
Computing 27, 93--I 12 (1981) Computing
�9 by Springer-Verlag 1981

Heuristic Algorithms for the Multiple Knapsack Problem

S. Martello and P. Toth, Bologna
Received November 10, 1980

Abstract - - Zusammenfassung

Heuristic Algorithms for the Multiple Knapsack Problem. Given a set of items, each having a profit
and a weight, and a set of knapsacks, each having a capacity, we consider the problem of inserting
items into the knapsacks in such a way that the subset of inserted items has the maximum total
profit without the total weight in each knapsack exceeding its capacity.

The best algorithms for the exact solution of this problem can be applied, with acceptable running
times, to cases with a maximum of 200 items and 4 knapsacks, but real world applications (such
as, for example, cutting stock and loading problems), often involving a greater number of variables,
call for the use of heuristics.

This paper presents methods for finding suboptimal solutions to the Multiple Knapsack Problem.
An extensive computational experience was carried out both on small-size and large-size randomly
generated problems; the results indicate that the proposed algorithms have a satisfactory behaviour
with regard both to running times and quality of the solutions found.

A FORTRAN IV implementation of the algorithms is given.

Heuristische Algorithmen zur Paekung von mehreren Rueksiicken. Vorhanden ist eine Menge von
Gegenst~inden mit gegebenem Gewicht und gegebenem Wert, ferner eine Menge von Rucks~icken
mit gegebener Tragf~ihigkeit. Die Gegenst~inde sollen so in die Rucks~icke gepackt werden, dab die
Tragf~ihigkeit der einzelnen Rucks~cke nicht iiberschritten wird und der Gesamtwert der verwendeten
Gegenst~inde mSglichst grofl ist.

Die besten bekannten Algorithmen liefern mit vertretbarem Rechenaufwand L6sungen ffir h6ch-
stens 200 Gegenst~inde und 4 Rucks~icke. Aber praktische Anwendungen wie z. B. Teilungs-, Lager-
haltungs- und Ladeaufgaben ben6tigen oft eine gr6Bere Zahl von Variablen und verlangen daher
die Verwendung von Heuristik.

Der vorliegende Artikel erl~iutert Methoden, mit deren Hilfe sich suboptimale LSsungen des Mehr-
Rucksack-Problems finden lassen. Numerische Experimente mit Problemen verschiedener Gr6Be
zeigen, dab sich die verschiedenen Algorithmen zufriedenstellend verhalten, sowohl hinsichtlich
der Laufzeiten als auch beziiglich der Giite der gefundenen Lfsungen.

Eine FORTRAN-IV-Version der Algorithmen ist beigefiigt.

1. Introduction

G i v e n the sets N = {1, 2 , n}, M = {1, 2 m} and the vec to r s (pj), (%), (ci) , we

def ine the Zero-One Multiple Knapsack Problem as

m a x ~ ~ pjxi, j (1)
i e M j ~ N

7 Computing 2 7 / 2 0010-485X/81/0027/0093/$04.00

94 S. Martello and P. Toth:

(P)
subject to wjxi, j<c i for all i ~ M ; (2)

j eN

xi, j_<l for all j ~ N; (3)
i~M

xi. j6 {0, 1} for all i ~ M , j ~ N . (4)

The problem can be viewed as that of taking n items, each having a profit pj and a
weight w j, and selecting those to be inserted into m boxes (knapsacks) of
capacities ci, so that the total profit of the inserted items is maximum (1), the
total weight inserted in each knapsack does not exceed the corresponding
capacity (2), while each item is either inserted in a knapsack or rejected (3, 4).
The problem may represent many industrial situations such as the loading of m
ships with n containers, the loading of n tanks with m liquids that cannot be
mixed or the cutting of m unidimensional items into n pieces of assigned lengths.

We will assume, with no loss of generality, that

pj, wj, ci>0 and integers;

min {w j} < min {ci};
j i

max {w j} < max {q};
j i

X w j> max (ci}.
jEN i

Furthermore, we will assume that the items are arranged so that

pl /W1 • pz /W2 ~ ... ~ pn/Wn.

The problem represents a generalization of the well-known Zero-One Single
Knapsack Problem (P1), where only one knapsack is available for the n items.

An upper bound for the value of (P) can be obtained by solving the Surrogate
Relaxation given by the single knapsack problem:

max ~ pjzj
jeN

(Ps)
subject to. ~, wj z j<_ ~, ci;

j~N i~M

zjc (0, 1} for all j ~ N.

Algorithms for the exact solution of the Zero-One Multiple Knapsack Problem
have been presented by Hung and Fisk [2] and by Martello and Toth [4, 5];
this paper studies algorithms for finding an approximate solution to the prob-
lem.

The need for heuristics is justified by the computational complexity of the
problem. It is ha fact known that (P1) is an NP-complete problem; since for
any instance of (P1) an instance of (P) can be constructed in polynomial time
(by simply setting m = 1), which has a solution if and only if (P1) has a solution,

Heuristic Algorithms for the Multiple Knapsack Problem 95

(P) too is NP-complete. There is no proof but strong suspicion that no NP-
complete problem can be solved by a polynomial-time algorithm, so the worst
cases of these problems are computationally "intractable" and heuristic algorithms
are useful for their solution.

To the authors' knowledge, the only heuristic algorithm fo r (P) that has been pro-
posed is Fisk and Hung's [1]: this method exactly solves (Ps) (let the solution be
Z = {j I zi= 1}) and then tries to insert the items of Z in the knapsacks; when an
item cannot be inserted in any knapsack, for each pair of knapsacks it attempts
exchanges between items (one for one, then two for one, then one for two) until
an exchange is found which fully utilizes the available space in one of the knap-
sacks. If all the items of Z are inserted, an optimal solution is found; otherwise, the
current (suboptimal) feasible solution can be improved by inserting in the knap-
sacks as many items of N - Z as possible. In the worst case Fisk-Hung's algorithm
requires a non-polynomial running time, since it needs exact solution of a n
NP-complete problem.

Our purpose is to give heuristic methods useful for those multiple knapsack
problems, often arising in real world applications, which cannot be solved by
means of non-polynomial algorithms because of the enormous amount of
computation needed (as will be shown in Section 2); consequently, the procedures
we propose, which are all polynomial in the problem size re+n, have been
designed so as always to guarantee acceptable running times (we present compu-
tational results up to 100 knapsacks and 1000 items); since the theoretical
analysis of worst-case bounds to the errors often gives results far from the actual
performance of heuristics, we evaluated our approximations through extensive
computational experiments on different types of randomly generated data sets
reflecting most of the real-world situations. The results indicate that the proposed
methods ha've~ a satisfactory behaviour with regard both to running times and
quality of the solutions found.

Three kinds of procedures are developed: to find an initial feasible solution
(Section 3), to improve on a feasible solution (Section 4), to rearrange a feasible
solution (Section 5). These procedures are evaluated through computational
experiments on small-size problems (i. e. problems having up to 200 items and
up to 4 knapsacks). Computational results on large-size problems are given in
Section 6. The FORTRAN codes are presented in Section 7.

We will always assume that the knapsacks are initially arranged so that

CI <~C2 <~... <~Cm .

2. Computational Behaviour of Exact Algorithms for Knapsack Problems

We considered uniformly random data sets of different categories, corresponding
to different distributions utilized for generating items and knapsacks.

Two distributions were used for the items:

a) lO <_ wj <_ 100, lO <_pj <_ 100 for allj ~ N (Uncorrelated items);

7*

96 S. Martello and P. Toth:

b) 10 < wj < 100, pj = wj + 10 for all j ~ N (Correlated items).

Two distributions were used for the knapsacks:

c) [0.4 Z wj/m]* < c i < [0.6 y ' wj/m] for i= 1,..., m - 1 (Similar knapsacks);
j ~ N j e N

d) 0 < c1_< [0.5 y, wd,
j E N

O< c i <_ [0.5 E w j] - Z c, for i=2, ..., m - 1 (Dissimilar knapsacks).
j E N u<i

Both for c) and for d) the m-th knapsack capacity was chosen such that

E c~ = [0.5 ~ wj]; if ci < min {w j} for some i or max {ci} < max {w j}, a new set
i ~M j ~ N j e N i~M j ~ N

of knapsack capacities was generated.

For each category, different pairs m, n were considered and, for each pair, 30
problems were generated.

For the optimal solution of the single knapsack problems, required by the
methods in [1, 2, 4, 5], the branch and bound algorithm of Martetlo and Toth 1-3]
was employed.

All the algorithms were coded in F O R T R A N IV and run on a CDC-6600; the
entries in the tables give the average running times expressed in milliseconds.

Let us compare (Table 1) exact algorithms for the single and for the multiple
knapsack problem on uncorrelated items and similar knapsacks.

Table 1. Exac t algorithms. (Uncorrelated items - - similar knapsacks - - CDC-6600 milliseconds)

n = 2 5 n = 5 0 n = 100 n=200

Single K.P. I
m = l 4 6 12 21

(Algorithm in [3])

m = 2 106 237 636 3344
Mul t ip leK.P .

m = 3 543 377 802 3563
(Algorithm in [5]) m = 4 1649 4751 1490 6818

The single knapsack problem does not show its complexity: its average times
grow almost linearly with the value of n. On the contrary, the multiple knapsack
problem fully shows its exponential growing rate and appears to be intractable
for m > 4 or for n greater than a few hundred. This difference between the two
cases is given by the enormous (exponential) number of single knapsack problem
solutions that all the algorithms for the multiple knapsack problem involve.

If we now consider the case of correlated items, where the single knapsack
problem too shows its complexity (for capacity = [0.5 ~ w j], the algorithm in [3]

j ~ N
required 36 milliseconds for n = 25, 2700 milliseconds for n= 50), it is clear that

* [a] = l a r g e s t integer not greater than a.

Heuristic Algorithms for the Multiple Knapsack Problem 97

for such data no exact algorithm for the multiple knapsack problem could be
used and that even the heuristic method of Fisk and Hung [1] is impractical
because of the need to solve the surrogate relaxation of the problem exactly.

The test problems described in this section are used in the following to evaluate the
heuristic procedures we present. In the tables of the next sections, each entry
gives two values: the average running time (expressed in CDC-6600 milliseconds
and relating to FORTRAN IV codes) and, in brackets, an upper bound on the
percentage error, that is 100 e, where e is computed as follows: let

V* =value of the heuristic solution found for (P);
Vs = value of the optimal solution of (Ps);
Vs = upper bound on Vs, computed as in [3-1;

for uncorrelated items we set

~=(Vs-V*)/vs,

while for correlated items, for which the computation of V s is too hard, we set

~=(Vs- V*)/Vs.

3. Algorithms for Finding an Initial Feasible Solution

Some of the methods we present require, as a subproblem, the heuristic solution
of a single knapsack problem; this was always obtained through the following
well-known Greedy Algorithm:

procedure GREEDY (A, c, G)
input: A ={ j [i t emj is available} (A~N) ;

c = available capacity.
output: G = {j [i temj is inserted in the knapsack} (G~_A).

Set G = ~.
For increasingj e A do

if c pj/w i < 1, return;
if wi <c, set c = c - w j , G=G u {j};

repeat.
Return.

In the worst case, this procedure requires I Al iterations, that is the number of
operations is O (n).

The following algorithms can be used to obtain an initial feasible solution
G, (i= 1,..., m) to (P).

Algorithm MK 1 :

Set R = N.
For increasing i ~ M do

apply GREEDY (R, cl, Gi);
set R = R - Gi;

repeat.
Stop.

98 s. Martello and P. Toth:

MK 1 applies GREEDY m times, that is it requires, in the worst case, O (m n)
operations.

Algorithm MK 2:

Set Gz = 0 for all i e M, i= 1.
For increasingj e N do

set k = 1 ;
while wj > cz and k < m do

set k = k + l, i = i + l; if i> m, set i=1 ;
repeat;
if wj <ci, set c i = c i - w j , G i = G i u {j}, i = i + 1; if i>m, set i=1 ;

repeat.
Stop.

M K 2 inserts the first item in the first knapsack, the second item in the second
knapsack, and so on cyclically; when an item cannot be inserted in the required
knapsack, the next knapsack is tried, and so on; items which cannot be inserted
in any knapsack are rejected. In the worst case, m iterations are to be performed
for each item and the algorithm requires O (m n) iterations.

Algorithm M]K 3:
For increasing i ~ M do

set g=ci ;
apply GREEDY (N, g, G~);

repeat.

For increasing j s N do:
s e t B = { i l j e Gi} ;
if [B [> 1, then set A = {q [q e N, q >j}, A* = - oe, and for increasing

i e B do:
set G = Gi, g = cl ;
apply GREEDY (A, g, G);
set G i = Cr w {q [q e Gi, q <j};

if A * < A = ~_.pq- ~ pq, set i*=i , A * = A , G * = G ;
q~G q~Gi:

repeat;
set Gi. = G*, c~. = c i . - w j;

else, if I B [=1 (say B = {i*}), set c i . = c ~ . - w j ;
repeat.
Stop.

MK3 starts by finding m greedy solutions for the m knapsacks, but in this case
the items of each Gi are not excluded from N, so each item will generally appear
in a number of knapsacks; in such cases the item is assigned to the knapsack
for which the loss of profit corresponding to the exclusion of the item would be
the greatest and the current greedy solutions of the remaining knapsacks are
updated. In the worst case, MK 3 requires that, for each item, m greedy solutions
be computed, so the algorithm's complexity is O (m n2).

Heuristic Algorithms for the Multiple Knapsack Problem 99

In the innermost loop an increase in efficiency can be obtained by substituting
the applicat ion of G R E E D Y (A, ~, G) by a faster greedy procedure which takes
into account the obvious fact that the first s items in ~ n A, where

s = m a x q l ~ w e < c i ,
t = j

must be in G too.

It should be noted that in M K 1 and M K 2 the G~'s are disjoint, so we need just
a vector (gj = i if i tem j is inserted in knapsack i, for j = 1, ..., n) in order to store
all the informat ion in Gi (i = 1, ..., m).

Table 2 gives the computa t iona l performace of the three M K algori thms for the
data set b) - d) , that is (see Section 2) correlated items and dissimilar knapsacks;
the other possible data sets (b) - c) , a) - d) and a) - c)) showed about the same
algori thm behaviour. M K 3 had in general the best percentage errors but also the
worst running times.

Table 2. Correlated items - - dissimilar knapsacks. CDC-6600 milliseconds (percentage error)

m

25
50

100
200

25
50

100
200

25
50

100
200

MK1

1 (6.13)
1 (3.15)
2 (1.73)
5 (0.88)

1 (8.00)
2 (4.43)
4 (2.10)
8 (1.o6)

2 (9.61)
3 (5.51)
6 (2.73)

11 (1.08)

MK2

1 (7.08)
2 (3.88)
4 (2.11)
7 (1.08)

1 (9.65)
2 (5.03)
4 (2.57)
8 (1.22)

1 (12.49)
2 (5.49)
5 (2.88)

10 (1.43)

MK3

5 (4.64)
9 (2.08)

18 (1.34)
41 (0.57)

6 (6.50)
13 (3.06)
24 (1.39)
51 (0.70)

6 (9.93)
14 (4.62)
28 (2.19)
60 (1.20)

4. Algorithms for Improving on a Feasible Solution

Assume a feasible solution G i (i = 1, . . . , m) is known and define"

S = U Gi;
i=1

R = N - S ;

v i = total profit current ly inserted in knapsack i;

ci = current remaining capacity of knapsack i;

gi = knapsack where i t emj is currently inserted;

where S and R (subsets of N) are assumed to be in nonincreasing order of
pi/wj; in the algori thms of this Section we will suppose that S, R, v~, cl and g~ are
updated whenever some G~ is updated.

100 S. Martello and P. Toth:

The following algorithms can be used to improve on a feasible solution.

Algorithm I 1 :

For increasing Jl �9 ~J [J �9 S, % + max {ci} >- min {wr} } do
i~g j r~R

for increasing J2 �9 {J I J �9 S, j >Jl , gj ~ Oil, % + co~, > min {wr} } do
r e R

let wi~ =max {wj~, wj~}, wj =min {wj,, wj~}, i ,=gju , iq=gj , ;
set 6 = wj~ - wjq;
if 6<ci , and ci + 6 > m i n (w~}, set p t=max {p~ I r �9 R, w~<c iu+6) ,

r~R

Gi, = (G i u - {Ju}) ~ {Jq, t}, Gi, = (G , , - {jq}) u {j,};
repeat;

repeat.
Stop.

11 considers all pairs of items in S and, if possible, interchanges them whenever
doing so allows the insertion of an item from R into one of the knapsacks; the
algorithm's complexity is 0 (n z) (the search for Pt is executed at most [R I times).
It should be noted that it is computationally efficient to stop the execution as
soon as max {ci + el} < min {wr}.

i~ l r~R

Algorithm 12:
Set ~ = 0, k = 1, l = maximum number of iterations.

While ~ < ~ v i and k_< l do

s e t ~ = ~ vi, k = k + l ;
\ i ~ M

for decreasing j e S do
let i be the knapsack such that j �9 G i and set ~ = ci + w j;
apply GREEDY (R, ~, L);

if ~ p~ > p j, set G i = (G i - {j}) u L;
qeL

repeat;
repeat.
Stop.

This algorithm tries to exclude in turn each item currently in S and to replace it
with one or more items from R so that the total profit is increased; the execution
stops when no further replacement is possible or when 1 complete iterations
have been performed. If l is a linear function of n, the complexity of I2 is
O (na); we always assumed I= n.

The separate and combined effects of I 1 and I2 on the solutions found by the
MK algorithms were experimentally tested: I2 produced better improvements
than 11 but required higher times; the sequence 11 + I 2 required about the same
times as I2 and generally gave a better improvement; so, in what follows, we will
always apply I1 followed by I2 (the sequence I 2 + I 1 generally gave worse
results).

Heuristic Algorithms for the Multiple Knapsack Problem 101

The first three columns of Table 3 show, for the same data set as Table 2, the
effect of the sequence I 1 +I2 applied to the solutions of algorithms MK 1, MK2
and MK 3.

It should be noted that MK 2, which had bad initial solutions, obtained great im-
provements, leading it to achieve in general good final solutions; this behaviour
is analyzed in the next Section.

Table 3. Correlated items - - dissimilar knapsacks. CDC-6600 milliseconds (percentaoe error)

n M K I + I I + I 2

25 4 (1.64)
50 9 (0.59)

100 42 (0.34)
200 97 (0.15)

25 5 (2.95)
50 13 (1.63)

100 31 (0.62)
200 103 (0.28)

25 6 (4.37)
50 15 (1.88)

100 34 (0.76)
200 120 (0.33)

M K 2 + I I + 1 2

4 (1.61)
9 (0.46)

47 (0.26)
115 (0.15)

5 (2.75)
13 (1.34)
41 (0.46)

183 (0.23)

5 (4.08)
16 (1.40)
49 (0.67)

193 (0.27)

M K 3 + I I + I 2

6 (1.74)
14 (0.62)
51 (0.35)

113 (0.15)

8 (2.24)
16 (0.85)
38 (0.28)

120 (0.16)

9 (2.54)
20 (0.78)
46 (0.35)

104 (0.14)

M K I + A + I I + I 2

5 (1.21)
11 (0.34)
52 (0.20)

127 (0.08)

6 (1.91)
14 (0.50)
35 (0.18)

133 (0.08)

7 (2.48)
20 (0.70)
38 (0.21)

124 (0.08)

MK3+A+II+I2]

8 (1.18)
18 (0.34)
64 (0.20)

158 (0.08)

10 (1.97)
22 (0.50)
53 (0.18)

177 (0.08)

12 (2.12)
26 (0.62)
55 (0.23)

166 (0.08)

5. Algorithm for Rearranging a Feasible Solution

The particular performance of I 1 and 12 when applied to the solutions found by
MK2 can be explained by comparing the structure of these solutions with that of
the MK 1 solutions.

Consider what is the situation expected when, for each knapsack, the first item
is found which cannot be inserted. In the MK 1 solutions, when this happens for
the first knapsacks, generally several items of smaller weight are available, so
the algorithm can fill such knapsacks well, whereas when this happens for the
last knapsacks, only items of considerable weight are available so the knapsacks
are not well filled; in the MK2 solutions the last situation occurs for all the
knapsacks. Hence the worse performance of MK2 but also the different structure
of the solutions, viz. each knapsack filled with items 6f similar profit per unit
weight in the MK 1 solutions, with items of dissimilar profit per unit weight in
the MK2 solutions: this explains why the improving algorithms, which are
based on exchanges among the items, work very well on the MK2 solutions.

The following algorithm can be used for rearranging the feasible solutions found
by the MK algorithms in order to obtain a structure similar to that of the MK2
solutions.

102 s. Martello and P. Toth:

Algorithm A:

Set c i (i = 1, ..., m) to its original value.
Set Gi=~ for all i e M, i= 1.
For decreasingj ~ S do

set k = l ;
while wj > ci and k < m do

set k = k + l, i = i + l; if i > m , set i = l ;
repeat;
if wj < c~, set c i = ci - w j, G~ = G~ w ~j}, i = i + 1; if i > m, set i = 1 ;

repeat.
For increasing i e M do

apply GREEDY (R, c~, L);
set R = R - L , G i = G i to L ;

repeat.
Stop.

The complexity of A is obviously the same as MK 2, i.e. 0 (m n) operations. The
last two columns of Table 3 show the results obtained by using A before the
sequence I 1 + I 2 : A required an extra computational effort, but always pro-
duced a great reduction in the percentage error. The results given by M K 2 +
I 1 + 12 were always worse, both for running time and percentage error, than those
given by MK 1 + A + I 1 + I2, so M K 2 will not be considered any further.

6. Computational Results

The algorithms obtained in the previous section (MK 1 + A + I 1 + 12 and MK 3 +
A + I I + I 2) were compared with the algorithm of Fisk and Hung [1] (here
referred to as FH) on the small-size data sets considered up to now, that is on
problems having up to 200 items and up to 4 knapsacks. The following results
were obtained:

i) Uncorrelated items-Similar knapsacks: M K I + A + I I + I 2 obtained satis-
factory approximations and required low running times; M K 3 + A + I 1 + I 2
gave slightly better approximations but required a computational effort
about five times higher; FH generally had the best approximations with
intermediate times; the difference between the approximations of FH and
those of the other algorithms seem to decrease when m grows.

ii) Uncorrelated items-Dissimilar knapsacks: M K I + A + I I + I 2 and M K 3 +
A + I I + I 2 gave about the same results as in case i); FH required running
times slightly higher than those of M K I + A + I I + I 2 and had the best
approximations for m = 2, 3 but the worst approximations for m = 4.

iii) Correlated items-Similar knapsacks: MK 1 + A + I 1 + 12 and MK 3 + A +
I 1 + 12 obtained about the same approximations but the latter required 50~o
higher running times; FH could not solve to within the time limit of 250
seconds data sets having more than 50 items; for n = 25, 50, it generally gave

Heuristic Algorithms for the Multiple Knapsack Problem 103

good approximations but required enormous running times (about 100 times
those of the other algorithms for n = 50).

iv) Correlated items-Dissimilar knapsacks: M K 1 + A + I 1 + 12 and M K 3 + A +
I1 + 1 2 gave about the same results as in case iii) (see also Table 3); FH had
about the same behaviour as in case iii), as far as the running times are
concerned, but generally gave the worst approximations.

Coming to large-size data sets, that is to problems having up to 1000 items and
up to 100 knapsacks, we followed the information given by the small-size
problems and tested algorithms M K I + A + I I + I 2 and FH for uncorrelated
items, and algorithm MK 1 + A + I 1 + 12 for correlated items; because of the high
running times, we also give the intermediate results corresponding to MK 1 and
to MK 1 + A + I 1. In order to avoid anomalous problems, we always considered
data sets such that n/m > 4.

Table 4 shows that, for uncorrelated items and dissimilar knapsacks, FH obtained
the best approximations but required the highest running times, while MK 1 +
A + 11 + 12 gave average approximations with low running times.

Table 4. Uncorrelated items - - similar knapsacks. CDC-6600 milliseconds (percentage error)

m n

10

20

50

\MK1 M K I + A + I 1 M K I + A + I I + I 2 FH

50 7 (4.47)
100 12 (1.73)
200 21 (0.66)
500 49 (0.19)

1000 95 (0.09)

100 25 (3.72)
200 44 (1.30)
500 104 (0.43)

1000 195 (0.18)

200
500

1000

500 100
1000

12 (3.97)
18 (1.29)
32 (0.41)
75 (0.13)

139 (0.05)

37 (2.99)
62 (0.97)

130 (0.29)
247 (0.12)

16 (3.37)
24 (1.06)
43 (0.37)

102 (0.11)
199 (0.03)

45 (2.66)
78 (0.89)

186 (0.22)
347 (0.08)

20 (2.70)
31 (0.25)
67 (0.10)

368 (0.04)
1524 (0.02)

52 (1.65)
79 (0.16)

256 (0.06)
1236 (0.04)

114 (4.33) 151 (4.29) 206 (3.52) 227 (1.38)
258 (1.14) 323 (0.84) 408 (0.71) 429 (0.23)
481 (0.44) 580 (0.31) 755 (0.24) Core Memory

521 (2.46) 747 (2.16) 917 (1.81) Core Memory
1010 (1.02) 1194 (0.76) 1522 (0.62) Core Memory

Table 5 refers to uncorrelated items and dissimilar knapsacks: FH obtained the
worst approximations; MK1 had clearly better approximations and generally
lower running times; A, I1 and I2 required a strong extra computational effort,
giving only small improvements. Both in Table 4 and in Table 5 FH, which
requires an (m x n) matrix, was not applied to data sets such that m n > 50000.

104 S. Martello and P. Toth:

Table 5. Uncorrelated items - - dissimilar knapsacks. CDC-6600 milliseconds (percentage error)

m n MK1 M K I + A + I FH

10

20

50

100

50
100
200
500

1000

100
200
500

1000

200
500

1000

500
1000

I

8 (3.06)
14 (1.13)
25 (0,39)
55 (0.12)

114 (0.07)

34 (3.14)
65 (1.30)

138 (0.41)
230 (0.16)

17 (3.23)
32 (0.85)
64 (0.30)

148 (0.08)
598 (0.04)

62 (3.03)
131 (1.37)
327 (0,37)

1390 (0.13)

15
37
84

229
536

1 M K I + A + I I + I 2

20 (2.62)
36 (0.81)
73 (026)

171 (0.07)
648 (0.03)

67 (2.86)
141 (1.20)
352 (0.34)

!443 (0.11)

307 (4.31)
795 (1,55)

2113 (0.69)

1677 (3.53)
3437 (1,70)

(8.40)
(2.41)
(o.84)
(0.30)
(0.16)

37 (11.63)
72 (5.12)

204 (1.84)
947 (0,74)

192 (4.43) 297 (4.38) 135 (16.21)
470 (1.63) 771 (1,59) 372 (7,18)
881 (0.73) 2051 (0.71) Core Memory

994 (3.61) 1651 (3.55) Core Memory
1927 (1.74) 3386 (1.72) Core Memory

Table 6 (correlated items - similar knapsacks) shows that using A + I 1 + I2
requires a strong extra computational effort but gives a strong reduction in the
percentage errors; using only A + I 1 requires a small extra computational effort
and gives a good improvement in approximation.

Table 6, Correlated items --similar knapsacks, CDC-6600 milliseconds (percentage error)

m n MK1 M K I + A + I 1 M K I + A + I I + I 2

10

20

50
100
200
500

1000

100
200
500

1000

6 (17.42)
12 (7.37)
24 (3.95)
58 (1.69)

118 (0.81)

27 (17.69)
52 (7.51)

123 (3.11)
243 (1.58)

13 (6.81)
20 (2.99)
37 (1.03)
90 (0,40)

168 (0.18)

47 (6.48)
76 (2.65)

157 (0.78)
308 (0.31)

28 (3.40)
66 (0.65)

225 (0.21)
990 (0.04)

2681 (0.01)

127 (2.78)
366 (0.59)
812 (0.04)

3607 (0.02)

200 137 (13,33) 209 (9.71) 950 (4.76)
50 500 319 (7.65) 466 (2.85) 3139 (0.30)

1000 631 (3.94) 809 (1.10) 6162 (0.05)

500 671 (17.42) 1469 (5.07) 5391 (2.75)
100] 1000 1272 (7.65) 2023 (2.97) 16847 (0.22)

T a b l e 7 shows a n a l o g o u s b e h a v i o u r for cor re la ted i tems a n d d i ss imi la r k n a p -
sacks, b u t in this case b o t h the ext ra c o m p u t a t i o n a l effort a n d the i m p r o v e m e n t s
g iven b y A, 11 a n d 12 are smaller . Bo th in T a b l e 6 a n d in T a b l e 7 F H is n o t con-
s idered since the r equ i r ed exact so lu t i ons of (Ps) is c o m p u t a t i o n a l l y i n t r a c t a b l e
for cor re la ted i tems.

Heuristic Algorithms for the Multiple Knapsack Problem I05

Table 7. Correlated items - - dissimilar knapsacks. CDC-6600milliseconds (percentage error)

m n MK1 M K I + A + I 1 M K I + A + I I + I 2

10

20

50
100
200
500

1000

100
200
500

1000

8 (7.93)
16 (3.85)
32 (1.80)
83 (0.75)

160 (0,42)

36 (6.89)
69 (3.16)

156 (1.18)
276 (0.48)

15 (5.32)
33 (2.16)
92 (0.90)

139 (0.24)
520 (0.11)

69 (5.67)
134 (2.I9)
346 (0.65)

1499 (0.24)

24 (3.30)
77 (0.91)

252 (0.27)
736 (0.05)

2487 (0.02)

105 (4.64)
242 (1.67)
886 (0.45)

4402 (0.14)

200 198 (8.71) 316 (7.51) 421 (7.06)
50 500 481 (3,14) 869 (2.69) 1664 (2.49)

1000 898 (1.44) 1699 (1.22) 3784 (1.12)

500 1033 (6.53) 1621 (6.05) 2334 (5.84) 100
1000 1955 (3.02) 3608 (2.85) 6133 (2.76)

For each entry of Tables 4, 5, 6, 7, computation of the ratios 0t = (maximum running
time)/(average running time) and O, = (maximum percentage error)/(average per-
centage error) gave the following results:

M K I : Qt_<2 and A~ _<2.

MK 1 + A + I 1: for similar knapsacks, At-< 3 and A~ - 2; for dissimilar knapsacks,
generally At<4 and A~<2 (with a few entries having maximum ratios
At ~ 10 or A~ - 3).

MK 1 + A + I 1 + 12: At as MK 1 + A + I 1; generally A, -< 2 (maximum Q~ --- 4).

FH:for similar knapsacks, A~_<6 and generally A,---7 (maximum 0,=~20); for
dissimilar knapsacks, generally A~ < 7 and A, < 2 (maximum At ~ 10 or A, = 4).

From Tables 4, 5, 6, 7 we can conclude that for the solution of real world
applications involving large-size multiple knapsack problems it is impossible to
indicate one algorithm as the best for all cases, but, according to the kind of
problems to be solved, the best methods are:

a) Uncorrelated items: for similar knapsacks, FH up to a few hundred items,
then MK 1 + A + I 1 + 12; for dissimilar knapsacks, MK 1.

b) Correlated items: for both similar and dissimilar knapsacks, MK 1 + A + I 1
or, if tight approximations are needed, MK 1 + A + I 1 + 12; it should be noted
that, in general, the improvement given by I2 strictly depends on the computing
time required, so intermediate results can be obtained by imposing a maximum
number of iterations l < n.

7. F O R T R A N Subrout ines

We present the FORTRAN codes of algorithms MK1, MK3, A, I1 and I2 of
the previous Sections. Each algorithm is coded as a subroutine; in addition we
give a subroutine (HMKP) to select the sequence of calls.

106 S. Martello and P. Toth:

The package is completely self-contained and communication to it is solely
made through the parameter list of HMKP. It is required that the items are
already arranged in non-increasing order of the ratio pj/wj and the knapsacks in
non-decreasing order of c~.

As presently dimensioned, the size limitation is n_< 1000 and m < 100 if MK 1 is
called, n _< 200 and m_< 5 if MK 3 is called.

SUBROUTINE HMRP(N~P,W,M,C,LM*LA,LI,VSTAR,y,CR)
C THIS SUBROUTINE HEURISTICALLY SOLVES THE 0-I MULTIPLE KNAPSACK PROBLEM
C
C MAX VSTAR = P (1) * (X (I , I) * . . . § X(M,I)) § . . . § P(~)* (X(I ,N) § . . . § X(M,N))
C SUBJECT TO
C W (I) * X (I ,]) * . . . " W(N)*X(I,N) NOT GREATER THAN C(1) (FOR I = I , . . . , M)
C X(J , |) § . . . § X(J,M) NOT GREATER THAN I (FOR J = I ~ . . . , N)
C X (l , J) = 0 OR I (FOR I = I , . . . ~ M) . (FOR J : I * . . . , N)
C
C SUBROUTINE HMKP CAN CALL q SUBPOUTINES~ WHICH PERFORM ALGORITHMS TO FIND
C AN INITIAL FEASIBLE SOLUTION (MKI OR MK3),TO REARRANGE A FEASIBLE SOLUTION (A}
C AND TO IMPROVE ON A FEASIBLE SOLUTION (I I AND 12). THE USER SHOULD SELECT THE
C SEQUENCE OF CALLS THROUGH INPUT PARAMETERS LM, LA AND L I .
C
C THE PACKAGE GIVEN BY SUBROUTINES HMKP, MKI, MK39 A, 11, 12 IS COMPLETELY
C SELF CONTAINED AND COMMUNICATION TO IT IS ACHIEVED SOLELY THROUGH THE
C PARAMETERS LIST OF HMKP. ALL THE PARAMETERS ARE INTEGER.
C
C THE MEANING OF THE INPUT PARAMETERS
C N = NUMBER OF ITEMS
C P(J) : PROFIT OF THE J'TH ITEM (J = I ~ . . . , N)
C W(j) : WEIGHT OF THE J-TH ITEM (J : I , . . . , N)
C M : NUMBER OF KNAPSACKS
C C(1) : CAPACITY OF THE I-TH KNAPSACK
C LM = I TO PERFORM ALGORITHM MKI (SUGGESTED FOR LARGE-SIZE PROBLEMS)
C : 3 TO PERFORM ALGORITHM MK3 (SUGGESTED FOR SMALL-SIZE PROBLEMS)
C LA = 0 NOT TO PERFORM ALGORITHM A
C : I TO PERFORM ALGORITHM A (SUGGESTED IF 11 AND/OR I2 ARE PERFORMED)
C LI = 0 TO PERFORM NEITHER ALGORITHM I I NOR ALGORITHM 12
C : i TO PERFORM ALGORITH~ I I
C : 2 TO PERFORM ALGORITHM I2
C : 3 TO PERFORM ALGORITHM I I AND THEN ALGORITHM I2
C
C THE MEANING OF THE OUTPUT PARAMETERS
C VSTAR : VALUE OF THE SOLUTION FOUND
C Y(J) : 0 IF ITEM J IS NOT IN THE SOLUTION FOUND (X(I , J) : 0 FOR I : I ~ . . . ~ M)
C = I I I ~ ITEM J IS IN THE SOLUTION FOUND (X (I I , J) : I)
C C R (I) : C(I) - (W(1)*X(I , I) § . . . § W(N)*X(I~N)) (FOR I : I , . . . , M }
C
C BEFORE HMKP IS CALLED, VECTORS P AND W NEED TO BE ARRANGED IN DECREASING
C ORDER OF THE RATIO P(J)/W(J), VECTOR C IN INCREASING ORDER OF C (I } ,
C
C THE CALLING PROGRAM SHOULD CONTAIN THE FOLLOWING TYPE STATEMENT
C INTEGER P(N}.w(N),C(M),Y(N)gCR(M)~VSTAR
C LOCAL ARRAYS IN MK3 ARE CURRENTLY DIMENSIONED FOR PROBLEMS WITH M UP TO 5
C AND N UP TO 200, LOCAL ARRAYS IN 11 AND 12 FOR PROBLEMS WITH M UP TO I00 AND
C N UP TO I000.
C

INTEGER P(N),W(N),Y(N),C(M),CR(M),VSTAR
IF (LM .EQ. 3) GO TO 10
CALL MKI(N,P,w,M,C,VSTAR,Y,CR)
GO TO 20

I0 CALL MK3(N,P~W~M~C~VSTAR~YyCR)
20 IF t LA ,EQ. I) CALL A(N,P~W~M,C~VSTAR,Y,CR)

LL = LI * I
GO TO (60 ~ 30 , 50 , 40) �9 LL

30 CALL II(N,P,W,M,VSTAR.Y.CR)
RETURN

r CALL II(N*P,W,M,VSTAR,Y,CR)
50 CALL I2(N,P,W,M,VSTAR,Y,CR)
60 RETURN

END

SUBROUTINE MKI(N,P,W,M,C,VSTAR,Y,CR)
INTEGER P(N),W(N),C(M),Y(N),CR(M),VSTAR
INF = 999999Qq9
DO 10 I=I,M

CR(1) = C(1)

Heuristic Algorithms for the Multiple Knapsack Problem 107

10 CONTINUE
MPI : M § I
P(N§ = 0
W(N+I) = INF
J = 1
I = l
VBTAR = 0

20 IF (W(J) .GT. CR(1)) GO TO 30
Y(J) = I
CR(I) = CR(1) - W(J)
VSTAR = VSTAR + P{J)
J = J + I
GO TO 20

30 J5 = J
Y(J) = MPI

J = J + l
DO 40 JJ=J~N

Y(JJ) : MP]
IF (W(JJ) .GT. CR(1)) GO TO 40
Y(JJ) = I
CR(I) = CR(I) - W(JJ}
VSTAR = VSTAR + P(JJ)

40 CONTINUE
50 IF (I .LT . M) GO TO 60

GO TO 110
6 0 1 = I + I

DO 70 J=JS,N
IF (Y(J) .LE- M) GO TO 70
IF (W(J) ,GT. CR(I)) GO TO 80
Y(J) = I
CR(I) = CR(1) - W(J)
VSTAR = VSTAR + P(J)

70 CONTINUE
GO TO I I 0

80 JS = J
J = J + I

90 IF (CR(1)*P(J)/W(J) .EQ, 0) GO TO 50
IF (Y(J) .LE. M) GO TO TO0
IF (W(J) .GT. CR(1)) GO TO I00
Y(J) = I
CR(1) = CR(1) - W(J)
VSTAR = VSTAR + P(J}

l O O J = J §
GO TO 90

I I 0 CONTINUE
RETURN
END

SUBROUTINE MK3(N,P,W,M.C,VSTAR,Y,CR)
INTEGER P(N),W(N)~C(M),Y(N)tCR(M)~VSTAR
INTEGER S,D,ZCAP,VZCAP,CZCAP,VCAP,ZBTAR,VZSTAR,CZSTAR,Q
INTEGER A(M~N),V(M)tZ(M),CZ(M;,VZ(M)~OZ(M),B(M}~IFB(M)~MINW(N§
INTEGER A(5,2OO),V(8) ,Z(5} ,CZ(5)~VZ(5)9OZ(5) ,B(5)~IFB(5)~MINW(201)
INF = 999999999
VSTAR = 0
JSTAR = I
P(N+I) = 0
W(N+I) = INF
MPI = M + I

MINK = INF
MINW(N§ = MINK

DO 20 J= I ,N
Y(J) = MP}
K K = N + I - J
IF (W(KK) .LT. MINK) MINK : W(KK)
MINW(KK) = MINK
DO tO I= I ,M

A (I , J) = O
I0 CONTINUE
20 CONTINUE

DO 30 I=I~M
Z(1) = I
CZ(1) = C(1)
VZ(1) = 0
OZ(1) = 0

B(I) = I
30 CONTINUE

I80UND = 0
K8 = 0
~B = M

40 IF (KB .EQ. M8) GO TO 170
K8 = K8 * I

108 S. Martello and P. Toth:

I = B(~B)
IF { 1BOUND .EO, O) GO TO 50
ZCAP : Z (I)
VZCAP = VZ(1)
CZCAP = CZ(I}
VCAP = V(1)
IF (S ,GE, Z (I)) GO TO 50
VZ(I) = VZ(1) - P(S)
CZ(1) = CZ(1) § W(S)

50 J = Z (I)
CR(1) = CZ(1)
V (I } = VZ(I]

60 IF (CR(1) ,LT, MINW(J)) GO TO 70
IF (CR(1)#P(J}/W(J} .GE. I) GO TO 80

70 Z (I) = J
CZ(I) = CR(I}
VZ(1) : V(1)
GO TO 140

80 IF (W(J) oGT, CR(1)) GO TO 90
CR(1) = CR(I) - W(J)
V(1) = V(1) �9 P(J}
A (I , J) = 1
IOZ = J
J = J + l
GO TO 60

90 IF (J .NE, JSTAR) GO TO 100
A (I , J) = 0
J = J +]
GO TO 60

IO0 Z(1) = d
CZ(1) = CR(1)
VZ(1) : V (I }

I10 IF (CR(1) .LT, MINW(J)) GO TO 140
IF (C R (I } ~ P (J) / W (J) .LT~ I) GO TO 140
IF (W(J) .GT, CR(1)) GO TO 120
CR{I) = CR(1) - W(J)
V(1) = V(1) �9 P(J)
A (I , J) = !
IOZ = J
GO TO 130

120 A (I , J) = 0
] 3 0 J = J §

GO TO 110
140 JO = OZ(1)

IF (JO ,LT. J) GO TO 160
DO 150 O=J,JO

A(I,O) = 0
150 CONTINUE
160 OZ(I) = IOZ

IF (IBOUND .EQ, 0) GO TO 40
IF (VCAP - V(I) .LE. D) GO TO 40
D = VCAP - V(1)
ISTAR = I
ZSTAR = ZCAP
VZSTAR = VZCAP
CZSTAR = CZCAP
GO TO 40

170 IF (IBOUND ,EQ, I) GO TO 180
J = JSTAR
80 TO 210

180 VSTAR : VSTAR * P(S)
Y(S) = ISTAR

190 IF [Y(JSTAR) ,EQ. MPI) GO TO 200
JSTAR : JSTAR § 1
80 TO 190

200 NB = 0
K8 = 0
I80UNO = 0
I = ISTAR
Z(I) = ZSTAR
VZ(I) = VZSTAR
CZ(1) = CZSTAR
GO TO 50

210 IF (J ,GTo N) RETURN
MB = 0
DO 220 I=I~M

IFB(I } = D
IF (A(I~J) .EQ, 0) 60 TO 220
MB = M8 + l

B(MB) = I
IFS(1) = 1

220 CONTINUE
K8 = 0

Heuristic Algorithms for the Multiple Knapsack Problem 109

IF (MB .LE. I) GO TO 240
I80UND = I
S = J
D = - INF
JSTAR = J * I
DO 230 I=I~M

IF (Z (1) .GE. JSTAR } GO TO 230
Z(1) = JSTAR
IF (IF8(1) .EQ. 0) GO TO 230
VZ(1) = VZ(I) * P (S)

CZ(1) : CZ(1) - W(S}
23O CONTINUE

GO TO 40
240 IF (M8 ~176 0) GO TO 250

I = B(1)
VSTAR = VSTAR * P(J)
Y{J) = I
IF (J .LT . Z(1) } GO TO 250
Z(1) = J * I
CZ(1) = CZ(1) - W(J)
VZ(1) = VZ(1) § P(J)

2 5 0 J = J + l
GO TO 210
END

SUBROUTINE A(N~P~W.M~CtVSTAR~Y,CR)
INTEGER P(N}~W(N)~C(M)~Y(N)*CR(M)~VSTAR
INF : 999999999
VSTAR = 0
I = 1
J = N
IBAR = I
DO 10 KK: I ,M

CR(KK) = C(KK}
10 CONTINUE

MPl = M * I
P(N§ = 0
W(N§ = INF

20 IF (Y(J) .EQ. MPI) GO TO 40
IF (W(J) oGT. CR(1)) GO TO 30
Y(J} = I
CR(I) = CR(1) - W(J)
VSTAR = VSTAR + P(J)
GO TO ~0

3 0 I = l §
I r (I .GT. M) I : I
IF (I .NE. IBAR) GO TO ~0
Y.(J) = MP]
I = I - 1

4 0 J = J - I
IF (J .EQ. 0) GO TO 50
I = I * l
IF (I .GT. M) I = I
IBAR = I
GO TO 20

50 MAXC = CR(|)
IMAXC = I
DO 60 I=29M

IF (CR(1) .LE. MAXC) GO TO 60
MAXC : CR(1)
IMAXC : I

60 CONTINUE
DO BO J : I~N

IF (Y(J} oLT. MPI } GO TO 80
IF (W(J) . G I . MAXC) GO TO BO
CR(IMAXC) : CR(IMAXC) - W(J)
VSTAR : VSTAR * P(J)
Y(J) : IMAXC
MAXC = CR(1)
IMAXC : ,~
O0 70 I=2~M

IF (CR(1) .LE. MAXC) GO TO 70
MAXC = CR(I}
IMAXC = I

70 CONTINUE
80 CONTINUE

RETURN
END

SUBROUTINE II(N~P~W~MtVSTAR.Y,CR)
INTEGER p(N)~W(N}gY(NI.CR(M}.VSTAR

C INTEGER F(M§
INTEGER F(IOI.IO]}gCP.WP.FF,U~T,Q,R~S~D

8 Computing 27/2

110 S. Martello and P. Toth:

INF = 999999999
MP! = M + 1
CR(MPI} = 0
MAXF = 0
CR = 0
00 20 I= I tM

IP I = I + I
DO 10 J=IPI ,MPI

F(I~J) = CR(I) § CR(J)
F (J , I) = F(I~J}
IF (F (I t J) .LE. MAXF) GO TO I0
MAXF = F (I , J)
IP = I
JR = J

I0 CONTINUE
F (I t I) = 0
IF (CP ,LT. CR(1) | CP = CR(1)

20 CONTINUE
F(MPI~MPI) = 0
DO 30 J=I~N

IF { Y(J) ~ MPI) GO TO 30
FF = J
GO TO 40

3O CONTINUE
RETURN

40 WP = W(FF)
IF (FF .EQ, N) GO TO 60
I F l = FF § I
DO 50 J = I F I , N

IF (Y(J) .LT, MR1) GO TO 50
IF (W(J) .LT, WP } WP = W(J)

50 CONTINUE
60 IF (F (IP ,JP) ~ WP) RETURN

J = 1
70 IF (CR(Y(J)} * CP ,LT~ WP) GO TO 230

K = J §
80 IF (K ,GT, N) GO TO 230

IF (F (Y (J) , Y (K)) ~ WP) GO TO 120
IF (W(J) - W(K)) 90 ,120 . |00

90 U = K
T = J
GO TO 110

I00 U = J
T = K

I I 0 D = W(U) - W(T)
I = Y(U)
IYT = Y(T)
IF (D ,GT, CR(IYT))GO TO 120
IF (CR(1) * D .GE, WP) GO TO 130

1 2 O K = K §
GO TO 80

130 ICIPO = CR(I) + D
NAXP = 0
O0 140 Q=FFoN

IF (Y(O) ,LT, MPI) GO TO 140
IF (W(Q) ,~T. ICIPD) GO TO 140
IF (P(O) .LE, MAXP) GO TO 140
R = Q
MAXP = P(R)

140 CONTINUE
CR(I) = CR(1) § D - W(R)
CR(IYT) = CR(IYT) - O
VSTAR = VSTAR § P(R)
O0 150 O=ItM

F(I~Q) = CR(I) + CR(Q)
F(Q~I) = F (I ,Q)
F(IYT,O) = CR(IYT} + CR(Q)
F(Q,IYT) = F(IYT~Q)

150 CONTINUE
F (I ~ I) = 0
F(IYT , IYT} = 0
IF (I .EQ, IP) GO TO 160
IF (I .EQ, JP) GO TO 160
IF (IYT ,EQ. IP) GO TO 160
IF (IYT .NE. JP) GO TO 190

160 MAXF = 0
00 180 Q=I,M
I P l = Q + I
DO 170 S=IPI,MPI

IF (F(Q,S) ,LE, MAXF) O0 TO 170
MAXF : F(O,S)
IP = Q
JP : S

Heuristic Algorithms for the Multiple Knapsack Problem 111

170 CONTINUE
180 CONTINUE
190 Y(R) = I

Y(U) = IYT
Y(T) = I
IF (W(R) .NE. WF) GO TO 210
WP = INF
O0 200 S=FF,N

IF (Y (S) ~ MP1) GO TO 200
IF (W(S} .LT . WP) WP = W(S)

200 CONTINUE
210 IF (F(IR~JP) oLT. WP) RETURN

CR = 0
DO 220 S=ItM

IF (CP ~ CR(S)) CP = CR(S)
220 CONTINUE

IF (CR(YiJ)) * CP .LT. WP) GO TO 230
K = K * I
GO TO 80

230 IF (J .EQ. N) RETURN
J = J + l
GO TO 70
END

SUBROUTINE 12(NtPgWgM,VSTARgYtCR)
INTEGER P(N),W(N),Y(N),CR(M),VSTAR
INTEGER MIN(N)~X(N)
INTEGER MIN(IOOO).X(IOOO)gF,T,V,CB,U,S
INF = 9999999Q9
MPI = M + 1
M I N K = I N F
MIN(N) = MINK
DO I0 I=2,N

K K = N §
IF (W(KK) .LT . MINK) MINK = W(KK)
MIN(KK-I) = MINK

IO CONTINUE
DO 20 J=I~N

IF (Y(J) .LE. M } GO TO 20
F = J
GO TO 30

20 CONTINUE
RETURN

30 S = N
J = N

40 IF (Y(J) .EQ, MPI) GO TO 140
CB = CR{Y(J)) + W(J)
IF (CB*P{F) /W(F) ,LE. P(J)) GO TO 140
IF (CB ~ w(F)) GO TO 50
IF (CB .LT. MIN(F)) GO TO 140

S O K = F
T = O
V = O

60 IF (W(K) .GT. CB) GO TO 70
V = V * P(K)
CB : CB - W(K)
T : T * I
X (T) = K
IF (CB ~ M I N (K)) GO TO 100

70 IF (K ~ N) GO TO IO0
KI=K+I
00 80 U=KI~N

IF (Y(U) oLE. M) GO TO 80
K = U
GO TO 90

80 CONTINUE
GO TO 100

90 IF (V + CB*R(K)/W(K) , G T , P{J)) GO TO 60
IO0 IF (V .LE. P(J)) GO TO 140

S = J
CR(Y{J)) = CB
DO IlO K=I~T

Y(X(K)) = Y(J)
110 CONTINUE

Y(J) = MPl
VSTAR = VSTAR * V - P(J)
IF (J .GT. F) GO TO 120
F = J
GO TO 140

120 IF (Y(F) ~176 MP1) GO TO 140
IFI = F + I
DO 130 U=IFI ,N

IF (Y (U) .LE. M) GO TO 130

8*

112 S. Martello and P. Toth: Heuristic Algorithms for the Multiple Knapsack Problem

F = U
GO TO 140

130 CONTINUE
140 J = J - 1

IF (d ,EO, 0) d = N
IF (J .EO, 5) RETURN
GO TO 40
END

References

[1] Fisk, J. C., Hung, M. S. : A heuristic routine for solving large loading problems. Presented at
the TIMS/ORSA Joint National Meeting, New Orleans, May 1979.

[2] Hung, M. S., Fisk, J. C.: An algorithm for 0-1 multiple knapsack problems. Naval Research
Logistics Quarterly 25, 571--579 (1978).

[3] Martello, S., Toth, P.: Algorithm for the solution of the 0-1 single knapsack problem.
Computing 21, 81--86 (1978).

[4] Martello, S., Toth, P. : Solution of the 0-1 multiple knapsack problem. Europ. J. Operat. Res.
4, 276--283 (1980).

[5] Martello, S., Toth, P. : A bound and bound algorithm for the zero-one multiple knapsack problem.
Discrete Applied Mathematics (to appear).

S. Martello
P. Toth
Istituto di Automatica
Universit~t degli Studi di Bologna
Viale Risorgimento 2
1-40136 Bologna
Italy

