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Summary. In this paper, a new fairness notion is pro- 
posed for languages with multi-party interactions as the 
sole interprocess synchronization and communicat ion 
primitive. The main advantage of this fairness notion 
is the elimination of starvation occurring solely due to 
race conditions (i.e., ordering of independent actions). 
Also, this is the first fairness notion for such languages 
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which is fully adequate with respect to the criteria pre- 
sented in [21. The paper  defines the notion, proves its 
properties, and presents examples of its usefulness. 
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1 Introduction 

Fairness is one of the most  important  classes of liveness 
properties employed by languages for nondeterministic, 
concurrent and distributed programs and by their under- 
lying models of computat ion.  This importance stems 
from the semantic intricacies of constructs in such lan- 
guages, which makes the verification of typical progress 
properties (e.g., eventual response to a request for service) 
difficult. One source of difficulty is the phenomenon of 
conspiracies. A conspiracy occurs if a request for service 
is never granted because conflicting requests intermit- 
tently engage some of the needed resources. In this paper, 
we investigate the prevention of conspiracies through 
fair scheduling. We propose a new fairness notion that 
prevents a conspiracy whenever it is due solely to "race 
condi t ions ' ,  i.e., whenever its prevention involves delay- 
ing some requests and proceeding with independent, 
non-conflicting requests. 

An appropriate  setting for the study of conspiracies 
and their prevention is that of concurrent programs ex- 
pressed in programming languages with multi-party in- 
teractions as their primitive construct for interprocess 
synchronization and communication.  In our opinion, a 
mult i-party interaction is more abstract  and higher level 
than the more commonly  used point-to-point  communi-  
cation which is usually expressed by message-passing 
primitives such as send and receive (either asynchronous, 
or CSP-like handshaking) or by remote procedure calls 
(e.g., ADA-like rendezvous). A single mult i-party interac- 
tion hides the details of its implementat ion by several 
point- to-point  communicat ion operations. Among  other 
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things, the ordering of point-to-point communication 
operations is abstracted away, and so high level designs 
can be produced which do not contain such low level 
details. Several such multi-party interaction constructs 
have been proposed, e.g., scripts [14], joint actions [5], 
shared actions [25], compacts [9] and teams and interac- 
tions [15]. In addition, the handshakes in Hoare's alge- 
braic version of CSP [20] are also multi-party synchroni- 
zations, though this fact is not stressed there. It is our 
view that such constructs will become more frequently 
used as more and more complicated concurrent pro- 
grams are designed, especially since many implementa- 
tions of multi-party interactions have appeared [4, 6, 
8, 10, i i ] .  

We deal with both serialized and overlapping semant- 
ics. In serialized semantics, interaction execution is atom- 
ic, i.e., one interaction is executed at a time, and parallel- 
ism is modeled by the nondeterministic interleaving of 
interaction executions. In overlapping semantics, interac- 
tion execution has finite (nonzero) duration, so execu- 
tions of non-conflicting interactions can overlap in time. 
Parallelism is modeled by the nondeterministic interleav- 
ing of interaction fragments, which, roughly speaking, 
are events that represent the start and finish of interac- 
tion executions. As is well known by now for binary 
interactions (i.e., interactions with exactly two partici- 
pants) [2, 6, 7, 16, 18], natural fairness properties, which 
are satisfied in a serialized execution (one interaction 
at a time), need not hold in an overlapping execution. 
This also holds, of course, for general multi-party inter- 
actions. 

Within the setting of multi-party interactions, a con- 
spiracy occurs if an interaction is never enabled for exe- 
cution because conflicting interactions intermittently en- 
gage some of the needed participants, i.e., participants 
are viewed as resources which are required for the enab- 
lement of an interaction (this situation occurs in both 
serialized and overlapping semantics). Our fairness no- 
tion prevents "race conditions" by delaying some inter- 
actions and proceeding with independent, non-conflict- 
ing interactions (this is made more precise in the sequel). 
Our notion also satisfies the three semantic criteria posed 
in [2] for fairness notions, (namely feasibility, liveness 
enhancement, and equivalence robustness, which are brief- 
ly explained in this paper) and is the first fairness notion 
for  multi-party interactions that does so. The existence 
of such a fairness notion was presented as an open prob- 
lem by Pnueli [24]. This problem is positively solved 
in this paper, though it is not clear at this time whether 
the solution is the most general one. 

The rest of the paper is organized as follows. In 
Sect. 2, a mini-language, IP, (an abstraction of Raddle 
[15]) is presented. Both its serialized and overlapping 
semantics are given. In Sect. 3 the concept of conspiracy 
resistance is presented, in terms of which hyperfairness 
is defined, and examples are presented which rely on 
hyperfairness for their required liveness properties. In 
Sect. 4 an explicit scheduler transformation [3, 22] for 
hyperfairness is proposed and proven to be faithful, i.e., 
it generates only hyperfair computations of a given pro- 
gram. In Sect. 5 our conclusions are presented. 

2 The language IP (Interacting Processes) 

In this section we present a simple mini-language, called 
IP (Interacting Processes), first introduced in [17]. The 
language is an abstraction and simplification of pro- 
gramming languages containing the multi-party interac- 
tion, and is suitable for focusing on fair conflict-resolu- 
tions among interactions, omitting other features found 
in similar, but more elaborate languages. Its main feature 
is the usage of multi-party interactions as guards, thereby 
generalizing both Dijkstra's original guarded commands 
language [12], which has only boolean guards, and CSP 
[19], which uses synchronous binary communication op- 
erations as guards. Further results regarding the proof- 
theory (of partial-correctness) of multi-party interactions, 
expressed via the IP  language, are reported in [17]. 

A program P : : [P1 I].../I P~] consists of a concurrem 
composition of n >  1 (fixed n) processes, having disjoint 
local states (i.e., no shared variables). A process P~, 1 <_ i <_ 
n, consists of a statement S, where S may take one of 
the following forms: 

Dummy statement, skip: A statement with no effect on 
the state. 

Assignment. x = e :  The variable x is local to P~ and e 
is an expression over P~'s local state. 

Interaction. a[ f :=6] :  Here a is the interaction name and 
~:=6 is an optional parallel assignment constituting a 
local interaction body. Process P~ is a participant of inter, 
action a. All variables in ~ are local to P~ and pairwise 
distinct. The expressions ~ may involve variables not lo- 
cal to P~ (belonging to other participants of interaction 
a). The participants of interaction a, denoted PAd, is 
the set of all processes that syntactically refer to a. Inter- 
action a is readied by process P~, if control of P~ has 
reached a point where executing a is one of the possible 
continuations. Interaction a is enabled if and only if all 
of its participants have readied it. It can be executed 
only if it is enabled. Thus, an interaction synchronizes 
all of its participants. Execution of an interaction consists 
of the parallel execution of the local interaction bodies 
contained in all participant processes. Variables within 

return the value that they held immediately before exe- 
cution of interaction a. Upon  termination of a local inter- 
action body a participating process resumes its local 
thread of control (i.e., no synchronization at the end 
of an interaction). Note  that if the body ~:=~ is empty 
(so the interaction appears as a[ ]) for some participating 
process, the effect of the interaction on that process is 
pure synchronization. 

Sequential composition. S,;  $2: First $1 is executed. If 
and when it terminates, $2 is executed. We freely use 
$1 ; ... ; Skfor any k_>2. 

Nondeterministic selection. [ B Bk ; ak [Vk :=ek] -+ Ski : 
k = l , m  

Here B~ ; a~ [ZSk :=ek] is a guard, composed of two parts. 
The part Bk is a boolean expression over the local state 
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of P/. The part a~[G:=G] is an interaction guard. S~ is 
any statement. When a nondeterministic selection state- 
ment is evaluated in some state, the k'th guard is open 
if B~ is true in that state (note that the interaction a~ 
is readied by P~ at that state). The guard is enabled if 
and only if it is open and the interaction a~ is enabled�9 
Executing the statement involves the following steps: 
evaluation of all boolean parts to determine the collec- 
tion of open guards. If this collection is empty the state- 
merit fails. Otherwise an enabled guard is passed (simul- 
taneously with the execution of all the other matching 
local interaction bodies of a~ in the other participating 
parties) and then S~ is executed. In case there are open 

�9 guards, but none is enabled, execution is blocked (possi- 
bly forever) until some open guard is enabled. 

N o n d e t e r m i n i s t i e  i terat ion.  *[ [] Bk ; ak [ ~  :=ek] ~ S~] : 
k = l , m  

Similar to the nondeterministic selection, but execution 
terminates once no open guards exist, and execution of 
the whole statement is repeated after each execution of 
a guarded command. 

Note that nested concurrency is excluded by the 
above definition, since it is orthogonal to the issue under 
investigation. We now turn to formal definitions of the 
operational semantics, based on Plotkin's transition 
scheme [23]. We define two different semantics: seria- 
lized and overlapping (compare with a similar distinction 
in g73 and 1-183). The former is better suited for correct- 
ness proofs, while the latter captures better the behavior 
induced by typical implementations. The difference be- 
tween the serialized and overalpping semantics is, that 
in the former each program action is represented by a 
single transition, while in the latter every program action 
is represented by a number of transitions (referred to 
as action fi"agments), one causing the effect of the pro- 
gram action on the state, the rest releasing the partici- 
pants. The proposed hyperfairness handles conspiracies 
under both semantic definitions. Throughout we assume 
some interpretation over which computations occur, and 
leave it implicit. 

2.1 Serialized semantics 

The central characteristic of this semantics is that local 
actions and interactions take place one at a time. A con- 

figuration (IS 1 II... IIS,], o-) consists of a concurrent pro- 
gram and a global state. The global state is a mapping 
from program variables to values in the domain of the 
interpretation. A configuration represents an intermedi- 
ate stage in a computation where S~ is the rest of the 
program that process P~ has still to execute (sometimes 
referred to as its syntactic continuation), while o- is the 
current state at that stage. We stipulate (for facilitating 
the definition) an empty continuation E (not a program 
in the language) satisfying the identities S ; E = E ; S = S  
for every S. A configuration ( jEl l . . .  lIE], a )  is a terminal 
configuration. For  a state ~r, we use the usual notions 
of a variant a[c/x] and a[?/~], obtained from cr by 
changing the value of x to c (ff to ~, respectively) and 

preserving the values of all other variables. We use a(e) 
to denote the value of an expression e in a state a. We 
use PAa to denote the set of all processes that participate 
in interaction a, i.e., all processes which contain a con- 
struct "a [g . '=~]"  within their body�9 We now define the 
(serialized) transition relation " ~ "  among configura- 
tions. Note that the transitions given by " ~ "  are atomic. 

(ES1 I1... IIS~]l .o. S , ] ,  ~ )  ~ (l-S111 .. .  IIEII . . .  I/S,], ~ )  (1) 

forany l <_i<_n, if fSi=skip, o r S i = * [  • Bj;aj[~j:=@ 
--, T~] and -~ V Bj holds in ~. j= 1,,, 

jm 1,hi 

<gsl/I  .../Is~ll . . .  Ifs,] ,  ~ )  

-~ <Is1  N... Jlell . . .  IIs,3, a [-o-(e)/x])  (2) 

for any l < i<n ,  iff Si=(x:=e). 

( [ S l l  ].. .  IISi ,- l l l  Si, [ISil.  lll ... IlSik-ll[ 

s ~  rls~+lll  . . . / Is ,J ,  ~r) 

--, ( I s 1  II... I l s i , -~  II s;111s,~ ,111...  rls~,- ~ I[ 
s;k JIs~,+ ~ II... IIs,] ,  a ' )  (3) 

if the following holds: There is an interaction a with 
a set of participants PA, = {is . . . . .  ik} (for some 1 _< k_< n), 
and for every i s P A ,  one of the following conditions 
holds: 

(a) S i = a [gi:= ~] and S'i = E 

(b) S~=[ D Bj;a~[~i.'=Yj]~T~] and there exists some 
j=  1,n~ 

j, 1 <_j < hi, s.t. Bj holds in a, a /=  a and S~ = Tj 

(c) S i = . [  D Bj; a j[~/=~j]  ~ Tj] and there exists some 
j= 1,ni 

j, [ <_j <_ hi, s.t .  Bj holds in a, aj = a, S; = Tj ; Si. 

Finally, for all these cases, o-' =o-Ea(o)/g], with f =  -~ ~7i, 
icPAa 

~= I.~ ~, where ~ denotes a union operation which 
i~PAa 

is ordered by process index, e.g., if vl,v2,e~,e2 are 
size, q, s i ze+l ,  append ( q, z) respectively, then 
a'= a [a(size + 1)/size, a(append(q, z))/q]. 

If 

(ES1 I] IlSilr Ilan], ~ )  ~ ( [ S i  11 IiS~ll ' ' ' . . . . . . . .  ' . . .  ilS.], a > 

then 

(Es~  ; 71 .. .  I ls~; Till . . .  I Is , ;  T,3, ~> 

-+ ( [ S i  ; Ti l l  ... IIs',; Til l  . . .  IIs',; T,3, a ' )  (4) 

where some of the S'~ may be identical to the correspond- 
ing S~. Note that this serialized semantics does impose 
synchronization at the end of an interaction. For this 
semantics, we now define the following notions. 

Def in i t ions .  (1) A (serialized) computation rc of P on a 
is a maximal (finite or infinite) sequence of configurations 
Ci, i>O, such that: (a) C o = ( P , a ) .  (b) For all i_>0, if 
C~ is not the last configuration in re, then C~ ~ C~+ ~. 



248 

(2) The computation n terminates iff it is finite and its 
last configuration is terminal; n deadlocks iff it is finite 
and its last configuration is not terminal. 
(3) An interaction a is enabled in a configuration C iff 
C has one of the forms in clause (3) of the definition 
of '  ~ '  and all the conditions are satisfied for a. 
(4) Two interactions a t and a2 are in conflict in a config- 
uration C iff both interactions are enabled in C and 
they have non-disjoint sets of participants, i.e., 
PAn, ~ PA~2#O. 
(5) An action is an interaction, a local assignment, or 
skip. 
(6) Two actions al and a 2 are independent iff they have 
no common participant. 
(7) Two computations are equivalent iff they differ only 
in the order of execution of independent actions. 
(8) The interaction trace of a computation is the se- 
quence of interaction names of the interactions that were 
executed in the computation. Often, the interaction trace 
suffices to uniquely identify a computation. 

2.2 Overlapping semantics 

The main characteristic of this semantics is that it is 
not an interleaving of actions. Rather, actions have (un- 
specified) duration, so that an action can start while an- 
other action is in progress (obviously, a non-conflicting 
one). This is still represented as an interleaving of so 
called atomic action fragments which are of a finer grain 
of atomicity than that of program actions. 

In order to allow the treatment of this semantics with- 
in the same transitional framework, we augment a con- 
figuration with an additional boolean array (of size n, 
the number of processes), called the readiness state and 
denoted by p. If p [i1 = true, 1 <_ i<_ n, in a configuration 
C, this means that process P~ is currently ready to engage 
in an action (either local or with other participants); 
otherwise, P~ is engaged in some action. In our semantics, 
the "real"  local-state transformation is instantaneous 
and resets the readiness bit of the acting process(es). 
However, a participating process can not engage in any 
other action (including a local one), until another transi- 
tion, setting the readiness bit, has taken place. Also, in 
this semantics participants of an interaction are synchro- 
nized upon entrance, but are not synchronized upon exit 
of the interaction. We denote the resulting transition re- 
lation by ~ ~'. Its defining clauses are similar to the 
ones in the serialized case, with the following changes. 

(a) A state transformation transition can only take place 
if the readiness bits of all participants are true. 
(b) In the resulting configuration, the readiness bits of 
all participants are false. 
(c) The following atomic transition is added 

([Sj[I.. .  [I S,1, a, (p [13, ..., p [ i -  11, false, 
p[ i+l] , . . . ,p[n]))  ,([Sll[...llS,],a,(p[1] .... ,pEi-1], 
true, p [i + 1] . . . .  , p In])) for every 1 <_ i _ n. 

An overlapping computation n of P is defined similar- 
ly to the serialized case, except that the transition - , 
replaces 4 ,  and the following conditions are added: 

(a) In the initial configuration p Li] = true for all 1 _< i <_ n, 
(b) In a terminal configuration p [i] = true for all 1 _< i_< 
n. 

(c) In an infinite computation, p [i1 = true infinitely-of- 
ten, for every 1 _< i_< n (i.e., every action terminates within 
a finite time). 

Likewise, the concepts of deadlock, termination and 
conflict are defined similarly to the serialized case. 

We say that process P~ readies an interaction a in 
a configuration C iff P~ satisfies one of the conditions 
imposed in (a)-(c) in clause (3) of the definition o f ~  ' 
and p[i] =true. We denote this property by readyi(a). 
The interaction a is enabled in a configuration C iff 
it is jointly readied in C by all its participants, i.e., 

/~ readyi(a) holds in C. 
i~PAa 

Note again that the difference between the serialized 
and overlapping semantics is, that in the former each 
program action is represented by a single transition, 
while in the latter every program action is represented 
by a number of transitions (referred to as action frag- 
ments), one causing the effect of the program action on 
the state, the rest releasing the participants. The notion 
of independence is naturally extended also to action frag- 
ments and their representing transitions. 

To simplify the notation, we refer only to programs 
in a normal form similar to the one defined in [11 for 
CSP programs. In this form, each process consists of 
one main nondeterministic iteration (after some initiali- 
zation assignments). The interaction-bodies serving as 
guards in these iterations are referred to as top-level in- 
teraction-bodies. A top-level interaction is an interaction 
all of whose bodies are top-level. 

3 Fairness and hyperfairness for multi-party interactions 

We briefly review known fairness notions for multi-party 
interactions and then suggest a new fairness notion, 
called hyperfairness, having some desirable properties 
which the previous notions lack. The main additional 
advantage is that the property of conspiracy resistance 
(to be explained below) is exploited. 

Following the distinctions made in [7, 18, 21] (see 
also [16], Chap. 5), the classification of fairness notions 
for multi-party interactions presented in [2] is along two 
orthogonal directions. 

(a) The subject of fairness: a process, a (fixed) group of 
processes and a specific interaction among a group of  
processes. 
(b) The level of fairness: The three common levels are 
unconditional, weak and strong, which differ in the enab- 
lement conditions required to guarantee eventual execu- 
tion of the subject action. See [16] for a detailed descrip- 
tion of these levels and other variants of fairness. We 
summarize this classification for the IP  language in Ta- 
ble 1. 

Remarks on Table 1. (1) This notion is only meaningful 
in a context where processes (resp. groups, interactions) 
are always enabled. 



Table 1. Fairness notions for multi-party interactions 

Level/subject Unconditional Weak Strong 

Process In an infinite computation every pro- In an infinite computation every contin- 
cess interacts infiniteIy often (in any in- uously enabled process interacts infinite- 
teraction). See remark 1 ly often. See remark 2 

In an infinite computation every inter- In an infinite computation every contin- 
acting group interacts infinitely often uously enabled interacting group inter- 
(in any of its mutual interactions). See acts infinitely often 
remarks 1 and 3 

In an infinite computation every (spe- 
cific) interaction occurs infinitely often. 
See remark 1 
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Group 

Interaction In an infinite computation every contin- 
uously enabled interaction occurs infini- 
tely often 

In an infinite computation every in- 
finitely-often enabled process inter- 
acts infinitely often 

In an infinite computation every in- 
finitely-often enabled interacting 
group interacts infinitely often 

In an infinite computation every in- 
finitely-often enabled interaction oc- 
curs infinitely often 

(2) A process is enabled if (any) one of its actions is 
enabled. 
(3) Note that a given interacting group may have several 
different interactions which have that group as the set 
of participants. 

As noted in [2], none of the fairness notions in Ta- 
b l e l  are fully adequate (in a sense defined there and 
reviewed in the next section) for multi-party interactions. 
We now propose a fairness notion that is adequate. 

The main idea can be informally described as follows. 
A conspiracy (w.r.t. an interaction a) occurs if PAa can 
be partit ioned into two (disjoint) subsets PAywPA~, 
such that all members of PAy are continuously ready 
to participate in the interaction a, while members of PA~ 
ready a infinitely-often, but not at the same time, i.e., 
not in the same configuration. Thus, in such an infinite 
computation a is not infinitely-often enbled, and need 
not eventually occur by any of the previously mentioned 
fairness notions. If the conspiracy is due to the inherent 
semantics of the program (e.g., see Fig. 4), then there 
is no way to guarantee the enablement of interaction 
a. If, however, the conspiracy is due to the interleaving 
of independent actions, or action fragments, (e.g., see 
Fig. 1) then it should be possible to control the schedul- 
ing in such a way as to eventually cause the enablement 
of a. This is exactly the behavior which hyperfairness 
enforces, as described in the succeeding paragraphs. 

We wish to ensure that if the members of PA~ can 
infinitely often ready a independently of PAl and of each 
other, then a will eventually be executed. This is achieved 
as follows. It is convenient to use one of the well known 
fairness notions (given in Table 1 above) to ensure actual 
execution. What  remains then, is to ensure that the enab- 
lement condition of this "underlying" fairness notion 
is met. Since members of PA~ ready a independently 
of PAy and of each other, they can be successively "fro- 
zen" in a state in which they ready a (thereby joining 
PAy), and when they are all " f rozen" there, a is enabled. 
If a is enabled sufficiently often, the underlying fairness 
notion will ensure the eventual execution of a. In this 
paper, we chose the underlying fairness notion to be 
strong interaction fairness, and in the sequel, we use 
"fairness" to denote strong interaction fairness, unless 
otherwise stated. We now turn to a formal presentation 
of these ideas. 

Definition (Pnueli). (i) A process P/ is insistent on an 
interaction a from a certain point in a computation ~z 
iff it continuously readies a in ~ from that point onwards 
[24]. 
(2) A process ~ is persistent on an interaction a in a 
computation ~z iff it readies a infinitely-often in ~z. 

Definition. Let P be a program in normal form, a a 
top-level interaction in P, and A an arbitrary subset of 
PAa. The (a, A)-derived program P~,A is obtained from 
P by replacing with false the local guard of every top 
level interaction body b (where b # a )  in every process 
PicA. 

In other words, when any process in A has a continua- 
tion from the top level, it is prevented from participating 
in any interaction other than a. 

Definition (Conspiracy Resistance). An interaction a is 
conspiracy resistant in a program P iff for every fair com- 
putation rc the following condition holds: 

Let ~1 be any finite prefix of ~z with final configura- 
tion C = (S, or}, and let PAy be the set of all the 
participants of a that ready a in C. Then, for every 
fair computation ~2 of the (a, PAy)-derived pro- 
gram Sa,eA~ obtained from S, (starting in state a), 
there exists a participant Pje(PA,-PAy) such that 
P~ eventually readies a along ~z. 

We refer to this as each process in PAy being a-frozen, 
and to Pj as independently readying the interaction a. 
Thus, conspiracy-resistance may be achieved whenever 
the participants of a can ready a independently of each 
other. The implied independence manifests itself by the 
fact that a-freezing an arbitrary subset of the participants 
of a does not prevent the eventual readiness for a of 
yet another participant. A scheduler that gradually 
"freezes" more and more participants of interaction a 
once such participants ready a ensures the eventual en- 
ablement of a. The key point here is that conspiracy 
resistance guarantees that this freezing strategy will 
never cause a deadlock, regardless of the order in which 
processes are frozen. Note that in the above definition 
PAJ, = 0 is possible. We now come to the definition of 
our central notion. 

Definition (Hyperfairness). If P is an IP program in 
which every top-level interaction is conspiracy-resistant, 
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then an infinite computation 7c of P is hyperfair iff r~ 
is fair with respect to top-level interactions and every 
top-level interaction is infinitely-often enabled in n. Also, 
every finite computation of P is hyperfair. 

If P is an IP program in which not every top-level 
interaction is conspiracy-resistant, then every computa- 
tion n of P is hyperfair. 

It is important to notice an essential difference between 
the fairness notions considered so far on the one hand, 
and hyperfairness on the other hand. The former imply 
eventual execution if an appropriate enablement condi- 
tion is satisfied. Hyperfairness implies eventual enable- 
merit (and subsequent execution due to the underlying 
fairness) if the condition of conspiracy resistance is sat- 
isfied. Note that enablement and conspiracy resistance 
are different types of conditions. An enablement condi- 
tion for a particular interaction a of a particular program 
P may hold in some computations (n) of P but not in 
others, i.e., it is a function of a, P, and re, whereas conspir- 
acy resistance is not a property of individual computa- 
tions, i.e., it is a function only of a and P. 

With any of the previous fairness notions, if a (top 
level) interaction a does not satisfy the enablement condi- 
tion, e.g., if a is never enabled along a computation ~r, 
then 7r is vacuously fair with respect to a. However, this 
is not the case with hyperfairness. If all top level interac- 
tions are conspiracy resistant, then zc is not hyperfair 
with respect to interaction a because a is not enabled 
at any point of n. Note  that if a different underlying 
fairness notion were used, e.g., weak interaction fairness, 
then a different hyperfairness notion would be required, 
namely one that ensures the required enablement condi- 
tions for weak interaction fairness. We now present sev- 
eral examples which illustrate hyperfairness. These exam- 
ples will be analyzed using serialized semantics. 

Example 1 (dining philosophers). A typical problem 
which can be solved by the introduction of hyperfairness 
is the famous dining philosophers problem. A solution 
formulated in the IP  language is presented in Fig. 1. 
In this example, when the i'th philosopher p~ is hungry 
(s~ ='h') it can eat (sr ='e') by interacting in the three-party 
interaction get-forks~ (together with the i'th fork f~ and 
the ( i -  1)'th fork.f~_ 1). In this and all other dining philos- 
opher examples, all operations on indices are cyclic. 
After Pi finishes eating, it becomes thinking (si='t') by 
interacting with the same forks once again in the 
give-forksi interaction. 

P H I L : :  [_p~[] . . .  IIP~llfall .-. [[fJ where 
Pi 2 ~ Si:= "t "; 

* [sl = "t " ~  s i:= ' h '  

D 
si = "h '; g e t - f o r k s ,  [s~:= ' e '] ~ g ive  - f o r k s i  [s~:= ' t "] 
], 

f i  : : * [ g e t - f o r k s ~ [  ] - - , g i v e - f o r k s i [  ] 
0 
g e t - f o r k s i §  1 [ ] ~ g ive  - f o r k s ~  + 1 [ ] 
I. 

Fig. 1. A starvation free solution of the dining philosophers prob- 
lem in hyperfair I P  

This program displays conspiratorial behavior. Let 
n = 4  (i.e., 4 philosophers) and suppose that P2 is in a 
hungry state and waits (insistently!) for the interaction 
get-forks2 to be executed. In order for that interaction 
to be enabled, it has to be readied simultaneously by 
both fork-processes f l  and fz. Consider the following 
interaction trace rc of a serialized computation 

= get-forks1 get-forks 3 

(give-forks1 get-forks1 give-jbrks3 get-forks3) C~ 

It is clear that get-forks2 is never enabled in rc because 
get-forks1 and get -forks3 alternately engage f j  and f2 
respectively. Note  that the conspiracy against get 
-forks2 in rc is due to "unfortunate" scheduling which 
prevents f~ and f2 from readying get-forks2 simulta- 
neously. This is an example of conspiracy occurring in 
the serialized semantics, since ~ is a serialized computa- 
tion. Now p~ is insistent on get-forks~ (once se ='h'), and 
the two fork processes fi and f/_ ~ ready get-forksi inde- 
pendently of each other and of p~, so the interaction 
get-forks~ (for every 1 _< i < n) is conspiracy-resistant. As 
all top level interactions are conspiracy resistant, by hy- 
perfairness, get-forksi must be enabled infinitely often, 
and so rc will be excluded as an illegal (i.e., not hyperfair) 
computation. Note  that in the interaction trace of the 
equivalent computation 

n' = get-forks,  get -forks3 

(give-forks1 give-forks3 get-forks1 get-forks3) ~ 

in which the get-forks~ interaction is commuted with 
the independent give-forks3 interaction, no conspiracies 
occur, and get-forks2 is infinitely often enabled (it is 
enabled immediately after give-forks3 has been execut- 
ed). But rg is also not hyperfair, because get-forks2 is 
infinitely often enabled but never executed, and so 7c' 
is not fair with respect to get-forks z. 

Example 2 (dining philosophers with fork cleaning). In 
the previous example, the two forks readied the get 
-forksi interaction unconditionally. Here is a somewhat 
strengthened example (Fig. 2), where the forks have boo- 
lean conditions and additional interactions with a clean- 
ing process c, which interacts with a non-clean fork to 
clean it. Here clean-testi represents some hidden condi- 
tion, returning a boolean value representing the state 
of cleanliness of a fork. We assume that clean-testi is 
guaranteed to return "false' infinitely often if invoked 
infinitely often, since otherwise the cIeaningi interactions 
would fail to be conspiracy-resistant simply because 
clean-test~ (eventually) always returns 'true ', and this 
would obscure our example. 

It is easy to see that the get-forks~ interactions are 
still conspiracy-resistant. This property follows from the 
structure of process c, which is ready to interact with 
any fork. However, the cleaning~ interactions are not con- 
spiracy-resistant! To see that, consider a configuration 
C in which the fork-processf~ is clean (i.e., cleani = true 
holds), while f~_l andfz+l  are dirty (i.el --ncleani_ 1 and 

y -7 clean~+ 1 hold). Clearly, cePAc~e,,i,~, in C, since it rea~ 
dies cleaning~. Let re2 be a continuation from C, along 



P H I L : :  ~vl] 1 ... llP, I]/I I1 ... I[fLIic] where 
p~ : : ... as in Figure l... 
f~ : : clean~::true; 

�9 [clean i ; get -forks~ [ ] 
g i v e -  forksl [ cleani ,=clean - testJ 

D 
cleani; get- forksi+ 1 [ ] 

g ive- forksi  + a [cleani:= c l e a n -  testJ 
D 
-a cleanl ; cleaning i [cleani :=true] ~ skip 
q, 

c : " {cleaning service} * [ ~ cteaningi [ ] ~ skip] 
i= l,n 

Fig. 2. Dining philosophers with a cleaning service 

PHIg:Z[px  II-.-liP, JI f~ II .-. I~,l]c] where 
p~ : : ... as in Figure 1... 
f : : ... as in Figure 2... 
e: : {diligent cleaner} c 1 ,=true; ... c, ,=true; 

* [ 13 c i A c i_ 1 ; get- forks~ [ ] ~ skip 
i -- l ,n  

{5 give- forks i  [c~,=clean--testi ; c~_ ?=clean 
/--1,n 

-- test~_ ~] --, skip 
[q ~ ci ; cleaningi [ci ,=true ]--+skip 

i=l ,n  
] 

Fig. 3. Dining philosophers with a diligent cleaning service 

which c is "frozen" on cleaning~.  Then, c will never clean 
any off/_ ~ andf i+ 1, preventing P i -  z and Pi from eating 
and ~ from getting dirty, thereby readying the cleaning~ 
interaction. Thus, cleaning~ is not conspiracy-resistant 
due to the failure of f/ to ready it independently of c. 
Hence, a hyperfair scheduler which freezes c like this 
could cause a deadlock (e.g., if all forks except f/ are 
dirty, and c is c l e a n i n g ~ - f r o z e n ,  then no interaction is 
enabled'and the system is deadlocked). 

Example 3 (dining philosophers with a diligent cleaner). 
The example in Fig. 3 displays a conspiracy-resistant 
fork-cleaning interaction. It is not surprising, that 
achieving this end involves a "harder-working" cleaning 
process. In order to prevent the mutual-dependency of 
readying the c l ean ing  interaction, the cleaning-process 
c keeps track of the cleanliness state of all forks, and 
readies c lean ing i  only if f~ is dirty. Thus, when c is 
c I e a n i n g i - f r o z e n ,  f~ is dirty and so cleaning~ is enabled. 
Therefore, the situation in the previous example is 
avoided. 

Example 4 (dining philosophers with vicious forks). Fi- 
nally, we present (Fig. 4) another variant of the dining 
philosophers problem in which the g e t - f o r k s i  interac- 
tions are no t  conspiracy-resistant and hyperfairness does 
not help. In this example, the neighbor forksfi ,f /_ 1 inter- 
act among themselves in a sw i t ch i  interaction and thus 
coordinate their readiness to participate in the g e t  
- - f o r k s  i interaction, i.e., the Ii boolean in f / a n d  the r i_ 1 
boolean in f _  1 are never simultaneously true, and so 
the g e t - f o r k s ~  interaction is never enabled. Hence con- 
spiracy is inherent in the program semantics, and is not 
due to race conditions. 

P H I L : :  Ep~H-.-I[p,[Pfa I[-.. If, J where 
p~ : : ... as in Figure 1... 
f : : I i ,=true; r~,=true; c~:=true; swi:=true; 

*[li ; get--forks i [ ] ~ give- forksi  [ ] 
D 
r i ; g e t - f o r k s  i + 1 [ ] ~ give -forks~ + 1 [ ] 
D 
switehi [el ,=-n ci ; swi :=(el = swi); li :=(ci/x swi)] --+ skip 
0 
switchi + 1 [ri'=(el + 1/x --1 sw i + ~)1 ~ skip 
] 

Fig. 4. Dining philosophers with vicious forks 
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4 Properties of hyperfairness 

In this section we analyze hyperfairness in terms of the 
(briefly reviewed here) criteria of feasibility, equivalence 
robustness, and liveness enhancement, which are posed 
and formally defined in [2]. 

Feas ib i l i t y .  Any fairness assumption excludes some of 
the otherwise admissible computations (the "unfair"  
ones). A necessary property of a fairness assumption is 
that for every program some (finite or infinite) fair com- 
putation does exist (in other words, not all computations 
are excluded). Without this requirement, no scheduler 
could correctly treat the fairness and produce one of 
the fair computations. Moreover, since any reasonable 
scheduler cannot 'predict '  the possible continuations at 
each point of the computation, it should be possible to 
extend every partial computation to a fair one. 

E q u i v a l e n c e  robus tness .  Concurrent systems are often 
modeled by means of interleaving (atomic) actions. How- 
ever, the order of execution of i n d e p e n d e n t  actions in 
such an interleaving is arbitrary. Thus two execution 
sequences which are identical up to the order of indepen- 
dent actions are equivalent. This leads to the second 
criterion: a fairness assumption is e q u i v a l e n c e  r o b u s t  if 
it respects this equivalence. That  is, for two equivalent 
infinite sequences either both are fair according to the 
given definition, or both are unfair. 

L i v e n e s s  e n h a n c e m e n t .  All models of parallel computa- 
tion assume a fundamental liveness property that an ac- 
tion will eventually be executed in some process if the 
system is not deadlocked. A justification for adding an 
additional liveness requirement in the form of a fairness 
notion, is that there exists a program which has some 
liveness property which it would not have without the 
fairness notion. This criterion is termed l iveness  e n h a n c e -  
m e n t  in order to emphasize that additional liveness prop- 
erties will hold for some programs. Some fairness notions 
cannot force a communication to occur in a model if 
it did not have to occur under the fundamental liveness 
property. These notions are not liveness enhancing for 
that model. 

A fairness notion is f u l l y  a d e q u a t e  iff it is feasible, 
equivalence-robust and liveness enhancing. The main re- 
sult in this section is the establishment of the full adequa- 
cy of hyperfairness. F e a s i b i l i t y  is established by present- 
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ing an explicit scheduler ([3]) for hyperfairness and prov- 
ing its faithfulness. This is done below. Liveness enhance- 
ment follows from the examples in Sect. 3. Equivalence 
robustness is established by the following lemma. 

Lemma. Hyperfairness is equivalence robust. 

Proof. Let n~, n2 be the interaction traces of two equiva- 
lent computations of program P. If P contains a top-level 
interaction that is not conspiracy resistant, then every 
computation of P is hyperfair and we are done. Thus 
we now assume that every top-level interaction of P is 
conspiracy resistant. We now establish (n3 is hyperfair 
implies rc 2 is hyperfair), which establishes the lemma. 
By definition of hyperfairness, we have that n 1 is (strong- 
ly) fair with respect to top-level interactions and every 
top level interaction is infinitely often enabled in rq. 
Hence, by definition of strong fairness, every top level 
interaction is executed infinitely often along n~. As n~ 
and n2 are equivalent, and therefore contain the same 
interaction events, every top level interaction is executed 
infinitely often along n2 as well, thus n2 is strongly fair 
with respect to top-level interactions. Also, every top 
level interaction must be infinitely often enabled along 
n2 (in order to be infinitely often executed), hence re2 
is hyperfair. [] 

4.1 An explicit scheduler for hyperfairness 

Let P : : [P~II ... JJP~] be a typical IP  program in normal 
form. Let a;,  . . . ,  am, for some m >_ 0, be an enumeration 
of all the top-level interactions in P. With each interac- 
tion aj we associate a priority variable zj (as in [3]). 
We now define a (centralized) hyperfair scheduler H for 
IP. It is represented as an additional process, running 
in parallel with P~, 1 _<i< n, and having access to all of 
their local states, including the control positions. The 
priority variables z; are local to H. We skip here the 
somewhat tedious task of representing the combined 
program in IP. 

The (index of the) interaction with the highest priority 
is chosen by H and preserved in a local variable M I N :  

def 
M I N  = rain {klz  k = rain {z~]l= 1 . . . .  , m}}. 

In every process Pi, 1_<i< n, the following modification 
is made: in the main (i.e., top-level) nondeterministic iter- 
ation, the local guard B} (guarding an interaction body 
of a top-level interaction aj in P~) is strengthened to: 

B} A (V#: i ~ PA,/x # = M I N ~ ( j  = # v -q B~)) 

where # is a metavariable ranging over interaction indi- 
ces. Thus, a participant of aa41N does not ready any other 
interaction once it readies a~iN (is indeed au1N-frozen), 
until ame N is enabled. When aMIN is enabled, the follow- 
ing update of the z~ variables takes place. First, zg~N ,= ?, 
(this denotes the assignment of an arbitrary positive in- 
teger to ZMtN) and for k ~ M I N ,  zk:=z k -  1, after which 
M I N  is redetermined, and all strengthened local guards 

are reevaluated. H can determine the enablement of in- 
teractions because it is centralized. In order to avoid 
an extra level of indexing, we assume here that each 
process has at most one interaction-body for each inter- 
action a i, 1 _<j _< m. 

It is important to note that the hyperfair scheduler 
H really acts in conjunction with a given scheduler (call 
it F) for the underlying fairness notion. Once H forces 
the enablement i)f an (arbitrary top-level] interaction a, 
(by a-freezing all the participants of a), the actual execu- 
tion of a is decided by F. If F decides not to execute 
a, then the participants of a are unfrozen, li.e., the priority 
variables are updated as described in the preceding para- 
graph) and execution continues. If F decides to execute 
a, then a is excuted, after which the participants of a 
are unfrozen, and then execution continues. Thus. the 
real task of H (under the assumption that all the top-level 
interactions in the program P are conspiracy-resistantl 
is to force a situation where a is sufficiently-often en- 
abled, and therefore eventually scheduled by F. 

If some top level interactions in P are not conspiracy- 
resistant, then H will not guarantee the enablement of 
any interaction and a conspiracy may occur. In this case. 
the combined execution may end in a deadlock Isee ex- 
ample 2, previous section). We assume that the conspira- 
cy resistance of all top-level interactions is verified before 
the program is executed under H, and so this problem 
does not arise. However, in lieu of verifying the conspira- 
cy resistance of all top-level interactions, the implemen- 
tation can employ a deadlock-detection procedure, and 
remove all the restrictions imposed by H if deadtock 
ever occurs, as this would indicate that at least one top 
level interaction is not conspiracy resistant, and in this 
case, hyperfairness guarantees aothing. We now state 
and prove the main theorem expressing the required 
properties of H. 

Theorem (faithfulness of H). For every P ~ I P ,  if all top- 
level interactions in P are conspiracy-resistant in P, then: 

(a) The restriction of every infinite fair computation of 
P under H (to variables of P) is a computation of P 
along which every top-level interaction is infinitely-often 
enabled (i.e., is a hyperfair computation). 
(b) Every fair computation of P along which every top- 
level interaction is infinitely-often enabled (i.e., every hy- 
perfair computation), can be extended (by assigning 
values to the g variables) to an infinite computation of 
P under H. 

The proof (given in the appendix) is structured similarly 
to the ones in [3]. In proving (a), we show that once 
an interaction is chosen as M I N ,  its conspiracy-resis- 
tance guarantees its eventual enablement. Given that, 
it is shown that if there is a conspiracy-resistant interac- 
tion a; not enabled from some point onwards, this means 
that other interactions serve as the current M I N  and 
are repeatedly enabled, decreasing z~ until M I N  = i has 
to hold. In proving (b), the values assigned to each z~ 
keep track, roughly speaking, of the number of interac- 
tions that are executed until the next time a~ is enabled. 

As a simple example, consider again the dining philos- 



H : : z 1 :=?; ... ; z,:= ?; compmin; 
*[ D j = M I N ~  

j =  l , n  

[- A ready,(get - forks j) 
i~PAge~ - fDrksj 

gk C j:  Zk'=Zk-- 1 ; Z/= ?; compmin 

"-7 /~ ready i (get --forksi) -+ skip] 
i~PAger - forks j  

Fig. 5. Hyperfair scheduler for dining philosophers example 

ophers  p r o g r a m  in Fig. 1. p~ is ins is tent  on  g e t - f o r k s ~  
once s~ = "h' holds.  The  g e t - f o r k s i  in te rac t ions  are  con-  
sp i racy-res is tant ,  and  we have  H of the form shown in 
Fig. 5. 

Here  compmin is the  p r o g r a m  sect ion 

M I N . ' = m i n  {klzk = rain {zz l1 = 1, . . . ,  n}}. 

D u e  to  the consp i racy- res i s t ance  of  get-- forksMx~ a n d  
the modi f i ca t ions  of  the  processes  as above,  get  
- f o r k s u f N  will even tua l ly  be enabled .  The  under ly ing  
fairness will even tua l ly  select it  for execut ion,  imply ing  
the n o n - s t a r v a t i o n  of  P ~ N .  Since every g e t - f o r k s ~  in ter-  
ac t ion  is even tua l ly  selected as M I N ,  no p h i l o s o p h e r  
starves.  

5 Conclusions 

In  this paper ,  a fairness no t i on  fu l ly -adequa te  for mul t i -  
p a r t y  in terac t ions ,  cal led hyperfairness, is presented .  I t  
gua ran tees  tha t  top- level  conspiracy-resistant in terac-  
t ions,  in which each p a r t i c i p a n t  inf ini te ly-of ten readies  
the in t e rac t ion  i ndependen t l y  of  all  o the r  pa r t i c ipan t s ,  
are inf ini te ly-of ten enabled ,  and  by  the under ly ing  s t rong  
fairness are  a lso  inf ini te ly-of ten executed.  Thus  hyper fa i r -  
hess e l imina tes  c o m p u t a t i o n s  where  the reason  for  an 
in te rac t ion  a being never  enab led  is s imply  "un fo r tu -  
n a t e "  schedul ing,  as o p p o s e d  to  the case where  the rea- 
son is inheren t  in the  p r o g r a m  semant ics ,  in which case 
no fairness n o t i o n  can gua ran t ee  the eventua l  enable-  
men t  (and subsequen t  execut ion)  of  a. 

If  a p r o g r a m  P con ta ins  some top- level  in te rac t ions  
which are  no t  consp i r acy  resis tant ,  then, by  defini t ion,  
every c o m p u t a t i o n  of  P is hyperfa i r ,  i.e., the behav io r  
of  P is u n c h a n g e d  by  hyperfa i rness .  Thus,  as one of  the 
referees has  suggested,  hyperfa i rness  (with the  under ly ing  
s t rong  fairness) can be r ega rded  as u n c o n d i t i o n a l  fairness 
app l i ed  to  a special  class of p r o g r a m s ,  n a m e l y  the class 
of p r o g r a m s  in which all top- level  in te rac t ions  are  con-  
sp i racy  resis tant .  

T h o u g h  consp i racy- res i s t ance  is a r a the r  s t rong  p r o p -  
erty,  it does  occur  qui te  often when the processes  are  
loose ly  coup led  in the sense tha t  there  is no  s t rong  causa l  
dependence  in sequences  of  consecut ive  in te rac t ions  in 
which a process  par t ic ipa tes .  The  d in ing  ph i lo sophe r s  
p r o b l e m  is a typica l  s i tua t ion  where  conspi racy- res i s -  
tance  holds .  W e  defer the issue of p resen t ing  a formal  
p roof - ru le  for p rov ing  consp i racy- res i s t ance  to a n o t h e r  
occasion.  
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W e  bel ieve tha t  the  s tudy  of  subtIe  l iveness p rope r t i e s  
of m u l t i - p a r t y  in te rac t ions  is crucial  to their  u n d e r s t a n d -  
ing. A first s tep t ow a rds  this end  is p r o p o s e d  in this 
paper .  
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A Appendix: proof of the faithfulness theorem 

Part a 

Follows immediately from Lemma 3 established below. Let Th(P) 
denote the program P executed under the control of the hyperfair 
scheduler H. 

Lemma 1. i f  every top level interaction in P is conspiracy-resistant, 
then for every fair computation ~ of Th(P) and for every configuration 
C along ~: if aM~N=a in C, then along the continuation of ~ from 
C interaction a is eventually enabled. 

Proof. Let n' be the suffix of ~ starting in configuration C. The 
proof is by induction over the set of processes PAJ that are insistent 
on a. When aMtN=a, the behavior of ~(P) and the (a, PAJ)-derived 
program P,,ea.~ are identical, since in both cases, every process that 
readies a is subsequently a-frozen until a is enabled, and processes 
that do not ready a are not a-frozen. Hence, ~r' is also a (suffix 
of a) computation of P~.PA~, and so, by definition of conspiracy 
resistance, there exists a participant Pje(PA,-PA{)  such that Pj 
eventually readies a along n', and hence joins PA~. Thus, by induc- 
tion over PA~, we conclude that, eventually, PA~=PA~ holds 
along n', i.e., a is enabled. [] 

Lemma 2. I f  every top level interaction in P is conspiracy-resistant, 
then ( A zl > - n )  is an invariant of Th(P), where n is the total 

i = 1 , n  

number of top-level interactions. 

Proof. Let Zk be an arbitrary priority variable. It suffices to show 
that z k > - n is invariant. We assume that all z~ variables are initially 
nonnegative, and so z k > - n  holds initially. 

Assume that Zk= 0 and MIN =j hold before a priority variable 
update (for somejCk). Thus both zk,=z k -  1 and z / = ?  are executed 
(see section 4.1 for a description of the hyperfair scheduler H). 
Hence zj>zk holds after the update, and it is obvious that zj>zk 
will continue to hold until z~.-= ? is executed, since each priority 
variable update prior to the execution of z~,= ? simply decrements 
each of z j, zk by one. Therefore aj cannot be the MIN interaction 
until Zk '=? is executed, i.e., until after ak has become the MIN 
interaction. Since j is arbitrary, we conclude that each of the ( n -  t) 
interactions other than a~ can be the M I N  interaction at most 
once until after ak has become the MIN interaction, and so at 
most n - 1  priority variable updates can take place until zk:=? 
is executed, so z k can be decremented at most n - 1  times before 
being assigned an arbitrary positive value. 

Now if zk>0 holds, then, since z~ is decremented by one it 
follows that zk=O will hold before z k becomes negative, and the 
argument in the previous paragraph also applies in this case. We 
conclude that zk> - n  is invariant, and the lemma is established. [] 
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Lemma 3. I f  every top-level interaction of program P is conspiracy- 
resistam, then every top-level interaction is enabled infinitely-often 
along any infinite fair computation of Th(P). 

Proof Assume otherwise, i.e., there exist an infinte fair computation 
zc of Th(P) and a top-level interaction ak of P such that ak is enabled 
only finitely often along 7~. Thus there is a suffix n' of 7z such that 
a~ is never enabled along n'. Now consider an arbitrary configura- 
tion C of n'. By definition of MIN,  we have that M I N  =j holds 
in C for some interaction aj. Thus by Lemma 1, aj is eventuatly 
enabled, say at a configuration C' that follows configuration C 
along n'. By construction of the hyperfair scheduler H, the priority 
variables will be updated in configuration C', and so zt, will be 
decremented. Since C is an arbitrary configuration, it is clear that 
the above argument can be repeated for every configuration of 
re', hence we conclude that z k is decremented infinitely often along 
~'. Since ak is never enabled along n', zk := ? is never executed along 
n', and z, is decremented infinitely often along ~', this means that 
eventually, z~ ,<-n  holds. But this contradicts Lemma 2, and so 
the initial assumption is false and there cannot exist such a compu- 
tation 7z and interaction ak- [] 

Part b 

Let zc be a fair computation of P, along which every top-level 
interaction is infinitely-often enabled. For any state oj along ~z, 
and any top-level interaction az, define: 

kl,j=min{i[i>_j and al is enabled in ~i} 

Extending to o) (a state of Th(P)) is done inductively. First, 
ab (zz) = kz, o- Let aj(MIN) -= m, then: 

~a)(zz) if a,, is not enabled in oj 
a)+ 1 (zl) =~a)(zl) - 1 if a,, is enabled in aj and 1 ~ m 

[ kl,j+ 1 if % is enabled in ~ and l = m 

The computation ~z' obtained this way is a computation of Ta(P ). 
The interaction aMt N is always eventually enabled along 7(, whereu- 
pon ZM,N is reset to a natural number, and for l ~ M I N ,  z~ is de- 
creased by 1. 
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Note added in proof 

We remark that the faithfulness theorem (part b) does not state 
that the hyperfair scheduler H generates all hyperfair computations, 
but only that it generates all hyperfair computations that are also 
(strongly) fair. This is due to the use of an underlying strongly 
fair scheduler, which requires that the faithfulness theorem given 
in the paper be relativized to strongly fair computations. Since 
the definition of hyperfairness requires strong fairness with respect 
to top-level interactions only, there are, in general, computations 
that are hyperfair but not strongly fair. 

If we extend the definition of hyperfairness so that it applies 
to all interactions in a program, not just the top-level ones (i.e., 

remove the relativization to top-level interactions), then the hyper- 
fair scheduler will generate all hyperfair computations. This re- 
quires an appropriate modification to the definition of an (a, A)- 
derived program, so that it is applicable to all interactions a, not 
just top-level ones, and requires the precondition of hyperfairness 
to be changed to "If every interaction is conspiracy resistant": 
The details are straightforward and are left to the reader. 

We further remark that the hyperfair scheduler is capable of 
extending any partial computation into a hyperfair computation, 
since no deadlocks are caused by the hyperfair scheduling policy 
by virtue of the property of conspiracy resistance. 


