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Abstract - -  Zusammenfassung 

Scheduling Two Jobs with Fixed and Nonflxed Routes. The shop-scheduling problem with two jobs and 
m machines is considered under the condition that the machine order is fixed in advance for the first job 
and nonfixed for the second job. The problems ofmakespan and mean flow time minimization are proved 
to be NP-hard if operation preemption is forbidden. In the case of preemption allowance for any given 
regular criterion the O(n,) algorithm is proposed. Here, n,  is the maximum number of operations per job. 
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Key words: Optimization, optimal makespan schedule, optimal mean flow time schedule, regular 
criterion, polynomial time algorithm, NP-hard problem. 

Reihenfoigeprobleme bei zwei Auflr/igen mit fixierten und unfixierten Routinen. Es werden Reihenfolge- 
probleme mit zwei Auftr~gen und m Maschinen untersucht, wobei die technologische Reihenfolge der 
Maschinen for den ersten Auftrag gegeben und fiir den zweiten Auftrag variabel ist. Es wird bewiesen, 
dal3 die Probleme "Minimierung der Gesamtbearbeitungszeit" und "Minimierung der mittleren 
Durchlaufzeit" NP-hard sind, wenn eine Unterbrechung der Operationen verboten ist. Fiir ein beliebiges 
regul/ires Kriterium wird bei Zulassung von Unterbrechungen ein O(n.) Algorithmus entwiekelt, wobei 
mit n. die maximale Anzahl der Operationen fiir den ersten Auftrag bezeichnet wird. 

1. Introduction 

We consider the following shop-scheduling problem. There is a set of  jobs J = 
{J1 . . . . .  J,} that  have to be processed on the machine set m = {ml  . . . . .  Mm}. Each 
machine M k  E M processes at most  one job  at a time and each job  Ji ~ J is processed 
on at most  one machine at a time. 

A shop-scheduling problem can be specified in terms of  a four-field classification 
~[fllvl 6, where ~, fl, 7 and 6 mean  the number  of jobs, the number  of  machines, the 
machines-jobs characteristics and the optimality criterion, respectively. 

The third field y is defined as follows. I fy  = J, we have a job-shop  problem, denoted 
by n lm[J[ F(s).  Each job  Ji e J has a route (machine order) I i i i = (11 . . . . .  l,~) given 
before. It means that  job  Ji is to  be processed first on  machine MI], then on machine 
Mi~ and so on up to machine MI~, M~ ~ M, q = 1 . . . . .  ni. I t  should be noted that 
some machines from set M may  l~e absent in route 1 i and on the other  hand  some 
machines may  be repeated two or  more  times in l ~. We assume that  (i, q )  denotes 
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an operation of processing job Ji on machine Mz~ in a job-shop. The processing time 
(duration) p~q > 0 of each operation (i, q) is given beforehand. A special case of a 
job-shop is a flow-shop in which all the jobs have identical routes. In this case 7 = F. 

If 7 = O, we have an open-shop problem denoted by n lmlOIF(s). The machine order 
for any job is nonfixed in advance and the route of each job is to be found while 
constructing the schedule. Within this problem each job J~ s J is to be processed 
on each machine Mk ~ M strictly one time: n~ = m. For each operation (i, k) of 
processing job J~ on machine M k its processing time Pik ~ 0 is given. It should be 
noted that for the job-shop problem operation (i, q) is defined by job number i and 
by stage number q while for the open-shop problem operation (i, k) is defined by 
job number i and by machine number k. 

The third field may include some other problem characteristics as for instance the 
parameter Pr indicating the preemption allowance. If preemption is forbidden, 
schedule s can be completely defined by starting time tiq(S ) ~ 0 of each operation 
(i, q) or by its completion time %(s)  = tiq(S ) --]- Piq" In an open-shop case we use the 
number k of the corresponding machine Mk instead of the stage number q: t~k(S) and 
c.,(s). 

If preemption is allowed, to determine a schedule s it is necessary to find both 
starting times and completion times of all operation parts at which operations (i, q), 
i = 1, . . . ,  n~, are split within schedule s. 

This paper deals with the n lmlJ, OlF(s) and n[mlJ, O, PrlF(s)  problems for the 
so-called nonhomogeneous shop. It means that the routes of some jobs are fixed 
and the routes of the others are nonfixed. The criteria considered are Cma x, ~ C~ 
and ~b. If F(s) = C~ax, the problem (it is denoted by n lm[J, O[ Cmax) is to construct 
a schedule s* minimizing the makespan (i.e. maximum completion time of the jobs 
or schedule length): 

Cm,x(S) = max {ci(s)lJ~ ~ J}.  

Here, ci(s ) is the completion time of job J~ within schedule s: ci(s ) = ci,,(s ). 

If F(s) = ~ Ci, the problem (it is denoted by n Ira I J, O I ~ C~) is to find a schedule s* 
minimizing the sum of completion times of the jobs or (which is the same) minimizing 
mean flow-time: 

G(s) = ~ c~(s). 
i = l  

If F(s) = q~, it is necessary to make up a schedule s* minimizing the value of any 
given objective function ~(c 1 (s) . . . . .  c,(s)) nondecreasing with respect to each of its 
arguments: if c~(s) <_ ci(s') for all J~ ~ J then ~(c l  (s) . . . . .  c,(s)) < Cb(c 1 (s') . . . . .  c,(s')). 
Such optimality criterion is said to be a regular one [2]. It is obvious that Cmax and 

Ci are regular criteria. 
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It should be recalled that the majority of results are dedicated to "pure" shops, that 
is, to those with either fixed or nonfixed routes for all the jobs. Combinations of 
such shops have been only recently investigated: Paper [8] seems to be the first one 
to consider the n ImlF, OI C~ax problem. This research has been extended in [13, 14]. 
The main result received in [13, 14] is the O(n. log2n  ) algorithm for solving 
n ] 2 I J, O [ Cma x and n 121 J, O, Prl Cma x problems. 

Our paper continues the complexity study of scheduling problems with the fixed 
number of jobs [1, 5, 9, 10, 11, 12, 15] in the case of a nonhomogeneous shop. In 
Section 2 it is proved that 2 Ira I J, O [ Cmax and 2 Ira I J, O I ~ C, problems are NP-hard 
if preemption is forbidden. In Sections 3 and 4 a linear time algorithm is given for 
the 21mlJ, O, Prl Cmax problem with preemption allowance and arbitrary regular 
criterion. 

2. Nonhomogeneous Shop without Preemption 

The polynomial time algorithm for the nl2lJ, O, nt < 21Cm,x problem with m = 2 
and arbitrary n has been proposed in [13, 14]. We prove that if vice versa n = 2 
and the number of machines m is not restricted, then the analogous problem is 
(binary) NP-hard. 

Theorem 1. The 2 Ira I J, O [ Cma x problem is NP-hard. 

Proof. We reduce polynomially the NP-hard PARTITION problem [3] to the 
following decision problem: Does there exist a schedule s o of processing two jobs 
on m machines without preemption one job having fixed route and another one 
having nonfixed route for which Cmax(S O) < y for a given y. The PARTITION 
problem can be described as follows. A set A = { 1 . . . .  , a} is given and the positive 
integer e i is connected with each element i ~ A, ~ e i = 2E. The question is if there 

i~A  

exists a partition of A into subsets A~ and A2 for which ~ e i = ~ e~ = E. If 
i~A1 i~A2 

such subsets A1 and A 2 do exist, we say that the PARTITION problem has a 
solution. 

Here is an example of such a 2 [mlJ, O[ Cmax decision problem. Job J2 is processed 
on machines M = {M1, . . . ,Ma+I} ,  m = a + 1, its route being nonfixed, and job's 
J1 route being fixed: 11 = (a + 1, a, a + 1), nl = 3. We set y = 3E, P2,a+~ = E, Pz,k = 

ek for k = 1 . . . . .  a. The duration of each operation (1, 1), (1, 2) and (1, 3) is equal 
to E. 

We show that schedule s o without preemption and satisfying Cmax(S 0) ~ y exists for 
the example constructed if and only if the PARTITION problem has a solution. 

Sufficiency. If the PARTITION problem has a solution A = A 1 w A 2, ~ e i = 
i~A1 

ei, the schedule s o can be constructed as follows. Jobs J1 and J2 are processed 
i~A2 

in the closed interval [0, 3El without delays and job J2 is processed according to 
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the route 12 = (Tq,a + 1,7z2) , where 7c I is a permutation of set A1 numbers. As 
el = ~ ei = E the machines processing jobs J~ and Jz in the closed interval 

ieA 1 leA2 
[0, E] (and similar in the interval (2E, 3E]) are all different. Hence we have con- 
structed a feasible schedule (no machine processes two jobs simultaneously) and 
for this schedule the following equation is true: Cmax(S ~ = 3E = y (see Fig. 1). 

J1 

~1 a+l ~2 

a+l a a+l 

) 

0 E 2 E 3 E t i m e  

Figure  1. Schedule s o 

m 
Necessity. Let there exist a schedule s o with Cmax(S O) ~ y. Since Y' Pzk = 3E and 

k = l  
n l  

Plq = 3E then Cm,x(S ~ = y and each job J1 and J2 is processed without delays 
q=l  

in the closed interval [0, 3E]. Since P2,,+1 + P~,I + Pl,3 = 3E machine M,+ 1 pro- 
cesses one job J1 or J2 at a time, i.e. this machine functions with no idle time. Job's 
Jx route l ~ is fixed: l 1 = (a + 1,a,a + 1) and so only one interval (E, 2El is suitable 
for processing job J2 on the machine Ma+x (provided that Cm,x(S ~ < y). 

Hence, machines {M 1 . . . . .  M~) have to process job J2 in the closed interval [0, E] 
and in the interval (2E, 3El. Since preemption is forbidden the set of machines which 
process job Jz in the closed interval [0, E] gives numbers of subset A 1 elements and 
the set of machines which process job J2 in the interval (2E, 3El gives numbers of 
the other subset A2. So the schedule s o determines the solution of the PARTITION 
problem. Obviously, the reduction constructed is a polynomial one and so Theorem 
1 is proved. 

It is easy to come to the conclusion that the arguments given above are valid if Cmax 
is replaced by ~ Ci and the value y is set to be equal to 6E. Such replacement is 
possible because of the fixed number of jobs. This case is similar to the one 
considered in [11, 12] for NP-hardness proof of n[m[J[Cma x and nlmJJ[~C i 
problems with n = 3. Thus we have the following 

Theorem 2. The problem 2 [ ml J, O[ ~ Ci is N P-hard. 

We have shown that the 2[mlJ, OlF(s) problem is NP-hard even for the simplest 
optimality criteria: F(s) = Cmax and F(s) = ~ Cv Taking into account reducibility 
among scheduling problems with different classical criteria (see [6], p. 9) we can 
conclude that the 2Ira I J, O lF(s) problem is NP-hard for any traditional criterion: 
L . . . .  Z T~, E co~T~, E co~C~, ~ U~ and ~ co, U~. 
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Note that the stage number ni may essentially influence the complexity of the 
problem. In particular, if n~ _< 2 the n 121J, O, n~ < 21Cmax problem is polynomially 
solvable [13, 14], but if n~ < 3 it becomes NP-hard. The latter statement follows 
immediately from the NP-hardness proof of the n [21J, na = 3, n~ = 1, i ~ 11Cmax 
problem proposed in [7], since this problem can be considered as a 
nl2lJ, O,n i <_ 3]Cma x one. 

3. Nonhomogeneous Shop with Preemptions and without Delays 

We show that the problems the NP-hardness of which was established in Theorems 
1 and 2, become polynomia!ly solvable if preemption is allowed. Moreover, we shall 
prove that these problems are polynomially solvable for any traditional regular 
criterion. 

We consider the 2 ImlJ, O, Prl q~ problem, job Ji  route being fixed: l 1 = (l i . . . . .  l,ll), 
.1 

and job J2 route being nonfixed. Denote p~ = ~ p~q and P2 = P2k. 
q=l k=l 

I fp i  > Pz, one can define the stage number ~ for which 

~-i 

Z Plq < P2 < Z Plq (1) 
q=l q=l 

Since preemption is allowed we assume that there is an equality sign in the right 

part of relation (1), i.e. P2 = ~ Plq, because otherwise one may split operation 
q=l 

(1, ~> into two parts, the durations of the first and the second parts being equal to 

P2 - ~ Piq and Pl~ - P2 - ~ Piq , respectively. 
q=l q=l 

If P1 < P2, we set 7:/equal to n 1. 

Calculate value 

Ok = Pzk + 2 Plq (2) 
l<q<~, 

l~ =k 

for every machine Mk ~ M and define number k ~ for which OkO = max {Ok lMk ~ M}. 

We now describe an algorithm for constructing a schedule s o with no delays in job 
J1 (and in job J2) processing within the closed interval [0, Pl ] (and [-0, P2], respec- 
tively) for the case when inequality 

O~o _< p2 (3) 

holds. Note that job J1 is to be processed without preemption and operation (1, 1 > 
is to be fulfilled within the closed interval [0, Pl, 1], operation (1, 2> is to be fulfilled 
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within the interval (P l, 1, P l, 1 -t- P l, 2"], etc., operation (1, n 1 ) is to be fulfilled within 

t h e i n t e r v a l ( " ~ l P 1 " q ' ~ P l ' q ]  q=l  

Algorithm A. 

1. IF pz > P2 THEN (construct the schedule's s o finite part in the interval (P2, Pl]) 
2. BEGIN 
3. t l ,~+l(S~176176176 

END 
4. AUXILSCHED (s') 
5. P ICKFRAGM ' 1 1 (s, l 1 . . . . .  1~) 
6. ALLOCFRAGM (S, ll ~ . . . . .  l~) 

Here, AUXILSCHED, PICKFRAGM and ALLOCFRAGM are the following 
procedures: 

A U X I L S C H E D  (s') constructs the optimal schedule s' for the auxiliary problem 
2 [ m I O, Pr] 45. This auxiliary problem differs from the given 2 1 m I J, O, Pr] 45 problem 
(we call it the main problem) only by job Jx: Its route becomes nonfixed, operations 
of the auxiliary problem correspond to operations (1, 1 ) , . . . ,  (1, ~/) of the main 
problem, and the durations of the auxiliary problem operations (1, k)'  become 
equal to P'lk = Ok -- Pz.k = Z Plq, M,  ~ M. 

l<<_q<_~ 
llq =k 

The polynomial algorithm for solving the 2 ]m[O, Pr[ 45 problem has been suggested 
in [4, 9]. As it follows from condition (3) the schedule s' constructed by this 
algorithm has no delays within the closed interval [0,min{pl,p2}] for job Jx 
processing and within the closed interval [0, P2] for job J2 processing. Moreover, 
all operations (perhaps, except at most one operation) are fulfilled without preemp~ 
tion for the schedule s'. And if such operation with preemption exists, then it is an 
operation of the job the total duration of which is greater than the total duration 
of another one. Hence,j ob J1 is processed without preemption within thc schedule s'. 

The optimal schedule s' is used further on to construct the initial part of the schedule 
s o in the closed interval [0, P2] (or the whole schedule s o if Pl < P2). 

P I C K F R A G M  (s', l~ . . . . .  l~) picks out the schedule s' fragments according to the 
initial part (l~ . . . . .  I~) of job J1 route I a of the main problem. 

If the number k of the machine M k occurs in this part of the route one time only, 
then we pick out the schedule s' part of jobs dx and J2 processing in the interval 
(tlk(S'), Clk(S')], k = l~, 1 <_ q <_ ct, and call it a fragment. 

If the number k occurs h, h > 1, times, i.e. 1~ . . . . .  l'~,h = k, 1 . . . .  < ij < ... < i h < ~, 
the schedule s' part in the interval (tlk(S'), Clk(S')] should be broken into h following 

h - 1  h 
fragments: (tlk(S'),tlk(S') + pll~i] . . . . .  tlk(S') + ~ Plz;,ttk(S') + 2 PlY " 

i =1 " j =1 '~A 
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ALLOCFRAGM (s, l~,... ,l~) allocates the fragments picked out from the schedule 
s' within the closed interval [O, p2] in such a way that operations (1, q), q = 2 . . . .  , 

//q -1 q 7 
q, of the main problem are fulfilled within intervals ~ ,~  PIj, ~ Plj / and opera- 

N J  - -  

tion (1, 1) is fulfilled within the closed interval [0, p~ 1]. 

If Pl -< P2, the schedule s o is constructed, otherwise it can be obtained by adding 
the schedule part for interval (P2, Pl ] constructed at Steps 1-3 to the schedule part 
for the closed interval [-0, P2] constructed at Steps 4-6. 

The schedule constructed by Algorithm A is feasible as the schedule s' is admissible 
(jobs J1 and J2 are processed on different machines at a time); secondly, only job 
J2 route is nonfixed in the main problem 2]ml J, O, Prl (b and thirdly the operation 
preemption is allowed. 

We evaluate the complexity of Algorithm A. The complexity of the algorithm from 
I-4, 9] used in the AUXILSCHED procedure for solving the 21m[ O, Pr[4~ problem 
is O(m). The amount of the schedule fragments picked out at Step 5 in the 
PICKFRAGM procedure is F/< nt and this value bounds also procedure 
ALLOCFRAGM's complexity. Steps 1-3 also take no more than O(n~) elementary 
operations. So the whole complexity of Algorithm A is O(n,), where n, = 
max{n1, n2} = max{hi, m}. 

We have described an algorithm for constructing a schedule with no delays in jobs 
J1 and J2 processing within closed intervals [0,pl] and [0,p2], respectively, if 
inequality (3) is true. Now we show that if vice versa there exists a schedule s o then 
inequality (3) is fulfilled. 

Let condition (3) not be fulfilled and nevertheless let the schedule s o exist. Then 
machine Mko operates within the closed interval [0,p2] for Oko time units having 
no idle time since job Jz is processed on this machine for p2ko time units (it follows 
from the definitions of Pz and s n) and job J1 is processed on this machine for 

p~q time units (it follows from the definitions of 7t and s~ But this contradicts 
l_<q_<~ 
lq 1 =k o 

the assumption concerning the whole length of this time interval: P2 < Oko" 

SO we have proved the following 

Theorem 3. There exists a schedule s o for the 2 ImlJ, O, Prl ~ problem with no delays 
in job J1 (and in job J2) processing within the closed interval [O, pl] (and ['O, p2] , 
respectively) if  and onlyif  inequality (3) is true. 

4. Nonhomogeneous Shop with Preemptions and Delays 

We investigate the 2 ImlJ, O, Pr[ ~ problem when condition (3) is not valid: 

Ok~ > P2" (4) 
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As it follows from Theorem 3 the delays in job J~ processing within the closed 
interval [0, p~] or delays in job J2 processing within the closed interval [0, P2] are 
unavoidable in this case and so the objective function value for the schedule depends 
on the distribution of these delays between the jobs. Note that, while in Section 3 
only one schedule was optimal for all regular criteria, different schedules may be 
optimal in this section for different regular criteria. 

Consider the auxiliary problem differing from the one given only by job J2: Job J2 
in the auxiliary problem consists of a single operation (2, k ~ with duration P2,k o 
being the same as for the main problem. For any schedule s" of the auxiliary problem 
we consider schedule s of the main problem corresponding to the schedule s". All 
operations of jobs Jx and J2 processing, except operations (2, k), M k ~ M\{Mko}, 
are fulfilled within schedule s in the same time intervals as the corresponding 
operations in schedule s". 

We Construct, at first, schedule s~ of the auxiliary problem. For this schedule job 
J1 is processed without delays and machine Mko operates with no idle time in the 
closed interval [0, c2(s~) ] processing operations (1, qx), -.., (1, q~) without pre- 
emption and operation (2, k ~ with preemption (see Fig. 2). 

,'~,k ~ ,2,k ~ e ,z,k ~ ,z,k ~ 

":1,q1> r <l'qt~ > (l,q(x+_ ~ 

~ =o ~ =k ~ l ~ =k ~ i~ =~o 
el % % q~.+1 

) 
0 t~me 

Figure 2. Schedule s t' 

Denote the operation (2,k ~ parts processing on machine Mko within schedule 
s[' without preemption by (2,k~ . . . . .  (2,k~ (see Fig. 2), their durations by 
P<2,,%1, .... p<2,,o>~, respectively, and the sum of delays in job J2 processing by 
~2(s~): &2(s~') = pl,ql + " '  + pl,qo. 

Note that t~2(Sl r) is greater than the sum of durations of operations (2, k), Mk 
M\(Mko }. Otherwise, operations (1,q~), (1,q2) . . . . .  (1 ,q)  and all parts of the 
operation (2,k ~ are fulfilled up to time P2. It means that the inequality 

Pl,q + P2,kO = Oko < P2 is valid and that contradicts inequality (4). 
l _<q_<~ 

1 -  o lq - k  

Thus to construct schedule s~ for the main problem using the schedule s~' for the 
auxiliary problem one can assign operations (2, k), Mk E M\{Mko}, fulfilling con- 
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secutively within intervals of operations (1, ql ), (1, q2), " " ,  ( 1 ,  q,)  processing: 
(tl,ql(S~'),cl,~l(s/)], (tl,q2(s~),Cl,q2(S~')] . . . .  , (tl,q,(s'l'),cl,q,(s~')]. These operations 
(2,k) ,  Mk e M\{Mko}, may be fulfilled in any possible order with preemption. 
Within schedule Sl job J1 is processed without delays and job J2 is processed with 
delays. The sum of these delays is equal to 6z(Sl) = ~2(s'~) - (P2 - P2,kO) > 0. 

It is obvious that the completion time c2(sl) may be diminished by introducing 
delays in job J1 processing and reducing in such a way job J2 delays 62(s O. It is 
more convenient to consider schedule si' of the auxiliary problem to realize such 
redistribution of the delays. If for some schedule s" the equation 62(s") = Pa - P2,kO 
(or 62(s ) = 0 equivalently) is valid, then it is impossible to diminish job J2 comple- 
tion time and there is no sense in further diminishing the 6a(S") value. So one may 
restrict himself to considering schedules s" of the auxiliary problem satisfying 
condition 

~2(s") _> p2 - p2,ko. (5) 

We describe Algorithm B of constructing schedules s~, . . . ,  s~' of the auxiliary 
problem satisfying inequality (5) and show that the optimal schedule s*" of the 
auxiliary problem with additional condition (5) can be selected among schedules 
s~' . . . . .  s;' so that the objective function F(s) should be minimal for this schedule: 
F(s*") = min{F(s~),.. . ,F(s'~')}. The optimal schedule s* for the main problem 
corresponds to the schedule s*" and may be constructed by allocating operations 
(2, k) ,  M k ~ M\{Mko} ,  in intervals of delays of the job J 2  within the schedule s*'. 

Algorithm B. 

1. h := 1; (h is the number of  the last constructed schedule s") 

2. ~2(s;;):= ~ pl,~j 
j = l  

3. WHILE 62(s~') > P2 - -  PE,k 0 DO 
BEGIN 

6t--h 

4. I F  ~ Pl ,q j  ~ P2 - -  P2,k o T H E N  
j = l  

INTERCHANGE 1 (( 1, q~ -h +1 ), (2, k ~ )p -h + ~ . . . . .  (2, k ~ )~); 
~ -h  

~2(s~'+1) := ~ Pl,qj; h := h + 1 
j = l  

ELSE 
INTERCHANGE2 (( 1, q~-h § ), (2, k ~ )p_h +1 . . . . .  (2, k ~ 
~2(Sh'+1) : =  P2 - -  P2,k~ h := h + 1 

END 

Here, INTERCHANGE1 and INTERCHANGE2 are procedures used to construct 
schedule s~'+l from schedule Sh' by interchanging the processing order of operation 
( 1, q~_h +1 ) and the last parts of operation (2, k ~  processed without delays one by 
one: (2, k~ . . . ,  (2, k~ 

In the case of INTERCHANGE 1 operation (1, q~_h +1 ) is fulfilled without preemp- 
tion within schedule Sh'+x (see Fig. 3a). 
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J2 

Jl 
<l,q~> <1,q2> <1'q{1> ~l'qtl+l> 

" ~ . ~ ' ~ ~ . . .  ~ ~ ~ . . .  

ql = q2 q~f q{l +1 

t { r n o  

J1 
<1,q1> <1,q2> <l,q{l> <1,q~1~1> 

z~ ~o zl ~o z I =~ Zq =~ 

ql= q2= qs s +1 

time 

Figure 3. Schedule s~ 

In the case of INTERCHANGE2 operation <1, q,-h+l)  is splitted into two parts 
and it is processed with preemptions within schedule s~'+x (see Fig. 3b), the duration 

~--h 
of its first part being equal to (P2 - P2,kO) -- ~ Pl,qj and the duration of the 

j=l  
~-h+l 

second part being equal to  Pl,q,-h+l- ( P 2 -  P2,k o) -- Pl,qj ---- "= P l , q j -  

(P2 - P2,ko) so that inequality (5) is valid for schedule s'h'+~. 

Note that if the INTERCHANGE2 procedure is applied to schedule sh' then the 
WHILE-condition is violated for the new schedule s~'+~ (it is fulfilled as equality: 
C~a(Sh') ----= P2  - -  P 2 , k  ~ and the algorithm stops. So this procedure can be applied no 
more than once by Algorithm B. 

Now we prove the following 

Lemma 1. The optimal schedule for the auxiliary problem with additional condition 
tt tt (5) c a n  be  found among schedules s l  . . . . .  sv. 

Proof. Consider at first class S'~ ofthe schedules satisfying condition (5) and inequal- 
ity C2,ko(S") > C2,qo(S"). For any schedule s" e S~ the sum of job J2 delays 62(s" ) is 

no less than Az~-- s Pl,q~. Schedule s~ e S'~ is optimal within this class since 
j=l  

62(s~') = A~ for this schedule and job J1 is processed without delays: 61(s'~') = 0. 
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Now consider class S~ of the schedules satisfying inequality (5) and c~,q, ~,ts'q, < 
C2,ko(S") < Cl,q,(S"). For  any schedule s" ~ S~ the sum of job J2 delays 62(s") is no 

A 2 = m a x ~ ' p l , q j ,  p2--P2,kO~ and the sum of job J1 delays fit(s") less than is 
-- ) [.j=l 

no less than A 1 = P<2k% Schedule s~ e S~ is optimal within this class since 
~(s~) = ~ ,  ~(s~) = ~ .  

It is easy to check the validity of analogous statements for the rest of the classes of 
schedules S; . . . . .  S;'. Indeed, the schedules of class S[, 3 _< h < v, satisfy inequality 
(5) and cl, q ..... (s") < e2,ko(S t') < Cl,qa_h+2(S" ). For any schedule s " e  S~ we have: 

f~ -h+ l  } t~ 
6 2 ( s " ) - > A ~ = m a x ~  2 Pl,qj, Pz --  P2,k ~ , 61(S") >- AI  = 2 p(2,kO)j, a n d  

1. j=l  j=fl-h+2 
moreover these conditions are fulfilled as equations (not as inequalities) for schedule 
s~'. So schedule Sh' is optimal in the class of schedules S~, and the lemma is proved. 

Finally, we evaluate the complexity of the optimal schedule s* construction for the 
main problem. The number of schedules considered is equal to v, v < n~; the 
construction of schedule s~' needs O(nl) elementary operations; construction of 
schedule Sh'+t using schedule Sh', 2 _< h < v - 1, needs 0(1) elementary operations. 
So the total complexity of constructing schedules s~, . . . ,  s;' is restricted by O(nl). 

Schedule s*" is selected among schedules s~' . . . .  , s;' and the complexity of this 
selection depends on the complexity of calculating the values F(s~) . . . . .  F(s;'). Since 
schedule s* is constructed on the basis of schedule s*" by picking out time intervals 
for operations (2 ,k )  processing, Mk ~ Mk{Mko}, the complexity of schedule s* 
construction is O(n.), not taking into account the complexity of calculating F(s). 

Here is an example to illustrate the algorithm described. 

Example 2 Ira[J, O, Pr[ F(s). Job J1 is processed on machine set M = {M1 . . . . .  M4} 
according to a given route l 1 = (MI, M2, M~, M3, M~, M4, M1, M3, M4, M~, Mz, 
Mg, MI,M3); its operation durations being PI.~ = 2, Pl,z = 1, Pl,3 = 3, P1,4 = 1, 
Pl,5 = 4, Pl,6 = 5, Pl,7 = 4, Pl,8 = 3, Pl,9 = 1, Pl,10 = 5, P l , l l  = 4, Pl,12 = 5, 
Pl,a3 = 1, Pl,t4 = 1. Job J2 is processed on machine set M as well but its route is 
not fixed before scheduling, P2,1 = 17, P2, 2 = 2, P2, 3 = 2, P2,4 = 2. We consider four 
objective functions F(s) = F~(s): 

F1 (s) -- max{cx (s), c2(s)}, 

F2(s) -- max {c1 (s) - 45, 0} + max {cz (s) - 30, 0}, 

F3(s) = Cl(S)'C2(S ) -[- 8 "Cl(S ) 

F4(s) = cl(s)'c2(s). 

Functions F~ (s) and F z(s) are traditional: Minimizing F l(s) means the Cmax criterion, 
and Fz(s) means minimizing the sum of tardinesses. Note that F3(s) and F4(s) are 
regular criteria, too. 
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I ~ ~//~ 
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Figure 4. a, b Schedules s~', s~. c, d Schedules s~, s~ 
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I r >2 

gl,ql> <l,q3> <l,q3> <l,q4> <l,qs> 

1 --1 1 =1 / =1 1 / --1 
ql q3 q4 q5 

, ) 

0 23 55 time 

Figure 5. Schedule s* for F(s) = F4(s ) 

It is easy to make sure that Mko = M 1 and inequality (4) is valid: Oko = 17 + 2 + 3 + 
4 + 4 = 30, P2 = 23 (note that ~ = 8). According to Theorem 3 the delays are 
inevitable and we can apply Algorithm B to construct an optimal schedule. Sched- 
ules s~',..., s2, v = 4, are represented in Fig. 4a-d.  Schedule s[ appears to be optimal 
for the objective function Fl(s), schedule s~ for F2(s), schedule s~ for F3(s), and 
schedule s~ for F4(s). Figure 5 represents optimal schedule s* for the main problem 
with objective function F4(s). This schedule corresponds to schedule s~ of the 
auxiliary problem. 
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