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Abstract - -  Zusammenfassung 

Heuristic Algorithms for the Multiple Knapsack Problem. Given a set of items, each having a profit 
and a weight, and a set of knapsacks, each having a capacity, we consider the problem of inserting 
items into the knapsacks in such a way that the subset of inserted items has the maximum total 
profit without the total weight in each knapsack exceeding its capacity. 

The best algorithms for the exact solution of this problem can be applied, with acceptable running 
times, to cases with a maximum of 200 items and 4 knapsacks, but real world applications (such 
as, for example, cutting stock and loading problems), often involving a greater number of variables, 
call for the use of heuristics. 

This paper presents methods for finding suboptimal solutions to the Multiple Knapsack Problem. 
An extensive computational experience was carried out both on small-size and large-size randomly 
generated problems; the results indicate that the proposed algorithms have a satisfactory behaviour 
with regard both to running times and quality of the solutions found. 

A FORTRAN IV implementation of the algorithms is given. 

Heuristische Algorithmen zur Paekung von mehreren Rueksiicken. Vorhanden ist eine Menge von 
Gegenst~inden mit gegebenem Gewicht und gegebenem Wert, ferner eine Menge von Rucks~icken 
mit gegebener Tragf~ihigkeit. Die Gegenst~inde sollen so in die Rucks~icke gepackt werden, dab die 
Tragf~ihigkeit der einzelnen Rucks~cke nicht iiberschritten wird und der Gesamtwert der verwendeten 
Gegenst~inde mSglichst grofl ist. 

Die besten bekannten Algorithmen liefern mit vertretbarem Rechenaufwand L6sungen ffir h6ch- 
stens 200 Gegenst~inde und 4 Rucks~icke. Aber praktische Anwendungen wie z. B. Teilungs-, Lager- 
haltungs- und Ladeaufgaben ben6tigen oft eine gr6Bere Zahl von Variablen und verlangen daher 
die Verwendung von Heuristik. 

Der vorliegende Artikel erl~iutert Methoden, mit deren Hilfe sich suboptimale LSsungen des Mehr- 
Rucksack-Problems finden lassen. Numerische Experimente mit Problemen verschiedener Gr6Be 
zeigen, dab sich die verschiedenen Algorithmen zufriedenstellend verhalten, sowohl hinsichtlich 
der Laufzeiten als auch beziiglich der Giite der gefundenen Lfsungen. 

Eine FORTRAN-IV-Version der Algorithmen ist beigefiigt. 

1. Introduction 

G i v e n  the  sets N =  {1, 2 . . . .  , n}, M =  {1, 2 . . . . .  m} and  the  vec to r s  (pj), (%), (ci) , we 

def ine  the  Zero-One Multiple Knapsack Problem as 

m a x  ~ ~ pjxi,  j (1) 
i e M j ~ N  
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(P) 
subject to wjxi, j<c  i for all i ~ M ;  (2) 

j eN 

xi, j_<l for all j ~  N; (3) 
i~M 

xi. j6 {0, 1} for all i ~ M , j ~ N .  (4) 

The problem can be viewed as that of taking n items, each having a profit pj and a 
weight w j, and selecting those to be inserted into m boxes (knapsacks) of 
capacities ci, so that the total profit of the inserted items is maximum (1), the 
total weight inserted in each knapsack does not exceed the corresponding 
capacity (2), while each item is either inserted in a knapsack or rejected (3, 4). 
The problem may represent many industrial situations such as the loading of m 
ships with n containers, the loading of n tanks with m liquids that cannot be 
mixed or the cutting of m unidimensional items into n pieces of assigned lengths. 

We will assume, with no loss of generality, that 

pj, wj, ci>0 and integers; 

min {w j} < min {ci}; 
j i 

max {w j} < max {q}; 
j i 

X w j>  max (ci}. 
jEN i 

Furthermore, we will assume that the items are arranged so that 

pl /W1 • pz /W2 ~ ... ~ pn/Wn. 

The problem represents a generalization of the well-known Zero-One Single 
Knapsack Problem (P1), where only one knapsack is available for the n items. 

An upper bound for the value of (P) can be obtained by solving the Surrogate 
Relaxation given by the single knapsack problem: 

max ~ pjzj  
jeN 

(Ps) 
subject to. ~, wj z j<_ ~, ci; 

j~N i~M 

zjc (0, 1} for all j ~ N. 

Algorithms for the exact solution of the Zero-One Multiple Knapsack Problem 
have been presented by Hung and Fisk [2] and by Martello and Toth [4, 5]; 
this paper studies algorithms for finding an approximate solution to the prob- 
lem. 

The need for heuristics is justified by the computational complexity of the 
problem. It is ha fact known that (P1) is an NP-complete problem; since for 
any instance of (P1) an instance of (P) can be constructed in polynomial time 
(by simply setting m = 1), which has a solution if and only if (P1) has a solution, 
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(P) too is NP-complete. There is no proof but strong suspicion that no NP- 
complete problem can be solved by a polynomial-time algorithm, so the worst 
cases of these problems are computationally "intractable" and heuristic algorithms 
are useful for their solution. 

To the authors' knowledge, the only heuristic algorithm fo r (P) that has been pro- 
posed is Fisk and Hung's [1]: this method exactly solves (Ps) (let the solution be 
Z = {j I zi= 1}) and then tries to insert the items of Z in the knapsacks; when an 
item cannot be inserted in any knapsack, for each pair of knapsacks it attempts 
exchanges between items (one for one, then two for one, then one for two) until 
an exchange is found which fully utilizes the available space in one of the knap- 
sacks. If all the items of Z are inserted, an optimal solution is found; otherwise, the 
current (suboptimal) feasible solution can be improved by inserting in the knap- 
sacks as many items of N - Z  as possible. In the worst case Fisk-Hung's algorithm 
requires a non-polynomial running time, since it needs exact solution of a n  
NP-complete problem. 

Our purpose is to give heuristic methods useful for those multiple knapsack 
problems, often arising in real world applications, which cannot be solved by 
means of non-polynomial algorithms because of the enormous amount of 
computation needed (as will be shown in Section 2); consequently, the procedures 
we propose, which are all polynomial in the problem size re+n, have been 
designed so as always to guarantee acceptable running times (we present compu- 
tational results up to 100 knapsacks and 1000 items); since the theoretical 
analysis of worst-case bounds to the errors often gives results far from the actual 
performance of heuristics, we evaluated our approximations through extensive 
computational experiments on different types of randomly generated data sets 
reflecting most of the real-world situations. The results indicate that the proposed 
methods ha've~ a satisfactory behaviour with regard both to running times and 
quality of the solutions found. 

Three kinds of procedures are developed: to find an initial feasible solution 
(Section 3), to improve on a feasible solution (Section 4), to rearrange a feasible 
solution (Section 5). These procedures are evaluated through computational 
experiments on small-size problems (i. e. problems having up to 200 items and 
up to 4 knapsacks). Computational results on large-size problems are given in 
Section 6. The FORTRAN codes are presented in Section 7. 

We will always assume that the knapsacks are initially arranged so that 

CI <~C2 <~... <~Cm . 

2. Computational Behaviour of Exact Algorithms for Knapsack Problems 

We considered uniformly random data sets of different categories, corresponding 
to different distributions utilized for generating items and knapsacks. 

Two distributions were used for the items: 

a) lO <_ wj <_ 100, lO <_pj <_ 100 for allj ~ N (Uncorrelated items); 
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b) 10 < wj < 100, pj = wj + 10 for all j ~ N (Correlated items). 

Two distributions were used for the knapsacks: 

c) [0.4 Z wj/m]* < c i < [0.6 y '  wj/m] for i=  1,..., m -  1 (Similar knapsacks); 
j ~ N  j e N  

d) 0 < c1_< [0.5 y, wd, 
j E N  

O< c i <_ [0.5 E w j ] -  Z c, for i=2,  ..., m - 1  (Dissimilar knapsacks). 
j E N  u<i 

Both for c) and for d) the m-th knapsack capacity was chosen such that 

E c~ = [0.5 ~ wj]; if ci < min {w j} for some i or max {ci} < max {w j}, a new set 
i ~M j ~ N  j e N  i~M j ~ N  

of knapsack capacities was generated. 

For each category, different pairs m, n were considered and, for each pair, 30 
problems were generated. 

For the optimal solution of the single knapsack problems, required by the 
methods in [1, 2, 4, 5], the branch and bound algorithm of Martetlo and Toth 1-3] 
was employed. 

All the algorithms were coded in F O R T R A N  IV and run on a CDC-6600; the 
entries in the tables give the average running times expressed in milliseconds. 

Let us compare (Table 1) exact algorithms for the single and for the multiple 
knapsack problem on uncorrelated items and similar knapsacks. 

Table 1. Exac t  algorithms. (Uncorrelated items - -  similar knapsacks - -  CDC-6600 milliseconds) 

n = 2 5  n = 5 0  n =  100 n=200  

Single K.P. I 
m = l  4 6 12 21 

(Algorithm in [3]) 

m = 2  106 237 636 3344 
Mul t ip leK.P .  

m = 3  543 377 802 3563 
(Algorithm in [5]) m = 4  1649 4751 1490 6818 

The single knapsack problem does not show its complexity: its average times 
grow almost linearly with the value of n. On the contrary, the multiple knapsack 
problem fully shows its exponential growing rate and appears to be intractable 
for m > 4  or for n greater than a few hundred. This difference between the two 
cases is given by the enormous (exponential) number of single knapsack problem 
solutions that all the algorithms for the multiple knapsack problem involve. 

If we now consider the case of correlated items, where the single knapsack 
problem too shows its complexity (for capacity = [0.5 ~ w j], the algorithm in [3] 

j ~ N  
required 36 milliseconds for n = 25, 2700 milliseconds for n=  50), it is clear that 

* [ a ] = l a r g e s t  integer not  greater than  a. 
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for such data no exact algorithm for the multiple knapsack problem could be 
used and that even the heuristic method of Fisk and Hung [1] is impractical 
because of the need to solve the surrogate relaxation of the problem exactly. 

The test problems described in this section are used in the following to evaluate the 
heuristic procedures we present. In the tables of the next sections, each entry 
gives two values: the average running time (expressed in CDC-6600 milliseconds 
and relating to FORTRAN IV codes) and, in brackets, an upper bound on the 
percentage error, that is 100 e, where e is computed as follows: let 

V* =value of the heuristic solution found for (P); 
Vs = value of the optimal solution of (Ps); 
Vs = upper bound on Vs, computed as in [3-1; 

for uncorrelated items we set 

~=(Vs-V*)/vs, 

while for correlated items, for which the computation of V s is too hard, we set 

~=(Vs- V*)/Vs. 

3. Algorithms for Finding an Initial Feasible Solution 

Some of the methods we present require, as a subproblem, the heuristic solution 
of a single knapsack problem; this was always obtained through the following 
well-known Greedy Algorithm: 

procedure GREEDY (A, c, G) 
input: A ={ j [ i t emj  is available} (A~N) ;  

c = available capacity. 
output: G =  {j [ i temj is inserted in the knapsack} (G~_A). 

Set G = ~. 
For increasingj e A do 

if c pj/w i < 1, return; 
if wi <c, set c = c - w j ,  G=G u {j}; 

repeat. 
Return. 

In the worst case, this procedure requires I Al iterations, that is the number of 
operations is O (n). 

The following algorithms can be used to obtain an initial feasible solution 
G, (i= 1,..., m) to (P). 

Algorithm MK 1 : 

Set R = N. 
For increasing i ~ M do 

apply GREEDY (R, cl, Gi); 
set R = R - Gi; 

repeat. 
Stop. 
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MK 1 applies GREEDY m times, that is it requires, in the worst case, O (m n) 
operations. 

Algorithm MK 2: 

Set Gz = 0 for all i e M, i=  1. 
For  increasingj e N do 

set k = 1 ; 
while wj > cz and k < m do 

set k = k  + l, i = i  + l; if i>  m, set i=1 ;  
repeat; 
if wj <ci, set c i = c i - w j ,  G i = G  i u {j}, i = i  + 1; if i>m, set i=1 ;  

repeat. 
Stop. 

M K 2  inserts the first item in the first knapsack, the second item in the second 
knapsack, and so on cyclically; when an item cannot be inserted in the required 
knapsack, the next knapsack is tried, and so on; items which cannot be inserted 
in any knapsack are rejected. In the worst case, m iterations are to be performed 
for each item and the algorithm requires O (m n) iterations. 

Algorithm M]K 3: 
For increasing i ~ M do 

set g=ci ;  
apply GREEDY (N, g, G~); 

repeat. 

For  increasing j s N do: 
s e t B = { i l j e  Gi} ; 
if [ B [ > 1, then set A = {q [ q e N, q >j}, A* = - oe, and for increasing 

i e B  do: 
set G = Gi, g = cl ; 
apply GREEDY (A, g, G); 
set G i = Cr w {q [ q e Gi, q <j}; 

if A * < A =  ~_.pq- ~ pq, set i*=i ,  A * = A ,  G * = G ;  
q~G q~Gi: 

repeat; 
set Gi. = G*, c~. = c i . -  w j; 

else, if I B [=1 (say B =  {i*}), set c i . = c ~ . - w j ;  
repeat. 
Stop. 

MK3 starts by finding m greedy solutions for the m knapsacks, but in this case 
the items of each Gi are not excluded from N, so each item will generally appear 
in a number of knapsacks; in such cases the item is assigned to the knapsack 
for which the loss of profit corresponding to the exclusion of the item would be 
the greatest and the current greedy solutions of the remaining knapsacks are 
updated. In the worst case, MK 3 requires that, for each item, m greedy solutions 
be computed, so the algorithm's complexity is O (m n2). 
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In the innermost  loop an increase in efficiency can be obtained by substituting 
the applicat ion of G R E E D Y  (A, ~, G) by a faster greedy procedure  which takes 
into account  the obvious fact that the first s items in ~ n A, where 

s = m a x  q l ~ w e < c i  , 
t = j  

must be in G too. 

It should be noted that in M K 1  and M K 2  the G~'s are disjoint, so we need just 
a vector (gj = i if i tem j is inserted in knapsack i, for j = 1, ..., n) in order  to store 
all the informat ion in Gi (i = 1, ..., m). 

Table  2 gives the computa t iona l  performace of  the three M K  algori thms for the 
data  set b ) - d ) ,  that  is (see Section 2) correlated items and dissimilar knapsacks;  
the other  possible data  sets (b ) - c ) ,  a ) - d )  and a ) - c ) )  showed about  the same 
algori thm behaviour.  M K  3 had in general the best percentage errors but  also the 
worst running times. 

Table 2. Correlated items - -  dissimilar knapsacks. CDC-6600 milliseconds (percentage error) 

m 

25 
50 

100 
200 

25 
50 

100 
200 

25 
50 

100 
200 

MK1 

1 (6.13) 
1 (3.15) 
2 (1.73) 
5 (0.88) 

1 (8.00) 
2 (4.43) 
4 (2.10) 
8 (1.o6) 

2 (9.61) 
3 (5.51) 
6 (2.73) 

11 (1.08) 

MK2 

1 (7.08) 
2 (3.88) 
4 (2.11) 
7 (1.08) 

1 (9.65) 
2 (5.03) 
4 (2.57) 
8 (1.22) 

1 (12.49) 
2 (5.49) 
5 (2.88) 

10 (1.43) 

MK3 

5 (4.64) 
9 (2.08) 

18 (1.34) 
41 (0.57) 

6 (6.50) 
13 (3.06) 
24 (1.39) 
51 (0.70) 

6 (9.93) 
14 (4.62) 
28 (2.19) 
60 (1.20) 

4. Algorithms for Improving on a Feasible Solution 

Assume a feasible solution G i (i = 1, . . . ,  m) is known and define" 

S = U  Gi; 
i=1 

R = N - S ;  

v i = total profit current ly inserted in knapsack i; 

ci = current  remaining capacity of knapsack i; 

gi = knapsack where i t emj  is currently inserted; 

where S and R (subsets of N) are assumed to be in nonincreasing order  of 
pi/wj; in the algori thms of this Section we will suppose that S, R, v~, cl and g~ are 
updated  whenever some G~ is updated.  
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The following algorithms can be used to improve on a feasible solution. 

Algorithm I 1 : 

For increasing Jl �9 ~J [J �9 S, % + max {ci} >- min {wr} } do 
i~g j  r~R 

for increasing J2 �9 {J I J �9 S, j >Jl ,  gj ~ Oil, % + co~, > min {wr} } do 
r e R  

let wi~ =max  {wj~, wj~}, wj =min  {wj,, wj~}, i ,=gju  , iq=gj ,  ; 
set 6 = wj~ - wjq; 
if 6<ci ,  and ci + 6 > m i n  (w~}, set p t=max {p~ I r �9 R, w~<c iu+6) ,  

r~R  

Gi, = ( G i u -  {Ju}) ~ {Jq, t}, Gi, = ( G , , -  {jq}) u {j,}; 
repeat; 

repeat. 
Stop. 

11 considers all pairs of items in S and, if possible, interchanges them whenever 
doing so allows the insertion of an item from R into one of the knapsacks; the 
algorithm's complexity is 0 (n z) (the search for Pt is executed at most [ R I times). 
It should be noted that it is computationally efficient to stop the execution as 
soon as max {ci + el} < min {wr}. 

i~ l  r~R 

Algorithm 12: 
Set ~ = 0, k = 1, l = maximum number of iterations. 

While ~ < ~ v i and k_< l do 

s e t ~ =  ~ vi, k = k + l  ; 
\ i ~ M  

for decreasing j e S do 
let i be the knapsack such that j �9 G i and set ~ = ci + w j; 
apply GREEDY (R, ~, L); 

if ~ p~ > p j, set G i = (G i - {j}) u L; 
qeL  

repeat; 
repeat. 
Stop. 

This algorithm tries to exclude in turn each item currently in S and to replace it 
with one or more items from R so that the total profit is increased; the execution 
stops when no further replacement is possible or when 1 complete iterations 
have been performed. If l is a linear function of n, the complexity of I2 is 
O (na); we always assumed I= n. 

The separate and combined effects of I 1 and I2 on the solutions found by the 
MK algorithms were experimentally tested: I2 produced better improvements 
than 11 but required higher times; the sequence 11 + I 2  required about the same 
times as I2 and generally gave a better improvement; so, in what follows, we will 
always apply I1 followed by I2 (the sequence I 2 + I 1  generally gave worse 
results). 
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The first three columns of Table 3 show, for the same data set as Table 2, the 
effect of the sequence I 1 +I2  applied to the solutions of algorithms MK 1, MK2 
and MK 3. 

It should be noted that MK 2, which had bad initial solutions, obtained great im- 
provements, leading it to achieve in general good final solutions; this behaviour 
is analyzed in the next Section. 

Table 3. Correlated items - -  dissimilar knapsacks. CDC-6600 milliseconds (percentaoe error) 

n M K I + I I + I 2  

25 4 (1.64) 
50 9 (0.59) 

100 42 (0.34) 
200 97 (0.15) 

25 5 (2.95) 
50 13 (1.63) 

100 31 (0.62) 
200 103 (0.28) 

25 6 (4.37) 
50 15 (1.88) 

100 34 (0.76) 
200 120 (0.33) 

M K 2 + I I + 1 2  

4 (1.61) 
9 (0.46) 

47 (0.26) 
115 (0.15) 

5 (2.75) 
13 (1.34) 
41 (0.46) 

183 (0.23) 

5 (4.08) 
16 (1.40) 
49 (0.67) 

193 (0.27) 

M K 3 + I I + I 2  

6 (1.74) 
14 (0.62) 
51 (0.35) 

113 (0.15) 

8 (2.24) 
16 (0.85) 
38 (0.28) 

120 (0.16) 

9 (2.54) 
20 (0.78) 
46 (0.35) 

104 (0.14) 

M K I + A + I I + I 2  

5 (1.21) 
11 (0.34) 
52 (0.20) 

127 (0.08) 

6 (1.91) 
14 (0.50) 
35 (0.18) 

133 (0.08) 

7 (2.48) 
20 (0.70) 
38 (0.21) 

124 (0.08) 

MK3+A+II+I2] 

8 (1.18) 
18 (0.34) 
64 (0.20) 

158 (0.08) 

10 (1.97) 
22 (0.50) 
53 (0.18) 

177 (0.08) 

12 (2.12) 
26 (0.62) 
55 (0.23) 

166 (0.08) 

5. Algorithm for Rearranging a Feasible Solution 

The particular performance of I 1 and 12 when applied to the solutions found by 
MK2 can be explained by comparing the structure of these solutions with that of 
the MK 1 solutions. 

Consider what is the situation expected when, for each knapsack, the first item 
is found which cannot be inserted. In the MK 1 solutions, when this happens for 
the first knapsacks, generally several items of smaller weight are available, so 
the algorithm can fill such knapsacks well, whereas when this happens for the 
last knapsacks, only items of considerable weight are available so the knapsacks 
are not well filled; in the MK2 solutions the last situation occurs for all the 
knapsacks. Hence the worse performance of MK2 but also the different structure 
of the solutions, viz. each knapsack filled with items 6f similar profit per unit 
weight in the MK 1 solutions, with items of dissimilar profit per unit weight in 
the MK2 solutions: this explains why the improving algorithms, which are 
based on exchanges among the items, work very well on the MK2 solutions. 

The following algorithm can be used for rearranging the feasible solutions found 
by the MK algorithms in order to obtain a structure similar to that of the MK2 
solutions. 
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Algorithm A: 

Set c i (i = 1, ..., m) to its original value. 
Set Gi=~ for all i e M, i=  1. 
For  decreasingj ~ S do 

set k = l ;  
while wj > ci and k < m do 

set k = k  + l, i = i +  l;  if i > m ,  set i = l ;  
repeat; 
if wj < c~, set c i = ci - w j, G~ = G~ w ~j}, i = i + 1; if i > m, set i = 1 ; 

repeat. 
For  increasing i e M do 

apply GREEDY (R, c~, L); 
set R = R - L ,  G i = G  i to L ;  

repeat. 
Stop. 

The complexity of A is obviously the same as MK 2, i.e. 0 (m n) operations. The 
last two columns of Table 3 show the results obtained by using A before the 
sequence I 1 + I 2 :  A required an extra computational effort, but always pro- 
duced a great reduction in the percentage error. The results given by M K 2 +  
I 1 + 12 were always worse, both for running time and percentage error, than those 
given by MK 1 + A + I 1 + I2, so M K 2  will not be considered any further. 

6. Computational Results 

The algorithms obtained in the previous section (MK 1 + A + I 1 + 12 and MK  3 + 
A + I I + I 2 )  were compared with the algorithm of Fisk and Hung [1] (here 
referred to as FH) on the small-size data sets considered up to now, that is on 
problems having up to 200 items and up to 4 knapsacks. The following results 
were obtained: 

i) Uncorrelated items-Similar knapsacks: M K I + A + I I + I 2  obtained satis- 
factory approximations and required low running times; M K 3 + A + I  1 + I 2  
gave slightly better approximations but required a computational effort 
about five times higher; FH generally had the best approximations with 
intermediate times; the difference between the approximations of FH and 
those of the other algorithms seem to decrease when m grows. 

ii) Uncorrelated items-Dissimilar knapsacks: M K I + A + I I + I 2  and M K 3 +  
A + I I + I 2  gave about the same results as in case i); FH required running 
times slightly higher than those of M K I + A + I I + I 2  and had the best 
approximations for m = 2, 3 but the worst approximations for m = 4. 

iii) Correlated items-Similar knapsacks: MK 1 + A + I 1 + 12 and MK 3 + A + 
I 1 + 12 obtained about the same approximations but the latter required 50~o 
higher running times; FH could not solve to within the time limit of 250 
seconds data sets having more than 50 items; for n = 25, 50, it generally gave 
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good approximations but required enormous running times (about 100 times 
those of the other algorithms for n = 50). 

iv) Correlated items-Dissimilar knapsacks: M K  1 + A + I 1 + 12 and  M K  3 + A + 
I1  + 1 2  gave about the same results as in case iii) (see also Table 3); FH had 
about the same behaviour as in case iii), as far as the running times are 
concerned, but generally gave the worst approximations. 

Coming to large-size data sets, that is to problems having up to 1000 items and 
up to 100 knapsacks, we followed the information given by the small-size 
problems and tested algorithms M K I + A + I I + I 2  and FH for uncorrelated 
items, and algorithm MK 1 + A + I 1 + 12 for correlated items; because of the high 
running times, we also give the intermediate results corresponding to MK 1 and 
to MK 1 + A + I 1. In order to avoid anomalous problems, we always considered 
data sets such that n/m > 4. 

Table 4 shows that, for uncorrelated items and dissimilar knapsacks, FH obtained 
the best approximations but required the highest running times, while MK 1 + 
A + 11 + 12 gave average approximations with low running times. 

Table 4. Uncorrelated items - -  similar knapsacks. CDC-6600 milliseconds (percentage error) 

m n 

10 

20 

50 

\MK1 M K I + A + I 1  M K I + A + I I + I 2  FH 

50 7 (4.47) 
100 12 (1.73) 
200 21 (0.66) 
500 49 (0.19) 

1000 95 (0.09) 

100 25 (3.72) 
200 44 (1.30) 
500 104 (0.43) 

1000 195 (0.18) 

200 
500 

1000 

500 100 
1000 

12 (3.97) 
18 (1.29) 
32 (0.41) 
75 (0.13) 

139 (0.05) 

37 (2.99) 
62 (0.97) 

130 (0.29) 
247 (0.12) 

16 (3.37) 
24 (1.06) 
43 (0.37) 

102 (0.11) 
199 (0.03) 

45 (2.66) 
78 (0.89) 

186 (0.22) 
347 (0.08) 

20 (2.70) 
31 (0.25) 
67 (0.10) 

368 (0.04) 
1524 (0.02) 

52 (1.65) 
79 (0.16) 

256 (0.06) 
1236 (0.04) 

114 (4.33) 151 (4.29) 206 (3.52) 227 (1.38) 
258 (1.14) 323 (0.84) 408 (0.71) 429 (0.23) 
481 (0.44) 580 (0.31) 755 (0.24) Core Memory 

521 (2.46) 747 (2.16) 917 (1.81) Core Memory 
1010 (1.02) 1194 (0.76) 1522 (0.62) Core Memory 

Table 5 refers to uncorrelated items and dissimilar knapsacks: FH obtained the 
worst approximations; MK1 had clearly better approximations and generally 
lower running times; A, I1 and I2 required a strong extra computational effort, 
giving only small improvements. Both in Table 4 and in Table 5 FH, which 
requires an (m x n) matrix, was not applied to data sets such that m n > 50000. 
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Table 5. Uncorrelated items - -  dissimilar knapsacks. CDC-6600 milliseconds (percentage error) 

m n MK1 M K I + A + I  FH 

10 

20 

50 

100 

50 
100 
200 
500 

1000 

100 
200 
500 

1000 

200 
500 

1000 

500 
1000 

I 

8 (3.06) 
14 (1.13) 
25 (0,39) 
55 (0.12) 

114 (0.07) 

34 (3.14) 
65 (1.30) 

138 (0.41) 
230 (0.16) 

17 (3.23) 
32 (0.85) 
64 (0.30) 

148 (0.08) 
598 (0.04) 

62 (3.03) 
131 (1.37) 
327 (0,37) 

1390 (0.13) 

15 
37 
84 

229 
536 

1 M K I + A + I I + I 2  

20 (2.62) 
36 (0.81) 
73 (026) 

171 (0.07) 
648 (0.03) 

67 (2.86) 
141 (1.20) 
352 (0.34) 

!443 (0.11) 

307 (4.31) 
795 (1,55) 

2113 (0.69) 

1677 (3.53) 
3437 (1,70) 

(8.40) 
(2.41) 
(o.84) 
(0.30) 
(0.16) 

37 (11.63) 
72 (5.12) 

204 (1.84) 
947 (0,74) 

192 (4.43) 297 (4.38) 135 (16.21) 
470 (1.63) 771 (1,59) 372 (7,18) 
881 (0.73) 2051 (0.71) Core Memory 

994 (3.61) 1651 (3.55) Core Memory 
1927 (1.74) 3386 (1.72) Core Memory 

Table 6 (correlated items - similar knapsacks) shows that using A + I  1 + I2  
requires a strong extra computational effort but gives a strong reduction in the 
percentage errors; using only A + I  1 requires a small extra computational effort 
and gives a good improvement in approximation. 

Table 6, Correlated items --similar knapsacks, CDC-6600 milliseconds (percentage error) 

m n MK1 M K I + A + I 1  M K I + A + I I + I 2  

10 

20 

50 
100 
200 
500 

1000 

100 
200 
500 

1000 

6 (17.42) 
12 (7.37) 
24 (3.95) 
58 (1.69) 

118 (0.81) 

27 (17.69) 
52 (7.51) 

123 (3.11) 
243 (1.58) 

13 (6.81) 
20 (2.99) 
37 (1.03) 
90 (0,40) 

168 (0.18) 

47 (6.48) 
76 (2.65) 

157 (0.78) 
308 (0.31) 

28 (3.40) 
66 (0.65) 

225 (0.21) 
990 (0.04) 

2681 (0.01) 

127 (2.78) 
366 (0.59) 
812 (0.04) 

3607 (0.02) 

200 137 (13,33) 209 (9.71) 950 (4.76) 
50 500 319 (7.65) 466 (2.85) 3139 (0.30) 

1000 631 (3.94) 809 (1.10) 6162 (0.05) 

500 671 (17.42) 1469 (5.07) 5391 (2.75) 
100 ] 1000 1272 (7.65) 2023 (2.97) 16847 (0.22) 

T a b l e  7 shows a n a l o g o u s  b e h a v i o u r  for cor re la ted  i tems a n d  d i ss imi la r  k n a p -  
sacks, b u t  in  this case b o t h  the ext ra  c o m p u t a t i o n a l  effort a n d  the i m p r o v e m e n t s  
g iven b y  A, 11 a n d  12 are smaller .  Bo th  in  T a b l e  6 a n d  in T a b l e  7 F H  is n o t  con-  
s idered  since the r equ i r ed  exact  so lu t i ons  of  (Ps) is c o m p u t a t i o n a l l y  i n t r a c t a b l e  
for cor re la ted  i tems. 
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Table 7. Correlated items - -  dissimilar knapsacks. CDC-6600milliseconds (percentage error) 

m n MK1 M K I + A + I 1  M K I + A + I I + I 2  

10 

20 

50 
100 
200 
500 

1000 

100 
200 
500 

1000 

8 (7.93) 
16 (3.85) 
32 (1.80) 
83 (0.75) 

160 (0,42) 

36 (6.89) 
69 (3.16) 

156 (1.18) 
276 (0.48) 

15 (5.32) 
33 (2.16) 
92 (0.90) 

139 (0.24) 
520 (0.11) 

69 (5.67) 
134 (2.I9) 
346 (0.65) 

1499 (0.24) 

24 (3.30) 
77 (0.91) 

252 (0.27) 
736 (0.05) 

2487 (0.02) 

105 (4.64) 
242 (1.67) 
886 (0.45) 

4402 (0.14) 

200 198 (8.71) 316 (7.51) 421 (7.06) 
50 500 481 (3,14) 869 (2.69) 1664 (2.49) 

1000 898 (1.44) 1699 (1.22) 3784 (1.12) 

500 1033 (6.53) 1621 (6.05) 2334 (5.84) 100 
1000 1955 (3.02) 3608 (2.85) 6133 (2.76) 

For each entry of Tables 4, 5, 6, 7, computation of the ratios 0t = (maximum running 
time)/(average running time) and O, = (maximum percentage error)/(average per- 
centage error) gave the following results: 

M K I :  Qt_<2 and A~ _<2. 

MK 1 + A + I 1: for similar knapsacks, At-< 3 and A~ - 2; for dissimilar knapsacks, 
generally At<4 and A~<2 (with a few entries having maximum ratios 
At ~ 10 or A~ - 3). 

MK 1 + A + I 1 + 12: At as MK 1 + A + I 1; generally A, -< 2 (maximum Q~ --- 4). 

FH:for  similar knapsacks, A~_<6 and generally A,---7 (maximum 0,=~20); for 
dissimilar knapsacks, generally A~ < 7 and A, < 2 (maximum At ~ 10 or A, = 4). 

From Tables 4, 5, 6, 7 we can conclude that for the solution of real world 
applications involving large-size multiple knapsack problems it is impossible to 
indicate one algorithm as the best for all cases, but, according to the kind of 
problems to be solved, the best methods are: 

a) Uncorrelated items: for similar knapsacks, FH up to a few hundred items, 
then MK 1 + A + I 1 + 12; for dissimilar knapsacks, MK 1. 

b) Correlated items: for both similar and dissimilar knapsacks, MK 1 + A + I 1 
or, if tight approximations are needed, MK 1 + A + I 1 + 12; it should be noted 
that, in general, the improvement given by I2 strictly depends on the computing 
time required, so intermediate results can be obtained by imposing a maximum 
number of iterations l < n. 

7. F O R T R A N  Subrout ines  

We present the FORTRAN codes of algorithms MK1, MK3, A, I1 and I2 of 
the previous Sections. Each algorithm is coded as a subroutine; in addition we 
give a subroutine (HMKP) to select the sequence of calls. 
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The package is completely self-contained and communication to it is solely 
made through the parameter list of HMKP.  It is required that the items are 
already arranged in non-increasing order of the ratio pj/wj and the knapsacks in 
non-decreasing order of c~. 

As presently dimensioned, the size limitation is n_< 1000 and m < 100 if MK 1 is 
called, n _< 200 and m_< 5 if MK 3 is called. 

SUBROUTINE HMRP(N~P,W,M,C,LM*LA,LI,VSTAR,y,CR) 
C THIS SUBROUTINE HEURISTICALLY SOLVES THE 0-I  MULTIPLE KNAPSACK PROBLEM 
C 
C MAX VSTAR = P ( 1 ) * ( X ( I , I )  * . . .  § X(M,I)) § . . .  § P(~)* (X( I ,N)  § . . .  § X(M,N)) 
C SUBJECT TO 
C W ( I ) * X ( I , ] )  * . . .  " W(N)*X(I,N) NOT GREATER THAN C(1) (FOR I = I , . . . , M )  
C X(J , | )  § . . .  § X(J,M) NOT GREATER THAN I (FOR J = I ~ . . . , N )  
C X ( l , J )  = 0 OR I (FOR I = I , . . . ~ M ) .  (FOR J : I * . . . , N )  
C 
C SUBROUTINE HMKP CAN CALL q SUBPOUTINES~ WHICH PERFORM ALGORITHMS TO FIND 
C AN INITIAL FEASIBLE SOLUTION (MKI OR MK3),TO REARRANGE A FEASIBLE SOLUTION (A} 
C AND TO IMPROVE ON A FEASIBLE SOLUTION ( I I  AND 12). THE USER SHOULD SELECT THE 
C SEQUENCE OF CALLS THROUGH INPUT PARAMETERS LM, LA AND L I .  
C 
C THE PACKAGE GIVEN BY SUBROUTINES HMKP, MKI, MK39 A, 11, 12 IS COMPLETELY 
C SELF CONTAINED AND COMMUNICATION TO IT IS ACHIEVED SOLELY THROUGH THE 
C PARAMETERS LIST OF HMKP. ALL THE PARAMETERS ARE INTEGER. 
C 
C THE MEANING OF THE INPUT PARAMETERS 
C N = NUMBER OF ITEMS 
C P(J) : PROFIT OF THE J'TH ITEM ( J = I ~ . . . , N )  
C W(j) : WEIGHT OF THE J-TH ITEM ( J : I , . . . , N )  
C M : NUMBER OF KNAPSACKS 
C C(1) : CAPACITY OF THE I-TH KNAPSACK 
C LM = I TO PERFORM ALGORITHM MKI (SUGGESTED FOR LARGE-SIZE PROBLEMS) 
C : 3 TO PERFORM ALGORITHM MK3 (SUGGESTED FOR SMALL-SIZE PROBLEMS) 
C LA = 0 NOT TO PERFORM ALGORITHM A 
C : I TO PERFORM ALGORITHM A (SUGGESTED IF 11 AND/OR I2 ARE PERFORMED) 
C LI = 0 TO PERFORM NEITHER ALGORITHM I I  NOR ALGORITHM 12 
C : i TO PERFORM ALGORITH~ I I  
C : 2 TO PERFORM ALGORITHM I2 
C : 3 TO PERFORM ALGORITHM I I  AND THEN ALGORITHM I2 
C 
C THE MEANING OF THE OUTPUT PARAMETERS 
C VSTAR : VALUE OF THE SOLUTION FOUND 
C Y(J) : 0 IF ITEM J IS NOT IN THE SOLUTION FOUND (X( I , J )  : 0 FOR I : I ~ . . . ~ M )  
C = I I  I ~  ITEM J IS IN THE SOLUTION FOUND ( X ( I I , J )  : I) 
C C R ( I )  : C(I) - (W(1)*X( I , I )  § . . .  § W(N)*X(I~N)) (FOR I : I , . . . , M }  
C 
C BEFORE HMKP IS CALLED, VECTORS P AND W NEED TO BE ARRANGED IN DECREASING 
C ORDER OF THE RATIO P(J)/W(J), VECTOR C IN INCREASING ORDER OF C ( I } ,  
C 
C THE CALLING PROGRAM SHOULD CONTAIN THE FOLLOWING TYPE STATEMENT 
C INTEGER P(N}.w(N),C(M),Y(N)gCR(M)~VSTAR 
C LOCAL ARRAYS IN MK3 ARE CURRENTLY DIMENSIONED FOR PROBLEMS WITH M UP TO 5 
C AND N UP TO 200, LOCAL ARRAYS IN 11 AND 12 FOR PROBLEMS WITH M UP TO I00 AND 
C N UP TO I000. 
C 

INTEGER P(N),W(N),Y(N),C(M),CR(M),VSTAR 
IF ( LM .EQ. 3 ) GO TO 10 
CALL MKI(N,P,w,M,C,VSTAR,Y,CR) 
GO TO 20 

I0 CALL MK3(N,P~W~M~C~VSTAR~YyCR) 
20 IF t LA ,EQ. I ) CALL A(N,P~W~M,C~VSTAR,Y,CR) 

LL = LI * I 
GO TO ( 60 ~ 30 , 50 , 40 ) �9 LL 

30 CALL II(N,P,W,M,VSTAR.Y.CR) 
RETURN 

r CALL II(N*P,W,M,VSTAR,Y,CR) 
50 CALL I2(N,P,W,M,VSTAR,Y,CR) 
60 RETURN 

END 

SUBROUTINE MKI(N,P,W,M,C,VSTAR,Y,CR) 
INTEGER P(N),W(N),C(M),Y(N),CR(M),VSTAR 
INF = 999999Qq9 
DO 10 I=I,M 

CR(1) = C(1) 
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10 CONTINUE 
MPI : M § I 
P(N§ = 0 
W(N+I) = INF 
J = 1  
I = l  
VBTAR = 0 

20 IF ( W(J) .GT. CR(1) ) GO TO 30 
Y(J) = I 
CR(I) = CR(1) - W(J) 
VSTAR = VSTAR + P{J) 
J = J + I  
GO TO 20 

30 J5 = J 
Y(J) = MPI 

J = J + l  
DO 40 JJ=J~N 

Y(JJ) : MP] 
IF ( W(JJ) .GT. CR(1) ) GO TO 40 
Y(JJ) = I 
CR(I) = CR(I) - W(JJ} 
VSTAR = VSTAR + P(JJ) 

40 CONTINUE 
50 IF ( I .LT .  M ) GO TO 60 

GO TO 110 
6 0 1 = I + I  

DO 70 J=JS,N 
IF ( Y(J) .LE- M ) GO TO 70 
IF ( W(J) ,GT. CR(I) ) GO TO 80 
Y(J) = I 
CR(I) = CR(1) - W(J) 
VSTAR = VSTAR + P(J) 

70 CONTINUE 
GO TO I I 0  

80 JS = J 
J = J + I  

90 IF ( CR(1)*P(J)/W(J) .EQ, 0 ) GO TO 50 
IF ( Y(J) .LE. M ) GO TO TO0 
IF ( W(J) .GT. CR(1) ) GO TO I00 
Y(J) = I 
CR(1) = CR(1) - W(J) 
VSTAR = VSTAR + P(J} 

l O O J = J §  
GO TO 90 

I I 0  CONTINUE 
RETURN 
END 

SUBROUTINE MK3(N,P,W,M.C,VSTAR,Y,CR) 
INTEGER P(N),W(N)~C(M),Y(N)tCR(M)~VSTAR 
INTEGER S,D,ZCAP,VZCAP,CZCAP,VCAP,ZBTAR,VZSTAR,CZSTAR,Q 
INTEGER A(M~N ),V(M)tZ(M),CZ(M;,VZ(M)~OZ(M),B(M}~IFB(M)~MINW(N§ 
INTEGER A(5,2OO),V(8) ,Z(5} ,CZ(5)~VZ(5)9OZ(5) ,B(5)~IFB(5)~MINW(201)  
INF = 999999999 
VSTAR = 0 
JSTAR = I 
P(N+I) = 0 
W(N+I) = INF 
MPI = M + I 

MINK = INF 
MINW(N§ = MINK 

DO 20 J= I ,N  
Y(J) = MP} 
K K = N + I - J  
IF ( W(KK) .LT.  MINK ) MINK : W(KK) 
MINW(KK) = MINK 
DO tO I= I ,M  

A ( I , J )  = O 
I0 CONTINUE 
20 CONTINUE 

DO 30 I=I~M 
Z(1) = I 
CZ(1) = C(1) 
VZ(1) = 0 
OZ(1) = 0 

B( I )  = I 
30 CONTINUE 

I80UND = 0 
K8 = 0 
~B = M 

40 IF ( KB .EQ. M8 ) GO TO 170 
K8 = K8 * I 
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I = B(~B) 
IF { 1BOUND .EO, O) GO TO 50 
ZCAP : Z ( I )  
VZCAP = VZ(1) 
CZCAP = CZ(I} 
VCAP = V(1) 
IF ( S ,GE, Z ( I )  ) GO TO 50 
VZ(I)  = VZ(1) - P(S) 
CZ(1) = CZ(1) § W(S) 

50 J = Z ( I )  
CR(1) = CZ(1) 
V ( I }  = VZ( I ]  

60 IF (CR(1)  ,LT,  MINW(J) ) GO TO 70 
IF ( CR(1)#P(J}/W(J} .GE. I ) GO TO 80 

70 Z ( I )  = J 
CZ(I)  = CR(I} 
VZ(1) : V(1) 
GO TO 140 

80 IF ( W(J) oGT, CR(1) ) GO TO 90 
CR(1) = CR(I) - W(J) 
V(1) = V(1) �9 P(J} 
A ( I , J )  = 1 
IOZ = J 
J = J + l  
GO TO 60 

90 IF ( J .NE, JSTAR ) GO TO 100 
A ( I , J )  = 0 
J = J + ]  
GO TO 60 

IO0 Z(1) = d 
CZ(1) = CR(1) 
VZ(1) : V ( I }  

I10 IF (CR(1)  .LT,  MINW(J) ) GO TO 140 
IF ( C R ( I } ~ P ( J ) / W ( J )  .LT~ I ) GO TO 140 
IF ( W(J) .GT, CR(1) ) GO TO 120 
CR{I) = CR(1) - W(J) 
V(1) = V(1) �9 P(J) 
A ( I , J )  = ! 
IOZ = J 
GO TO 130 

120 A ( I , J )  = 0 
] 3 0 J = J §  

GO TO 110 
140 JO = OZ(1) 

IF ( JO ,LT.  J ) GO TO 160 
DO 150 O=J,JO 

A(I,O) = 0 
150 CONTINUE 
160 OZ(I) = IOZ 

IF ( IBOUND .EQ, 0 ) GO TO 40 
IF ( VCAP - V( I )  .LE. D ) GO TO 40 
D = VCAP - V(1) 
ISTAR = I 
ZSTAR = ZCAP 
VZSTAR = VZCAP 
CZSTAR = CZCAP 
GO TO 40 

170 IF ( IBOUND ,EQ, I ) GO TO 180 
J = JSTAR 
80 TO 210 

180 VSTAR : VSTAR * P(S) 
Y(S) = ISTAR 

190 IF [ Y(JSTAR) ,EQ. MPI ) GO TO 200 
JSTAR : JSTAR § 1 
80 TO 190 

200 NB = 0 
K8 = 0 
I80UNO = 0 
I = ISTAR 
Z( I )  = ZSTAR 
VZ(I)  = VZSTAR 
CZ(1) = CZSTAR 
GO TO 50 

210 IF ( J ,GTo N ) RETURN 
MB = 0 
DO 220 I=I~M 

IFB( I }  = D 
IF ( A( I~J)  .EQ, 0 ) 60 TO 220 
MB = M8 + l 

B(MB) = I 
IFS(1) = 1 

220 CONTINUE 
K8 = 0 
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IF ( MB .LE. I ) GO TO 240 
I80UND = I 
S = J  
D = - INF 
JSTAR = J * I 
DO 230 I=I~M 

IF ( Z ( 1 )  .GE. JSTAR } GO TO 230 
Z(1) = JSTAR 
IF ( IF8(1) .EQ. 0 ) GO TO 230 
VZ(1) = VZ(I )  * P ( S )  

CZ(1) : CZ(1) - W(S} 
23O CONTINUE 

GO TO 40 
240 IF ( M8 ~176 0 ) GO TO 250 

I = B(1) 
VSTAR = VSTAR * P(J) 
Y{J) = I 
IF ( J .LT .  Z(1) } GO TO 250 
Z(1) = J * I 
CZ(1) = CZ(1) - W(J) 
VZ(1) = VZ(1) § P(J) 

2 5 0 J = J + l  
GO TO 210 
END 

SUBROUTINE A(N~P~W.M~CtVSTAR~Y,CR) 
INTEGER P(N}~W(N)~C(M)~Y(N)*CR(M)~VSTAR 
INF : 999999999  
VSTAR = 0 
I = 1  
J = N 
IBAR = I 
DO 10 KK: I ,M 

CR(KK) = C(KK} 
10 CONTINUE 

MPl = M * I 
P(N§ = 0 
W(N§ = INF 

20 IF ( Y(J) .EQ. MPI ) GO TO 40 
IF ( W(J) oGT. CR(1) ) GO TO 30 
Y(J} = I 
CR(I) = CR(1) - W(J) 
VSTAR = VSTAR + P(J) 
GO TO ~0 

3 0 I = l §  
I r  ( I .GT. M ) I : I 
IF ( I .NE. IBAR ) GO TO ~0 
Y.(J) = MP] 
I = I - 1  

4 0 J = J - I  
IF ( J .EQ. 0 ) GO TO 50 
I = I * l  
IF ( I .GT. M ) I = I 
IBAR = I 
GO TO 20 

50 MAXC = CR(|) 
IMAXC = I 
DO 60 I=29M 

IF ( CR(1) .LE.  MAXC ) GO TO 60 
MAXC : CR(1) 
IMAXC : I 

60 CONTINUE 
DO BO J : I~N 

IF ( Y(J} oLT. MPI } GO TO 80 
IF ( W(J) . G I .  MAXC ) GO TO BO 
CR(IMAXC) : CR(IMAXC) - W(J) 
VSTAR : VSTAR * P(J) 
Y(J) : IMAXC 
MAXC = CR(1) 
IMAXC : ,~ 
O0 70 I=2~M 

IF ( CR(1) .LE. MAXC ) GO TO 70 
MAXC = CR(I} 
IMAXC = I 

70 CONTINUE 
80 CONTINUE 

RETURN 
END 

SUBROUTINE II(N~P~W~MtVSTAR.Y,CR) 
INTEGER p(N)~W(N}gY(NI.CR(M}.VSTAR 

C INTEGER F(M§ 
INTEGER F(IOI.IO]}gCP.WP.FF,U~T,Q,R~S~D 

8 Computing 27/2 
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INF = 999999999 
MP! = M + 1 
CR(MPI} = 0 
MAXF = 0 
CR = 0 
00 20 I= I tM  

IP I  = I + I 
DO 10 J=IPI ,MPI  

F( I~J)  = CR(I) § CR(J) 
F ( J , I )  = F( I~J}  
IF ( F ( I t J )  .LE. MAXF ) GO TO I0 
MAXF = F ( I , J )  
IP = I 
JR = J 

I0 CONTINUE 
F ( I t I )  = 0 
IF ( CP ,LT.  CR(1) | CP = CR(1) 

20 CONTINUE 
F(MPI~MPI) = 0 
DO 30 J=I~N 

IF { Y(J) ~ MPI ) GO TO 30 
FF = J 
GO TO 40 

3O CONTINUE 
RETURN 

40 WP = W(FF) 
IF ( FF .EQ, N ) GO TO 60 
I F l  = FF § I 
DO 50 J = I F I , N  

IF ( Y(J) .LT,  MR1 ) GO TO 50 
IF ( W(J) .LT,  WP } WP = W(J) 

50 CONTINUE 
60 IF ( F ( IP ,JP)  ~ WP ) RETURN 

J = 1  
70 IF ( CR(Y(J)} * CP ,LT~ WP ) GO TO 230 

K = J §  
80 IF ( K ,GT, N ) GO TO 230 

IF ( F ( Y ( J ) , Y ( K ) )  ~ WP ) GO TO 120 
IF ( W(J) - W(K) ) 90 ,120 . |00  

90 U = K 
T = J 
GO TO 110 

I00 U = J 
T = K  

I I 0  D = W(U) - W(T) 
I = Y(U) 
IYT = Y(T) 
IF ( D ,GT, CR(IYT) )GO TO 120 
IF ( CR(1) * D .GE, WP ) GO TO 130 

1 2 O K = K §  
GO TO 80 

130 ICIPO = CR(I) + D 
NAXP = 0 
O0 140 Q=FFoN 

IF ( Y(O) ,LT,  MPI ) GO TO 140 
IF ( W(Q) ,~T.  ICIPD ) GO TO 140 
IF ( P(O) .LE, MAXP ) GO TO 140 
R = Q  
MAXP = P(R) 

140 CONTINUE 
CR(I) = CR(1) § D - W(R) 
CR(IYT) = CR(IYT) - O 
VSTAR = VSTAR § P(R) 
O0 150 O=ItM 

F(I~Q) = CR(I) + CR(Q) 
F(Q~I) = F ( I ,Q)  
F(IYT,O) = CR(IYT} + CR(Q) 
F(Q,IYT) = F(IYT~Q) 

150 CONTINUE 
F ( I ~ I )  = 0 
F( IYT , IYT}  = 0 
IF ( I .EQ, IP ) GO TO 160 
IF ( I .EQ, JP ) GO TO 160 
IF ( IYT ,EQ. IP ) GO TO 160 
IF ( IYT .NE. JP ) GO TO 190 

160 MAXF = 0 
00 180 Q=I,M 
I P l  = Q + I 
DO 170 S=IPI,MPI 

IF ( F(Q,S) ,LE, MAXF ) O0 TO 170 
MAXF : F(O,S) 
IP = Q 
JP : S 
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170 CONTINUE 
180 CONTINUE 
190 Y(R) = I 

Y(U) = IYT 
Y(T) = I 
IF ( W(R) .NE. WF ) GO TO 210 
WP = INF 
O0 200 S=FF,N 

IF ( Y ( S )  ~ MP1 ) GO TO 200 
IF ( W(S} .LT .  WP ) WP = W(S) 

200 CONTINUE 
210 IF ( F(IR~JP) oLT. WP ) RETURN 

CR = 0 
DO 220 S=ItM 

IF ( CP ~ CR(S) ) CP = CR(S) 
220 CONTINUE 

IF ( CR(YiJ)) * CP .LT.  WP ) GO TO 230 
K = K * I  
GO TO 80 

230 IF ( J .EQ. N ) RETURN 
J = J + l  
GO TO 70 
END 

SUBROUTINE 12(NtPgWgM,VSTARgYtCR) 
INTEGER P(N),W(N),Y(N),CR(M),VSTAR 
INTEGER MIN(N )~X(N ) 
INTEGER MIN(IOOO).X(IOOO)gF,T,V,CB,U,S 
INF = 9999999Q9 
MPI = M + 1 
M I N K  = I N F  
MIN(N) = MINK 
DO I0 I=2,N 

K K = N §  
IF ( W(KK) .LT .  MINK ) MINK = W(KK) 
MIN(KK-I) = MINK 

IO CONTINUE 
DO 20 J=I~N 

IF ( Y(J) .LE. M } GO TO 20 
F = J 
GO TO 30 

20 CONTINUE 
RETURN 

30 S = N 
J = N 

40 IF ( Y(J) .EQ, MPI ) GO TO 140 
CB = CR{Y(J)) + W(J) 
IF (CB*P{F) /W(F)  ,LE. P(J) ) GO TO 140 
IF ( CB ~ w(F) ) GO TO 50 
IF ( CB .LT.  MIN(F) ) GO TO 140 

S O K = F  
T = O  
V = O  

60 IF ( W(K) .GT. CB ) GO TO 70 
V = V * P(K) 
CB : CB - W(K) 
T : T * I  
X ( T )  = K 
IF  ( CB ~  M I N ( K )  ) GO TO 100 

70 IF ( K ~ N ) GO TO IO0 
KI=K+I 
00 80 U=KI~N 

IF ( Y(U) oLE. M ) GO TO 80 
K = U 
GO TO 90 

80 CONTINUE 
GO TO 100 

90 IF ( V + CB*R(K)/W(K) , G T ,  P{J) ) GO TO 60 
IO0 IF ( V .LE. P(J) ) GO TO 140 

S = J  
CR(Y{J)) = CB 
DO IlO K=I~T 

Y(X(K)) = Y(J) 
110 CONTINUE 

Y(J) = MPl 
VSTAR = VSTAR * V - P(J) 
IF ( J .GT. F ) GO TO 120 
F = J  
GO TO 140 

120 IF ( Y(F) ~176 MP1 ) GO TO 140 
IFI = F + I 
DO 130 U=IFI ,N 

IF ( Y ( U )  .LE.  M ) GO TO 130 

8* 
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F = U 
GO TO 140 

130 CONTINUE 
140  J = J - 1 

IF ( d ,EO, 0 ) d = N 
IF ( J .EO, 5 ) RETURN 
GO TO 40 
END 
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