
Distrib Comput (1993) 6:155-164

�9 Springer-Verlag 1993

Generating BDDs for symbolic model checking in CCS
Reinhard Enders 1, Thomas Filkorn 1, and Dirk Taubner 2

1 Siemens AG, Corporate Research and Development (ZFE BT SE 1), Otto-Hahn-Ring 6, W-8000 Mfinchen 83,
Federal Republic of Germany
2 sd & m GmbH, Thomas-Dehler-Strasse 27, W-8000 Miinchen 83, Federal Republic of Germany

Received September 1991 / Accepted July 1992

Reinhard Enders graduated
from the Technical University in
Munich with a Diploma in mathe-
matics and computer science in
1978. From 1977 to 1984 he was
employed by Siemens, working in
computer linguistics and expert
systems. From 1984 to 1988 he
worked at ECRC on Prolog exten-
sions. In Autmn 1988 he joined Sie-
mens and is developping the con-
straint extension of a new Prolog
product.

Thomas Filkorn received the
computer science degree and the
Ph.D. degree, both from the Tech-
nical University of Munich. Since
1992 he works at Siemens' Corpor-
ate Research and Development on
symbolic algorithms and methods
for the verification of finite state
systems.

Summary. Finite transition systems can easily be repre-
sented by binary decision diagrams (BDDs) through the
characteristic function of the transition relation. Burch
et al. have shown how model checking of a powerful
version of the /z-calculus can be performed on such
BDDs. In this paper we show how a BDD can be gener-
ated from elementary finite transition systems given as
BDDs by applying the CCS operations of parallel com-
position, restriction, and relabelling. The resulting BDDs
only grow linearly in the number of parallel components.
This way bisimilarity checking can be performed for pro-
cesses out of the reach of conventional process algebra
tools.

Key words: Binary decision diagram (BDD) - Process
algebra - CCS - Transition system - (Symbolic) model
checking - Bisimilarity

Correspondence to: T. Filkorn

Dirk Taubner received his Ph.D.
in informatics at the Technical Uni-
versity of Munich in 1988. He in-
vestigated which sublanguages of
process algebra could be repre-
sented finitely by automata and Pe-
tri nets.

From 1989 through 91 he
worked at Siemens' Corporate Re-
search and Development where he
led a project on computer-aided
verification of parallel processes.
This paper presents part of the
work of that project. Currently he
works on commercial software en-
gineering for a software consulting
company.

1 Introduction

A binary decision diagram as described by Bryant [1]
is a normal form representation of boolean functions
f : 113" ~ ~3, where ~3 = {0, 1}. It is often much smaller than
other normal form representations. Moreover boolean
operations can be applied efficiently.

Transition systems have states and transitions leading
from one state via some action to another state. They
underly many semantics for concurrent systems, e.g.
bisimulation equivalence for CCS 1-11]. They also under-
ly semantics of modal logics, which allow to reason
about concurrent systems.

Burch et al. [-2] have shown how model checking of
a powerful version of the/z-calculus including existential
quantification and 2-abstraction can be performed for
a boolean domain using BDDs for internal representa-
tion. They call the approach symbolic model checking.
They also indicate how other finite domains can be treat-
ed through Nnary encoding.

156

In particular for a finite transition system the set of
states S and the set Act of actions can be encoded as
subsets of]]3 rj~ Islq and]13 c1~ IActl7 respectively. The tran-
sition relation D _~ S x Ac t x S can be encoded as a func-
tion X: ~32"Fl~176 which in turn can be
represented as a BDD. Burch et al. show how weak and
strong bisimilarity can be expressed as formulas in their
/z-calculus and hence can be checked for transition sys-
tems given as BDDs.

However they do not indicate how the BDDs are
generated. If they were generated from the list of state-
action-state triples of the transition relation (which is
straightforward) the approach would immediately suffer
the well-known explosion problem, namely that a system
of N parallel components, with n states each, may have
n s transitions.

The question arises whether the BDD which repre-
sents the transition system of the compound system
could be generated more efficiently directly from the N
components given as BDDs without enumerating all re-
sulting transitions. This question is the topic of this
paper. It is answered in the following way: We give a
certain encoding of transition systems as BDDs. We
show how the CCS [11] operators of parallel composi-
tion, restriction, and relabelling can be applied to BDDs.
We prove that for a fixed set of actions the BDD for
representing N parallel communicating processes grows
only linearly in N. Worst case boundaries for the size
of BDDs are rare in literature, hence this bound is inter-
esting. However it has to be pointed out that it concerns
only the resulting BDD which represents the system of
N parallel component processes. It does not concern in-
termediate BDDs which are used during the generation
or during the model checking. Nevertheless a benchmark
example shows that bisimilarity checking can be per-
formed for systems out of the reach of conventional tools
such as [-3, 4, 7, 10, 6].

Note that the/z-calculus of [-2] is more powerful than
that of e.g. [-5, 12]. Hence all formulas checked with the
latter approaches can be checked in the framework of
this paper. We expect to be able to handle larger transi-
tion systems.

On the other hand it should be noted that BDDs
are efficient only in a heuristic sense, the worst case may
still be catastrophic. For circuit verification experience
has shown that indeed BDDs can serve as an efficient
representation in many practical cases. This paper gives
evidence that this is also the case for verification of paral-
lel processes. Possible applications are communication
protocols, operating system tasks, and distributed con-
trol systems, see e.g. [9].

Before we start with the technical part of this paper
let us explain with an example the basic idea, i.e. how
to represent relations by BDDs and why this is promis-
ing for the parallel composition of transition systems.
Consider the relation D of Fig. 1 where D__ S x S for
S = {0, 1, 2, 3}. We omit the actions for the moment. An
obvious boolean encoding of S is 0F-+00, 1 ~--~01, 2~-+ 10,
3F--~ 11. The relation D may then be represented by a
function: Z: IB4~IB, such that Z (r l , r z , s l , s 2) = 1 if and
only if the state encoded by r l r2 has an edge to the

D

Fig. 1. A relation (left) and its BDD representation (right)

state encoded by sa s2. This boolean function Z can in
turn be represented as a BDD.

For a given set of boolean variables which are totally
ordered by -< a BDD is a rooted directed acyclic graph,
each node is either terminal, then it is labelled by a truth-
value and has no successor, or it is nonterminal, then
it is labelled by some variable and has two successors
which are terminal or labelled by a larger (-<) boolean
variable. One successor corresponds to 0, the other to
1.

Taking the ordering r l~r2"<sa ~s2 the function Z is
represented by the BDD B given in Fig. 1.

Now assume we want to represent the relation 1

{ ((r , r ') , (s , s ')) e S x S [(r , s) e D A (r ' , s ') e D } (*)

as a BDD C. We can take a copy B' of B with fresh
t ! ! t variables r l , r2, Sl, s2 and calculate C as B A B' where

the conjunction of BDDs is as described in [1].
However the size of C depends on the chosen variable

ordering. If rl -<r 2-<sl <s2 ~,r'l <r'2-<S'l Ms'2 is chosen it
has 20 nodes, approximately 2.1BI, where IBI denotes
the number of nodes in B. It is formed simply by attach-
ing B' to the 1-exit of B. If, on the other hand,
ra < re < r'~ -< r~ ~ sl "< s2 < s'l < s~ is chosen it has 47 nodes
(approximately IB[Z/2).

It is not hard to see that for an arbitrary binary rela-
tion D which is encoded in the style of Fig. 1 the number
of nodes of the BDD representing the relation (.) is
bounded by O(IB]) and O([B[2) respectively depending
on the choosen ordering.

This ends our introductory example. We wanted to
indicate that if the ordering of variables is chosen careful-
ly the BDD only grows additively while the number of
elements in the represented relation grows multiplicati-
vely. However be aware that the encoding as presented
in Sect. 4 uses a different ordering in order to also serve
the asynchronous case well.

2 Operators on transition systems

Our language for composing parallel processes is taken
from the process algebra CCS [11]. Let Ac t be the finite
set of actions which contains the invisible action z and

This relation resembles the synchronization part of parallel com-
position, cf. the next section. In general, of course, one wants to
combine two relations and not twice the same

all o ther act ions in two copies, a and ~, which are com-
plementary, i.e. fi = a.

A transi t ion system T = (S, D, z) has states S, initial
state zeS , and transit ions D _ S x A c t x S leading f rom
one state with some act ion to another state. T h r o u g h o u t
we assume S to be finite.

Next we give opera tors on transit ion systems which
cor respond to CCS parallel composi t ion, restriction, and
relabelling. In [-13] it is shown that they are correct (con-
sistent) in the following sense. Given two closed CCS
terms P1 and P2 and let 7"1, T z be their respective transi-
t ion systems according to the transi t ional semantics
[11], then T~tT 2 as defined below is s t rongly bisimilar
to the transi t ion system of PI[P2 according to the transi-
t ional semantics. Similar results hold for restriction and
relabelling.

The CCS parallel composition for given T~
=(S1, D 1, Zl) and T 2 = (S z , 02, Z2) is defined as
T1] T: = ($1 x $2, D, (z t , z 2)) where

D = { ((r l , r2), ~, (s t , s 2)) [(r l , ~, s l) ~ D l A r z - - s 2

v (r 2 , ~, S 2) e D 2 A r l = S t

v c~=z/~ 3a4=z: (r 1, a, s l)~D~ A (r2, gt, s2)~D2}.

The condi t ion (r~, a, s~)eD~ ~ r 2 = s 2 and its sym-
metric version represent an asynchronous move in which
only one c o m p o n e n t proceeds. On the other hand the
condi t ion (r~, a, s ~) e D t ~ (r2, ~i, s2)~D2 represents a
synchronous move. The latter in a simplified version has
already been discussed in the introduct ion.

Let T = (S, D, z) be given. Restriction of a subset A _
A c t - { ~ } is defined as

T \ A = (S, { (r, ~, s) ~ D l c~(~A /x ~(~A}, z) .

Relabelling of a visible act ion a (a 4= z) into the act ion
b is defined as r [b /a] = (S, D', z) where

D ' = {(r, t , s) l ~ : (r, c~, s) e D A (fi=c@{a, d} dg v

(fl = b ~ ~ = a) v (f l = ~ ~ = a)) } .

3 Symbolic model checking using BDDs

Burch, Clarke, McMillan, Dill, and H w a n g [2] show
how model checking can be performed using BDDs.
They call their approach ' symbo l i c ' as it uses B D D s
to represent relations internally with the intention that
this is more efficient than the cor responding lists of tu-
ples.

The version of the /~-calculus used in [2] includes
individual variables, n-ary relational variables (n > 0), ex-
istential quantification, abst ract ion (2-binding) of indi-
vidual variables, and fixpoint binding of relational vari-
ables. Syntax and semantics are summarized in Figs. 2
and 3. The proposi t ional/~-calculus as used e.g. in [5, 12]
can easily be embedded by defining a suitable relational
term for the moda l opera tor (a) . I t is based on relational
variables representing the transi t ion relation of the struc-
ture which underlies the interpretat ion of the proposi t -
ional #-calculus, see Fig. 4.

157

Assume a finite set of individual variables (denoted z, z 1 in
the following syntactic clauses) and a set of n-ary relational vari-
ables for n>0 (denoted Z", Z'I,...). The syntax has syntactic cate-
gories F for formulas and P" or n-ary relational terms.

F :: = True] zl = z2] -7 F I F v F [3 z [F] [P" (zl z~)

where in the last clause all individual variables z~ z, are not
free in W.

P":: =Z"] #Z"[P"]] 2zl z,[F]

where in the second clause P" is syntactically monotone in Z" and
where in the last clause the individual variables are distinct.
Abbreviations are as usual, i.e. False ~ ~ True, FI~F2=-~F1 v F2,
F1AF2=-~(~F1 v~Fz), V z [F] = ~ 3 z [~ F] , and vZ"[W]
- ~ # Z " [- n P" (Z" ~ ~ Z ")].

Fig. 2. Syntax of #-calculus used in [2]

Assume a domain liD, a relational variable interpretation Ie which
maps every n-ary relational variable to a subset of D", and an
individual variable interpretation I n which maps every individual
variable to an element of D.
The semantics maps a formula F to a truthvalue, i.e.

and it maps an n-ary relational term W to a subset of E)", i.e.

~P"~(Ip)(ID)~--K)"

Semantics of formulas

~True~ (Ip)(Io) ,-1
~zl =zz~(Ip)(Io) '=ID(zl)=ID(z2)
~ F~ (Ie)(ID) ,=7 ~F~ (I,)(ID)
~Fx v F2~ (Ip)(ID) ,=~F~ (Ip)(ID) v [F2~ (Ip)(ID)
~3z[F]~(Ip)(ID) :=3d6D: ~F~(Ie)(ID(z~d))
~P" (z~ z.)~ (Ie) (I9),= (I D (z 1), I D (z.)) ~ ~P"~ (Ie)(ID)

Semantics of n-ary relational terms

[Z"~ (I,)(ID) .'=I r (Z")
(2z~ z, [V]~ (I,)(ID),={(d a d,)l

~F~ (Ip)(I D . (z 1 *- d 1 z, ~- d .)) }

~#Z" [P"]~ (Ie)(ID) :=lfp ()~Q ~_ D". [n"~ (Ie (Z ~ ~- Q))(I9))

where I (Var~ Value) is the same function as I except that Var
is mapped to Value, and where lfp denotes the least fixpoint in
ID" with respect to set inclusion.

Fig. 3. Semantics of #-calculus used in [2]

In general, given a structure of a domain and interpre-
tat ions Ie and ID of relational and individual variables,
model checking performs the task of checking, whether
a formula F is true in this structure (i.e. [F~(Ie)(ID)= 1),
in other words, whether the structure is a model for
F. However the interpretat ion of the relational variables
has to be supplied before the symbolic model checker
can start. It has to be supplied as one B D D for each
free relational variable.

In part icular for model checking CCS-terms
[2, Sect. 8] the t ransi t ion relations of the transi t ion sys-

158

The propositional #-calculus with syntax

G::=True[-aG[GvGI(c~)GIZ[#Z .G

(where ~ A c t and Z ranges over propositional variables) is inter-
preted relative to a transition system with states S, transitions D,
and a valuation V of the propositional variables, see e.g. [12] for
details.
It can be embedded into the first order #-calculus of [2] using
the following syntactic transformation ̂ .. This transformation di-
rectly reflects the definition of the semantics of the propositional
#-calculus.

True .-=2z [True]

G :=,tz= (d(z))]

G 1 v Gz:=2z[Gx(z) v Gz(z)l

(c~)G ,=,~z[3z2 [Z~(z, z2) ^ d(z~)]]
2 ,=Z ~

#Z.G ,=#Z x[~]

The relational variables (Z~) are used to represent for each action
the corresponding portion of the transition relation (other embed-
dings are conceivable, cf. Sect. 7). If one chooses K)=S and Iv
such that Ip(Z ~) = V(Z) for all propositional variables the following
holds for each propositional #-calculus formula G.

[G~v = ~(~ (1,)(ID)

Fig. 4. Embedding the propositional #-calculus into the first order
#-calculus of [2]

terns to be checked have to be supplied by the relational-
variable interpretation, i.e. as BDDs. Burch et al. leave
open where the BDDs for the transition relations come
from. The following two sections propose an approach
for generating these BDDs.

For the latter we additionally assume that A c t is enu-
merated z, a, b ,4, b, ..., i.e. that z is encoded as all
zeros and any visible action a as 0x2 ... X,~A and its com-
plement ~ as ly2 "-Y*A such that for all ie{2 #A}
we have x i = y i . Here ~ A ' . = [l o g 2 [A c t [] .

In order to work with BDDs one has to fix a global
ordering on the boolean variables used to encode the
information. This ordering has great influence on the
size of the BDDs. If nothing is known about the structure
of a relation to be represented as a BDD not much can
be done. However in our case we can use knowledge
about the transition relation and in particular about the
operations performed on them, most importantly the
parallel compostion.

For explanation let us consider a binary relation D __c
S x S as in the introduction. If we need # S bits to encode
S we need 2. # S bits to encode D, say r t , . . . , r~s to
encode the first element of a pair in D and st , S~s

for the second.
In the introduction we demonstrated for the synchro-

nization case of parallel composition of two such rela-
tions that we get small BDDs if all variables of one
relation are ordered before those of the other.

However in the asynchronous case where only one
component proceeds while the other (say the first) stays
in its state we have to check for ((r , r ') , (s, s ')) whether
r = s A (r ' , s ') e D , i.e. we have to check whether rl
= S t A r 2 = s 2 / k . . . A r ~ : s = s ~ : S . But with the variable or-
dering r l~ (r z ~, ... r e s - ~ S t ~ , . . . - ~ S e s for the bits of a re-
lation the BDD for this check explodes. Figure 5 gives
an example for # S = 3 . In general it has O(2 *s) nodes.
Therefore we choose a different ordering, namely

rl ~ ,s t <(r 2 -~S2 <(. . . -~r e s ~ S e s .

4 Encoding of transition systems as BDDs

In principle given a certain enumeration eo, et , e ls l - 1

of a finite set S the boolean encoding is obvious, one
needs ~S:=[log2lSI] boolean variables and lets
s t , . . . , S e s denote e~ where i is the number one gets when
interpreting st . . . S#s as a binary digit.

We will use this encoding for the state sets of
elementary 2 transition systems and for the set of actions.

2 We call a transition system elementary if it is not formed by
parallel composition, restriction, or relabelling but is given as a
list of transitions

With this improved ordering the BDD for the above
example is as given on the right of Fig. 5, i.e. it grows
only linearly.

We are now ready to present our encoding for a tran-
sition relation D~_S x A c t x S . We choose the variable
ordering

at -~a2 ~ , . . . ae A-~,rl ~ s 1 ~,r2"~s2 ~ , . . . ~ , r ,~s-~S~s

where a l . . . a ~ A encodes the action of the transition,
rl . . . r ~ s encodes the source state of the transition, and
st . . . S#s encodes the target state. Figure 6 gives an exam-

o ,

o

0 1

Fig. 5. BDD for (rl-~Sl)A(r2=s2)A(ra=s3) with poor
(left) and good (right) variable ordering

States Actions
0 ~ 000 r ~ 000

,x0 1 ~ 001 ao ~ 001
3 2 ~ 010 ~o ~ 101

" " ' ' 1 c'x~ .ol 3 F--+ 011 co ~ 010
c'l 1 Cl 4 ~-+ 100 ~o ~-+ 110

4 . x " 2 ci ~ 011
el ~- 111

Fig. 6. A transition system and the encoding of its states and actions

0 1

o 1 1

a3

' 1

0 r ~ l 1 0 0 1

" -)~ .-----~-- o3_ ~ - - ~ o

0

(s o~ all missing , g ~ [~dges

Fig. 7. BDD encoding of the transition relation of the system of
Fig. 6

ple transition system and Fig. 7 shows the representation
of its transition relation as a BDD.

The reason to put the bits for the actions above those
for the states is purely intuitive: actions naturally parti-
tion the transition relation. Also this way the proof given
in the appendix went through smoothly. However, we
did not try to carry out the proof with a different order-
ing.

We always understand that 00.. . 0 is the initial state.

5 Operators on B D D s

In this section we describe the operators of CCS parallel
composition, restriction, and relabelling on BDDs. Note
that this comprises the practically most important case
of a parallel composition of N processes

(n~ I P~ I... I PN)\A

where the restriction imposes the wanted synchroniza-
tion.

The operators on BDDs we present here are new.
However they are based on the well-known operators
on BDDs for disjunction (. v -), conjunction (. A "), ne-
gation (--7 .), and restriction of a boolean variable to
a certain value (. I l)" For an introduction of the latter
operators the reader is referred to Bryant's excellent
paper [1-].

We assume that the elementary processes (transition
systems) are given as BDDs. The BDD for an elementary

159

transition system may easily be formed from the list of
triples in the transition relation as follows. Each transi-
tion (r , a , s) which has encodings brl , b r , s ,
ba l , b a , a , and bs~, . . . , b s e s , is considered as one

bal ba2 baeA brl
BDD with only the path ai)a2 >... a#A) rl >Sl
bsl) br~s bs#s

�9 . . r e s ~S#s -~ 1 leading to 1. All other branches
directly lead to 0. The BDD for the transition relation
is calculated by performing the disjunction of all these
BDDs. In the worst case this yields a BDD with approxi-
mately 22"4~s+ #A nodes.

CCS parallel composition

Let B1 and Bz be two BDDs representing transition rela-
tions Da and D2 over the same set of actions but over
disjoint sets of states encoded as described in the pre-
vious section. The BDD BI]Ba representing the transi-
tion relation of the parallel composition is calculated
as follows.

Let a~, . . . ,aeA be the boolean variables for the ac-
tions in both, B t and B2. Let ri, si (ie{l, ..., ~S~}) and
r), s) (je{1 , # S a }) be the boolean variables for the
source and target states of D t and D2 respectively. Ac-
cording to the previous section we have the following
ordering dependencies

al ~, . . . ~(ae A ~ r l ~ s l ~, . . . ~ r es l~ ,S~s l

and

a l ~ . . . ~ a e A ~ , r ' l - < s ' t ~ --r ' - - ' �9 . . ~ # $ 2 ~ S # $ 2 .

We additionally impose that

S~s~ <r'l

this leaves the previous orderings and hence B1, Ba un-
changed.

Note that this choice of combined ordering ensures
that the BDD for B l l B 2 again fulfills our encoding con-
vention for transition systems, i.e. we use the first ~:A
variables for the actions and than alternatingly one bit
for the source and one for the target state of the transi-
tion.

We now may calculate B i l B 2 as

(BI A Stab2) v (B2 /~ StabO v C

where the missing components are explained below. The
A and v are operations on BDDs as described in [-1].
Stabl is the BDD for rl =Sx/x ... A r e S l = S , s , (cf. Fig. 5).
It corresponds to the condition that the first component
stays in its state (Stab2 is analogous).

Let E be the BDD calculated as

(B i la l=oAB2la l=OV(Bl la l= l A B2Ial=o)-

BI lal=o denotes the subgraph of B1 one gets when res-
tricting the variable a 1 to 0 (see [-1] for details) and again
A and v are operations on BDDs. The BDD E ex-

presses the condition that complementary actions match.
The last component C of the parallel compoSition above

160

is calculated as

(al = O) A. . . /x (aecA =0) A (3a2 3 a3... 3 a e A E).

Here 3 ai G for some BDD G is short for G I,, = o v G [.~ = 1,
i.e. it represents an existential quantification of the boo-
lean variable ai. The existential quantification of
a~ , aeA can be implemented directly as a BDD oper-
ator. Applied to E it yields a BDD without nodes la-
belled by variables aa , a ,A . The first part of C puts
this BDD below the encoding of ~.

|
level l i

F i g . 8 . L e v e l 1 o f a B D D

the n u m b e r of nodes
label led rt,1 is a t mos t
width(l)

the n u m b e r of nodes
label led st,#& is a t
mos t
width(I) �9 2 2"#&-I

Restriction

Given a BDD B representing the transition relation of
T and a BDD C for the set of actions A (it may be
generated straightforwardly from the list of actions in
A) the BDD for the transition relation of T~A is simply

BA- (Cl.,=o vCl.,=O

where A, v , - -1 , and I.,=b on BDDs are as described
in [1].

Relabelling

For B as above let the binary encoding of actions a
and b be bat , ba ,A and bbl , bbea respectively.
The BDD for the transition relation of T[b/a] is

(B/x --'q (a 2 --- b a 2 A . . . A a # A = b a , ~ A))

V

((a 2 = bb 2/x ... /x aee a = bb~_a)

where again A, V, ~ , and]~,=b on BDDs are as described
in [1].

6 Complexity of resulting BDDs

We have the following results on the size of the generated
BDDs.

Theorem 6.1. Let T i = (& , D i , zi) for i e{1 , . . . ,N} be
transition systems where the transition relation is repre-
sented as BDD Bi according to Sect. 4. The number of
nodes of the BDD B..=B, [B21 ... [BN is

O(21actl" i~=1 [Si[2)"

Proof We will use d, &, g~ as abbreviations such that
d= (a l , . . . , a4,A) is the variable vector encoding the ac-
tions of Act and such that r~=(ri ,1, . . . ,ri , e+&) and gi
=(sl , a &,es,) are the variable vectors encoding
source and target state of the transition relation D~. The
BDD B i ranges over the variables & ~, gi and the BDD
B over the variables & f l , ga, ..., fN, SN" The variable or-

dering is d-<fl , gl M.-. MrN, gN where the ordering within
fi, gi is as described in Sect. 4.

For the proof we have a layered view of B. Let us
say that all variables for states of transition system T~
belong to level I. See Fig. 8.

For instances b~a~lB ~A and ~ , b~si~lB ~s~ let al den-

ote the instantiation (b~a, ~ 1 , bSSl, ..., ~ _ 1 , ~ - 1) " Let
at(B) denote the BDD one gets by instantiating B to
al, i.e.

at(B),=B Id=~,rl =~1,< =~1 ~,-1 =~, ~.e,_l =~,-1.

This BDD az(B) denotes a boolean function of arity
N

2. #&.
i=l

To count the nodes of B on level I we determine the
number of different such functions one gets by varying
at over all instances. This number is called width(l). Since
BDDs are a normal form for boolean functions and they
are reduced (i.e. have no two isomorphic subgraphs) [lJ
this number immediately gives an upper bound for the
number of nodes in B which are labeled with variables
of level l. For j e { 1 , . . . , # S I } this bound is
width(l). 22"(j- 1)for the label r~,j and width(l).22(j-1)+ 1
for the label s~4. See Fig. 8. Note that we do not make
any assumptions about the part of B within level I hence
we have to allow the exponential growth in this part.

Knowing an upper bound W for max~ width(1) we get
an upper bound for IBI, the number of nodes in B.

N @S1
[BI<Z~A+ ~ ~ width(1). (22"(j-1)+22'(j-1)+1)

/ = l j = l

N

_<2ca+ ~ width(l)'22"~s'
l = 1

N

< 2 # ~ A + w " 2 22"~s'
/ = 1

N

< 2 . l A c t l + W . ~ 4.l&l a
/ = 1

=- c t l 2

The rest of the proof is given in the appendix. It calcu-
lates W to be 4-2 IA"I which in turn proves the stated
bound. []

For a fixed set of actions and n,=maxi[Si[this bound
is simply O(N.n z) which compares favourably to the
straightforward worst case bound O(nU+2.N 2) for the
number of transitions in Ta [... [TN.

Worst case bounds for the size of BDDs are rare
in literature, hence the above bound is very interesting.
However it has to be pointed out that it concerns only
the resulting BDD. Nothing is said about the intermedi-
ate BDDs which result from the basic operators
(A, V, -7, [. l) on BDDs which are used in Sect. 5 to
define the CCS parallel composition. In our practical
experiments the size of the intermediate BDDs never
exceeded the size of the resulting BDD.

If we know more about the structure of the transition
systems we are able to give the following tighter bound.
See the appendix for details.

Corollary 6.2. For Ti and B as above let c be the number
of sets of visible actions which occur in transitions between
any two states of any component, i.e.

c:=[{A ~_Act] 3je{1, ..., N}: qr, seS~:

A= {c~lc~ 4:z /x (r, ~, s)~Dj} }l.

I f no component contains a visible self-loop, i.e. if for
all j e{1 , . . . ,N} there exists no ssSj, e s A c t - { r } such
that (s, c~, s)eD~, then

]B[= O((c+]Act]). i~]Si]2)"

According to our experience with elementary transition
systems stemming from practical examples, there is sel-
domly more than one transition between any pair of
states. Therefore we expect c to be close to IActl in typical
cases.

Let us remark that the same bounds are true for any
relabelling of the B:s and for arbitrary restrictions (as
for example in ((B1]Bz)\At] (B3IB4)\A2)\A3). In partic-
ular this comprises the most important practical case
given at the beginning of the previous section.

7 Implementation

We have implemented the described generation of BDDs
for elementary transition systems and the operators of
CCS parallel composition, restriction, and relabelling.
Furthermore we implemented the symbolic model
checker of Burch et al. [2]. The implementations are
based on a Prolog system extended by unification in
finite algebras [81. It captures the powerful version of
the #-calculus as used in [2]. In particular the #-calculus
formulas for strong and weak bisimilarity can be
checked. The interface consists of two Prolog predicates,
mu_formula and mu_relation, where the former checks
#-calculus formulas, whereas the latter allows the com-
putation of relations from relational terms.

Controlling the ordering of variables

Special care is needed for the ordering of boolean vari-
ables encoding the variables in the #-calculus. For exam-

161

ple for computing the transitive closure of a relation
R by the term

T [2 x, y [R (x, y) v 3 z [r(x, z)/x T(z, y)]]]

we want to preserve the original variable ordering, i.e.
if the BDD representation of the relation R has the or-
dering Xl~ ,y l<xz<y2 . . . <x,-<y, we want to preserve
that order for all intermediate results of the evaluation
as well as for the representation of the transitive closure.
We achieve this by the ordering xl<zx~,yl-<xa-<z2
-Z, y2 ... ~x,-<z,~, y,.

Note that a satisfactory variable ordering for all inter-
mediate results cannot always be obtained. Assume for
example a binary boolean relation R where the first argu-
ment is ordered before the second. If one requests xMy
in)~x, y[R(x, y)AR(y, x)] this would leave R(x, y) un-
changed but would force a new ordering in R(y, x). Re-
questing y-<x leads to the dual problem.

In order to control the variable ordering we have
implemented an annotation mechanism of the form

E{A}
where E is a formula or a relational term according to
Fig. 2 and A is an annotation involving all bound indi-
vidual variables in E. In order to allow a unique reference
in A the individual variables have to be (re-)named such
that no two bound occurrences equal.

The syntax for the annotations is

A:=z[A;AIA, A , . . . , A

where z ranges over the individual variables. The annota-
tion y; z means that all boolean variables encoding y
are ordered before those encoding z, i.e. Vi, j: yi<(zj.
The annotation, Zx, z:, . . . ,z , means that the boolean
variables encoding the zi are interleaved, i.e. Vi, j, k, h
Z~j~(Zkz iff (j=IAi<k) v j<l . For example x , y , z with
encodings by boolean variables Xl, x2, x3 and y~ and
z~,z2 respectively enforces the ordering xl-<y~Mz~
MXz<Za~X3.

In the following we show with the example of chec-
king bisimilarity what can be expressed in the #-calculus
with our annotations.

Checking bisimilarity

For checking weak bisimilarity it is necessary to first
compute the z-closure (see e.g. [6]). Let A be the relation-
al variable which is interpreted by the BDD which has
been generated according to Sect. 4 and 5 for represent-
ing a transition relation. The z-closure of the relation
is computed by the following sequence of assignments
to fresh relational variables:

T .'=2x, y [A (x, z, y)] {x, y}

T' ,=)ox, y [x = y v T(x, y)] {x, y}
T* .'=#Z [2x, y [T'(x, y) v 3 z [Z(x, z)/x Z(z, y)]]] {x, z, y}

A t :=2x, a, y[a=z/x T*(x, y) v 3z I [T*(x, z,)
/x ~ z2' [A (zl, a, z2) a T* (z2, y)]]] {a; (x, zl, zz, y)}

162

The ordering annotat ion for T* has been discussed
above. All annotations are chosen to preserve our encod-
ing convention for transition relations in a way that as
few as possible reorderings appear.

Note that A t now stands for a BDD which represents
the z-closure of the transition relation. If A] and A~ are
such z-closures of two transition systems then the rela-
tion of weak bisimilarity is expressed by

B : = v R [2pt , p2[V 0-a, ql [A~I (/)1,0-1, ql)
~ 3 q z [A~(p2, 0-1, q2)/x R (q l , q2)]]

A V0-2, rz[A~2(p2, 0-2, r2)

~ 3 r l [A[(pl, 0-2, rl) ^R(r~, rz)3333
{0-~; ~ ; (m, ql, rl, p~, q~, r~)}

If the individual variables zl and z 2 denote the initial
states the #-calculus formula

B(zl, z2)

yields the answer to the question whether the two transi-
tion systems are weakly bisimilar. Of course strong
bisimilarity can be checked by using A~ instead of A~
in the definition of B.

8 Example

Milner's example of a simple distributed scheduler has
become a benchmark for process algebra tools [7, 10].

The scheduler consists of one starter process and N
processes which are scheduled. The communication is
organized in a ring. Expressed in CCS [11] the processes
are as follows.

Starter %f ~o . O

co %fco.ao.(Z.c~.Co+U~.~.Co)

C 1 d~e~-fcl.al.('C.c2.C 1 q-c~.'~.C1)

CN- 1 d e f - - - - = cN-1 .an- i .(~.co.CN-1 +Co.'c.CN-1)

Each cycler process C~ awaits the permit cl to start, per-
forms action ai, and passes the permit to the next cycler
either before or after some internal computation. The
transition system for Co is given in Fig. 6. The compound

process for N cyclers is

S C H E D n %f (Starter I Co I C1 l ... t CN- ~) \ {co , . . . , CN- 1 }.

The restriction enforces the synchronization of the cycler
processes Ci via the actions ci. SCHEDN is weakly bisimi-

lar to SPECN%fao . a I aN- 1. SPECN"

Table 1 shows the size of the BDD for SCHEDN and
the times needed to check the weak bisimilarity between
SCHEDN and SPECN compared to conventional tools.
The number of states and transitions for N > 12 as well
as the times for the conventional tools for N = 2 0 are
extrapolated estimates. Note that due to the fact that
the BDD for a transition relation in general represents
not just transitions reachable from the initial state the
number of transitions cannot be calculated from the
paths in the BDD leading to 1. The times for AUTO
and BB are taken from [10], those for Ald6baran from
[7]. Times for our system were obtained on a SUN 4/75
(Sparc2) workstation.

To be better comparable one would have to add the
times needed for computing the transition relation of
SCHEDN to the columns for AUTO, Ald6baran, and
BB. Additionally the time needed to compute the transit-
ive closure with respect to z-transitions has to be added
for A U TO and Ald6baran, it is not needed for branching
bisimulation. Only the column for this paper includes
all these times. On the other hand we used a hardware
which is approximately 2.5 times faster.

Applying Corollary 6.2 to S C H E D N yields
c= O(IAct]) and hence the size of the BDD representing

the transition system of S C H E D N is O [S~[z

= O (U2).

9 Conclusion

We have presented the missing link, namely the genera-
tion of transition relations as BDDs, for exploiting sym-
bolic model checking as a tool for process algebras. The
example shows that processes out of the reach of conven-
tional tools can be checked for bisimilarity this way.

We have shown that the BDD for N parallel transi-
tion systems grows only linearly in N. Such a worst case
bound for BDDs is rate in the literature. On the other

Table 1. Benchmarks for the scheduler

N States Transitions Nodes in BDD AUTO [4] Ald6baran [7] BB [10] BDD

6 577 2 0 1 7 4 2 7 3 .3 s 1 .9s 0 . 2 s 2 1 s
8 3 0 7 3 1 3 8 2 5 651 5 7 s 2 4 s 1 .2s 4 0 s

10 1 5 3 6 1 8 4 481 9 0 7 . - - 7 . 4 s 8 7 s
12 73 7 2 9 4 7 9 233 1 2 0 0 - - 53 s 145 s
14 3 0 0 0 0 0 2 0 0 0 0 0 0 1 5 2 8 - - 233 s
16 1 2 0 0 0 0 0 8 0 0 0 0 0 0 1 8 9 7 - - 348 s
18 4 8 0 0 0 0 0 32 0 0 0 0 0 0 2 2 9 7 - - 569 s
2 0 1 8 0 0 0 0 0 0 1 2 8 0 0 0 0 0 0 2 7 3 4 (109 s) (7 . 1 0 7 s) (5 0 0 0 0 s) 8 5 0 s

hand it is not clear how the BDDs grow during the
symbolic model checking.

Another open problem is the question whether other
process algebra operators, in particular recursion can
be performed on BDDs similarly efficiently.

Acknowledgement. We thank Peter Warkentin, his fast implementa-
tion of operations on BDDs is used for the larger experiments
reported in Table 1. Four anonymous referees have supplied helpful
comments.

Appendix

This appendix shows how to calculate the bound W needed for
the proof of Theorem 6.1. For the BDD B recall that at(B)
=Bl~-~.r~=~r,,~_~,,...,~,_,=~r,_,,~, ~=~_,. For arbitrary l we want
W to be an upper bound for the number of different relations
(i.e. characteristic functions) fit(B) for any instantiation fi~

.

In the following the relations at(B) will be stated in terms of
the relations stabt, movet(A) and SyncAsynct. The relation stabt
expresses that all components T~ on level l or lower are stable,
i.e. perform no change of state.

stabt ~f { (~-rr t , ~ bTr~, b~-s~)I Vi, l <<_ i <__ N : -b~r ~ = ~si }

For a set A of actions movet(A) expresses that one component
Tj on level t or lower performs a transition with an action of A
while all other processes are stable.

movet(A)%f { (bTr~, bTs~ bTr~, bTn) l ~a~A, j, l <_j < N:

(bTrj, ~, bTsj>~D3/x gi, iq=j, l<_i<_N: bTri=bTsi}

The relation SyncAsynct states that some process Tj on level I or
lower performs an asynchronous z-transition or that two processes
T~, Tk on level I or lower perform synchronizing transitions. In
both cases all other processes on level I or lower are stable.

SyncAsync z d~_e mover ({z})

w { (~rrl, ~sl bru, bSN) I3 eeAct, j, k,j # k,
l <j, k <_N: (br~, cq b~sj>~Dj/x (~rk, ~,,~sk>~Dk
/X Vi, k#i=l=j, l<_i<N: bri=bst}

Instantiations at can be divided into non-z- and z-transitions
(cases a and b below). The former are always asynchronous. For
the following by "the components of fit" we mean the components

T1 Tl_ 1- Let us say that a component Tk is unstable if ~-r k # b7 k.
Depending on the number of unstable components of fit we distin-
guish the cases a0 (no unstable component), al (one unstable com-
ponent), and a2 (two or more unstable components). Let

.

Case a b a # z

Case a0 V i~L: bri=bsi
(movet({b~a}) <) stab~ if ~jeL: @rj, ba, brj)eDj

fit(B) =~move,({~a}) otherwise

Case a l ~jeL: brj:t:bsj and VieL, i~j: ~iri=b~si
,~, (stab, if (~rrj, b~a,~ssj)eD~

a,t~) = ~.0 otherwise

Case a2 ~j, k~ L, j * k: ~rr ~=t= b-sj /x b'~ * ~ss k
a~(B) = 0

The z-transitions arc more complicated because we have to
consider transitions resulting from two synchronizing processes as
well as asynchronous z-transitions of a single process. Depending
on the number of unstable components of a, we distinguish cases

163

b0, bl, b2 and b3. The case b3 covers those at which contain three
or more unstable components.

The cases b0, bl and b2 have to check whether for at a process
can proceed asynchronously and whether two processes can syn-
chronize. For this purpose we define the predicates Async-z and
Sync-z.

�9 d e (~ Async-z(j)~(br j , z, bsj)~Dj

Sync-z(j, k) ~ 3 a~Act: (~rj, c~, ~jsj) ~Dj/x (~-rk, ~,, b~k) ~D k

Case b b a = z

Case b3 3M_cL, IM[>2: Vi~M: ~iri=l=~si
This means that three or more processes perform a transi-
tion in B, which is impossible from the definition of the
parallel composition operator.
o,(B)=O

Case b2 3j, k~L, j ~:k: b'rrj*b'ssj, ~rk:~b~Sk, Vi~L, k W-i#j:

If two processes are making a transition they are synchroniz-
ing, i.e. the remaining components Tj, ..., TN must be stable.

adB)={~tabz if otherwise Sync-z(j, k)

Case bl 3jeL: b~r j+-b~sj VicE, i . j : ~=b~s~
If process Tj can perform an asynchronous z-transition or
synchronize with a process T~, i~L the relation stab t is con-
tained in fit(B). The other part of fit(B) stems from synehron-
isations of Tj with a process T~, i>_l. For the latter case

we define the set h I :={~] (b~rj, o~, bsj)GDj A ~ ~ z}.

(movet(AOwstabz if Async-z(j) or
at(B)= ~ 3 keL, j=t=k: Sync-z(j, k)

[move,(A i) otherwise

Case b0 VieL: ~ri=b~s i
Again we have the same possibilities as in case b 1, but the
value of j is not fixed, it may be in the range of 1 to I - 1 .
As components 1 to l - 1 are stable we also have the possibil-
ity that processes Tz , T N perform an asynchronous transi-
tion or a pair of synchronizing transitions�9

Let A o ,={~3jEL: (~rrj, cq ~rj)ED~/x a . z } .

r morel (Ao) u SyncAsync t w stabz
fi,(B)= / if BilL: Async-z(j) or 3j, kEL, j~=k: Sync-z(j,k)

(movel(Ao) w SyncAsynct otherwise

To get an upper bound for W we count the possible number
of relations for each case allowing any subset of Act for Ao and
A~. Cases b0 and bl each may contribute 2.2 IAal different relations.
Case b2 may contribute two relations but these are already counted
for case hl if A 1 =0. Cases b3, a2, a l are similar. Case a0 contrib-
utes 2.lAct] different relations but these are already counted for

case b2 if A I = { ~ . Summing this up yields 4.2 IAal as an upper
bound for IV.

Critical cases for a better approximation are h0 and bl from
which we can get a smaller upper bound W. If no process contains
a visible self-loop the set A0 in case b0 is empty. Under this condi-
tion case bl may contribute 2. c different relations where c is the
number of sets of visible actions which occur in transitions between
any two states of any component, see Corollary 6.2. Case b0
contributes two relations. The other cases are as above however
they are not always counted in case bl. In conclusion we get
2.1Actl+4+2.c as an upper bound for W under the condition
of Corollary 6.2.

R e f e r e n c e s

1. Bryant RE: Graph-based algorithms for boolean function ma-
nipulation. IEEE Trans Comput C-35 8:677 691 (1986)

164

2. Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ:
Symbolic model checking: 102o states and beyond. In: Proceed-
ings of the 5th IEEE Syrup. on Logic in Computer Science,
Philadelphia 1990. Computer Society Press, 1990, pp 428-439

3. Cleaveland R, Parrow J, Steffen B: The concurrency workbench.
In: Sifakis J (ed) Automatic verification methods for finite state
systems. Proceedings, Grenoble 1989. Lect Notes Comput Sci,
vol 407. Springer, Berlin Heidelberg New York 1990, pp 24-37

4. de Simone R, Vergamini D: Abord auto. Rapports Techniques
111, INRIA, Sophia Antipolis 1989

5. Emerson EA, Lei C-L: Efficient model checking in fragments
of the propositional mu-calculus. In: Proc. of the First Annual
Symp. on Logic in Computer Science. Computer Society Press,
1986, pp 262278

6. Estenfeld K, Schneider H-A, Taubner D, Tid~n E: Computer
aided verification of parallel processes. In: Pfitzmann A, Rau-
bold E (eds) VIS '91 Verl~iBliche Informationssysteme. Proceed-
ings, Darmstadt 1991. Informatik Fachberichte, vol 27l. Sprin-
ger, Berlin Heidelberg New York 1991, pp 208 226

7. Fernandez J-C: An implementation of an efficient algorithm
for bisimulation equivalence. Sci of Comput Program 13:219
236 (1989/90)

8. Filkorn T: Unifikation in endlichen Algebren und ihre Integra-
tion in Prolog. Master's Thesis, Techn. Universit~it Miinchen
1988

9. Fischer S, Scholz A, Taubner D: Verification in process algebra
of the distributed control of track vehicles - A case study. In:
Proceedings of CAV'92, Workshop on Computer-Aided Verifi-
cation, Montreal 1992

10. Groote JF, Vaandrager F : An efficient algorithm for branching
bisimulation and stuttering equivalence. In: Automata, lan-
guages and programming, ICALP '90. Lect Notes Comput Sci,
vol 443. Springer, Berlin Heidelberg New York 1990

11. Milner R: Communication and concurrency. Prentice Hall,
New York 1989

12. Stirling C, Walker D: Local model checking in the modal mu-
calculus. In: Diaz J, Orejas F (eds) TAPSOFT '89. vol 1. Pro-
ceedings, Barcelona 1989. Lect Notes Comput Sci, vol 351.
Springer, Berlin Heidelberg New York 1989, pp 369-383

13. Taubner D: Finite representations of CCS and TCSP programs
by automata and petri nets. Lect Notes Comput Sci 369:6144
(1989)

