 3 X 3 matrix

F, 0 Fj
F 2ql F 2‘12 F 2‘13
0 0 FY

and obtain Int_ me? = F}, = F[}?. The critical points of h of index ¢ and
their correspondmg unstable manifolds of —grad, h identify to the critical
points of d — A of index d — g and their corresponding stable manifolds (i.e.
with respect to — grad,(d — h)). The orientations Oy, induce the orienta-
tions Og_p-

Let C, resp. C;, be the cochain complex associated to the generalized
triangulation 7 and the orientations Op resp. the generalized triangulation
7p and the orientations O4_p. The above identification of the critical points
of h and d — h provides isometries PDy : C¢ — (2% which intertwine the
coboundary operator 67 in C, with the adjomt (6”’ 1)* of the cobound-
ary operator in C,,. Similarly the Hodge * operator R, : AY(M;E) —
A?=9(M; €) intertwines d, resp. d(t) with d’_,_, tesp. d(t):}_q_1 where

dy(t) is given in (5.40).
ProrosITION 5.9. With the above notation we have
Rln, = (Wt oy . pD, - Tt . (5.47)

Proof. Let 5
14(0)  (AY(M; ), do(t) — (AT €),d,)
4=2g
denote the multiplication with ()" e~'¢ and
o) : (AT(M; € )om, dg(1)) — (AU(M; €), dy(t))

the canonical inclusion. The I,(#)’s define a morphism of cochain complexes
and Fy - I,(t) = f,(t) with fo(t) defined by (5.34). Notice that the matrix
representations of PD, and R, with respect to the Hodge decompositions
of C} with i = 7,7p and (A%(M,E),d,) are of the form

PDY, 0 0
0 0 PDL | ;

0 PDy, 0
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R, 0 0
0 0 RY|.
0 RY, O

Equation (5.47) therefore becomes
RY, = (Tt ¥y PDY, - Tt ? . (5.48)

Consider the (typically not commutative) diagram

(AT ) dg(t))  —Ls (C3,6,)

.| o

A=Y M; Eem, A5 (1)) —————  (CY79, 6%
( ( Jsm> di_ (1)) T (C359,65_,)

Notice that with respect to the bases considered in Theorem 5.5 the map
Rqla(uM.£), (by Theorem 5.5(3) and (4)),the maps f,(t) and fa_,(t)* (by
Theorem 5.5(5)) are of the form Id+O(%) and PD, is equal to the identity.
Therefore

Ryl as(Mie)um = (Fro,d—q'Id—q(t)'Jd—q(t))*'PDq'Fr,q'Iq(t)‘Jq(tHO((l/t))-
5.49
The representation of R, with respect to the Hodge decomposition of

(AY(M, &), Jq(t)) is again of the form

RY, (1) 0 0
0 0 RLM) | .
0 RL,(t) 0

J(t)y=1d, (5.50)

and

Then (5.49) and (5.50) imply
RY(1) = (I7%(t)" - ({4~ - PDY, - Fij* - I (1) + O(1/¢) . (5.51)

Notice

R\ (t) = (Ifl_q(t))* “RY, I (1) - (5.52)
and therefore (5.51) and (5.52) imply
RS, — (W) pDY, Tt = 0(1/1) . (5.53)

Since the left side of the equality (5.53) is independent from ¢, (5.48) fol-
lows, )
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6. The Main Results

6.1 Asymptotic expansion of Witten’s deformation of the analytic
torsion. Let (M, g) be a closed Riemannian manifold with fundamental
group I' = 7,(M) and h : M — R a Morse function so that 7 = (h,g) is a
generalized triangulation. Let A be a finite von Neumann algebra and W
an (A, ['°P)-Hilbert module of finite type. The bundle p : £ — M associated
to W (cf. section 1.4) is equipped with a canonical flat connection and a
Hermitian structure gy on &€ — M. Throughout this subsection we assume
that (M, W) is of determinant class.

DEFINITION. A function a : R — R is said to have an asymptotic expansion
for t — oo if there exists a sequence i1 > i2 > ... > iy = 0 and constants
(ar)1<k< N, (be)1<k<n such that

N N
a(t) =) _art™ + 3 but™*logt +o(1) . (6.1)
1 1

For convenience we denote by FT(a(t)) the coefficient ay in the asymp-
totic expansion of a(t) corresponding to #°.

Recall that in section 4 we introduced Ton(h,t) = Ton(g, 2, t), Tre(7) =
Tre(9,7); Teomb(T) and Tiner(7) = Tmet(g, 7), and in section 5 we introduced
Tom(h,t) = Tim(g, h,t) and Ta(h,t) = Talg, h,t). In this subsection we
prove the following:

Theorem A. Let (M,g) be a closed Riemannian manifold of odd dimen-
sion, W an (A, T°P)-Hilbert module of finite type with | = dimy W and
h:M — R a Morse function. Assume that (M, W) is of determinant class
and that T = (h, g) is a generalized triangulation. Denote by m4 the number
of critical points of index q of h and let 3y := dimy HY(M;W). Then the
following statements hold:

(1) The functions log Tpn(h,t),log Tym(h,t) and logTj,(h,t) admit asymp-

totic expansions for t — co.  °
(2) The asymptotic expansion of log T, (h, ) is of the form

log Tan(h,t) = log Toy(h,0) — log Tree(7) (6.2)
d
+ %(Z(q)mqm)@t ~logt +logm) + O(t™) .
9=0

(3) The asymptotic expansion of log Ty (h,t) is of the form

d
log Teomn(7) + %(Z(-l)q“(qﬁq - qmql)) (2t —logt + logm) + o(1) .
q=0
(6.3)
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Using the same arguments as in the proof of Proposition 5.8 one can
show that it suffices to prove the statements for W a free A-module.

We begin by deriving an alternative formula for the analytic torsion (cf.
[RSin] ,[Ch] and [BuFrKal}). The space of g-forms can be decomposed into
orthogonal subspaces:

AYM;E) = AFUM; ) @ AT(M; €) @ MY (6.4)
where
APUM;E) : = closure(dg—1 (H)ATH(M; E))
= closure(e™™* dq 1ATHM;6)) 5 (6.5)
ATY(M;E) = closure(dq(t)* AT (M €))
= closure(e ”‘d*A‘H'l(M'S)) ; (6.6)
= {w € AY(M; E); Ay(t)w = 0}, (6.7)

where the word closure refers to the closure with respect to the C'™ topology.
Note that the spaces At 9(M; £) are invariant with respect to the Laplacian
Ag(1). Denote by A%(t) the restriction of Ag(t) to AEI(M; €) given by
A (t) = dg_1(t)dg- 1( )* and A7 (t) = dg(t)*de(t). The operator dy(t) maps
the space A; Y (M; £) injectively onto a dense subspace of A7t (M; €) and
it intertwines A (¢) and A;’_H(t). By the same arguments as for (4.18),

N7 (1) = N, (1) (68)

Note that both A (t) and A7 (t) are of determinant class, more precisely,
for a given compact interval I C [0,00) there exists B > —oo so that for
tel

1
/ log \dNE()\,1) > B . (6.9)

0t

Using formula (6.8) one obtains
/ 2 oy (BT 0) = / 2 (e BT ) (6.10)
1z 1 2
and, for Rs sufficiently large,
1 1
/ dzz® iy (e 720 (M) =/ dxxs—ltrN(e_IA:H(t)) . (6.11)
0 0

The integrals in formula (6.10) converge because the operators A%(t) are
of determinant class (Proposition 2.12 (3), cf. also [Lo]), and the integrals
in (6.11) converge because fol dzz*~ltry(e"®2®)) < oo, as can be seen

from the heat trace expansion of try(e~*24() at z = 0 (cf. (6.22) below).
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Introduce

E1.q(5) s)/ s— ltrN -—qu(t)(Id Q,(0, t))) x (6.12')
+s /°° ltrN (e_“”A‘I(t)(Id —Qq(0,8))dx
1

x
th = 1—\(8)/ 5= ltI' ——a:A (t))d
*1
+ s/ -trN(e_”Aq Nz . (6.12")
1 xz

The functions & 4(s) and {fq(s) are defined for ¢t > 0 and Rs > ¢,

smooth in ¢,s and holomorphic in s. Further, as A,(t) is a differential
operator the function & 4(s) is meromorphic and has s = 0 as a regular
value. From (2.17),

d
log det y Ag(t) = _E‘S:Ogt,q(s) . (6.13)

Denote by logTun(h,t,s) and log T (h,t) the functions defined by
(Rs > §)

d
log Tun(h,t,s) = %Z -1)7ty (—ﬁft,q( )) (6.14")
q=0
and
log T (h,t,s) := Z(_ (-—g,q( )) : (6.14")

In view of (6.10) and (6.11) we have §; (s) = f?,-q+1(3)- As&iq(s) = f?:q(S)+
& 4(s) this leads to (Rs > )

log Ton(h,t,s) = —log Tk (h,t,s) = log T, (h,t,s) . (6.15)

Although we do not know if §t (s) have an analytic continuation at s = 0
it follows from (6.15) that log 7% (h,t,s) have. By (6.13), log Tun(h,t) =

log Tan(h,t,0) and therefore
log Tan(h, t) = Flog T (h,1,0) .

Our first goal is to compute 3 log Tun(h, ¢, 5). To analyze the t-depend-
ence of ff,q(s) we treat the two terms on the right-hand side of (6.12")
separately. To illustrate the new difficulties which arise (as compared with
the classical situation) we point out that the differentiability of

floo 2= trye="27 (Odz with respect to t is far from being obvious.
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We begin by computing %(trNe_“A:m). Note that AF(t) : AFY(M;E)
— AJY(M;E) where the space A} Y(M;E) =£thA+’q(M;£) depends

on t. It is therefore convenient to introduce AF(t) = e™A¥(t)e~ :
AYI(M;E) — AMY(M;E) which is isospectral with A¥(t). Hence,

_sAt oAt oAt .
trye "2 () = trne~*27 (). Now one computes %trNe 287 () yusing Du-

hamel’s formula and the identity
AT (1) = e (dg_ydi_, +2tdh A )e™

one obtains

d —AF d oA
a(trNe A:;(t)) = —ztry (a (A}L(t))e Aq('))

= trn (2[R, —xE(t)]e_:g(t))
— 2ztry(e?dh A d;_le_“he"”;q;(t))
where [A, B] denotes the commutator of the two operators A and B. Using
trx (20 —sAF (D)4 ) =0,
ethdy_ e~ =d,_,(t)* and that e'“’e_z;;;(’)eth = e~*A7 () we obtain
%(trN(e_’A:(’))) = —2ztry (dh A dq_l(t)*e_’A;r(t)) .
Further observe that, despite of the fact that dq_i(t) : A7 (M;€) —
A:’q(M ;£) is not invertible (it might not be onto), we can form
dg-1(1)* = dgm1(t) " dgo1(t)dg-1(t)" = dg1 (1) AT (2)

where the domain of definition of dg_;(¢)~* is the range of dq_;(¢). We note
that

dh A dq_l(t)_lA;(t) = (dgo1(t)hdg—1 (1)~ = h)A;’(t) .
This leads to the following formula

% (trn (e 27 M) = —2atry (dg—1(t)hdy— ()7 AT (1)e=AT ()
+ 2zxtry (hAq+ (t)e“IA:(i)) )

Next we observe that

d
tI‘N(hA;;(t)e_“:A;(i)) = (trN(he-m;f(t)))

x
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and that
trn (g1 (Dhdg—1 ()1 AT (t)e~747 )
= try (hdg-1(t) LA} (1)e =227 Dd,_, (1))
=try (hAq__l(t)e—IAq_—l(t))

d -
= —E(trN(he Aema(thyy

We have therefore proved that

d N d —zA- d At
2 (i (e==87 ) = 22 (tr(he™272)) — 20 L (ury (e =41 0))

This leads to

LS & fiyemeato)

q=0

=23 D (i (o251 ()

gq=0
d
.’L‘Z q+1 trN(he_”Aqu(t)))
q=0
d d he==AT(®) —eAT (1)
= EZ —1)9(trn (he™*27 (1) + try (he™*27 (1))
q=0
= :czid;(Z(—l)qtrN(he—qu(t)(Id - Qq(O, t)))) . (6.16)
q=0

We use the above formula to prove that — [ 223" (-1)7+ try (e=*A7 M)dz
has a continuous derivative with respect to ¢ as follows By the Leibniz
rule for improper integrals, it suffices to verify that f(z,t) :=
-L1 q(—-l)qtrN(e"”’A:(t)) and %(z,t) are both continuous and the in-
tegrals [ f(z,t)dz and [ 3£ (z,t)dz are both convergent uniformly with
respect to ¢t (t varying in a compact interval). Using Duhamel’s formula for
e~27® one sees that f(z,t) is continuous and, by the above formula,
d 3
at L= ZO< 1)%trn (he™*20((1d — Qq(0, 1))
is continuous too. The uniform convergence of the integrals floo f(z,t)dz

and [ $(z,t)dz follows from
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LEMMA 6.1. Let I be an arbitrary compact interval contained in [0, 00).
Then

(1) limy—oo f;° %trN(e_’A:(’))dz exists uniformly in t for t € 1.
(2) limy—oo [} %g(x, t)dx exists uniformly in t for t € I.

Proof. (1) Note that the integrand try (e—“’A:(z)) is positive. Thus, for
u>1,

o 1 oAt o0 ®©q
0 S/ ;tI'N(e Aq (i))dz :/ dNA;(t)('u)/ ;6 *ds (617)
u o+ uu
00 —pu
< /u_% dNA;f(t)(”)
-t

1 1 oo _
+/ dNA;’(t)(u)(‘/. ;d5+/ e 5d8>
o+t min(1,pu) 1

o0
—1 —pu
Su? /JdNAj(t)(N)e g
w2

+ /{: éNA:(i)(,u)( — log(min(1, pu)) + e ')
< A(u, t) + Blu,t)

e
pu

where o
- =12 _
A:A(u,t) =u /0+ dNA;’(t)(:u)e i ,

B = B(u,t):= /0+ dNA;(t)(u)( —log(p) +e7t) .

To obtain the inequalities in (6.17) we used that for 0 < p < u~'/2 we have
|log(pu)| < |log . In fact, 1 < u < - and thus p < pu < %

The terms A and B are estimated separately. Integrate by parts and use
the asymptotics (2.15) to conclude that there exists C > 0 so that fort € I

2 9] o xX
/ AN+ p(p)e ™ dp = [ Np+p(ple ™ dp < C/ pPeHdp < oo .
Jot 7 0+ a 0+

This shows that limy..., A(u,t) = 0 uniformly in ¢ € I. Concerning B(u, t)
note that by Proposition 1.18, there exists C > 0 so that for ¢t € I,
NA;“)(;L) < NA;,(O)(C,u). By Lemma 1.20 it then follows that

w12

B(u,t) < / dNp+g)(Cp)(—log p+ el).
0+ ¢

As (M, W) is of determinant class one concludes that limy—. B(u,t) =0
uniformly for ¢ in I.
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(2) From (6.16), [ 94 (x, t)dz=—30_o(~1)%trn (he ™27 (D(1d-Qq(0, 1)) I}
Therefore it Sufﬁces to prove that, for 0 < g < d and uniformly for ¢ in I,

lim (he™*2¢(1d - Q4(0,1))) = 0. (6.18)

&T— 00
To prove (6.18) note that, according to (2.15), there exists C > 0, so that
for t € I we obtain, integrating by parts,

[o <]

oo (he~540(1d = Qu(0, )] < = [ e~ aN, (A, )

o+

i3 e-z>‘
< |IAllz= / — Ny(\ dr
ot

by —zA
1
< = [ =X a1 V(1,1
1

and (6.18) follows. o

By Leibniz rule and Lemma 6.1 we have thus shown that

1°° i1 ME Y- (e'IA:(”)da: has a continuous derivative with respect
to t given by

d/ (<11 .
—_— it —1)¢ —za7 () g
dt(/l = q( 1)ty e )z)
) (6.19)

= 3 (~1)%trx (he ™24 (1d-Q4(0,1)) -

g=0

Next we analyze the ¢-derivative of 2 f(lT) fo A DI CR LN —=A7 (0)dy,

We first apply formula (6.16) and then integrate by parts to obtain for
Rs > d/2

d 1 ! s—1 ]' q —zA (t) )
e [ — P —_ q d
dt (F ) / x E ( 1) try (e ) x

1“(8)/ dx( — 1)ty (he~*2¢()(Id — Q,(0, t)))'h)

= 1-1(8) Z( l)th‘N _Aq(t)(ld - Qq(o’ t)))

0] / 3 (1) (e B (1d = (0, )ds

g=0
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Both terms on the right-hand side of this last equation are smooth functions
in s and ¢, meromorphic in s and holomorphic in a neighborhood of s = 0
independent of ¢, and therefore so is the left-hand side. These properties
are obvious for the first term. For the second one they follow from Theorem
2.9 (2) and formula (2.9). In view of F—(I;) = o and I'(1) = 1, we obtain

1
- %(% s:OF% /O 211 Z( 1)ty (e~ 01 (t))da:) (6.20)
d
=3 " (=1)%ry (he™2e (1 - Q4(0,1)))

FPSOF /“Z 1)%try (he =24 (1d — Q,4(0,1)))dx

where F.p.,_of denotes the constant term of the Laurent series expansion
of a meromorphic function f at 0. Combining (6.15), (6.19) and (6.20) we
conclude that log T,,(h,t) = log Ty, (h,t,0) is continuous, has a continuous
derivative with respect to ¢ and

d
7 log Tua(h, )

1 ! 1 2 q —z2A,(1)
— x5 Thg —_ it d
= F.p.s_or(s) /0 qE . -1) trN (Id — Q4(0,1)))dx

(6.21)
Next, try(he=224(Id — Q4(0,1))) = trn(he™*21(D) — trNy(hQ4(0,1)). We
want to verify that

Fp.e / =13 (1) 9try (he "2 M)dr = 0 . (6.21")
To verify this, note that

P LY s 1
'p'szor(s)/o x €T = 'p's=0F(8+1)s

and the heat kernel expansion for the Schwartz kernel K (y,y’,z,t) of
e~=8¢(t) on the diagonal y = ' is of the form

d
K (y,y,2,t) =3 2% 1 (5, 1) + Ou(a) (6.22)

=0
where I, ;(y,t) are densities defined on M with values in B and the er-
Tor term Ot(ac%) is a density which can be bounded by Cz!/2, where C is
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independent of ¢t € I. Thus

1 s—1 —zQgq(t

Py / Z( 1)%try (he~"3(9)dg = Z( Dty (hlga(-1)) -
which by Theorem 2.9 (2) and (2.16) is zero. This proves (6.21). As Q4(0,t)
is a projection try(h@4(0,1)) = trn(Qq(0,1)hQ4(0,1)) and thus (6.21) and
(6.21") lead to the following:
PROPOSITION 6.2. & logTun(h,t) = 2 o(= 17N (Q4(0,)hQ4(0, ).

Next, we express the terms try (Q4(0, 1)hQ,4(0, 1)) in a more explicit way.
It is convenient to introduce P,(t) = Q4(0,¢). Consider Ky(t) : HI(M;E) —
Hqy(M; E) defined by

K (t)(w) := Py(0)e™w .
Using the decomposition (w € H,(M;E)) e tw = e wy(t) + wo(t) €
AFI(M; ) @ HI(M; E) where wi(t) € ATI(M; €) and wo(t) € HI(M;E),
one verifies that P,(t)e™'" is the right inverse of K. ( ). Therefore, K4(t)
is an isomorphism. This implies that (K (t)K(t)* )% is a selfadjoint, pos-
itive, A-linear operator on Hy(M;&) and thus admits a determinant with
de‘cN(Kq(t)Kq(t)*)l/2 > 0. Note that K,(t)* is given by P,(t)e'* and thus
Ko(t)K4(t)* can be written as
Kq(t)Kq(t)" = Pq(())ethpq(t)equ(()) . (6.23)

LEMMA 6.3. try(P,(1)hP,(t)) = £ logdet (K (t)K (t)*)F.
Proof. Using Proposition 1.9 we note that

dilog det  (Kq(t)Ko(t)* ) = ”ilOSdEtN ( Kq(t)Kq(t)*) (6.24)

1 d . |

= g (a0 0B (07) )
Notice that Py(t) = Pj(t)P; (t) where P}(t), respectively P (t), de-
note the orthogonal projection onto Null(d (¢ )) respectively Null( —1(1)")-
Therefore, P,(t) is smooth in ¢ as both P(t) are smooth as can be deduced
from the representation

PEW) =5 | (A= TR (0™ Tdx

27

where C is a circle in C cente;ed at the origin with radius r > etl?llzeo,
Using (6.23) and writing P,(t) = 4 P,(t), we obtain

d .

at (Kq(t)Kq(t)*)‘: Pq(o)hethpq(t)ethpq(o) + PQ(O)etth(t)etth(O)

+ P,(0)e™ Py(t)he™ Py(0) . (6.25)
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To compute Py(t) = L(Py(1)?) = Po(t)Py(t) + Py(t)Py(t) we cousider the

orthogonal decomposition AY(M; £) = HI(M; EYSATI(M; E)DA; (M E).

An element w € AY(M;E) can be uniquely written as (cf. (6.4)-(6.7))
w=wo(t)+ e hu,(t) +ehw_(t)

where w4 (t) € AY9(M; ) and wo(t) = Py(t)w. We conclude that

0= %w = wo(t)+e oy (1) +ehi_(t) —he Pwy (1) + hetw_(t) . (6.26)
Note that w4 (t) € AT 9(M;E) and therefore e~ (t) € AF9(M;E) and
ethu_(t) € A7Y(M; E). Applying Py(t) to (6.26) leads to

0 = P,(t)ig(t) — Py(t)he™Pwy(t) + Py(t)he™w_(t) .
In terms of Pqi(t), the orthogonal projectors AY(M;E) — Af’q(M; £), the
above equality becomes

Py(t)P(t) = Py(t)hP} (t) — Py(t)hP; (1) . (6.27)

Observe that the projectors P,(t) and therefore P,(t) are selfadjoint to
conclude that

Py(8)Py(t) = P (t)hPy(t) — Py (HhPy(2) . (6.28)
Combining (6.27) and (6.28) we obtain
Fy(t) = Po®)Fo(t) + Po(D)Po(t)
= Po(t)hPF (t) + P ()hPy(t) — Py(t)hP; (t) — Py (t)hPy(t) . (6.29)
Compose (6.29) to the left with P,(0)et® and to the right with e'® Po(0) to
get
Py(0)e™ Py(t)e'" Po(0)
= Py(0)e" Py()hP (e Py(0) + Py 0t P (DAP()e™ Py(0)
- Pq(O)e’th(t)th‘ (t)etth(O)
— P,(0)e™ Py (t)hPy(t)e* Py(0) . (6.30)
To simplify (6.30), notice that dg(t)* = e'"d;e~** and therefore e'"H,(M; £)
C HI(M; E)®A;Y(M; £) which implies that P} (t)e' Py(0) = 0. Taking the
adjoint, we conclude that P,(0)e'* P (t) = 0. Thus, the first two terms on
the right-hand side of (6.30) are zero. Note also that P, (t)e'* P,(0) = (Id—

Py(t))eth Py(0) and Pp(0)e™ P (t) = P,(0)e!"(Id — P(t)). Applying these
three observations to (6.25) and taking into consideration the definition of
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K 4(t) one obtains
d (o e (g
3 (Ko (7)
= P,(0)he" Py(1)e" Py(0) — Py(0)e™* P (H)h(1d — Py(t)) e Py(0)
+ Pq(O)etth(t)hequ(O) — Py(0)e™ {1d - Pq(t))th(t)e‘th(O)
= 2P,(0)e'" P, (t)hPy(t)e"" P,(0)
= 2K (1) Py(t) R Py () Ko(t)" . (6.31)
Substituting (6.31) into (6.24) one obtains

2 1og dety (K o(t)E (1)) ¥ =ten (K (0 Pa( R Po(H K of8)7) (Ko (O Ko()")

dt
=trn (K o(t) Py()hFe(H) K o(t)™")
=tin (Pg(t)hPy(t))
which concludes the proof of the lemma. o

Using that K,(0) = Id and therefore that detN(Kq(O)Kq(O)*)% =1,
Proposition 6.2 together with Lemma 6.3 lead to

log Tan (hy t) = log Tuy (h, 0) +Z( 1)ett / ﬁlt-logdet,v (K o (8) o (1)) Tt
q=0
d 1
= log Tan(h,0) + Y _(~1)7"" logdety (K(t)Kq(1)")* . (6.32)
¢=0

In section 4.1 we introduced the A-linear isomorphisms

By : Null AL™ —s Ho (M E)

the inverse of m“” and the metric part of the Reidemeister torsion Trnet(T)
= Tmet{M, g, 7, W), cf. (4.4), defined by

log Tmet (T =5 Z )7 log det 5 (676,) -

By applying Theorem 5.5 (3) we show that
LEMMA 6.4. Fort sufficiently large, the following statements hold:
logdet  (Kq(t)Kq(t)*) d
d
— tog et (050 + bt + A (S5 ) log (£ ) + 01 (639
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and
d 1
D (=1)" logdet y (Kq(H)E,(t)*)?
q=0
d
== ].Og TmEt(Mﬁ g, T, W) + Z(_l)q+1qﬁqt
q=0
¢ d—2q t
+ Z(—l)q“ﬂqT log (;) +0@7 Y. (6.34)

q=0

Proof. Summing with respect to ¢, statement (6 34) follows directly from
statement (6.33) and the definition log Tret (7)=13 Eq—o )¢ log det 5 (670,).

To prove (6.33) observe that if one represents F, = Int(‘” A M E) —
C4 M, : AY(M,E) —» AYM,E), the multiplication by et®, and f,(t) :
AYM,E)sm — €7 (cf. Theorem 5.5 (5)) as 3 x 3 matrices, with respect to
the Hodge decompositions, cf. (1.20), then (6,)~! = F}, K, = M}, and
fLt) = (—’ti)%ﬁe‘thflel. Theorem 5.5 (5) implies that

logdety (fi () f{1 (1)) =0(t™), (6.35)

which combined with Proposition 1.9 implies that

logdety (K (0, (0)) - 8, "5 1og ()
~ Bq2qt — log dety (84(1)84(t)*) = O(t™") . (6.36)

hence (6.33). o

LEMMA 6.5. Fort — oo,
logTsm(h t) = lochomb( )

(Z (-1)%*1g(B, - mql)) (2t —logt+logm)+o(1) . (6.37)

Proof. Recall that log Ty, (h, t) is a real number defined by

log Tym (R, t) = (Z( 1)71glog dety q(t)sm) (6.38)

q=0
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and that for any 0 < C < oo (cf. (6.13))

g 1 Cdz A
- _ — s —z28g(t)em Y _
logdety Ay{t)sm 35|, F(s)/o P (trn(e ) = Bq)
® dzx ez
—/ — (trn(e PBq(them) — 8, (6.39)
C x
where 3, = dimy Null A2™" = dimy Null A,(?).
Consider Ag4(t),,, the Laplacian of the cochain complex
(A9(M, E)am(t),dy(t)) and note that
— s
AM)yem = ?eztAq(t)sm : (6.40)

Note also that

/: %;(tl'N(e_zA) ~Bq) = /(:j (
-/

where F4(u) has been introduced in (1.9) and A is Aﬁfg)q’sm,
Afl"mb. The last equality follows from integration by parts.
~2tz and in view of (6.41)

/ -i:e”‘”"dz) dFa(p)

C

) we-“ydy) Fay  (641)

c
A(t)g,sm, OF

By a change of variable of integration, y = %e
we obtain

oo dz . 00 o
/;’%e“ —(ten(e Belem) — ) =/0+ (/C e ”ydy)FZq(t)m(H)dﬂ-

(6.42)
From Theorem 5.5 (5) and Proposition 1.18 we conclude, arguing as in
Proposition 5.6, that there exists tg > 0 such that, for t > t; and 0 <

g<d Fx ® (p) < FAZomb(loﬂ). For t > tg and 0 < ¢ < d, the above

computations lead to

*® d *d com

/ —z(trN(e_xA"(t)‘"') - Bq) S/ —E-(trN(e_’Aw b) - B,) . (6.43)
CZett x % z

Taking into account that (M, W) is of determinant class, one can choose

C > 0 such that

i dl' _pAcombd
/,% = (bn(e ™A™ = B) <ce (6.44)
Therefore, for all £ > ty, 0 < ¢ < d, it suffices to consider
0 1 (O dr | A
— - —_— ¢ - q(t)sm —_— . 645
Osls=0T(s) /; z " (trs (e )= ) (6.45)
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When expressed with respect to the basis given in Theorem 5.5, Ay(t)em is
of the form %e‘zt(Afl"mb +0O(t~7)). By a change of variable of integration,
y = Le~?'z, the expression (6.45) can be written as a sum of two terms,

I, + 11, where
I, = —(logm — logt + 2t)I111,(s),_,

d
I, = —E‘szoIIIq(s) (6.47)
and
1 [Cdy , _(Acomb L o(—}
III(s) = ﬁs—)/o —;y (trn (e7¥(AT™HOGTINY _ gy | (6.48)
We first evaluate I11,(s) at s = 0. Use F(ls“) = T‘:Fl_) and integrate by parts

to obtain, for arbitrary 6 > 0,

1 6 d . Acomb -1
ITI,(8)|s=0 = —1:(‘3’+—1)/0A dy@(ys)(tm(e y(ATTHO( 2))) ‘5q)|3=0
= try(e=0@F™ 0y g,

é
+ [ dy (@50 + 0 AT OUT) L (6.do)
0

Taking the limit as § — 0 in (6.49) leads to

III,(5)),_y = mql — Bq - (6.50)
To compute 11, = — %ls___n I11,(s) recall that
com J i ¢ dy —( Acomb
logdety A b= 2 i f(—;j/() _y‘?/ (trn(e VAT — Bq)
*d —yy( AcOmb
[ B o) - ) (6.51)
c Y

and use the estimate (0 < y < C)
ttrN(e_y(AZ"“‘b)) _ trN(e—y(AgomMO(t“%)))' < yO(t_%) (6.52)
to conclude, together with (6.49), that
|11, — log dety AL™| < e+ O0(t7%) . (6.53)
Combining (6.40)-(6.43) and (6.50)-(6.53) we conclude that for given € > 0,
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there exists £, > 0 so that for all t > ¢,

].Og T;;m (h, t) et IOg Tcomb (T)

[m}

d
- %2(4)"“(1(/3(, —mgl) <2t — log %) ‘ <3c. (6.54)
q=0

Proof of Theorem A. First note that log 11, (h, t)=log Ton(h, t)—log Tim (k, t).
Therefore the asymptotic expansion of log Ti,(h, t) is obtained from the ex-
pansions of logT,,(h,t) and log Ty, (h,t). The asymptotic expansion for
log Tan (h, t) follows from (6.32) and Lemma 6.4 together with the fact that,
since d is odd, x(M, 1) = E:zo(—l)qﬁq = 0. The asymptotic expansion for
log Tym (h, t) is contained in Lemma 6.5. o

6.2 Comparison theorem for Witten’s deformation of the analytic
torsion. The family of operators Ay(t) is a family with parameter of order
2 and weight 1 (cf. [Shl] and section 3). It fails to be elliptic with parameter,
but only at the critical points of the Morse function A. We can therefore use
the Mayer-Vietoris type formula for determinants (cf. section 3) to localize
the failure of the family Ag4(t) to be elliptic with parameter and thus ob-
tain a relative result which compares the asymptotic expansions of Witten'’s
deformation of the analytic torsion corresponding to two different systems
(M2, h,g, W) and (M’d, k', ¢’ ,W) where the manifolds M and M’ have the
same fundamental group I" and (h, g) and (h', g’) are generalized triangula-
tions for M respectively M'.

Theorem B. Let d be odd. Suppose that 7 = (h,g) and 7" = (K, ¢’)

are generalized triangulations with #Cr,(h) = # Cry(h') (0 < ¢ < d), and

that (M, W) and (M',W) are of determinant class. Then the following

statements hold:

(1) The free term FT(log T\, (h, t)—log Ti.(F', t)) of the asymptotic expansion
oflogTia(h,t) — log Tia (R, t) is given by

FT(log Tia(h, t)—log Tia(k', 1)) = / ag(h,e =0)— / ao(h',e =0)
M\Cr(h) M'\Cr(h")

(6.55)
where the densities ag(h,e = 0) and ag(h’,e = 0) are smooth forms
of degree d and are given by explicit local formulas and the difference
appearing in the right-hand side of (6.55) is taken in the sense (6.56)
explained in the remark below.

(2) Due to the assumption that d is odd,

ao(h,e =0,2)+ ag(d — h,e=0,2) =0.
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REMARK: The integral fM\Cr(h) ao(h, € = 0) need not be convergent and
the difference on the right-hand side of (6.55) should be understood in the
following sense: In view of the definition of a generalized triangulation,
there exist neighborhoods V' of Cr(h) and V' of Cr(k'), a diffeomorphism
f+V — V7’ and a smooth bundle isomorphism F : £, — SI’V’ so that f and
F intertwine the functions h and k', the metrics g and ¢’ and the Laplace
operators A, and A;. Define

/ ao(h,e = 0)— / ag(h',e=0) = /ao(h,e =0)- / ag(h',e=10).
M\Cr(h) M'\Cr(h") M\V MV
(6.36)
Clearly, the definition is independent of the choice of V" and V.
As an application of Theorem A and Theorem B we obtain the following
result:

COROLLARY C. Let M and M' be two closed manifolds with the same
fundamental group I' and the same dimension d and let W be an (A,T'°P)-
Hilbert module of finite type. Suppose that 7 = (h,g) and 7" = (h',¢') are
generalized triangulations with #Cr,(h) = # Cry(h') (0 < ¢ < d), and that
(M, W) and (M', W) are of determinant class. Let T, = T.,(M’, ¢’ W)
and T}, = Tre(M',7',W). Then
log Ton — log 1., = log T — log T}, -

In the remainder of this subsection we prove Theorem B and Corollary C.

Let M be a manifold equipped with a generalized triangulation 7 =
(h,g). Let z4;; € Crg(h) be a critical point of h of index g and U,; a system
of H-neighborhoods of z,,; (cf. Definition 5.1). Introduce the manifolds

My = M\Uq’j U(;j ;o M= Uq’jUéj s

where U ;]« is defined as in Definition 5.1. Both manifolds M; and M/ have

the same boundary, given by a disjoint union of spheres of dimension d — 1.
To make the notation more pleasant, we will write, as in section 5, Vh

for grad h. Fix ¢ > 0 and consider the operator Aq(t) +¢. Its symbol with

respect to arbitrary coordinates {p, ®) of (M, — M) is of the form

az(z,€) + || VA" + ay(,€) + tLy(z) + ¢ (6.57)
where a; : R x RY — End(AY(RY) @ W) (i = 1,2) are homogeneous of
degree i in &, where || VA]> : RY — R is given by

.. Oh Oh
VAP = ) g7

Odz; Ox;
1<i,j<d L

and where L, : R¢ — End(A9(R?)) is the operator Ly = Lvi + LY, of order
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0 with Ly) denoting the Lie-derivative of g-forms along the vector field

dh 0
ij
Vh= Z ox; 3223'

The operator LY, is the adjoint of Ly with respect to the metric g and is
given by (cf. [HSj1, Appendix formulas A.1.9, A.1.6])
Yh = —(=DUH*DR,_LunR, (6.58)

where R, : AYR?) — A?"9(R?) is the Hodge operator associated to the
metric p*g. Recall that we have denoted by Cr(h) the set of all criti-
cal points of h. Set M* := M\ Cr(h). For an arbitrary chart (¢, ®) of
(M*,E|p — M*), define, as discussed in section 3.2, the symbol expan-
sion Zj>0 r_a—j(h,€,x,&, 1, ) of the resolvent (p~Ay(t)—e) ! inductively:

—2(h7 ngafa tv ﬂ) = (/,L - az(.’L', f) - t2||Vh“2)—1

and, for j > 1,
- 1 N
regoj=(n—az = 2|VAIHT Y ~08az(D) r 2 (6.59)
<lajgz
1+Iai ]
+ (u—ay — || VA[?) ™ Z 8¢ (ar +tLg)(D2)*r_aey

0<|a|<1
I+]e|=2

+ (n— az = E|VAI?) er;
Note that r_,_; has the following homogeneity property: for A € R\ {0}
reg_j(h, e, M AN ) = X2 0r_y_i(hye, 2,60t 1) (6.60)

For later use, we introduce the densities ag(h,&,z) on M* with values in R
(cf. (3.4)), defined with respect to the chart (¢, ®) and arbitrary ¢ as

15} 1 d 1
-0 (27) %/mdf (6.61)

ao(h,e,z) = =
. / dpp~*tryregog(h e, 2,6t =1, p)
r

Os
= —*(2;1)4 /m d¢ /0°° dutry (r-a—gq(h, e, 2,6t = 1,-p)) .

Since we will be obliged to work with two functions h and h' at the same
time we will write A,(H,t) instead of (the abbreviated form) Ag(?).

PROPOSITION 6.6. Assume that (M%,r=(h,g),W) and (M'*,7'=(h' ,¢'),W)
satisfy the hypothesis of Theorem B except with d not necessarily odd.
Then for any e > 0
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(i) logdety(Ag(h,t) + ) ~logdet y (A (R, 1) +¢) has a asymptotic ex-
pansion for t — 0o whose free term is denoted by @g := @p(h, b/, €).
(i1) The coefficient @y can be represented in the form

T = / ap(h, &, 2) — / ao(h',e,z") (6.62)
M M,
where ag(h, €, z) and ag(k', ¢, z') are the densities introduced in (6.61)
for arbitrary €.
{ii1) If dim M = d is odd then for arbitrary ¢ > 0,z € M

ap(h,e,z) + ag{d — h,e,2) =0 . (6.63)
With the same identity for h' one then obtains
do(h,h',e) +ap(d - h,d—Rh,e)=0.

Proof. The proof is based on Theorem 3.6 (Mayer-Vietoris type formula).
Note that Ay(h,t) + ¢ is a family of invertible, selfadjoint, elliptic operators
with parameter t of order 2 and weight 1 for any £ > 0. The same is true for
the operators (Aé(e‘z, 1)+ e)p and (Aél(s‘l, t) 4 €} p obtained by restricting
Ay(h,t) + ¢ to My and My, respectively, and imposing Dirichlet boundary
conditions. We can therefore apply Theorem 3.6. Denote by Rpn(h,t,¢)
the Dirichlet to Neumann operator defined in section 3.3. We conclude
from Theorem 3.6 (4) that Rpn(h,t,£) is an invertible pseudodifferential
operator with parameter t of order 1 and weight 2 and from Theorem 3.6
(2) we conclude that Rpy(h,t,c) is elliptic with parameter ¢. It follows
from Theorem 3.2 (2), in view of the fact that Rpy(h,t,¢) is elliptic with
parameter, self adjoint, positive and invertible that 7 is an Agmon angle
uniformly in ¢ for a fixed e. According to Theorem 3.4, logdety Rpn(h,t,¢)
has an asymptotic expansion for ¢ — oco. Inspecting the principal symbol of
(Al(h,t) + £)p one observes that (Al(h,t) + &)p is a family of invertible,
selfadjoint differential operators with parameter of order 2 and weight 1
which is elliptic with parameter. From Theorem 3.5 we therefore conclude
that log detN(Aé(h, t) + ¢)p admits an asymptotic expansion as ¢ — oo.
Finally (Aél (h,t) + £)p is a family of invertible selfadjoint operators with
parameter of order 2 and weight 1, which is, however, not elliptic with
parameter.

Of course the same considerations can be made for the system (M', 1/, ¢")
to conclude that logdety Rpn(k',t,¢) and logdety(AL(W,t) + £)p have
both asymptotic expansions for ¢ — co. Applying the Mayer-Vietoris type
formula (Theorem 3.6 (3)) for logdet x (Aq(h,t)+¢) and logdet 5 (Ag(R ,t)-+e)
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we obtain for the difference
logdet n(Ag(h, t) + &) — logdet y (Ag(R,t) + <) (6.64)
= logdet n (Ay(h,t) + ) , — logdet x (ALK t) +£)
+ logdet n (A} (R, 1) + €) , — logdet x (AM(R, 1) +¢)
+ logdet yRpn(h,t,c) — logdet yRpy (K, 1,€)
+ logé(h,t,e) —loge(h',t,¢) .

Note that Mj; and Mj; are isometric and £|7,, as well as €’|M}1 are trivial.
Consequently

log det n (Aél(h,t) +€), =logdet v (Aél(h’, +e), -
Due to our definition of H-coordinates the isometry between M;r and Mj,
extends to neighborhoods of M and Mj,. As a consequence we conclude
from Theorem 3.6(3)and Theorem 3.4 that &(h,t,&) = &', t,€) and that
logdety Rpn(h,t,e) and logdety Rpn(h',t,€) have identical asymptotic
expansions. We have therefore proved that

logdet y (Aq(h,t) +¢) — logdet n (Ag(H',t) +€)

has an asymptotic expansion as t — oo which is identical to the asymp-
totic expansion for logdet y (Al(h, ) +&)p —logdet y(Al(K, 1) +¢)p. Ac-
cording to Theorem 3.5 the free term in the asymptotic expansions of
both logdety(AL(h,t) + ¢)p and log dety (Al(h',t) + €)p consists of a
boundary contribution and a contribution from the interior. Recall that
OM; and OM; are isometric and that in collar neighborhoods of OM; and
of OM] the symbols of (Al(h,t) + ¢)p and (Aé(h’,t) + €)p are identi-
cal when expressed in (H)-coordinates. Therefore the boundary contri-
butions are the same and the free term in the asymptotic expansion of
log dety (AL(h,t) + €)p — log detN(A(II(h’, 1)+ ¢)p is given by (cf. formula
(3.4))

2

0= / ao(h, g, .’I?) - / ao(h’,€,Il) (665)
My M,
where the densities ag{h,¢,z) and ap(h/, e, 2’} are given by (6.61).

Noting that ag(h,z,z) and ag(h’, ¢, 2’} are identical on M\ Cr(h)
M)\ Cr(h') statement (ii) follows. Towards (iii), observe that as M is of odd
dimension, the quantity r_g_s(h,e,z,£,¢, u) defining ag(h,e,z) satisfies,
according to (6.57) and (6.59),

7"-—d-—Z(d - hv &, Z, 67 t, ﬂ) = r—d—Z(ha E,T, 67 "t» ,u) (666)
and, according to (6.60)

7"~—d~-2(h7 &, _{:s -, ”) = “T_d_g(h, &, £7 t, /l) . (667)
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Therefore, r_q_o(h,e,2,&,t, ) +r_y—o(d — h,e,2,£,t, p) is an odd function
of £. Integrating over |£] = 1 we conclude that ag(h, ¢, 2)+ao(d~h,e,z) = 0.
D

For any £ > 0 introduce the following perturbed version of log T'(h, t)

A(h,t,¢) Z( 1)t glogdet y (Ag(h,t) +¢€) . (6.68)

Note that A(h,t,€) can be written as a sum
AR, t,8) = Agn(Rt,€) + Aa(h, t,€) (6.69)

where Agp, is defined in a fashion analogous to log Tim(h, ¢},

Agm(h, t,€) Z( 1)%*glog det v (Ag(h, t)sm + €)
q‘-O
with
Aq(hv Bsm 1= Aq(hvt)lAq(M;E)sm
and Aj,(t, h,¢) is given by A(h,t,€) — Asm(h,t,€). Observe that the spec-
trum of the operator A, sm(h,t) tends to 0 as ¢ — oo and therefore, by
Theorem 5.5 (6}

1
logdet n (Ag(h,t)sm + &) = mylloge + O (?e‘”)

for t — oo where | = dimy W. This shows that 4.y (h.t, &) — A (P, t,€) is
exponentially small as ¢ — oo and hence, for any fixed £ > 0, it has a trivial
asymptotic expansion for t — co. In view of (6.69) and Proposition 6.6
we conclude that for any ¢ > 0, A(h,t, &) — A(R',t,2) and An(ht,e) —
Al ,t,€) have asymptotic expansions for ¢ — oo and, moreover, these
expansions are identical. In particular we conclude that the free terms of
the two expansions are identical

FT(Aju(h,t,€) — A(h,t,€)) = FT(A(h,t,€) — A(K,t,€)) .
Using Proposition 6.6 (ii) and the fact that the densities ag(h,¢,z) and
ag(W, e, ), defined in (6.61), are continuous in € we obtain

LEMMA 6.7. (i) For any € > 0, Aj(h,t,¢) — Ai(h', 1, ) has a asymptotic
expansion for t — oo which is identical to the asymptotic expansion for
A(h,t,e) — A(K,t,¢e).
(ii) The limit
lin}) FT(A]a(h, t,e) — An(h,t, E))
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exists and is given by
liH(l) FT(An(h,t,e) — A (h',t,¢)) (6.70)

=/ ao(h,sz(),w)—/ ao(h,e=0,z") .
M; M

We proceed to investigate the left-hand side of (6.70). For this we
need the following estimate for the spectral distribution function Ny(¢, A)
of Ag(t) = Ag(h,t).

LEMMA 6.8. There exist a constant C > 0 and ty > 0 so that for t > 1,
and A >1
Ny(t,2) < CA4.

Proof. Denote by Aé,N(t), resp. A;{N(t), the operator A,(t) restricted
to MI, resp. M with Neumann boundary conditions, i.e. restricted to
CE(Elpr) == {u € C®(&|yr) | Nu = 0} resp. CF(€|pr1) == {u €
C™(Efp11) | Nu= 0} where Nu denotes the covariant derivative of u with
respect to the unit (inward) vector field normal to the boundary. A(II’ ~(t)
and Aé’IN(t) have well defined spectral distribution functions denoted by
NqI (t,A) and N, qI I(t,)), and in view of their variational characterization one
has

Ng(t,X) < NIt ) + N (g, 0) . (6.71)
We estimate NqI (¢, A) and N({I (t,A) separately. For t sufficiently large,
Ag(t) > Ay(0) = Aq on My and thus NqI(t,/\) < N;(O, A). The asymp-
totic estimate (2.15) (by the same arguments used to verify (2.15)) is also
valid for NJ(0,7), NqI(O, A) < CA¥2. Therefore there exist o > 0 and
C; > 0 such that for ¢t > ¢y, A > 1

NIt ) <ot (6.72)

Now let us estimate Nq”(t, A). Recall that My = Ui jUskj. On each of the
discs Uy, when expressed in (H)-coordinates (6,8), Dgk(t) = Agu(t) @ 1d
with Ag.x : AYR%R) — AYR%R) given by (cf. (5.2))
Agr(t) = Ay + 2|z — t(d — 2k) + 26N}, — N} .
Note that the spectral distribution function of Ag(t) on B, (e as in Def-
inition 5.1) with Neumann boundary conditions is equal to the product
of dimy W and the spectral distribution function of Agi(t) on By with
Neumann boundary conditions. Introduce the scaling operator S; defined
by
S f(z) =t f(tzx) .
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Then Si/s - tK - St‘l}z = Agk(t) where

K =Kgp=Ag+|z]> = (d = 2k) + 2N}, - N_,) .
Therefore the Neumann spectrum of Ag(t) on B, is the same as the Neu-
mann spectrum of t K when considered on B s;,. Denote by N, 4()) the
spectral distribution function of the operator tK on B, ;, with Neumann
boundary conditions. Using the variational characterization of a spectral
distribution function one can compare N, ;(A)(= Ny, ﬁ(%)) with the

spectral distribution function of K on the whole space R? to conclude that
there exists Cy > O so that for £ > 1, A > 1,

/\ d
NN <€ (3) <0t

Hence we have shown that for the spectral distribution function NJ/(t, X) of
the operator Ag(t) on My with Neumann boundary conditions there exists
C3 > 0sothat for A > 1,1 > 1,

NIt A) < CsA? . (6.73)
The claimed result now follows from (6.71), (6.72) and (6.73). D
For ¢ sufficiently large we introduce the trace of the heat kernel of
Agialt), .
B,(t, 1) = / e XN (1, A)
1
where N(ll"‘(t, ) is the spectral distribution function of Ag1a(t).

COROLLARY 6.9. (i) There exist tg > 0 and a constant C' > 0 such that,
fort >ty and p > 0,

By(t, ) < Cp™?. (6.74)

(ii) There exist constants to > 0, C' > 0 and 3 > 0 such that, for t > t,

and p > 1//%,

04(t, 1) < Ce™ Pt (6.75)
Proof. (i) By Proposition 5.2 there exist tg > 0 and a constant C; > 0 such
that for ¢ > # spec(Ag(t)) C [Cit,00) and therefore

x
0,(t, 1) = / eTHANNT(E, A) .
Cyt
Integrating by parts we obtain

Oq(t, 1) < 1t f te""*N;"(t,/\)d/\. (6.76)

Cy

Notice that N 12(t,X) < Ng(t, A) and therefore, by Lemma 6.8, one concludes
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that c e
B,(t, 1) < —d/ e AddN < C/pt .
H Citp
(i) From (6.76) and Lemma 6.8 we obtain

Oq(t, 1) < Cpe~Crin/2 /00 e"HM2NdgN < %e'cli“/z .
Cit
By choosing 3 < C;/2 and C > 0 sufficiently large we obtain (ii). o
Recall from Theorem A that log7j,(h,t) has an asymptotic expansion
for t — oo.
PROPOSITION 6.10.
ii_r,% FT(Aja(h,t,e) — Aa(W,t,6)) = FT(log Tia(h,t)) — FT(log Tia (K, 1)) .
(6.77)

Proof. We verify below that the function, defined for ¢ > 0 and ¢ sufficiently
large by
H(t,g) = Al (ht,e) — A(K, t,e) — log Tia(h, t) + log T (M, 1)

is of the form

d

Hit,e) =3 fult) + (t,) (6.78)

k=1

where g(t,¢) = o(1) uniformly in €. The statement of the proposition can
be deduced from (6.78) as follows: Recall that for ¢ > 0, H(t,¢) has an
asymptotic expansion for ¢ — oo. As g{t,e) = o(1) uniformly in & we
conclude that for any € > 0, }:izl e* fr(t) has an asymptotic expansion for
t — oco0. By taking d different values 0 < g1 < ... < g4 for € and using that
the Vandermonde determinant is nonzero

e ... &
det | | #£0
Ed ... 63

we conclude that for any 1 < k < d, fi(t) has an asymptotic expanston for
t — oo and that for any € > 0

d
FT(H(t,e)) =Y " FT(fi(t)) .
k=1

Hence lim. o FT(H(t,€)) exists and lim,_o FT(H(t,e)) = 0. To prove
(6.78) we introduce the zeta function (g 1a of Ag(t)a + &,

1 [ i
= = 8 € 6.79
Cq,la(tv &, 3) F(S) /0 M oq(t, H)e dﬂ ( )
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with 8,(¢, p) given as above. The integral in (6.79) can be split into two

parts
o

1
ot e, s) = ——/ 1710, (t, pe™Hdu
q,l( ) P(S) VA q( ”)

and

I 1 1/\/? s—1 —
Cq,la(t7€3s) = TS)/Q H 0q(t, ,u)e 5“d‘u, .

First let us consider

1> e — 1
Io.(tes)—Cl.(t,e=0,s =—/ ul(t, p)———d
Cq,l ( ) q,l ( F(S) 1/\/{ ‘1( ) 7 H

Note that
C;,la(tv € S) - Cc{,la(t &= 07 S)
is, by Corollary 6.9 (ii), an entire function of s. Recall that

i ()

and that 1 — e™°# < gu, we obtain

d
Els:ﬂ ((q la(t & S) C;Ja(tv €= 0, S))

o et — 1
8q(t, 1 —du‘
/M (60

<eC ~ e Pty =
- Jyvi Bt
where we have used Corollary 6.9. To analyze the term
d
Esz(qla(tss) qla(t€_05))a
first expand (e™*# — 1)/p

=1
s=0

EC 8V

k

d
-1 _
==Y k,) et et ple(e, )

k=1
where the error term is given by

e(e, ) = ( i (;kl!lliglcﬂk—l)/sd+lﬂd .

k=d+1
Note that, by Corollary 6.9, u%0,(t, u) < C and therefore

1/V1
/ po0(t, w)et ple(e, p)dp
0

(6.80)

(6.81)

(6.82)
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is a meromorphic function of s, with s = 0 a regular point and, for ¢ suffi-
ciently large

d 1 Ve d+1,.d d
sJ(ﬁSA W%&me+udaMW>S€+Th@

ds ls=

where C is independent of ¢ and &, 0 < ¢ < 1. 6,4(t, 1) admits an expansion
for 4 — 0+ of the form

0q(t, 1) = }thw“@”+wam

j=0

where (2, 1) is continuous in p > 0, because so does Ay(t). Therefore, for

1<k<d,
1 1/V7 (‘Uk
sg ik, k-1
WEA poBq(t p) e " du

is analytic in s at s = 0 and

- i .
4 (L . (1% 4 s
kz::l ds s=0<1"(s)/0 H oq(taﬂ)——k! e p" " dp

is of the form Zzzl e® fr(t). This establishes (6.78). o

Proof of Theorem B. From Theorem A we know that logTia(h,t) —
log Ti. (¥, t) has an asymptotic expansion for ¢t — co. By Proposition 6.10,
the free term @p of the asymptotic expansion is given by

m]=!E%F71AMULLE)—IﬁJhCLE».

By Lemma 6.7 (ii) we conclude that

l_io=/ ao(h,s_—_-(),z)—/ ao(h,e=0,2') .
My }

which proves part 1 of Theorem B. Part (2) follows from (6.63). o

Proof of Corollary C. Choose a bijection © : Cr{(h) — Cr{h') so that
O(z;;) is a critical point z ; of A’ of index g. By assumption © extends
to an isometry © : Ug ;Uq; — Ug ;U,; where (Uy;) and (Uy;) are systems
of H-neighborhoods for A, respectlvely h'. Denote by T, respectlvely, 7' the
triangulation induced by (h g), respectively (h', g'), and by Tp, respectively
7} the triangulations 7p = (d — h,g), Tespectively 75, = (d — &',¢'). It
follows from (4.8')-(4.8"") and d odd that log Timet(7) = log Tmet(rp) and
lOg’-rcomb(T) = lochomb(TD) .
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Using Theorem A for both h and d — h, we obtain

2log Toy — 2log Ty, = FT'(logTun(h,t) — log Ton (W', 1))
+ FT(logTun(d — h,t) — log Tn(d ~ 1/, 1))
+ 2log Tnet(7) — 21log Thper () -

Decomposing log Ton(h, t) = log Tia(h,t) + log Tem (h, t) and taking into ac-
count the definition of the Reidemeister torsion (4.5) and the asymptotics
of log Tym(h,t) (cf. Theorem A) we conclude that

2log Ty ~ 21log T., = 2log Tre(7) — 2log Tre(7')
+ FT(logNa(h,t) — log Tia(k, 1))
+ FT(logTia(d — h,t) — log Tia(d — P, 1))

from which Corollary C follows by (6.55) and statement 2 of Theorem B. o

6.3 Proof of Theorem 2. In this subsection we provide the proof of
Theorem 2 using Corollary C of subsection 6.2 together with the product
formulas for the Reidemeister torsion and the analytic torsion established
in Proposition 4.1.

First we need the following result concerning the metric anomaly of the
analytic torsion, which is a generalization of a classical result due to Ray-
Singer (cf. [RSin, Theorem 2.1]), and can be proved by the same arguments
used to verify Proposition 6.2. (For the convenience of the reader, a proof
is included in Appendix 3.)

LEMMA 6.11. Let M? be a closed manifold of odd dimension d such that
(M, W) is of determinant class. Assume that g(u) is a smooth one-parameter
family of Riemannian metrics on M. Then logTu, (M, g(u), W) is a smoaoth
function of u whose derivative is given by

d
logTan (M, g(u), W) diz 1)?logdety (oq(u)*oq(u)) (6.83)

wlr—‘

where ¢,(u) is the A-linear, bounded isomorphism o4(u) : Null Ag(up) —
Null Ay(u) (the projection on Null Ay(u)), provided by Hodge theory and
U is arbitrary but fixed.

Given generalized triangulations 7 = (h,¢') and 7/ = (R, g") of M, 7' is
called a subdivision of 7 if

(1) C Cr (k') (0 < g < d)
(2) Wi(h’,g") C WZ(h,g') for any z € Crq(h) .
The following result can be found in [Mi2].
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LEMMA 6.12. Let 7 = (h,g') be a generalized triangulation, ¢ an integer
0<qg<d-1 and z,y two distinct points in M \ Cr(h). Then there exists
a generalized triangulation ' = (h', ¢"") with the following properties

(1) Cri(h') = Cri(h) for k # q, ¢+ 1;

(2) Cry(k) = Cry(h) U{a}; Crys1(h') = Crou1(h) Uy};

(3) 7' is a subdivision of T;

(4) W,y NW} is connected.

Since the Reidemeister torsion does not change under subdivision (cf.
[Mil]), one obtains

TRe(M, g, W, T) = TRe(M,g, W, TI) .

Proof of Theorem 2. By Proposition 5.6 it suffices to consider the case
where W is free. Further, by Lemma 6.11 and in view of the definition (4.4)
of Tpnet, it suffices to prove Theorem 2 in the case where g = ¢', 7 = (h, ¢').

Consider the sphere S® = {z = (z1,...,27) € R";} 2} = 1} with
an arbitrary generalized triangulation 71 = (hy,g1). Let 7 = (h,g) be
a generalized triangulation for M and consider M x S, endowed with the
Riemannian metric gxg; and the triangulation 7 x 71 = (h+h1,gxg1). Note
that I' = 7, (M) = 71 (M x S°). By assumption, (M, W) is of determinant
class and thus (M x 5% W) is of determinant class as well. Moreover, by
the product formulas of Proposition 4.2,

log Ton(M x Se’g x g1, W) = 2log Tun (M, g, W) (6'84)
and

log Tre(M x S®, g x g1, W, 7 x 71) = 2log Tre(M, g, W, ) (6.85)
where we used that x(S%) = 2 and that y(M, W) = 0 (as M is of odd
dimension).

Next, consider the product 5% x §° of the 3-spheres, S3={z=(z1,...,74)
€ R%; Yz} = 1}, with an arbitrary generalized triangulation 7, = (hz, g2)-
Arguing as above, we conclude that (M x §% x §3, W) is of determinant
class and that, by the product formulas of Proposition 4.1,

log Ton{M x §* x 8%, g x g2, W) =0
and
log Tre(M x §% x S%,g x gg, W, 7 x 1) =0

where we used that x(S° x $%) = 0 and that (M, W) = 0.

Choose a subdivision 7 = (h’, ¢"’) of the generalized triangulation 7 X 71
in M x 5% and a subdivision 7"/ = (A", ¢"") of the generalized triangulation
T X7y in M x 8% x S so that, for 0 < ¢ < d+6, # Cr,(h') = # Crg(h”). In
view of Lemma 6.12 this is possible because M x §¢ and M x §® x §3 are both
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of odd dimension and therefore x(M x §% x S*, W) = x(M x S®, W) =0.
We conclude from the above, Corollary C, Lemma 6.11 and Lemma 6.12
that

2log Ton(M, g, W) — 2log TRe (M, g, W, T)
=log Tun(M x S%, g x g1, W) — log Tre(M x S%,g x g1, W, 7 x 1)
=logTan(M x S8 ¢' W) —log Tre(M x 5%, ¢, W, 7")
= log Tun(M x S® x S, ¢" W) — log Tre(M x S* x 83, ¢" . W, ")
=log Ton(M x 8% x 83,9 x g, W)
~logTre(M x 5% x S3,g x go, W, T x 1) =0.
This proves Theorem 2.

A. Appendices

A.1 Appendix 1. In this appendix we prove Proposition 1.9, Proposition
1.10 and formula (1.32) stated in section 1.

Proof of Proposition 1.9. Proof of (1): First we show that for any s € C

%trN(ft) =stry ((f,)s_l%f?t> . (A1.1)
As the interval I can be assumed to be compact one can write
(0 = 3 [ ¥ 07
where C, a circle centered at zero, Contains spec f; for t € I. Then
Foni) =5 [t (0= 207 R0 £ faa

df, -
=try (dftzm/ X (A= fo) 2dA) .

Integrating by parts one obtains
= [x0-pra= o [aios o= s
211
and {A1.1) follows. Using (Al.1) one obtains
dd s
;i—logdetN(ft) = dtds‘ (trn(£1)°)
4
d

2 lamo (strzv(fm-l%’;i) - (ft ldft) |
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Proof of (2). Since fi = o~ !fya one has spec f; = spec f; and, for
Aé¢specfa, A= fi) 1 =a (A= fo)"la. If0 ¢ spec fs

d 1
logdetN(fl) = a‘;‘ s=0% /C )\s tI'N()\ - fl)_ld/\
= _L.l._ 1 / Atry (o ( _1()\——f2)_1a) dA
dsls=02ri c

= £Is=0 trn(f2)® = logdety(f2) .

Proof of (3) (a). For A ¢ spec f; Uspec fa, both (A— f1)~! and (A~ fp)~!
exist and (A — f) has an inverse given by

ol (A - fi) 0
-0 = (Lol s o)

This shows that spec f C spec f; Uspec f;. Reversing the argument one can
see that spec f; Uspec fa C spec f. Further, with C a circle which contains
spec f

d 1 -
logdety(f) = 75 s=0_ﬁ/ A try (A= f) dx
d 1
— St -1
ds|s=02mi /C)\ tv(A = fi)7dA

1 E] -1
+ds|5=02m'/c>‘ trn(A = fo)~1dA

= logdet y(f1) + logdety(f2) .

Proof of (3) (b). Notice that f is an isomorphism if 0 ¢ spec(f). There-
fore, in view of (a), it remains to check (1.5B). Consider a one parameter

family
h,=(fi“ g*).<f1 0) .
0 f2 tg f
Then
2log Voln (f) = logdet y{(h;) (A1.2)
and

log det y (o) = log ety (f Hh ﬂ) — log det y (f{ /1) + log det y(f; f2)
(A1.3)

where for the last inequality we used (3) (a) . According to (1.4) we have



Vol. 6, 1996 TORSION FOR REPRESENTATIONS IN FINITE TYPE HILBERT MODULES 849

d d T d
ElogVolN(ht)ztrN(ht—la;ht)=trN(({; ]92) a({; )(’)2))

(5 2)( 1)

and (1.5B) follows from (A1.1)-(A1.3).
Proof of (4). We have to prove
logdety f1 fa fof1 — logdety ff f1 =logdety f5 fa .

Consider the 1-parameter family C(t) of positive, selfadjoint operators,
C(t) := fi(f3 f2)' f1, defined on W,. Using formula (1.4) one verifies that

d X[ £ d x px
alogdetN s ) h = ;BIOgdetN(fz FEONE

This leads to the claimed formula,

1
d
log detN fff;fgfl - 10g detN fffl = /(; .(E IOg detN (ff(f;fg)tfl)dt

1
d
=/0 o log det 5 (f5 f2)'dt = log det (£ f2) -

Proof of (5). Note that (5) follows from (4) by observing that for an
isometry ¢, spec(ejay) = {1} and therefore log Voly(a;) = 0. o

Proof of Proposition 1.10. (1) is obvious from the definition. In order to
check (2), first note that f is a weak isomorphism iff both f; and f, are
weak isomorphisms. Using special elements of the form u + 0 and 04 v of
Wi @ W, one concludes that Ff:(A) < Fy(A) and Fy, (X)) < Fy()) which,
by (1), implies max{ Fy, (\), Fr,(A)} < F¢(}). For any w = u+v € Wi @Wh,
one has the inequality

(o) 2 Il + llgu+ fool > feud® . (AL4)
Let £ be a A-Hilbert submodule of Wi @ W, with {|f(w)l] < Ajwll, w € L.
Let £; := m (L) where m; : Wi & Wy, — W), is the canonical projection,
and let £, := Null(m;|¢). Then dimy £ = dimy £; +dimp £5. By (Al4),
I fi(w)]| < Aljulf for u € £1 and, by the definition of Lo, ||f2(w)l < Afjw]|
for w € £,. Therefore (j = 1,2)

dimN ﬁj S FfJ ()\) .
As £ is arbitrary one then concludes that Ff(A) < Fy, (A) + F, (A). o
Finally we prove formula (1.32)

1 T _
cc(A,s)=§Z(_1)uﬁ;)/0 p* L try e A HNdy (1.32)
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Proof of (1.32). It suffices to show that for A > 0 and Rs > 0

1 o0
trv (A +A)78 = —/ o le(=tN try et Al5
@+ =g | (A15)
By the spectral theorem
o
try e MAFN) = / e(_"“)dNA,+A(p) (Al1.6)
0
and thus o
trn (A + N =/ u=*dNa A (k) - (ALT)
0
Use that ) -
_— sle=nidn = y=° Al8
ol A (AL®)

to conclude from (A1.7) and (A1.6) that

o0 1 o0
trn{A; + A)7° =/ (-I:—-/ ns_le_n“dn)dNAi.'.)\(p) =
0 (5) Jo

T
— ¢ e "MdNj, dn= — n* " try e T Vdn |
o h " A a+x(p) |dn o) Jo N :

A.2 Appendix 2. In this appendix we prove formulas (5.5)-(5.7). Recall
that (cf. section 5 for complete statements)

|Aq;q(t)'l’q,i(xvt)‘ < CO(G)e_C{()t > (5.5)
(Aq;k(t)d"q,i(t)a wq,i(t)> Z 2t|q - k| 3 (56)
<Aq;q(t)wvw> > Cleyt|lw]l® - (5.7)

To prove these formulas first notice that
(N;;k — Ny(dzy A Adzg) = ngwdzy A Adag

where
negr=—q ifk>q and ngr=¢q—-2k ifk<q.

. < o d
Thus, with A = - 37707
(A + 2|22 = t(d — 2k) + 2tngu)e 171 /2 = 2tjg — kle~t121/2 | (A2.1)
Write
d
Avellalye112) = =12 A (v (fe]) — 23 8, ve(Jal) s, e~ 11 /2
1

+ve(la)) Afe~ =l /2) | (A2.2)
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Proof of (5.5). Use k = ¢ to conclude from (A2.2) and (A2.1) that
(A + lal? = 1(d - 2K) + 2tngg)(vela e~ /2)|

d d
< l - 22@] (ve(|z)))Bs, e~ =172 | 4 | — Zagj(ue(m))e-tlr"/?
1
< [pe(ja])|2tlzle 1121/ 4 lm(lwl)! e !/ 4 [e(|a]) e 1=/

where U (t) = jt (t) and U (t) = Fue(t). Use that supp(v.) and supp(¥)
are contained in [¢/2, €] to conclude that

(B +#[al? = 1(d — 2k) + 2tngq) (ve(|z))e= "1 /2)] (A2.3)

d—
< (||1}5||Loo (261‘6‘“2/16 + 2—16'“2/16) + ||i)€”Looe'€2/16> et /16

To estimate the normalizing constant G(¢) (cf. (5.3')), notice that with ¢y :=
(2/€)?, one obtains for t > tp,

1
/ ve(|e) e~ de 2/ e*’lrl’dxzc't—%/ e~ 54" 1ds . (A2.4)
Re lel<e/2 0

Combining (A2.3), (A2.4) one concludes that there exists C' > 0 so that for
t> to(G)

e T e T A P S E

(A2.5)
This leads to the estimate (5.5).
Proof of (5.6). Integrating by parts, we obtain
d
/ e_tw/2(Aue)e't|z|2/2y€dx = —Z/ e"tmzufaz vedz (A2.6)
R¢ R !

61/ 2 2
- 2 —t|a:l 6 v —t|x| /2 —t|zf? /2
Z/ (8 Ve) dac+§ /Raye&rj (5‘3:] )e dr .

Combining (A2.2) and (A2.6)one obtains

Avee=t12l12)y e~ 1= 12y
Rd

/nd (2(3 ve)2e —tlz|? +V2A( ~tjz|? /2) —t|z[? /2>dx. (A2.7)
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Combining (A2.1) and (A2.7) one obtains

/ (A + 2|z[? = t(d — 2k) + 2tngk) (vee 17 12) . (v~ 7Yz (A2.8)
Re

d
= 2t|q — k|v’e —tlel” 4 Oy, Ve 2e“”"z)da:
L, (2tla- PR

> 2tlg— kl/ (ve)?e 1V  dz .
R4
Taking into account the normalization factor 3(t) we obtain
(Agik(t)Pq,i(t), Yq,i(t)) =

Joa (A + 2|22 = t(d - 2k) + 2ingg)(vee =tel’/2) . (y et 12) 4y

>2t|lq — k|
TarwPe- P s =2l =H

This proves (5.6).

Proof of (5.7). It suffices to consider w € A%R% W) of the form w =
pde;, Ao ANdz;, @ v with v € W and ¢ € Cm(Rd;C) with compact
support. Thus it remains to show that there exists to = to(€) and Cy(e€) so
that for any ¢ € C*(R?; C) with compact support, satisfying

/m p(@)ve(jz])e !l 2dz = 0 (A2.9)
the following estimate holds
/Rd (A + )z — td) p(2) - p(z)dz > co(e)t/m |o(a)|*dz . (A2.10)

To prove (A2.10) introduce @3 := ¢ — @1 with

p(a)e =l /Zdz 2f?
p1(z) == Ja e il
Jraee~ U=l dx

being the orthogonal projection of ¢ onto the function e~t1=’/2 Notice that
(A + 2]z|2 - td)p; = 0 and, due to (HO1), spec(A + #2|z|? — td) C tZ>0.
Therefore

i/ (A +£]a]? - td) p(a) - p(@)dz| 2

> t/..., t@zlzdx=t(/m |¢!2dév—/m lm"’dz) :

It remains to estimate [gu |¢1/%dz = | fga <pe“"z|2/2dxl2. Use (A2.9) to

2| [ (B4 - )ty .
(A2.11)
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conclude, by the Cauchy-Schwartz inequality,

/nd 97(x)e-11117/2dx ’ = ‘/nd 99(@(1 - Ve(lrl))e'””z/zdz z

s /n lo[*dz /,, (1 - ve(l2]) e da .

Further, with ¢ = to(€) > (%)2 and t > #g

/ (l—ue(lﬂif))ze_t|’|2dr§/ e~tol=l’ SCto_d/Q/ e~ 51 1ds .
Re lz1> 5 1

(A2.12)

(A2.13)
By (A2.13) we can choose tg > (2)? so large that
/ (1= ve(le])) e~ dz < 1/2 . (A2.14)
R
Combine (A2.11), (A2.12) and (A2.14) to see that for t > ¢g
- —_— t
[ @+ el — ta)p(o) a2 3 [ folas :
Re 2 Rd

A.3 Appendix 3.

Proof of Proposition 1.6. We follow the line of arguments given in [RSin].
Let Tun(u) := Ton (M, g(1), W) and denote by AZ(u) the restrictions of the
Laplacians to A¥9(M; £) (defined in (4.17)) with' respect to the Riemannian
metric g(u). By (6.15) (and the argument which follows it), log Tan(u) =
—log T (0,u) where T (s, u) is given by

d
log T (s, u) i= %Z(—l)q G-20) (43.1)
(W)

1
{:u— s)/ o Ltry(e —za (“))dw+s/ EtrN(e'”Ai(“))d.’t. (A3.2)

1

with ££,(s) given by (6.12”) (for t = 0,9 =

We want to compute £ logTi(s,u). Notice that AT9(M;E) =
dg_1(AI"1(M;€)) does not depend on the metric and therefore is inde-
pendent of u. By Duhamel’s formula

du

To compute £A¥(u) = dg—1 4 (d;_ (u)) write for w € AY(M;E) and 7 €
ATi(a; )

d
4 n(e -wﬂu)):_mN( —eAg(w) A+(u)) (A3.3)

< q— 1(u 777> w dq 17)>u (A34)
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and define R (u) : AY(M;E) — AY(M; E) by (w,w' € AY(M;E))

d
a(w,w’)u = (Ry(u)w,w')_ . (A3.5)
Taking the derivative of (A3.4) and using (A3.5) one obtains (w € AY(M;£))
d * * *
Eﬂdq*l(u)w + Ry—1(w)dy_y (u)w = dg_; (u) Ry (u)w . (A3.6)
Recall that A;‘dq_l =dg_1A,_; and thus, by functional calculus,
e—a:A';(u)dq-l — q_le-—xA;__l(u).

Substituting (A3.6) into (A3.3) and using that try(AB) = try(BA) then
leads to

d - + - ~zA 7 (u
Etr]v (e qu) =zxtry (Rq_l(u)Aq_l(u)e ag( ))

—ztry (Ro(uw)A] (u)e"xA:("))
and, summing up,

f:(i(—l)? (e

d
=—z Z(—l)" try (Rq(u)(e"”A;(“)Aj(u) + e"Aq—("))A;(u))
0

d
=—z Y (=1)%trn (Ry(u)(e™"2 M Ay(w))) (A3.7)

d
S ey (R (1~ Qyl0,))

where @ ,(0, w) denotes the orthogonal projection onto the space of harmonic
g-forms Null(A,(u)). By assumption, (M, W) is of determinant class and
therefore

1
~00 < /+ log pdNa, uy() -
0
We now compute

d. .. . da d
EEIOgTan(S,U) = '(EEEI(S,R) + -d—ufl(u)

for s = 0, where

d 1
1 1 s -z o
I(s,u) := ~3 E (_1)4f(_s),/0‘ 2 ry(e a¥( Ndz

q=0
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and

1 4 >0 +

~3 E / —trN(e_’Aq (W)dg

In view of (A3.7) we get
d

1) = ——ZU | i o (Balwe 1 - Qu(0,u))
=0
22 1) try (Ry(u)e™ 29 (Id — Q4(0,u)))dz (A3.8)

where we used that
lim try (Ry(u)e™ 2 (Id — Q,(0,u))) =0 .

Again applying (A3.7), and integrating by parts

9 +
d(fl 95 ls (s’u) ;aas o 0F1 / e IZ ———trN(e zAg (u))dl'
d
=—%Z(—1>w (Ry(w)e™ M (1d = Q,0,w)+  (A39)
q=0
1 ! s—ll q —Ag(u)
+F-P-s=0‘f‘(;5]0 x 52(—1) try (Re(u)e 2 (Id — Q4(0,u)))dx

q=0
Combining (A3.8) and (A3.9) one obtains

% log Ton(u) = —a[-l- log T (0,u) = (s, u)—II{u)=  (A3.10)

a
T Osls
1 ! 8- 1 —Ag(u)
—_ F.p.s=0r~(s—)/0 2 Z tI'N R (u) (Id - Qq(O,U)))d.T
The same arguments Wthh were used to verify (6.21') can be applied in

this situation as well: Note that the heat kernel expansion for the Schwartz
kernel K(y,y', z,u) of e=*24(¥) on the diagonal y =y’ is of the form

Kq(y,y,2,u) Z =DP21 5y, u) + Ou(2'/?)

where I, ;(y,u) are densities deﬁned on M with values in B and the er-
ror term O,(z!/?) is a density which can be bounded by Cz'/? with C
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independent of u in a compact subset of the parameter domain. Thus

1 1 ) d R
FJLS:O‘ITS)\/OA z®” Z(—l)th‘N (Rq(u)e_ q(u))dl.

d
= Z(—l)q try (Rq(u)lq,d('vu)) .

Taking into account that M is of odd dimension and the operator Ay(u) is
of even order one sees by a parity argument that try(Rq(u)lgq(-,u)) = 0.
Therefore

1 ! s—1 —rAq(u)
F.p.szomjfo 2L try (Rg(u)e™ ¢ W)dz = 0

and (A3.10) leads to

d
d 1
L 1o Tun(u) = 5 D (1)t (Qu(0 W)R(WQ(0,)) . (AB1Y)
q=0
Let Py(u) := Qq(0,u)} and define {for up € R arbitrary, but fixed)
oq(u) : HE (M; &) - HI(M;E) (A3.12)

where H%(M;E) denotes the nullspace Null(A,(u)) and o4(u)(w) is the
unique element in H%(M; £) satisfying (W] = [oq(u)(w)]. Thus £og(u)(w)
is cohomologous to 0, i.e. there exists a sequence (1;(u));>1 in A" (M;€)
such that

d .
Zola(Ww) = lim dg_in;(w) .

To prove the lemma it remains to show that

try (Ry(u)Py(w)) = Zl(iu logdety (oq(u)*oq(u)) . (A3.13)

To verify this identity notice that o4(u) is an isomorphism. Therefore
log dety (og(u)*oq(u)) > —o0
and thus
—d-—logdet {og(w)*oq(w)) = try | {og{w)*o (u))_l-—d—(a (u)*o (u))) .
Tu et 1o q q q du 74 q
(A3.14)
To compute - (oq(u)*o4(u)), consider (w,w’ € HY (M;E))

;&-(oq(u)*aq(u)w,w')uo = ;;<oq(u)w, oq(u)w'y, = I(u) + II(u) + I1I(u)
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Iw) = <3%oq<u>w,oq(u>w’>u ,
II(u) = <aq(u)w, a%aq(u)w'> ,

u

I1I(u) = (Ry(u)oq(u)w,04(u)w’) .

In view of (A3.12), I{u) = 0 and II(u) = 0 and thus

L (04(u)*og(w)) = 001 Ry(u)or()

Substituting this into (A3.14) leads to

2 tog ety (04(u)04(w) = tr (o(0) ™ (0g(w)") o4(w)" Ry(u)og ()

=try (Rq(“)Pq(“))

which establishes (A3.13). o
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