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Summary. Finite transition systems can easily be repre- 
sented by binary decision diagrams (BDDs) through the 
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et al. have shown how model checking of a powerful 
version of the /z-calculus can be performed on such 
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cesses out of the reach of conventional process algebra 
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1 Introduction 

A binary decision diagram as described by Bryant [1] 
is a normal form representation of boolean functions 
f :  113" ~ ~3, where ~3 = {0, 1}. It is often much smaller than 
other normal form representations. Moreover boolean 
operations can be applied efficiently. 

Transition systems have states and transitions leading 
from one state via some action to another state. They 
underly many semantics for concurrent systems, e.g. 
bisimulation equivalence for CCS 1-11]. They also under- 
ly semantics of modal logics, which allow to reason 
about concurrent systems. 

Burch et al. [-2] have shown how model checking of 
a powerful version of the/z-calculus including existential 
quantification and 2-abstraction can be performed for 
a boolean domain using BDDs for internal representa- 
tion. They call the approach symbolic model checking. 
They also indicate how other finite domains can be treat- 
ed through Nnary encoding. 
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In particular for a finite transition system the set of 
states S and the set Act  of actions can be encoded as 
subsets of ]]3 rj~ Islq and ]13 c1~ IActl7 respectively. The tran- 
sition relation D _~ S x Ac t  x S can be encoded as a func- 
tion X: ~32"Fl~176 which in turn can be 
represented as a BDD. Burch et al. show how weak and 
strong bisimilarity can be expressed as formulas in their 
/z-calculus and hence can be checked for transition sys- 
tems given as BDDs. 

However they do not indicate how the BDDs are 
generated. If they were generated from the list of state- 
action-state triples of the transition relation (which is 
straightforward) the approach would immediately suffer 
the well-known explosion problem, namely that a system 
of N parallel components, with n states each, may have 
n s transitions. 

The question arises whether the BDD which repre- 
sents the transition system of the compound system 
could be generated more efficiently directly from the N 
components given as BDDs without enumerating all re- 
sulting transitions. This question is the topic of this 
paper. It is answered in the following way: We give a 
certain encoding of transition systems as BDDs. We 
show how the CCS [11] operators of parallel composi- 
tion, restriction, and relabelling can be applied to BDDs. 
We prove that for a fixed set of actions the BDD for 
representing N parallel communicating processes grows 
only linearly in N. Worst case boundaries for the size 
of BDDs are rare in literature, hence this bound is inter- 
esting. However it has to be pointed out that it concerns 
only the resulting BDD which represents the system of 
N parallel component  processes. It does not concern in- 
termediate BDDs which are used during the generation 
or during the model checking. Nevertheless a benchmark 
example shows that bisimilarity checking can be per- 
formed for systems out of the reach of conventional tools 
such as [-3, 4, 7, 10, 6]. 

Note  that the/z-calculus of [-2] is more powerful than 
that of e.g. [-5, 12]. Hence all formulas checked with the 
latter approaches can be checked in the framework of 
this paper. We expect to be able to handle larger transi- 
tion systems. 

On the other hand it should be noted that BDDs 
are efficient only in a heuristic sense, the worst case may 
still be catastrophic. For  circuit verification experience 
has shown that indeed BDDs can serve as an efficient 
representation in many practical cases. This paper gives 
evidence that this is also the case for verification of paral- 
lel processes. Possible applications are communication 
protocols, operating system tasks, and distributed con- 
trol systems, see e.g. [9]. 

Before we start with the technical part  of this paper 
let us explain with an example the basic idea, i.e. how 
to represent relations by BDDs and why this is promis- 
ing for the parallel composition of transition systems. 
Consider the relation D of Fig. 1 where D__ S x S for 
S =  {0, 1, 2, 3}. We omit the actions for the moment.  An 
obvious boolean encoding of S is 0F-+00, 1 ~--~01, 2~-+ 10, 
3F--~ 11. The relation D may then be represented by a 
function: Z: IB4~IB, such that Z ( r l , r z , s l , s 2 )  = 1 if and 
only if the state encoded by r l r2  has an edge to the 

D 

Fig. 1. A relation (left) and its BDD representation (right) 

state encoded by sa s2. This boolean function Z can in 
turn be represented as a BDD. 

For  a given set of boolean variables which are totally 
ordered by -< a BDD is a rooted directed acyclic graph, 
each node is either terminal, then it is labelled by a truth- 
value and has no successor, or it is nonterminal, then 
it is labelled by some variable and has two successors 
which are terminal or labelled by a larger (-<) boolean 
variable. One successor corresponds to 0, the other to 
1. 

Taking the ordering r l~r2"<sa  ~s2  the function Z is 
represented by the BDD B given in Fig. 1. 

Now assume we want to represent the relation 1 

{ ( ( r , r ' ) , ( s , s ' ) ) e S x S [ ( r , s ) e D A ( r ' , s ' ) e D }  (*) 

as a BDD C. We can take a copy B' of B with fresh 
t ! ! t variables r l ,  r2, Sl, s2 and calculate C as B A B' where 

the conjunction of BDDs is as described in [1]. 
However the size of C depends on the chosen variable 

ordering. If rl -<r 2-<sl <s2 ~,r'l <r'2-<S'l Ms'2 is chosen it 
has 20 nodes, approximately 2.1BI, where IBI denotes 
the number of nodes in B. It is formed simply by attach- 
ing B' to the 1-exit of B. If, on the other hand, 
ra < re < r'~ -< r~ ~ sl "< s2 < s'l < s~ is chosen it has 47 nodes 
(approximately IB[Z/2). 

It is not hard to see that for an arbitrary binary rela- 
tion D which is encoded in the style of Fig. 1 the number 
of nodes of the BDD representing the relation (.) is 
bounded by O(IB]) and O([B[ 2) respectively depending 
on the choosen ordering. 

This ends our introductory example. We wanted to 
indicate that if the ordering of variables is chosen careful- 
ly the BDD only grows additively while the number of 
elements in the represented relation grows multiplicati- 
vely. However be aware that the encoding as presented 
in Sect. 4 uses a different ordering in order to also serve 
the asynchronous case well. 

2 Operators on transition systems 

Our language for composing parallel processes is taken 
from the process algebra CCS [11]. Let Ac t  be the finite 
set of actions which contains the invisible action z and 

This relation resembles the synchronization part of parallel com- 
position, cf. the next section. In general, of course, one wants to 
combine two relations and not twice the same 



all o ther  act ions in two copies, a and ~, which are com-  
plementary,  i.e. fi = a. 

A transi t ion system T =  (S, D, z )  has states S, initial 
state zeS ,  and transit ions D _ S  x A c t  x S leading f rom 
one state with some act ion to another  state. T h r o u g h o u t  
we assume S to be finite. 

Next  we give opera tors  on transit ion systems which 
cor respond to CCS parallel composi t ion,  restriction, and 
relabelling. In [-13] it is shown that  they are correct  (con- 
sistent) in the following sense. Given two closed CCS 
terms P1 and P2 and  let 7"1, T z be their respective transi- 
t ion systems according  to the transi t ional  semantics 
[11],  then T~tT  2 as defined below is s t rongly bisimilar 
to the transi t ion system of PI[P2 according to the transi- 
t ional semantics. Similar results hold for restriction and 
relabelling. 

The CCS parallel composition for given T~ 
=(S1,  D 1, Zl) and T 2 = ( S z ,  02, Z2) is defined as 
T1 ] T: = ($1 x $2, D, ( z t ,  z 2 ) )  where 

D =  { ( ( r l ,  r2), ~, ( s t ,  s 2 ) )  [ ( r l ,  ~, s l ) ~ D l  A r z - - s  2 

v ( r 2 ,  ~, S 2 ) e D 2 A r l = S t  

v c~=z/~ 3a4=z: (r  1, a, s l )~D~  A (r2, gt, s2)~D2}.  

The condi t ion  (r~, a, s~)eD~ ~ r 2 = s 2  and  its sym- 
metric version represent an asynchronous move  in which 
only one c o m p o n e n t  proceeds. On  the other  hand  the 
condi t ion  (r~, a, s ~ ) e D t  ~ (r2,  ~i, s2)~D2 represents a 
synchronous move. The latter in a simplified version has 
already been discussed in the introduct ion.  

Let  T =  (S, D, z )  be given. Restriction of a subset A _ 
A c t - { ~ }  is defined as 

T \ A =  ( S, { (r, ~, s ) ~ D  l c~(~A /x ~(~A}, z ) .  

Relabelling of a visible act ion a (a 4= z) into the act ion 
b is defined as r [b /a]  = (S,  D', z )  where 

D ' =  {(r, t ,  s)  l ~ :  (r, c~, s ) e D  A (fi=c@{a, d} dg v 

(fl = b ~ ~ = a )  v ( f l  = ~ ~ = a ) ) } .  

3 Symbolic model checking using BDDs 

Burch, Clarke, McMillan,  Dill, and H w a n g  [2] show 
how model  checking can be performed using BDDs.  
They call their approach  ' symbo l i c '  as it uses B D D s  
to represent relations internally with the intention that  
this is more  efficient than  the cor responding  lists of  tu- 
ples. 

The version of  the /~-calculus used in [2] includes 
individual variables, n-ary relational variables (n > 0), ex- 
istential quantification, abst ract ion (2-binding) of indi- 
vidual variables, and fixpoint binding of relational vari- 
ables. Syntax and semantics are summarized in Figs. 2 
and 3. The proposi t ional/~-calculus as used e.g. in [5, 12] 
can easily be embedded  by defining a suitable relational 
term for the moda l  opera tor  ( a ) .  I t  is based on relational 
variables representing the transi t ion relation of  the struc- 
ture which underlies the interpretat ion of the proposi t -  
ional #-calculus, see Fig. 4. 
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Assume a finite set of individual variables (denoted z, z 1 .... in 
the following syntactic clauses) and a set of n-ary relational vari- 
ables for n>0  (denoted Z", Z'I,...). The syntax has syntactic cate- 
gories F for formulas and P" or n-ary relational terms. 

F :: = True ] zl = z2 ] -7 F I F v F [ 3 z [F] [ P" (zl ..... z~) 

where in the last clause all individual variables z~ ..... z, are not 
free in W. 

P":: =Z" ] #Z"[P"] ] 2zl ..... z,[F] 

where in the second clause P" is syntactically monotone in Z" and 
where in the last clause the individual variables are distinct. 
Abbreviations are as usual, i.e. False ~ ~ True, FI~F2=-~F1 v F2, 
F1AF2=-~(~F1 v~Fz), V z [ F ] = ~ 3 z [ ~ F ] ,  and vZ"[W] 
- ~ # Z " [ - n  P" (Z" ~ ~ Z " )  ]. 

Fig. 2. Syntax of #-calculus used in [2] 

Assume a domain liD, a relational variable interpretation Ie which 
maps every n-ary relational variable to a subset of D", and an 
individual variable interpretation I n which maps every individual 
variable to an element of D. 
The semantics maps a formula F to a truthvalue, i.e. 

and it maps an n-ary relational term W to a subset of E)", i.e. 

~P"~(Ip)(ID)~--K)" 

Semantics of formulas 

~True~ (Ip)(Io) ,-1 
~zl =zz~(Ip)(Io) '=ID(zl)=ID(z2) 
~ F~ (Ie)(ID) ,=7 ~F~ (I,)(ID) 
~Fx v F2~ (Ip)(ID) ,=~F~ (Ip)(ID) v [F2~ (Ip)(ID) 
~3z[F]~(Ip)(ID) :=3d6D: ~F~(Ie)(ID(z~d)) 
~P" (z~ ..... z.)~ (Ie) (I9),= ( I D (z 1 ), .... I D (z.)) ~ ~P"~ (Ie)(ID) 

Semantics of n-ary relational terms 

[Z"~ (I,)(ID) .'=I r (Z") 
(2z~ ..... z, [V]~ (I,)(ID),={(d a ..... d,)l 

~F~ (Ip)(I D . (z 1 *- d 1 ..... z, ~- d . ) ) }  

~#Z" [P"]~ (Ie)(ID) :=lfp ()~Q ~_ D". [n"~ (Ie (Z  ~ ~- Q))(I9) ) 

where I (Var~ Value) is the same function as I except that Var 
is mapped to Value, and where lfp denotes the least fixpoint in 
ID" with respect to set inclusion. 

Fig. 3. Semantics of #-calculus used in [2] 

In  general, given a structure of a domain  and interpre- 
tat ions Ie  and ID of  relational and individual variables, 
model  checking performs the task of  checking, whether  
a formula  F is true in this structure (i.e. [F~(Ie)(ID)= 1), 
in other  words, whether  the structure is a model  for 
F. However  the interpretat ion of  the relational variables 
has to be supplied before the symbolic  model  checker 
can start. It has to be supplied as one B D D  for each 
free relational variable. 

In  part icular  for model  checking CCS-terms 
[2, Sect. 8] the t ransi t ion relations of  the transi t ion sys- 
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The propositional #-calculus with syntax 

G::=True[ -aG[GvGI(c~)GIZ[#Z .G 

(where ~ A c t  and Z ranges over propositional variables) is inter- 
preted relative to a transition system with states S, transitions D, 
and a valuation V of the propositional variables, see e.g. [12] for 
details. 
It can be embedded into the first order #-calculus of [2] using 
the following syntactic transformation ̂ .. This transformation di- 
rectly reflects the definition of the semantics of the propositional 
#-calculus. 

True .-=2z [True] 

G :=,tz= (d(z))] 

G 1 v Gz:=2z[Gx(z) v Gz(z)l 

(c~)G ,=,~z[3z2 [Z~(z, z2) ^ d(z~)]] 
2 ,=Z ~ 

#Z.G ,=#Z x[~] 

The relational variables (Z~) are used to represent for each action 
the corresponding portion of the transition relation (other embed- 
dings are conceivable, cf. Sect. 7). If one chooses K)=S and Iv 
such that Ip(Z ~) = V(Z) for all propositional variables the following 
holds for each propositional #-calculus formula G. 

[G~v = ~(~ (1,)(ID) 

Fig. 4. Embedding the propositional #-calculus into the first order 
#-calculus of [2] 

terns to be checked have to be supplied by the relational- 
variable interpretation, i.e. as BDDs. Burch et al. leave 
open where the BDDs for the transition relations come 
from. The following two sections propose an approach 
for generating these BDDs. 

For  the latter we additionally assume that A c t  is enu- 
merated z, a, b . . . .  ,4, b, ..., i.e. that z is encoded as all 
zeros and any visible action a as 0x2 ... X,~A and its com- 
plement ~ as ly2 "-Y*A such that for all ie{2 . . . . .  #A} 
we have x i = y i .  Here ~ A ' . = [ l o g 2 [ A c t [ ] .  

In order to work with BDDs one has to fix a global 
ordering on the boolean variables used to encode the 
information. This ordering has great influence on the 
size of the BDDs. If nothing is known about the structure 
of a relation to be represented as a BDD not much can 
be done. However in our case we can use knowledge 
about  the transition relation and in particular about  the 
operations performed on them, most importantly the 
parallel compostion. 

For  explanation let us consider a binary relation D __c 
S x S as in the introduction. If we need # S bits to encode 
S we need 2. # S  bits to encode D, say r t ,  . . . ,  r~s  to 
encode the first element of a pair in D and st  . . . .  , S~s 

for the second. 
In the introduction we demonstrated for the synchro- 

nization case of parallel composition of two such rela- 
tions that we get small BDDs if all variables of one 
relation are ordered before those of the other. 

However in the asynchronous case where only one 
component  proceeds while the other (say the first) stays 
in its state we have to check for ( ( r ,  r ') ,  (s, s ' ) )  whether 
r = s A ( r ' , s ' ) e D ,  i.e. we have to check whether rl 
= S  t A r 2 = s  2 / k  . . .  A r ~ : s = s ~ :  S .  But with the variable or- 
dering r l~ ( r z  ~, ... r e s - ~ S t ~ , . . . - ~ S e s  for the bits of a re- 
lation the BDD for this check explodes. Figure 5 gives 
an example for # S = 3 .  In general it has O(2 *s) nodes. 
Therefore we choose a different ordering, namely 

rl ~ ,s  t <(r 2 -~S2 <( . . . -~r  e s ~ S e s .  

4 Encoding of transition systems as BDDs 

In principle given a certain enumeration eo, et . . . .  , e ls l -  1 

of a finite set S the boolean encoding is obvious, one 
needs ~S:=[ log2lSI ]  boolean variables and lets 
s t ,  . . . ,  S e s  denote e~ where i is the number one gets when 
interpreting st  . . .  S#s  as a binary digit. 

We will use this encoding for the state sets of 
elementary 2 transition systems and for the set of actions. 

2 We call a transition system elementary if it is not formed by 
parallel composition, restriction, or relabelling but is given as a 
list of transitions 

With this improved ordering the BDD for the above 
example is as given on the right of Fig. 5, i.e. it grows 
only linearly. 

We are now ready to present our encoding for a tran- 
sition relation D~_S  x A c t x S .  We choose the variable 
ordering 

at -~a2 ~ , . . .  ae A-~,rl ~ s 1  ~,r2"~s2 ~ , . . .  ~ , r  ,~s-~S~s 

where a l . . . a ~ A  encodes the action of the transition, 
rl . . .  r ~ s  encodes the source state of the transition, and 
st  . . .  S#s encodes the target state. Figure 6 gives an exam- 

o , 

o 

0 1 

Fig. 5. BDD for (rl-~Sl)A(r2=s2)A(ra=s3) with poor 
(left) and good (right) variable ordering 



States Actions 
0 ~ 000  r ~ 000  

,x0 1 ~ 001 ao ~ 001 
3 2 ~ 010 ~o ~ 101 

" " ' ' 1 c'x~ .ol 3 F--+ 011 co ~ 010 
c'l 1 Cl 4 ~-+ 100 ~o ~-+ 110 

4 .  x " 2  ci ~ 011 
el ~-  111 

Fig. 6. A transition system and the encoding of its states and actions 

0 1 

o 1 1 

a3 

' 1 

0 r ~ l  1 0 0 1 

" - )~  .-----~-- o3_ ~ - - ~ o  

0 

(s o~ all missing , g ~  [~dges 

Fig. 7. BDD encoding of the transition relation of the system of 
Fig. 6 

ple transition system and Fig. 7 shows the representation 
of its transition relation as a BDD. 

The reason to put the bits for the actions above those 
for the states is purely intuitive: actions naturally parti- 
tion the transition relation. Also this way the proof given 
in the appendix went through smoothly. However, we 
did not try to carry out the proof with a different order- 
ing. 

We always understand that 00.. .  0 is the initial state. 

5 Operators on B D D s  

In this section we describe the operators of CCS parallel 
composition, restriction, and relabelling on BDDs. Note 
that this comprises the practically most important  case 
of a parallel composition of N processes 

(n~ I P~ I... I PN)\A 

where the restriction imposes the wanted synchroniza- 
tion. 

The operators on BDDs we present here are new. 
However they are based on the well-known operators 
on BDDs for disjunction (. v -), conjunction (. A "), ne- 
gation (--7 .), and restriction of a boolean variable to 
a certain value (. I . . . . . .  l)" For  an introduction of the latter 
operators the reader is referred to Bryant's excellent 
paper [1-]. 

We assume that the elementary processes (transition 
systems) are given as BDDs. The BDD for an elementary 
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transition system may easily be formed from the list of 
triples in the transition relation as follows. Each transi- 
tion ( r , a , s )  which has encodings brl  . . . .  , b r , s ,  
ba l  . . . .  , b a , a ,  and bs~, . . . ,  b s e s ,  is considered as one 

bal ba2 baeA brl 
BDD with only the path ai )a2 >... a#A ) rl >Sl 
bsl) br~s bs#s 

�9 . . r e s  ~S#s -~ 1 leading to 1. All other branches 
directly lead to 0. The BDD for the transition relation 
is calculated by performing the disjunction of all these 
BDDs. In the worst case this yields a BDD with approxi- 
mately 22"4~s+ #A nodes. 

CCS parallel composition 

Let B1 and Bz be two BDDs representing transition rela- 
tions Da and D2 over the same set of actions but over 
disjoint sets of states encoded as described in the pre- 
vious section. The BDD BI ]Ba representing the transi- 
tion relation of the parallel composition is calculated 
as follows. 

Let a~, . . . ,aeA be the boolean variables for the ac- 
tions in both, B t and B2. Let ri, si (ie{l,  ..., ~S~}) and 
r), s) (je{1 . . . .  , # S a } )  be the boolean variables for the 
source and target states of D t and D2 respectively. Ac- 
cording to the previous section we have the following 
ordering dependencies 

al ~, . . .  ~(ae  A ~ r l  ~ s l  ~, . . .  ~ r  es l~ ,S~s l  

and 

a l ~ . . . ~ a e A ~ , r ' l - < s ' t ~  --r '  - -  ' �9 . . ~  # $ 2 ~ S # $ 2 .  

We additionally impose that 

S~s~ <r'l  

this leaves the previous orderings and hence B1, Ba un- 
changed. 

Note that this choice of combined ordering ensures 
that the BDD for B l l B  2 again fulfills our encoding con- 
vention for transition systems, i.e. we use the first ~:A 
variables for the actions and than alternatingly one bit 
for the source and one for the target state of the transi- 
tion. 

We now may calculate B i l B  2 as 

(BI A Stab2) v (B2 /~ StabO v C 

where the missing components are explained below. The 
A and v are operations on BDDs as described in [-1]. 
Stabl is the BDD for rl =Sx/x ... A r e S l = S , s  , (cf. Fig. 5). 
It corresponds to the condition that the first component 
stays in its state (Stab2 is analogous). 

Let E be the BDD calculated as 

(B i la l=oAB2la l=OV(Bl la l= l  A B2Ial=o)- 

BI lal=o denotes the subgraph of B1 one gets when res- 
tricting the variable a 1 to 0 (see [-1] for details) and again 
A and v are operations on BDDs. The BDD E ex- 

presses the condition that complementary actions match. 
The last component  C of the parallel compoSition above 
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is calculated as 

(al = O) A. . . /x  (aecA =0) A (3a2 3 a3... 3 a e A  E). 

Here 3 ai G for some BDD G is short for G I,, = o v G [.~ = 1, 
i.e. it represents an existential quantification of the boo- 
lean variable ai. The existential quantification of 
a~ . . . .  , aeA can be implemented directly as a BDD oper- 
ator. Applied to E it yields a BDD without nodes la- 
belled by variables aa . . . .  , a ,A .  The first part of C puts 
this BDD below the encoding of ~. 

| 
level l i 

F i g .  8 .  L e v e l  1 o f  a B D D  

the  n u m b e r  of nodes  
label led rt,1 is a t  mos t  
width(l) 

the  n u m b e r  of nodes  
label led st,#& is a t  
mos t  
width(I) �9 2 2"#&-I 

Restriction 

Given a BDD B representing the transition relation of 
T and a BDD C for the set of actions A (it may be 
generated straightforwardly from the list of actions in 
A) the BDD for the transition relation of T~A is simply 

BA- (Cl.,=o vCl.,=O 

where A, v , - -1 ,  and I.,=b on BDDs are as described 
in [1]. 

Relabelling 

For  B as above let the binary encoding of actions a 
and b be bat . . . .  , ba ,A  and bbl . . . .  , bbea  respectively. 
The BDD for the transition relation of T[b/a] is 

(B/x --'q ( a  2 --- b a  2 A . . .  A a #  A = b a , ~  A))  

V 

((a 2 = bb 2/x ... /x aee a = bb~_a) 

where again A, V, ~ ,  and ]~,=b on BDDs are as described 
in [1]. 

6 Complexity of resulting BDDs 

We have the following results on the size of the generated 
BDDs. 

Theorem 6.1. Let T i = ( & , D i ,  zi) for i e{1 , . . . ,N}  be 
transition systems where the transition relation is repre- 
sented as BDD Bi according to Sect. 4. The number of  
nodes of the BDD B..=B, [B21 ... [ BN is 

O( 21actl" i~=1 [Si[2)" 

Proof We will use d, &, g~ as abbreviations such that 
d= ( a l , . . . ,  a4,A) is the variable vector encoding the ac- 
tions of Act and such that r~=(ri ,1, . . . ,ri ,  e+&) and gi 
=(sl ,  a . . . . .  &,es,) are the variable vectors encoding 
source and target state of the transition relation D~. The 
BDD B i ranges over the variables & ~, gi and the BDD 
B over the variables & f l ,  ga, ..., fN, SN" The variable or- 

dering is d-<fl ,  gl M.-. MrN, gN where the ordering within 
fi, gi is as described in Sect. 4. 

For  the proof we have a layered view of B. Let us 
say that all variables for states of transition system T~ 
belong to level I. See Fig. 8. 

For  instances b~a~lB ~A and ~ ,  b~si~lB ~s~ let al den- 

ote the instantiation (b~a, ~ 1 ,  bSSl, ..., ~ _ 1 ,  ~ - 1  ) "  Let 
at(B) denote the BDD one gets by instantiating B to 
al, i.e. 

at(B),=B Id=~,rl =~1,< =~1 ..... ~,-1 =~, ~.e,_l =~,-1. 

This BDD az(B) denotes a boolean function of arity 
N 

2. #&.  
i=l  

To count the nodes of B on level I we determine the 
number of different such functions one gets by varying 
at over all instances. This number is called width(l). Since 
BDDs are a normal form for boolean functions and they 
are reduced (i.e. have no two isomorphic subgraphs) [ lJ  
this number immediately gives an upper bound for the 
number of nodes in B which are labeled with variables 
of level l. For  j e { 1 , . . . , # S I }  this bound is 
width(l). 22"(j- 1)for the label r~,j and width(l).22(j-1)+ 1 
for the label s~4. See Fig. 8. Note that we do not make 
any assumptions about  the part of B within level I hence 
we have to allow the exponential growth in this part. 

Knowing an upper bound W for max~ width(1) we get 
an upper bound for IBI, the number of nodes in B. 

N @S1 
[BI<Z~A+ ~ ~ width(1). (22"(j-1)+22'(j-1)+1) 

/ = l j = l  

N 

_<2ca+ ~ width(l)'22"~s' 
l = 1  

N 

< 2 # ~ A + w "  2 22"~s' 
/ = 1  

N 

< 2 . l A c t l + W .  ~ 4.l&l a 
/ = 1  

=- c t  l 2 

The rest of the proof  is given in the appendix. It calcu- 
lates W to be 4-2 IA"I which in turn proves the stated 
bound. []  



For a fixed set of actions and n,=maxi[Si[ this bound 
is simply O(N.n z) which compares favourably to the 
straightforward worst case bound O(nU+2.N 2) for the 
number of transitions in Ta [... [ TN. 

Worst case bounds for the size of BDDs are rare 
in literature, hence the above bound is very interesting. 
However it has to be pointed out that it concerns only 
the resulting BDD. Nothing is said about the intermedi- 
ate BDDs which result from the basic operators 
(A, V, -7, [ . . . . . .  l) on BDDs which are used in Sect. 5 to 
define the CCS parallel composition. In our practical 
experiments the size of the intermediate BDDs never 
exceeded the size of the resulting BDD. 

If we know more about the structure of the transition 
systems we are able to give the following tighter bound. 
See the appendix for details. 

Corollary 6.2. For Ti and B as above let c be the number 
of sets of visible actions which occur in transitions between 
any two states of any component, i.e. 

c:=[{A ~_Act] 3je{1, ..., N}: qr, seS~: 

A= {c~lc~ 4:z /x (r, ~, s)~Dj} }l. 

I f  no component contains a visible self-loop, i.e. if for 
all j e{1 , . . . ,N}  there exists no ssSj, e s A c t - { r }  such 
that (s, c~, s)eD~, then 

]B[= O((c+]Act]). i~ ]Si]2)" 

According to our experience with elementary transition 
systems stemming from practical examples, there is sel- 
domly more than one transition between any pair of 
states. Therefore we expect c to be close to IActl in typical 
cases. 

Let us remark that the same bounds are true for any 
relabelling of the B:s and for arbitrary restrictions (as 
for example in ((B1]Bz)\At] (B3IB4)\A2)\A3). In partic- 
ular this comprises the most important practical case 
given at the beginning of the previous section. 

7 Implementation 

We have implemented the described generation of BDDs 
for elementary transition systems and the operators of 
CCS parallel composition, restriction, and relabelling. 
Furthermore we implemented the symbolic model 
checker of Burch et al. [2]. The implementations are 
based on a Prolog system extended by unification in 
finite algebras [81. It captures the powerful version of 
the #-calculus as used in [2]. In particular the #-calculus 
formulas for strong and weak bisimilarity can be 
checked. The interface consists of two Prolog predicates, 
mu_formula and mu_relation, where the former checks 
#-calculus formulas, whereas the latter allows the com- 
putation of relations from relational terms. 

Controlling the ordering of variables 

Special care is needed for the ordering of boolean vari- 
ables encoding the variables in the #-calculus. For  exam- 
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ple for computing the transitive closure of a relation 
R by the term 

# T [2 x, y [R (x, y) v 3 z [ r(x, z)/x T(z, y)]]] 

we want to preserve the original variable ordering, i.e. 
if the BDD representation of the relation R has the or- 
dering Xl~ ,y l<xz<y2 . . .  <x,-<y, we want to preserve 
that order for all intermediate results of the evaluation 
as well as for the representation of the transitive closure. 
We achieve this by the ordering xl<zx~,yl-<xa-<z2 
-Z, y2 ... ~x,-<z,~,  y,. 

Note that a satisfactory variable ordering for all inter- 
mediate results cannot always be obtained. Assume for 
example a binary boolean relation R where the first argu- 
ment is ordered before the second. If one requests xMy 
in )~x, y[R(x, y)AR(y, x)] this would leave R(x, y) un- 
changed but would force a new ordering in R(y, x). Re- 
questing y-<x leads to the dual problem. 

In order to control the variable ordering we have 
implemented an annotation mechanism of the form 

E{A} 
where E is a formula or a relational term according to 
Fig. 2 and A is an annotation involving all bound indi- 
vidual variables in E. In order to allow a unique reference 
in A the individual variables have to be (re-)named such 
that no two bound occurrences equal. 

The syntax for the annotations is 

A:=z[A;AIA, A , . . . , A  

where z ranges over the individual variables. The annota- 
tion y; z means that all boolean variables encoding y 
are ordered before those encoding z, i.e. Vi, j: yi<(zj. 
The annotation, Zx, z:,  . . . ,z ,  means that the boolean 
variables encoding the zi are interleaved, i.e. Vi, j, k, h 
Z~j~(Zkz iff ( j=IAi<k)  v j<l .  For example x , y , z  with 
encodings by boolean variables Xl, x2, x3 and y~ and 
z~,z2 respectively enforces the ordering xl-<y~Mz~ 
MXz<Za~X3. 

In the following we show with the example of chec- 
king bisimilarity what can be expressed in the #-calculus 
with our annotations. 

Checking bisimilarity 

For checking weak bisimilarity it is necessary to first 
compute the z-closure (see e.g. [6]). Let A be the relation- 
al variable which is interpreted by the BDD which has 
been generated according to Sect. 4 and 5 for represent- 
ing a transition relation. The z-closure of the relation 
is computed by the following sequence of assignments 
to fresh relational variables: 

T .'=2x, y [A (x, z, y)] {x, y} 

T' ,=)ox, y [ x = y  v T(x, y)] {x, y} 
T* .'=#Z [2x, y [T'(x, y) v 3 z [Z(x, z)/x Z(z, y)]]] {x, z, y} 

A t :=2x, a, y[a=z/x T*(x, y) v 3z I [T*(x, z,) 
/x ~ z2' [A (zl, a, z2) a T* (z2, y)]]] {a; (x, zl, zz, y)} 
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The ordering annotat ion for T* has been discussed 
above. All annotations are chosen to preserve our encod- 
ing convention for transition relations in a way that as 
few as possible reorderings appear. 

Note that A t now stands for a BDD which represents 
the z-closure of the transition relation. If A] and A~ are 
such z-closures of two transition systems then the rela- 
tion of weak bisimilarity is expressed by 

B : = v R  [2pt  , p2[V 0-a, ql [A~I (/)1,0-1, ql) 
~ 3 q z  [A~(p2, 0-1, q2)/x R ( q l ,  q2)]] 

A V0-2, rz[A~2(p2, 0-2, r2) 

~ 3 r l  [A[ (pl, 0-2, rl) ^R(r~, rz)3333 
{0-~; ~ ;  (m, ql, rl, p~, q~, r~)} 

If the individual variables zl and z 2 denote the initial 
states the #-calculus formula 

B(zl, z2) 

yields the answer to the question whether the two transi- 
tion systems are weakly bisimilar. Of course strong 
bisimilarity can be checked by using A~ instead of A~ 
in the definition of B. 

8 Example 

Milner's example of a simple distributed scheduler has 
become a benchmark for process algebra tools [7, 10]. 

The scheduler consists of one starter process and N 
processes which are scheduled. The communication is 
organized in a ring. Expressed in CCS [11] the processes 
are as follows. 

Starter %f ~o . O 

co %fco.ao.(Z.c~.Co+U~.~.Co) 

C 1 d~e~-fcl.al.('C.c2.C 1 q-c~.'~.C1) 

CN- 1 d e f  - -  - -  = cN-1 .an-  i .(~.co.CN-1 +Co.'c.CN-1) 

Each cycler process C~ awaits the permit cl to start, per- 
forms action ai, and passes the permit to the next cycler 
either before or after some internal computation. The 
transition system for Co is given in Fig. 6. The compound 

process for N cyclers is 

S C H E D n  %f (Starter I Co I C1 l ... t CN- ~) \ {co , . . . ,  CN- 1 }. 

The restriction enforces the synchronization of the cycler 
processes Ci via the actions ci. SCHEDN is weakly bisimi- 

lar to SPECN%fao . a I . . . . .  aN- 1. SPECN" 

Table 1 shows the size of the BDD for SCHEDN and 
the times needed to check the weak bisimilarity between 
SCHEDN and SPECN compared to conventional tools. 
The number of states and transitions for N > 12 as well 
as the times for the conventional tools for N = 2 0  are 
extrapolated estimates. Note that due to the fact that 
the BDD for a transition relation in general represents 
not just transitions reachable from the initial state the 
number of transitions cannot be calculated from the 
paths in the BDD leading to 1. The times for AUTO 
and BB are taken from [10], those for Ald6baran from 
[7]. Times for our system were obtained on a SUN 4/75 
(Sparc2) workstation. 

To be better comparable one would have to add the 
times needed for computing the transition relation of 
SCHEDN to the columns for AUTO, Ald6baran, and 
BB. Additionally the time needed to compute the transit- 
ive closure with respect to z-transitions has to be added 
for A U TO  and Ald6baran, it is not needed for branching 
bisimulation. Only the column for this paper includes 
all these times. On the other hand we used a hardware 
which is approximately 2.5 times faster. 

Applying Corollary 6.2 to S C H E D  N yields 
c=  O(IAct]) and hence the size of the BDD representing 

the transition system of S C H E D  N is O [S~[ z 

= O (U2). 

9 Conclusion 

We have presented the missing link, namely the genera- 
tion of transition relations as BDDs, for exploiting sym- 
bolic model checking as a tool for process algebras. The 
example shows that processes out of the reach of conven- 
tional tools can be checked for bisimilarity this way. 

We have shown that the BDD for N parallel transi- 
tion systems grows only linearly in N. Such a worst case 
bound for BDDs is rate in the literature. On the other 

Table 1. Benchmarks for the scheduler 

N States Transitions Nodes in BDD AUTO [4] Ald6baran [7] BB [10] BDD 

6 577  2 0 1 7  4 2 7  3 .3 s  1 .9s  0 . 2 s  2 1 s  
8 3 0 7 3  1 3 8 2 5  651  5 7 s  2 4 s  1 .2s  4 0 s  

10 1 5 3 6 1  8 4  481  9 0 7 .  - - 7 . 4 s  8 7 s  
12 73  7 2 9  4 7 9  233  1 2 0 0  - - 53 s 145 s 
14 3 0 0 0 0 0  2 0 0 0 0 0 0  1 5 2 8  - - 233  s 
16 1 2 0 0  0 0 0  8 0 0 0 0 0 0  1 8 9 7  - - 348  s 
18 4 8 0 0  0 0 0  32  0 0 0  0 0 0  2 2 9 7  - - 569  s 
2 0  1 8 0 0 0 0 0 0  1 2 8 0 0 0 0 0 0  2 7 3 4  (109 s) ( 7 . 1 0 7  s) ( 5 0 0 0 0  s) 8 5 0 s  



hand it is not clear how the BDDs grow during the 
symbolic model checking. 

Another open problem is the question whether other 
process algebra operators, in particular recursion can 
be performed on BDDs similarly efficiently. 

Acknowledgement. We thank Peter Warkentin, his fast implementa- 
tion of operations on BDDs is used for the larger experiments 
reported in Table 1. Four anonymous referees have supplied helpful 
comments. 

Appendix 

This appendix shows how to calculate the bound W needed for 
the proof of Theorem 6.1. For the BDD B recall that at(B) 
=Bl~-~.r~=~r,,~_~,,...,~,_,=~r,_,,~, ~=~_,. For arbitrary l we want 
W to be an upper bound for the number of different relations 
(i.e. characteristic functions) fit(B) for any instantiation fi~ 

. . . . .  

In the following the relations at(B ) will be stated in terms of 
the relations stabt, movet(A ) and SyncAsynct. The relation stabt 
expresses that all components T~ on level l or lower are stable, 
i.e. perform no change of state. 

stabt ~f { ( ~-rr t , ~ . . . . .  bTr~, b~-s~)I Vi, l <<_ i <__ N : -b~r ~ = ~si } 

For a set A of actions movet(A) expresses that one component 
Tj on level t or lower performs a transition with an action of A 
while all other processes are stable. 

movet(A)%f { (bTr~, bTs~ . . . . .  bTr~, bTn) l ~a~A, j, l <_j < N: 

(bTrj, ~, bTsj>~D3/x gi, iq=j, l<_i<_N: bTri=bTsi} 

The relation SyncAsynct states that some process Tj on level I or 
lower performs an asynchronous z-transition or that two processes 
T~, Tk on level I or lower perform synchronizing transitions. In 
both cases all other processes on level I or lower are stable. 

SyncAsync z d~_e mover ({z}) 

w { (~rrl, ~sl . . . . .  bru, bSN) I3 eeAct, j, k,j # k, 
l <j, k <_N: (br~, cq b~sj>~Dj/x (~rk, ~,,~sk>~Dk 
/X Vi, k#i=l=j, l<_i<N: bri=bst} 

Instantiations at can be divided into non-z- and z-transitions 
(cases a and b below). The former are always asynchronous. For 
the following by "the components of fit" we mean the components 

T1 . . . . .  Tl_ 1- Let us say that a component Tk is unstable if ~-r k # b7 k. 
Depending on the number of unstable components of fit we distin- 
guish the cases a0 (no unstable component), al (one unstable com- 
ponent), and a2 (two or more unstable components). Let 

. . . . .  

Case a b a # z  

Case a0 V i~L: bri=bsi 
(movet({b~a}) <) stab~ if ~jeL: @rj, ba, brj)eDj 

fit(B) =~move,({~a}) otherwise 

Case a l  ~jeL: brj:t:bsj and VieL, i~j:  ~iri=b~si 
,~, (stab, if (~rrj, b~a,~ssj)eD~ 

a,t~) = ~.0 otherwise 

Case a2 ~j, k~ L, j * k: ~rr ~=t= b-sj /x b'~ * ~ss k 
a~(B) = 0 

The z-transitions arc more complicated because we have to 
consider transitions resulting from two synchronizing processes as 
well as asynchronous z-transitions of a single process. Depending 
on the number of unstable components of a, we distinguish cases 
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b0, bl,  b2 and b3. The case b3 covers those at which contain three 
or more unstable components. 

The cases b0, bl  and b2 have to check whether for at a process 
can proceed asynchronously and whether two processes can syn- 
chronize. For  this purpose we define the predicates Async-z and 
Sync-z. 

�9 d e (  ~ Async-z( j )~(br j ,  z, bsj)~Dj 

Sync-z(j, k ) ~  3 a~Act: (~rj, c~, ~jsj) ~Dj/x (~-rk, ~,, b~k) ~D k 

Case b b a = z 

Case b3 3M_cL, IM[>2: Vi~M: ~iri=l=~si 
This means that three or more processes perform a transi- 
tion in B, which is impossible from the definition of the 
parallel composition operator. 
o,(B)=O 

Case b2 3j, k~L, j  ~:k: b'rrj*b'ssj, ~rk:~b~Sk, Vi~L, k W-i#j: 

If two processes are making a transition they are synchroniz- 
ing, i.e. the remaining components Tj, ..., TN must be stable. 

adB)={~tabz if otherwise Sync-z(j, k) 

Case bl 3jeL: b~r j+-b~sj VicE, i . j :  ~=b~s~ 
If process Tj can perform an asynchronous z-transition or 
synchronize with a process T~, i~L the relation stab t is con- 
tained in fit(B). The other part of fit(B) stems from synehron- 
isations of Tj with a process T~, i>_l. For the latter case 

we define the set h I :={~] (b~rj, o~, bsj)GDj A ~ ~ z}. 

(movet(AOwstabz if Async-z(j) or 
at(B)= ~ 3 keL, j=t=k: Sync-z(j, k) 

[ move,(A i) otherwise 

Case  b0 VieL: ~ri=b~s i 
Again we have the same possibilities as in case b 1, but the 
value of j is not fixed, it may be in the range of 1 to I - 1 .  
As components 1 to l -  1 are stable we also have the possibil- 
ity that processes Tz . . . .  , T N perform an asynchronous transi- 
tion or a pair of synchronizing transitions�9 

Let A o ,={~3jEL:  (~rrj, cq ~rj)ED~/x a . z } .  

r morel (Ao) u SyncAsync t w stabz 
fi,(B)= / if BilL:  Async-z(j) or 3j, kEL, j~=k: Sync-z(j,k) 

( movel(Ao) w SyncAsynct otherwise 

To get an upper bound for W we count the possible number 
of relations for each case allowing any subset of Act for Ao and 
A~. Cases b0 and bl each may contribute 2.2 IAal different relations. 
Case b2 may contribute two relations but these are already counted 
for case hl  if A 1 =0. Cases b3, a2, a l  are similar. Case a0 contrib- 
utes 2.lAct] different relations but these are already counted for 

case b2 if A I = { ~ .  Summing this up yields 4.2 IAal as an upper 
bound for IV. 

Critical cases for a better approximation are h0 and bl  from 
which we can get a smaller upper bound W. If no process contains 
a visible self-loop the set A0 in case b0 is empty. Under this condi- 
tion case bl  may contribute 2. c different relations where c is the 
number of sets of visible actions which occur in transitions between 
any two states of any component, see Corollary 6.2. Case b0 
contributes two relations. The other cases are as above however 
they are not always counted in case bl. In conclusion we get 
2.1Actl+4+2.c as an upper bound for W under the condition 
of Corollary 6.2. 
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