
Distrib Comput (1993) 6:245 254

�9 Springer-Verlag 1993

Fairness and hyperfairness in multi-party interactions
Paul C. Attic 1,2, Nissim Francez 2'3., and Orna Grumberg 3

1 Department of Computer Sciences, The University of Texas at Austin, USA
2 Microelectronics and Computer Technology Corporationl Austin, Texas, USA
3 Computer Science Department, Technion, Haifa, Israel

Received January 1990/Accepted September 1992

Orna Grumberg received her
B.Sc. degree, M.Sc. and Ph.D. in the
Computer Science Department at
the Technion - Israel Institute of
Technology. Since 1984 she is a fac-
ulty member in the Computer Sci-
ence Department at the Technion.
Her research interests include veri-
fication of distributed systems,
computer-aided verification, model
checking, temporal logics and au-
tomata.

Paul Attic received a B.A. degree
in engineering science from the
University of Oxford, and an M.Sc.
degree in computer science from
the University of London. Since
1986, Paul has been with the Mi-
croelectronics and Computer Tech-
nology Corporation, where he is
currently a member of technical
staff. He is also a candidate for the
Ph.D. in computer science degree
at the University of Texas at Aus-
tin. His research interests include
temporal logic, fairness, algebraic
process theory, formal semantics,
and concurrent program verifica-
tion.

Summary. In this paper, a new fairness notion is pro-
posed for languages with multi-party interactions as the
sole interprocess synchronization and communicat ion
primitive. The main advantage of this fairness notion
is the elimination of starvation occurring solely due to
race conditions (i.e., ordering of independent actions).
Also, this is the first fairness notion for such languages

* The photograph and autobiography of Dr. Nissim Francez were
published in Volume 2, Issue No. 4, 1988 on page 226

Correspondence to: P.C. Attic

which is fully adequate with respect to the criteria pre-
sented in [21. The paper defines the notion, proves its
properties, and presents examples of its usefulness.

Key words: Fairness - Hyperfairness - Multi-party inter-
action - Synchronization - Starvation

1 Introduction

Fairness is one of the most important classes of liveness
properties employed by languages for nondeterministic,
concurrent and distributed programs and by their under-
lying models of computat ion. This importance stems
from the semantic intricacies of constructs in such lan-
guages, which makes the verification of typical progress
properties (e.g., eventual response to a request for service)
difficult. One source of difficulty is the phenomenon of
conspiracies. A conspiracy occurs if a request for service
is never granted because conflicting requests intermit-
tently engage some of the needed resources. In this paper,
we investigate the prevention of conspiracies through
fair scheduling. We propose a new fairness notion that
prevents a conspiracy whenever it is due solely to "race
condi t ions ' , i.e., whenever its prevention involves delay-
ing some requests and proceeding with independent,
non-conflicting requests.

An appropriate setting for the study of conspiracies
and their prevention is that of concurrent programs ex-
pressed in programming languages with multi-party in-
teractions as their primitive construct for interprocess
synchronization and communication. In our opinion, a
mult i-party interaction is more abstract and higher level
than the more commonly used point-to-point communi-
cation which is usually expressed by message-passing
primitives such as send and receive (either asynchronous,
or CSP-like handshaking) or by remote procedure calls
(e.g., ADA-like rendezvous). A single mult i-party interac-
tion hides the details of its implementat ion by several
point- to-point communicat ion operations. Among other

246

things, the ordering of point-to-point communication
operations is abstracted away, and so high level designs
can be produced which do not contain such low level
details. Several such multi-party interaction constructs
have been proposed, e.g., scripts [14], joint actions [5],
shared actions [25], compacts [9] and teams and interac-
tions [15]. In addition, the handshakes in Hoare's alge-
braic version of CSP [20] are also multi-party synchroni-
zations, though this fact is not stressed there. It is our
view that such constructs will become more frequently
used as more and more complicated concurrent pro-
grams are designed, especially since many implementa-
tions of multi-party interactions have appeared [4, 6,
8, 10, i i] .

We deal with both serialized and overlapping semant-
ics. In serialized semantics, interaction execution is atom-
ic, i.e., one interaction is executed at a time, and parallel-
ism is modeled by the nondeterministic interleaving of
interaction executions. In overlapping semantics, interac-
tion execution has finite (nonzero) duration, so execu-
tions of non-conflicting interactions can overlap in time.
Parallelism is modeled by the nondeterministic interleav-
ing of interaction fragments, which, roughly speaking,
are events that represent the start and finish of interac-
tion executions. As is well known by now for binary
interactions (i.e., interactions with exactly two partici-
pants) [2, 6, 7, 16, 18], natural fairness properties, which
are satisfied in a serialized execution (one interaction
at a time), need not hold in an overlapping execution.
This also holds, of course, for general multi-party inter-
actions.

Within the setting of multi-party interactions, a con-
spiracy occurs if an interaction is never enabled for exe-
cution because conflicting interactions intermittently en-
gage some of the needed participants, i.e., participants
are viewed as resources which are required for the enab-
lement of an interaction (this situation occurs in both
serialized and overlapping semantics). Our fairness no-
tion prevents "race conditions" by delaying some inter-
actions and proceeding with independent, non-conflict-
ing interactions (this is made more precise in the sequel).
Our notion also satisfies the three semantic criteria posed
in [2] for fairness notions, (namely feasibility, liveness
enhancement, and equivalence robustness, which are brief-
ly explained in this paper) and is the first fairness notion
for multi-party interactions that does so. The existence
of such a fairness notion was presented as an open prob-
lem by Pnueli [24]. This problem is positively solved
in this paper, though it is not clear at this time whether
the solution is the most general one.

The rest of the paper is organized as follows. In
Sect. 2, a mini-language, IP, (an abstraction of Raddle
[15]) is presented. Both its serialized and overlapping
semantics are given. In Sect. 3 the concept of conspiracy
resistance is presented, in terms of which hyperfairness
is defined, and examples are presented which rely on
hyperfairness for their required liveness properties. In
Sect. 4 an explicit scheduler transformation [3, 22] for
hyperfairness is proposed and proven to be faithful, i.e.,
it generates only hyperfair computations of a given pro-
gram. In Sect. 5 our conclusions are presented.

2 The language IP (Interacting Processes)

In this section we present a simple mini-language, called
IP (Interacting Processes), first introduced in [17]. The
language is an abstraction and simplification of pro-
gramming languages containing the multi-party interac-
tion, and is suitable for focusing on fair conflict-resolu-
tions among interactions, omitting other features found
in similar, but more elaborate languages. Its main feature
is the usage of multi-party interactions as guards, thereby
generalizing both Dijkstra's original guarded commands
language [12], which has only boolean guards, and CSP
[19], which uses synchronous binary communication op-
erations as guards. Further results regarding the proof-
theory (of partial-correctness) of multi-party interactions,
expressed via the IP language, are reported in [17].

A program P : : [P1 I].../I P~] consists of a concurrem
composition of n > 1 (fixed n) processes, having disjoint
local states (i.e., no shared variables). A process P~, 1 <_ i <_
n, consists of a statement S, where S may take one of
the following forms:

Dummy statement, skip: A statement with no effect on
the state.

Assignment. x = e : The variable x is local to P~ and e
is an expression over P~'s local state.

Interaction. a[f :=6] : Here a is the interaction name and
~:=6 is an optional parallel assignment constituting a
local interaction body. Process P~ is a participant of inter,
action a. All variables in ~ are local to P~ and pairwise
distinct. The expressions ~ may involve variables not lo-
cal to P~ (belonging to other participants of interaction
a). The participants of interaction a, denoted PAd, is
the set of all processes that syntactically refer to a. Inter-
action a is readied by process P~, if control of P~ has
reached a point where executing a is one of the possible
continuations. Interaction a is enabled if and only if all
of its participants have readied it. It can be executed
only if it is enabled. Thus, an interaction synchronizes
all of its participants. Execution of an interaction consists
of the parallel execution of the local interaction bodies
contained in all participant processes. Variables within

return the value that they held immediately before exe-
cution of interaction a. Upon termination of a local inter-
action body a participating process resumes its local
thread of control (i.e., no synchronization at the end
of an interaction). Note that if the body ~:=~ is empty
(so the interaction appears as a[]) for some participating
process, the effect of the interaction on that process is
pure synchronization.

Sequential composition. S,; $2: First $1 is executed. If
and when it terminates, $2 is executed. We freely use
$1 ; ... ; Skfor any k_>2.

Nondeterministic selection. [B Bk ; ak [Vk :=ek] -+ Ski :
k = l , m

Here B~ ; a~ [ZSk :=ek] is a guard, composed of two parts.
The part Bk is a boolean expression over the local state

247

of P/. The part a~[G:=G] is an interaction guard. S~ is
any statement. When a nondeterministic selection state-
ment is evaluated in some state, the k'th guard is open
if B~ is true in that state (note that the interaction a~
is readied by P~ at that state). The guard is enabled if
and only if it is open and the interaction a~ is enabled�9
Executing the statement involves the following steps:
evaluation of all boolean parts to determine the collec-
tion of open guards. If this collection is empty the state-
merit fails. Otherwise an enabled guard is passed (simul-
taneously with the execution of all the other matching
local interaction bodies of a~ in the other participating
parties) and then S~ is executed. In case there are open

�9 guards, but none is enabled, execution is blocked (possi-
bly forever) until some open guard is enabled.

N o n d e t e r m i n i s t i e i terat ion. *[[] Bk ; ak [~ :=ek] ~ S~] :
k = l , m

Similar to the nondeterministic selection, but execution
terminates once no open guards exist, and execution of
the whole statement is repeated after each execution of
a guarded command.

Note that nested concurrency is excluded by the
above definition, since it is orthogonal to the issue under
investigation. We now turn to formal definitions of the
operational semantics, based on Plotkin's transition
scheme [23]. We define two different semantics: seria-
lized and overlapping (compare with a similar distinction
in g73 and 1-183). The former is better suited for correct-
ness proofs, while the latter captures better the behavior
induced by typical implementations. The difference be-
tween the serialized and overalpping semantics is, that
in the former each program action is represented by a
single transition, while in the latter every program action
is represented by a number of transitions (referred to
as action fi"agments), one causing the effect of the pro-
gram action on the state, the rest releasing the partici-
pants. The proposed hyperfairness handles conspiracies
under both semantic definitions. Throughout we assume
some interpretation over which computations occur, and
leave it implicit.

2.1 Serialized semantics

The central characteristic of this semantics is that local
actions and interactions take place one at a time. A con-

figuration (IS 1 II... IIS,], o-) consists of a concurrent pro-
gram and a global state. The global state is a mapping
from program variables to values in the domain of the
interpretation. A configuration represents an intermedi-
ate stage in a computation where S~ is the rest of the
program that process P~ has still to execute (sometimes
referred to as its syntactic continuation), while o- is the
current state at that stage. We stipulate (for facilitating
the definition) an empty continuation E (not a program
in the language) satisfying the identities S ; E = E ; S = S
for every S. A configuration (jEl l . . . lIE], a) is a terminal
configuration. For a state ~r, we use the usual notions
of a variant a[c/x] and a[?/~], obtained from cr by
changing the value of x to c (ff to ~, respectively) and

preserving the values of all other variables. We use a(e)
to denote the value of an expression e in a state a. We
use PAa to denote the set of all processes that participate
in interaction a, i.e., all processes which contain a con-
struct "a [g . '=~]" within their body�9 We now define the
(serialized) transition relation " ~ " among configura-
tions. Note that the transitions given by " ~ " are atomic.

(ES1 I1... IIS~]l .o. S ,] , ~) ~ (l-S111 .. . IIEII . . . I/S,], ~) (1)

forany l <_i<_n, if fSi=skip, o r S i = * [• Bj;aj[~j:=@
--, T~] and -~ V Bj holds in ~. j= 1,,,

jm 1,hi

<gsl/I .../Is~ll . . . Ifs,] , ~)

-~ <Is1 N... Jlell . . . IIs,3, a [-o-(e)/x]) (2)

for any l < i<n , iff Si=(x:=e).

([S l l].. . IISi ,- l l l Si, [ISil. lll ... IlSik-ll[

s ~ rls~+lll . . . / Is ,J , ~r)

--, (I s 1 II... I l s i , -~ II s;111s,~ ,111... rls~,- ~ I[
s;k JIs~,+ ~ II... IIs,] , a ') (3)

if the following holds: There is an interaction a with
a set of participants PA, = {is ik} (for some 1 _< k_< n),
and for every i s P A , one of the following conditions
holds:

(a) S i = a [gi:= ~] and S'i = E

(b) S~=[D Bj;a~[~i.'=Yj]~T~] and there exists some
j= 1,n~

j, 1 <_j < hi, s.t. Bj holds in a, a /= a and S~ = Tj

(c) S i = . [D Bj; a j[~/=~j] ~ Tj] and there exists some
j= 1,ni

j, [<_j <_ hi, s.t . Bj holds in a, aj = a, S; = Tj ; Si.

Finally, for all these cases, o-' =o-Ea(o)/g], with f = -~ ~7i,
icPAa

~= I.~ ~, where ~ denotes a union operation which
i~PAa

is ordered by process index, e.g., if vl,v2,e~,e2 are
size, q, s i ze+l , append (q, z) respectively, then
a'= a [a(size + 1)/size, a(append(q, z))/q].

If

(ES1 I] IlSilr Ilan], ~) ~ ([S i 11 IiS~ll ' ' ' ' . . . ilS.], a >

then

(Es~ ; 71 .. . I ls~; Till . . . I Is , ; T,3, ~>

-+ ([S i ; Ti l l ... IIs',; Til l . . . IIs',; T,3, a ') (4)

where some of the S'~ may be identical to the correspond-
ing S~. Note that this serialized semantics does impose
synchronization at the end of an interaction. For this
semantics, we now define the following notions.

Def in i t ions . (1) A (serialized) computation rc of P on a
is a maximal (finite or infinite) sequence of configurations
Ci, i>O, such that: (a) C o = (P , a) . (b) For all i_>0, if
C~ is not the last configuration in re, then C~ ~ C~+ ~.

248

(2) The computation n terminates iff it is finite and its
last configuration is terminal; n deadlocks iff it is finite
and its last configuration is not terminal.
(3) An interaction a is enabled in a configuration C iff
C has one of the forms in clause (3) of the definition
of ' ~ ' and all the conditions are satisfied for a.
(4) Two interactions a t and a2 are in conflict in a config-
uration C iff both interactions are enabled in C and
they have non-disjoint sets of participants, i.e.,
PAn, ~ PA~2#O.
(5) An action is an interaction, a local assignment, or
skip.
(6) Two actions al and a 2 are independent iff they have
no common participant.
(7) Two computations are equivalent iff they differ only
in the order of execution of independent actions.
(8) The interaction trace of a computation is the se-
quence of interaction names of the interactions that were
executed in the computation. Often, the interaction trace
suffices to uniquely identify a computation.

2.2 Overlapping semantics

The main characteristic of this semantics is that it is
not an interleaving of actions. Rather, actions have (un-
specified) duration, so that an action can start while an-
other action is in progress (obviously, a non-conflicting
one). This is still represented as an interleaving of so
called atomic action fragments which are of a finer grain
of atomicity than that of program actions.

In order to allow the treatment of this semantics with-
in the same transitional framework, we augment a con-
figuration with an additional boolean array (of size n,
the number of processes), called the readiness state and
denoted by p. If p [i1 = true, 1 <_ i<_ n, in a configuration
C, this means that process P~ is currently ready to engage
in an action (either local or with other participants);
otherwise, P~ is engaged in some action. In our semantics,
the "real" local-state transformation is instantaneous
and resets the readiness bit of the acting process(es).
However, a participating process can not engage in any
other action (including a local one), until another transi-
tion, setting the readiness bit, has taken place. Also, in
this semantics participants of an interaction are synchro-
nized upon entrance, but are not synchronized upon exit
of the interaction. We denote the resulting transition re-
lation by ~ ~'. Its defining clauses are similar to the
ones in the serialized case, with the following changes.

(a) A state transformation transition can only take place
if the readiness bits of all participants are true.
(b) In the resulting configuration, the readiness bits of
all participants are false.
(c) The following atomic transition is added

([Sj[I.. . [I S,1, a, (p [13, ..., p [i - 11, false,
p[i+l] , . . . ,p[n])) ,([Sll[...llS,],a,(p[1] ,pEi-1],
true, p [i + 1] , p In])) for every 1 <_ i _ n.

An overlapping computation n of P is defined similar-
ly to the serialized case, except that the transition - ,
replaces 4 , and the following conditions are added:

(a) In the initial configuration p Li] = true for all 1 _< i <_ n,
(b) In a terminal configuration p [i] = true for all 1 _< i_<
n.

(c) In an infinite computation, p [i1 = true infinitely-of-
ten, for every 1 _< i_< n (i.e., every action terminates within
a finite time).

Likewise, the concepts of deadlock, termination and
conflict are defined similarly to the serialized case.

We say that process P~ readies an interaction a in
a configuration C iff P~ satisfies one of the conditions
imposed in (a)-(c) in clause (3) of the definition o f ~ '
and p[i] =true. We denote this property by readyi(a).
The interaction a is enabled in a configuration C iff
it is jointly readied in C by all its participants, i.e.,

/~ readyi(a) holds in C.
i~PAa

Note again that the difference between the serialized
and overlapping semantics is, that in the former each
program action is represented by a single transition,
while in the latter every program action is represented
by a number of transitions (referred to as action frag-
ments), one causing the effect of the program action on
the state, the rest releasing the participants. The notion
of independence is naturally extended also to action frag-
ments and their representing transitions.

To simplify the notation, we refer only to programs
in a normal form similar to the one defined in [11 for
CSP programs. In this form, each process consists of
one main nondeterministic iteration (after some initiali-
zation assignments). The interaction-bodies serving as
guards in these iterations are referred to as top-level in-
teraction-bodies. A top-level interaction is an interaction
all of whose bodies are top-level.

3 Fairness and hyperfairness for multi-party interactions

We briefly review known fairness notions for multi-party
interactions and then suggest a new fairness notion,
called hyperfairness, having some desirable properties
which the previous notions lack. The main additional
advantage is that the property of conspiracy resistance
(to be explained below) is exploited.

Following the distinctions made in [7, 18, 21] (see
also [16], Chap. 5), the classification of fairness notions
for multi-party interactions presented in [2] is along two
orthogonal directions.

(a) The subject of fairness: a process, a (fixed) group of
processes and a specific interaction among a group of
processes.
(b) The level of fairness: The three common levels are
unconditional, weak and strong, which differ in the enab-
lement conditions required to guarantee eventual execu-
tion of the subject action. See [16] for a detailed descrip-
tion of these levels and other variants of fairness. We
summarize this classification for the IP language in Ta-
ble 1.

Remarks on Table 1. (1) This notion is only meaningful
in a context where processes (resp. groups, interactions)
are always enabled.

Table 1. Fairness notions for multi-party interactions

Level/subject Unconditional Weak Strong

Process In an infinite computation every pro- In an infinite computation every contin-
cess interacts infiniteIy often (in any in- uously enabled process interacts infinite-
teraction). See remark 1 ly often. See remark 2

In an infinite computation every inter- In an infinite computation every contin-
acting group interacts infinitely often uously enabled interacting group inter-
(in any of its mutual interactions). See acts infinitely often
remarks 1 and 3

In an infinite computation every (spe-
cific) interaction occurs infinitely often.
See remark 1

249

Group

Interaction In an infinite computation every contin-
uously enabled interaction occurs infini-
tely often

In an infinite computation every in-
finitely-often enabled process inter-
acts infinitely often

In an infinite computation every in-
finitely-often enabled interacting
group interacts infinitely often

In an infinite computation every in-
finitely-often enabled interaction oc-
curs infinitely often

(2) A process is enabled if (any) one of its actions is
enabled.
(3) Note that a given interacting group may have several
different interactions which have that group as the set
of participants.

As noted in [2], none of the fairness notions in Ta-
b l e l are fully adequate (in a sense defined there and
reviewed in the next section) for multi-party interactions.
We now propose a fairness notion that is adequate.

The main idea can be informally described as follows.
A conspiracy (w.r.t. an interaction a) occurs if PAa can
be partit ioned into two (disjoint) subsets PAywPA~,
such that all members of PAy are continuously ready
to participate in the interaction a, while members of PA~
ready a infinitely-often, but not at the same time, i.e.,
not in the same configuration. Thus, in such an infinite
computation a is not infinitely-often enbled, and need
not eventually occur by any of the previously mentioned
fairness notions. If the conspiracy is due to the inherent
semantics of the program (e.g., see Fig. 4), then there
is no way to guarantee the enablement of interaction
a. If, however, the conspiracy is due to the interleaving
of independent actions, or action fragments, (e.g., see
Fig. 1) then it should be possible to control the schedul-
ing in such a way as to eventually cause the enablement
of a. This is exactly the behavior which hyperfairness
enforces, as described in the succeeding paragraphs.

We wish to ensure that if the members of PA~ can
infinitely often ready a independently of PAl and of each
other, then a will eventually be executed. This is achieved
as follows. It is convenient to use one of the well known
fairness notions (given in Table 1 above) to ensure actual
execution. What remains then, is to ensure that the enab-
lement condition of this "underlying" fairness notion
is met. Since members of PA~ ready a independently
of PAy and of each other, they can be successively "fro-
zen" in a state in which they ready a (thereby joining
PAy), and when they are all " f rozen" there, a is enabled.
If a is enabled sufficiently often, the underlying fairness
notion will ensure the eventual execution of a. In this
paper, we chose the underlying fairness notion to be
strong interaction fairness, and in the sequel, we use
"fairness" to denote strong interaction fairness, unless
otherwise stated. We now turn to a formal presentation
of these ideas.

Definition (Pnueli). (i) A process P/ is insistent on an
interaction a from a certain point in a computation ~z
iff it continuously readies a in ~ from that point onwards
[24].
(2) A process ~ is persistent on an interaction a in a
computation ~z iff it readies a infinitely-often in ~z.

Definition. Let P be a program in normal form, a a
top-level interaction in P, and A an arbitrary subset of
PAa. The (a, A)-derived program P~,A is obtained from
P by replacing with false the local guard of every top
level interaction body b (where b # a) in every process
PicA.

In other words, when any process in A has a continua-
tion from the top level, it is prevented from participating
in any interaction other than a.

Definition (Conspiracy Resistance). An interaction a is
conspiracy resistant in a program P iff for every fair com-
putation rc the following condition holds:

Let ~1 be any finite prefix of ~z with final configura-
tion C = (S, or}, and let PAy be the set of all the
participants of a that ready a in C. Then, for every
fair computation ~2 of the (a, PAy)-derived pro-
gram Sa,eA~ obtained from S, (starting in state a),
there exists a participant Pje(PA,-PAy) such that
P~ eventually readies a along ~z.

We refer to this as each process in PAy being a-frozen,
and to Pj as independently readying the interaction a.
Thus, conspiracy-resistance may be achieved whenever
the participants of a can ready a independently of each
other. The implied independence manifests itself by the
fact that a-freezing an arbitrary subset of the participants
of a does not prevent the eventual readiness for a of
yet another participant. A scheduler that gradually
"freezes" more and more participants of interaction a
once such participants ready a ensures the eventual en-
ablement of a. The key point here is that conspiracy
resistance guarantees that this freezing strategy will
never cause a deadlock, regardless of the order in which
processes are frozen. Note that in the above definition
PAJ, = 0 is possible. We now come to the definition of
our central notion.

Definition (Hyperfairness). If P is an IP program in
which every top-level interaction is conspiracy-resistant,

250

then an infinite computation 7c of P is hyperfair iff r~
is fair with respect to top-level interactions and every
top-level interaction is infinitely-often enabled in n. Also,
every finite computation of P is hyperfair.

If P is an IP program in which not every top-level
interaction is conspiracy-resistant, then every computa-
tion n of P is hyperfair.

It is important to notice an essential difference between
the fairness notions considered so far on the one hand,
and hyperfairness on the other hand. The former imply
eventual execution if an appropriate enablement condi-
tion is satisfied. Hyperfairness implies eventual enable-
merit (and subsequent execution due to the underlying
fairness) if the condition of conspiracy resistance is sat-
isfied. Note that enablement and conspiracy resistance
are different types of conditions. An enablement condi-
tion for a particular interaction a of a particular program
P may hold in some computations (n) of P but not in
others, i.e., it is a function of a, P, and re, whereas conspir-
acy resistance is not a property of individual computa-
tions, i.e., it is a function only of a and P.

With any of the previous fairness notions, if a (top
level) interaction a does not satisfy the enablement condi-
tion, e.g., if a is never enabled along a computation ~r,
then 7r is vacuously fair with respect to a. However, this
is not the case with hyperfairness. If all top level interac-
tions are conspiracy resistant, then zc is not hyperfair
with respect to interaction a because a is not enabled
at any point of n. Note that if a different underlying
fairness notion were used, e.g., weak interaction fairness,
then a different hyperfairness notion would be required,
namely one that ensures the required enablement condi-
tions for weak interaction fairness. We now present sev-
eral examples which illustrate hyperfairness. These exam-
ples will be analyzed using serialized semantics.

Example 1 (dining philosophers). A typical problem
which can be solved by the introduction of hyperfairness
is the famous dining philosophers problem. A solution
formulated in the IP language is presented in Fig. 1.
In this example, when the i'th philosopher p~ is hungry
(s~ ='h') it can eat (sr ='e') by interacting in the three-party
interaction get-forks~ (together with the i'th fork f~ and
the (i - 1)'th fork.f~_ 1). In this and all other dining philos-
opher examples, all operations on indices are cyclic.
After Pi finishes eating, it becomes thinking (si='t') by
interacting with the same forks once again in the
give-forksi interaction.

P H I L : : [_p~[] . . . IIP~llfall .-. [[fJ where
Pi 2 ~ Si:= "t ";

* [sl = "t " ~ s i:= ' h '

D
si = "h '; g e t - f o r k s , [s~:= ' e '] ~ g ive - f o r k s i [s~:= ' t "]
],

f i : : * [g e t - f o r k s ~ [] - - , g i v e - f o r k s i []
0
g e t - f o r k s i § 1 [] ~ g ive - f o r k s ~ + 1 []
I.

Fig. 1. A starvation free solution of the dining philosophers prob-
lem in hyperfair I P

This program displays conspiratorial behavior. Let
n = 4 (i.e., 4 philosophers) and suppose that P2 is in a
hungry state and waits (insistently!) for the interaction
get-forks2 to be executed. In order for that interaction
to be enabled, it has to be readied simultaneously by
both fork-processes f l and fz. Consider the following
interaction trace rc of a serialized computation

= get-forks1 get-forks 3

(give-forks1 get-forks1 give-jbrks3 get-forks3) C~

It is clear that get-forks2 is never enabled in rc because
get-forks1 and get -forks3 alternately engage f j and f2
respectively. Note that the conspiracy against get
-forks2 in rc is due to "unfortunate" scheduling which
prevents f~ and f2 from readying get-forks2 simulta-
neously. This is an example of conspiracy occurring in
the serialized semantics, since ~ is a serialized computa-
tion. Now p~ is insistent on get-forks~ (once se ='h'), and
the two fork processes fi and f/_ ~ ready get-forksi inde-
pendently of each other and of p~, so the interaction
get-forks~ (for every 1 _< i < n) is conspiracy-resistant. As
all top level interactions are conspiracy resistant, by hy-
perfairness, get-forksi must be enabled infinitely often,
and so rc will be excluded as an illegal (i.e., not hyperfair)
computation. Note that in the interaction trace of the
equivalent computation

n' = get-forks, get -forks3

(give-forks1 give-forks3 get-forks1 get-forks3) ~

in which the get-forks~ interaction is commuted with
the independent give-forks3 interaction, no conspiracies
occur, and get-forks2 is infinitely often enabled (it is
enabled immediately after give-forks3 has been execut-
ed). But rg is also not hyperfair, because get-forks2 is
infinitely often enabled but never executed, and so 7c'
is not fair with respect to get-forks z.

Example 2 (dining philosophers with fork cleaning). In
the previous example, the two forks readied the get
-forksi interaction unconditionally. Here is a somewhat
strengthened example (Fig. 2), where the forks have boo-
lean conditions and additional interactions with a clean-
ing process c, which interacts with a non-clean fork to
clean it. Here clean-testi represents some hidden condi-
tion, returning a boolean value representing the state
of cleanliness of a fork. We assume that clean-testi is
guaranteed to return "false' infinitely often if invoked
infinitely often, since otherwise the cIeaningi interactions
would fail to be conspiracy-resistant simply because
clean-test~ (eventually) always returns 'true ', and this
would obscure our example.

It is easy to see that the get-forks~ interactions are
still conspiracy-resistant. This property follows from the
structure of process c, which is ready to interact with
any fork. However, the cleaning~ interactions are not con-
spiracy-resistant! To see that, consider a configuration
C in which the fork-processf~ is clean (i.e., cleani = true
holds), while f~_l andfz+l are dirty (i.el --ncleani_ 1 and

y -7 clean~+ 1 hold). Clearly, cePAc~e,,i,~, in C, since it rea~
dies cleaning~. Let re2 be a continuation from C, along

P H I L : : ~vl] 1 ... llP, I]/I I1 ... I[fLIic] where
p~ : : ... as in Figure l...
f~ : : clean~::true;

�9 [clean i ; get -forks~ []
g i v e - forksl [cleani ,=clean - testJ

D
cleani; get- forksi+ 1 []

g ive- forksi + a [cleani:= c l e a n - testJ
D
-a cleanl ; cleaning i [cleani :=true] ~ skip
q,

c : " {cleaning service} * [~ cteaningi [] ~ skip]
i= l,n

Fig. 2. Dining philosophers with a cleaning service

PHIg:Z[px II-.-liP, JI f~ II .-. I~,l]c] where
p~ : : ... as in Figure 1...
f : : ... as in Figure 2...
e: : {diligent cleaner} c 1 ,=true; ... c, ,=true;

* [13 c i A c i_ 1 ; get- forks~ [] ~ skip
i -- l ,n

{5 give- forks i [c~,=clean--testi ; c~_ ?=clean
/--1,n

-- test~_ ~] --, skip
[q ~ ci ; cleaningi [ci ,=true]--+skip

i=l ,n
]

Fig. 3. Dining philosophers with a diligent cleaning service

which c is "frozen" on cleaning~. Then, c will never clean
any off/_ ~ andf i+ 1, preventing P i - z and Pi from eating
and ~ from getting dirty, thereby readying the cleaning~
interaction. Thus, cleaning~ is not conspiracy-resistant
due to the failure of f/ to ready it independently of c.
Hence, a hyperfair scheduler which freezes c like this
could cause a deadlock (e.g., if all forks except f/ are
dirty, and c is c l e a n i n g ~ - f r o z e n , then no interaction is
enabled'and the system is deadlocked).

Example 3 (dining philosophers with a diligent cleaner).
The example in Fig. 3 displays a conspiracy-resistant
fork-cleaning interaction. It is not surprising, that
achieving this end involves a "harder-working" cleaning
process. In order to prevent the mutual-dependency of
readying the c l ean ing interaction, the cleaning-process
c keeps track of the cleanliness state of all forks, and
readies c lean ing i only if f~ is dirty. Thus, when c is
c I e a n i n g i - f r o z e n , f~ is dirty and so cleaning~ is enabled.
Therefore, the situation in the previous example is
avoided.

Example 4 (dining philosophers with vicious forks). Fi-
nally, we present (Fig. 4) another variant of the dining
philosophers problem in which the g e t - f o r k s i interac-
tions are no t conspiracy-resistant and hyperfairness does
not help. In this example, the neighbor forksfi ,f /_ 1 inter-
act among themselves in a sw i t ch i interaction and thus
coordinate their readiness to participate in the g e t
- - f o r k s i interaction, i.e., the Ii boolean in f / a n d the r i_ 1
boolean in f _ 1 are never simultaneously true, and so
the g e t - f o r k s ~ interaction is never enabled. Hence con-
spiracy is inherent in the program semantics, and is not
due to race conditions.

P H I L : : Ep~H-.-I[p,[Pfa I[-.. If, J where
p~ : : ... as in Figure 1...
f : : I i ,=true; r~,=true; c~:=true; swi:=true;

*[li ; get--forks i [] ~ give- forksi []
D
r i ; g e t - f o r k s i + 1 [] ~ give -forks~ + 1 []
D
switehi [el ,=-n ci ; swi :=(el = swi); li :=(ci/x swi)] --+ skip
0
switchi + 1 [ri'=(el + 1/x --1 sw i + ~)1 ~ skip
]

Fig. 4. Dining philosophers with vicious forks

251

4 Properties of hyperfairness

In this section we analyze hyperfairness in terms of the
(briefly reviewed here) criteria of feasibility, equivalence
robustness, and liveness enhancement, which are posed
and formally defined in [2].

Feas ib i l i t y . Any fairness assumption excludes some of
the otherwise admissible computations (the "unfair"
ones). A necessary property of a fairness assumption is
that for every program some (finite or infinite) fair com-
putation does exist (in other words, not all computations
are excluded). Without this requirement, no scheduler
could correctly treat the fairness and produce one of
the fair computations. Moreover, since any reasonable
scheduler cannot 'predict ' the possible continuations at
each point of the computation, it should be possible to
extend every partial computation to a fair one.

E q u i v a l e n c e robus tness . Concurrent systems are often
modeled by means of interleaving (atomic) actions. How-
ever, the order of execution of i n d e p e n d e n t actions in
such an interleaving is arbitrary. Thus two execution
sequences which are identical up to the order of indepen-
dent actions are equivalent. This leads to the second
criterion: a fairness assumption is e q u i v a l e n c e r o b u s t if
it respects this equivalence. That is, for two equivalent
infinite sequences either both are fair according to the
given definition, or both are unfair.

L i v e n e s s e n h a n c e m e n t . All models of parallel computa-
tion assume a fundamental liveness property that an ac-
tion will eventually be executed in some process if the
system is not deadlocked. A justification for adding an
additional liveness requirement in the form of a fairness
notion, is that there exists a program which has some
liveness property which it would not have without the
fairness notion. This criterion is termed l iveness e n h a n c e -
m e n t in order to emphasize that additional liveness prop-
erties will hold for some programs. Some fairness notions
cannot force a communication to occur in a model if
it did not have to occur under the fundamental liveness
property. These notions are not liveness enhancing for
that model.

A fairness notion is f u l l y a d e q u a t e iff it is feasible,
equivalence-robust and liveness enhancing. The main re-
sult in this section is the establishment of the full adequa-
cy of hyperfairness. F e a s i b i l i t y is established by present-

252

ing an explicit scheduler ([3]) for hyperfairness and prov-
ing its faithfulness. This is done below. Liveness enhance-
ment follows from the examples in Sect. 3. Equivalence
robustness is established by the following lemma.

Lemma. Hyperfairness is equivalence robust.

Proof. Let n~, n2 be the interaction traces of two equiva-
lent computations of program P. If P contains a top-level
interaction that is not conspiracy resistant, then every
computation of P is hyperfair and we are done. Thus
we now assume that every top-level interaction of P is
conspiracy resistant. We now establish (n3 is hyperfair
implies rc 2 is hyperfair), which establishes the lemma.
By definition of hyperfairness, we have that n 1 is (strong-
ly) fair with respect to top-level interactions and every
top level interaction is infinitely often enabled in rq.
Hence, by definition of strong fairness, every top level
interaction is executed infinitely often along n~. As n~
and n2 are equivalent, and therefore contain the same
interaction events, every top level interaction is executed
infinitely often along n2 as well, thus n2 is strongly fair
with respect to top-level interactions. Also, every top
level interaction must be infinitely often enabled along
n2 (in order to be infinitely often executed), hence re2
is hyperfair. []

4.1 An explicit scheduler for hyperfairness

Let P : : [P~II ... JJP~] be a typical IP program in normal
form. Let a;, . . . , am, for some m >_ 0, be an enumeration
of all the top-level interactions in P. With each interac-
tion aj we associate a priority variable zj (as in [3]).
We now define a (centralized) hyperfair scheduler H for
IP. It is represented as an additional process, running
in parallel with P~, 1 _<i< n, and having access to all of
their local states, including the control positions. The
priority variables z; are local to H. We skip here the
somewhat tedious task of representing the combined
program in IP.

The (index of the) interaction with the highest priority
is chosen by H and preserved in a local variable M I N :

def
M I N = rain {klz k = rain {z~]l= 1 , m}}.

In every process Pi, 1_<i< n, the following modification
is made: in the main (i.e., top-level) nondeterministic iter-
ation, the local guard B} (guarding an interaction body
of a top-level interaction aj in P~) is strengthened to:

B} A (V#: i ~ PA,/x # = M I N ~ (j = # v -q B~))

where # is a metavariable ranging over interaction indi-
ces. Thus, a participant of aa41N does not ready any other
interaction once it readies a~iN (is indeed au1N-frozen),
until ame N is enabled. When aMIN is enabled, the follow-
ing update of the z~ variables takes place. First, zg~N ,= ?,
(this denotes the assignment of an arbitrary positive in-
teger to ZMtN) and for k ~ M I N , zk:=z k - 1, after which
M I N is redetermined, and all strengthened local guards

are reevaluated. H can determine the enablement of in-
teractions because it is centralized. In order to avoid
an extra level of indexing, we assume here that each
process has at most one interaction-body for each inter-
action a i, 1 _<j _< m.

It is important to note that the hyperfair scheduler
H really acts in conjunction with a given scheduler (call
it F) for the underlying fairness notion. Once H forces
the enablement i)f an (arbitrary top-level] interaction a,
(by a-freezing all the participants of a), the actual execu-
tion of a is decided by F. If F decides not to execute
a, then the participants of a are unfrozen, li.e., the priority
variables are updated as described in the preceding para-
graph) and execution continues. If F decides to execute
a, then a is excuted, after which the participants of a
are unfrozen, and then execution continues. Thus. the
real task of H (under the assumption that all the top-level
interactions in the program P are conspiracy-resistantl
is to force a situation where a is sufficiently-often en-
abled, and therefore eventually scheduled by F.

If some top level interactions in P are not conspiracy-
resistant, then H will not guarantee the enablement of
any interaction and a conspiracy may occur. In this case.
the combined execution may end in a deadlock Isee ex-
ample 2, previous section). We assume that the conspira-
cy resistance of all top-level interactions is verified before
the program is executed under H, and so this problem
does not arise. However, in lieu of verifying the conspira-
cy resistance of all top-level interactions, the implemen-
tation can employ a deadlock-detection procedure, and
remove all the restrictions imposed by H if deadtock
ever occurs, as this would indicate that at least one top
level interaction is not conspiracy resistant, and in this
case, hyperfairness guarantees aothing. We now state
and prove the main theorem expressing the required
properties of H.

Theorem (faithfulness of H). For every P ~ I P , if all top-
level interactions in P are conspiracy-resistant in P, then:

(a) The restriction of every infinite fair computation of
P under H (to variables of P) is a computation of P
along which every top-level interaction is infinitely-often
enabled (i.e., is a hyperfair computation).
(b) Every fair computation of P along which every top-
level interaction is infinitely-often enabled (i.e., every hy-
perfair computation), can be extended (by assigning
values to the g variables) to an infinite computation of
P under H.

The proof (given in the appendix) is structured similarly
to the ones in [3]. In proving (a), we show that once
an interaction is chosen as M I N , its conspiracy-resis-
tance guarantees its eventual enablement. Given that,
it is shown that if there is a conspiracy-resistant interac-
tion a; not enabled from some point onwards, this means
that other interactions serve as the current M I N and
are repeatedly enabled, decreasing z~ until M I N = i has
to hold. In proving (b), the values assigned to each z~
keep track, roughly speaking, of the number of interac-
tions that are executed until the next time a~ is enabled.

As a simple example, consider again the dining philos-

H : : z 1 :=?; ... ; z,:= ?; compmin;
*[D j = M I N ~

j = l , n

[- A ready,(get - forks j)
i~PAge~ - fDrksj

gk C j: Zk'=Zk-- 1 ; Z/= ?; compmin

"-7 /~ ready i (get --forksi) -+ skip]
i~PAger - forks j

Fig. 5. Hyperfair scheduler for dining philosophers example

ophers p r o g r a m in Fig. 1. p~ is ins is tent on g e t - f o r k s ~
once s~ = "h' holds. The g e t - f o r k s i in te rac t ions are con-
sp i racy-res is tant , and we have H of the form shown in
Fig. 5.

Here compmin is the p r o g r a m sect ion

M I N . ' = m i n {klzk = rain {zz l1 = 1, . . . , n}}.

D u e to the consp i racy- res i s t ance of get-- forksMx~ a n d
the modi f i ca t ions of the processes as above, get
- f o r k s u f N will even tua l ly be enabled . The under ly ing
fairness will even tua l ly select it for execut ion, imply ing
the n o n - s t a r v a t i o n of P ~ N . Since every g e t - f o r k s ~ in ter-
ac t ion is even tua l ly selected as M I N , no p h i l o s o p h e r
starves.

5 Conclusions

In this paper , a fairness no t i on fu l ly -adequa te for mul t i -
p a r t y in terac t ions , cal led hyperfairness, is presented . I t
gua ran tees tha t top- level conspiracy-resistant in terac-
t ions, in which each p a r t i c i p a n t inf ini te ly-of ten readies
the in t e rac t ion i ndependen t l y of all o the r pa r t i c ipan t s ,
are inf ini te ly-of ten enabled , and by the under ly ing s t rong
fairness are a lso inf ini te ly-of ten executed. Thus hyper fa i r -
hess e l imina tes c o m p u t a t i o n s where the reason for an
in te rac t ion a being never enab led is s imply "un fo r tu -
n a t e " schedul ing, as o p p o s e d to the case where the rea-
son is inheren t in the p r o g r a m semant ics , in which case
no fairness n o t i o n can gua ran t ee the eventua l enable-
men t (and subsequen t execut ion) of a.

If a p r o g r a m P con ta ins some top- level in te rac t ions
which are no t consp i r acy resis tant , then, by defini t ion,
every c o m p u t a t i o n of P is hyperfa i r , i.e., the behav io r
of P is u n c h a n g e d by hyperfa i rness . Thus, as one of the
referees has suggested, hyperfa i rness (with the under ly ing
s t rong fairness) can be r ega rded as u n c o n d i t i o n a l fairness
app l i ed to a special class of p r o g r a m s , n a m e l y the class
of p r o g r a m s in which all top- level in te rac t ions are con-
sp i racy resis tant .

T h o u g h consp i racy- res i s t ance is a r a the r s t rong p r o p -
erty, it does occur qui te often when the processes are
loose ly coup led in the sense tha t there is no s t rong causa l
dependence in sequences of consecut ive in te rac t ions in
which a process par t ic ipa tes . The d in ing ph i lo sophe r s
p r o b l e m is a typica l s i tua t ion where conspi racy- res i s -
tance holds . W e defer the issue of p resen t ing a formal
p roof - ru le for p rov ing consp i racy- res i s t ance to a n o t h e r
occasion.

253

W e bel ieve tha t the s tudy of subtIe l iveness p rope r t i e s
of m u l t i - p a r t y in te rac t ions is crucial to their u n d e r s t a n d -
ing. A first s tep t ow a rds this end is p r o p o s e d in this
paper .

Acknowledgements. We wish to thank Shmuet Katz for useful dis-
cussions related to the definition of conspiracy-resistance and its
connection to equivalence robustness. Thanks are also due to the
anonymous referees, and to Leslie Lamport, who detected an error
in the definition of conspiracy resistance in an earlier draft. The
work started during a summer visit of the second author to the
Software Technology Program of the Microelectronics and Com-
puter Technology Corporation, and continued at the Technion,
where the part of the second author was partially supported by
the Fund for the Promotion of Research in the Technion, and
by a grant from the Fund for Basic Research administered by
the Israeli Academy of Sciences, and by MCC/STP. The first author
was supported throughout by a grant from MCC/STP.

A Appendix: proof of the faithfulness theorem

Part a

Follows immediately from Lemma 3 established below. Let Th(P)
denote the program P executed under the control of the hyperfair
scheduler H.

Lemma 1. i f every top level interaction in P is conspiracy-resistant,
then for every fair computation ~ of Th(P) and for every configuration
C along ~: if aM~N=a in C, then along the continuation of ~ from
C interaction a is eventually enabled.

Proof. Let n' be the suffix of ~ starting in configuration C. The
proof is by induction over the set of processes PAJ that are insistent
on a. When aMtN=a, the behavior of ~(P) and the (a, PAJ)-derived
program P,,ea.~ are identical, since in both cases, every process that
readies a is subsequently a-frozen until a is enabled, and processes
that do not ready a are not a-frozen. Hence, ~r' is also a (suffix
of a) computation of P~.PA~, and so, by definition of conspiracy
resistance, there exists a participant Pje(PA,-PA{) such that Pj
eventually readies a along n', and hence joins PA~. Thus, by induc-
tion over PA~, we conclude that, eventually, PA~=PA~ holds
along n', i.e., a is enabled. []

Lemma 2. I f every top level interaction in P is conspiracy-resistant,
then (A zl > - n) is an invariant of Th(P), where n is the total

i = 1 , n

number of top-level interactions.

Proof. Let Zk be an arbitrary priority variable. It suffices to show
that z k > - n is invariant. We assume that all z~ variables are initially
nonnegative, and so z k > - n holds initially.

Assume that Zk= 0 and MIN =j hold before a priority variable
update (for somejCk). Thus both zk,=z k - 1 and z / = ? are executed
(see section 4.1 for a description of the hyperfair scheduler H).
Hence zj>zk holds after the update, and it is obvious that zj>zk
will continue to hold until z~.-= ? is executed, since each priority
variable update prior to the execution of z~,= ? simply decrements
each of z j, zk by one. Therefore aj cannot be the MIN interaction
until Zk '=? is executed, i.e., until after ak has become the MIN
interaction. Since j is arbitrary, we conclude that each of the (n - t)
interactions other than a~ can be the M I N interaction at most
once until after ak has become the MIN interaction, and so at
most n - 1 priority variable updates can take place until zk:=?
is executed, so z k can be decremented at most n - 1 times before
being assigned an arbitrary positive value.

Now if zk>0 holds, then, since z~ is decremented by one it
follows that zk=O will hold before z k becomes negative, and the
argument in the previous paragraph also applies in this case. We
conclude that zk> - n is invariant, and the lemma is established. []

254

Lemma 3. I f every top-level interaction of program P is conspiracy-
resistam, then every top-level interaction is enabled infinitely-often
along any infinite fair computation of Th(P).

Proof Assume otherwise, i.e., there exist an infinte fair computation
zc of Th(P) and a top-level interaction ak of P such that ak is enabled
only finitely often along 7~. Thus there is a suffix n' of 7z such that
a~ is never enabled along n'. Now consider an arbitrary configura-
tion C of n'. By definition of MIN, we have that M I N =j holds
in C for some interaction aj. Thus by Lemma 1, aj is eventuatly
enabled, say at a configuration C' that follows configuration C
along n'. By construction of the hyperfair scheduler H, the priority
variables will be updated in configuration C', and so zt, will be
decremented. Since C is an arbitrary configuration, it is clear that
the above argument can be repeated for every configuration of
re', hence we conclude that z k is decremented infinitely often along
~'. Since ak is never enabled along n', zk := ? is never executed along
n', and z, is decremented infinitely often along ~', this means that
eventually, z~ ,<-n holds. But this contradicts Lemma 2, and so
the initial assumption is false and there cannot exist such a compu-
tation 7z and interaction ak- []

Part b

Let zc be a fair computation of P, along which every top-level
interaction is infinitely-often enabled. For any state oj along ~z,
and any top-level interaction az, define:

kl,j=min{i[i>_j and al is enabled in ~i}

Extending to o) (a state of Th(P)) is done inductively. First,
ab (zz) = kz, o- Let aj(MIN) -= m, then:

~a)(zz) if a,, is not enabled in oj
a)+ 1 (zl) =~a)(zl) - 1 if a,, is enabled in aj and 1 ~ m

[kl,j+ 1 if % is enabled in ~ and l = m

The computation ~z' obtained this way is a computation of Ta(P).
The interaction aMt N is always eventually enabled along 7(, whereu-
pon ZM,N is reset to a natural number, and for l ~ M I N , z~ is de-
creased by 1.

References

1. Apt KR, Bouge L, Clermont P: Two normal form theorems
for CSP programs IPL 26:165-171 (1987)

2. Apt KR, Francez N, Katz S: Appraising fairness in distributed
languages Distrib Cornput 2:226-241 (1988). Also: Proc 14th
ACM-POPL Syrup, Munich, Germany, January 1987

3. Apt KR, Olderog ER: Proof rules and transformations dealing
with fairness Sci Comput Program 3:65-100 (1983)

4. Bagrodia R: A distributed algorithm to implement N-party ren-
dezvous Tech Rep Department of Computer Science, University
of Texas at Austin, June 1987

5. Back R JR, Kurki-Suonio R: Decentralization of process nets
with centralized control Distrib Comput 3:73-87 (1989) Also:
Proc 2nd ACM-PODC, Montreal, Canada, August 1983

6. Back RJR, Kurki-Suonio R: Cooperation in distributed sys-
tems using symmetric multiprocess handshaking Tech Rep A34,
Abo Akademi 1984

7. Back RJR, Kurki-Suonio R: Serializability in distributed sys-
tems with handshaking Tech Rep 85-109, CMU, 1985

8. Back RJR, Kurld-Suonio R: Distributed cooperation with ac-
tion systems. ACM Trans Program Lang Syst 10(4) 513-554
(1988)

9. Charlesworth A: The multiway rendezvous ACM Trans Pro-
gram Lang Syst 9(2):350.366 (1987)

10. Chandy KM, Misra J: Synchronizing asynchronous processes
- the committee-coordination probiem Tech Rep Department
of Computer Science, University of Texas at Austin, 1987

i i . Chandy KM, Misra J: Parallel program design: a foundation
Chap f4, Addison Wesley 1988

12. Dijkstra, EW: A discipline of programming Prentice-Hall 1976
13. Deleted
14. Francez N, Hailpern BT, Taubenfeld G: SCRIPT - a eommuni=

cation abstraction mechanism and its verification Sci Comput
Program 6(1): 35-88 (1986)

15. Furman, I.R.: On the design of large distributed systems Tech
Rep STP,098-86 (Rev 1.0), MCC, Austin, Texas January 1987.
A preliminary version presented at the First International Con,
ference on Computer Languages, Miami, Florida, October 1986

16. Francez N: Fairness Springer, Berlin Heidelberg New York
1986

17. Francez N: Cooperating proofs for distributed programs with
multi-party interactions IPL 32(5):235-242 (1989)

!8. Grumberg O, Francez N, Katz S: Fair termination of communi,
cating processes 3rd ACM-PODC Conference, Vancouver, BC,
Canada, August 1984

19. Hoare CAR: Communicating sequential processes Commun
ACM 21(8):666-678 (1978)

20. Hoare CAR: Communicating Sequential Processes Prentice-
Hall 1985

21. Kuiper R, de Roever WP: Fairness assumptions for CSP in
a temporal logic framework In: Biorner D (ed) Proc Tech Rep
2 Working Conference on Format Description of Programming
Concepts, Garmisch Partenkirchen North Holland 1983

22. Olderog ER, Apt KR: Transformations realizing fairness as-
sumptions for parallel programs ACM Trans Programm Lang
Syst 10(3):420-455 (1988)

23. Plotkin GD: An operational semantics for CSP In: Biorner
D (ed) Tech Rep 2 Working Conference on Formal Description
of Programming Concepts, Garmisch Partenkirchen, North
Holland 1983

24. Pnueli A: Lect Notes of CS395T, Specification and verification
of reactive systems University of Texas at Austin 1986

25. Ramesh S, Mehndiratta H: A methodology for developing dis-
tributed programs IEEE Trans Software Eng S E-13 (8):967-976
(1987)

Note added in proof

We remark that the faithfulness theorem (part b) does not state
that the hyperfair scheduler H generates all hyperfair computations,
but only that it generates all hyperfair computations that are also
(strongly) fair. This is due to the use of an underlying strongly
fair scheduler, which requires that the faithfulness theorem given
in the paper be relativized to strongly fair computations. Since
the definition of hyperfairness requires strong fairness with respect
to top-level interactions only, there are, in general, computations
that are hyperfair but not strongly fair.

If we extend the definition of hyperfairness so that it applies
to all interactions in a program, not just the top-level ones (i.e.,

remove the relativization to top-level interactions), then the hyper-
fair scheduler will generate all hyperfair computations. This re-
quires an appropriate modification to the definition of an (a, A)-
derived program, so that it is applicable to all interactions a, not
just top-level ones, and requires the precondition of hyperfairness
to be changed to "If every interaction is conspiracy resistant":
The details are straightforward and are left to the reader.

We further remark that the hyperfair scheduler is capable of
extending any partial computation into a hyperfair computation,
since no deadlocks are caused by the hyperfair scheduling policy
by virtue of the property of conspiracy resistance.

