Computing 15, 217—234 (1975)
© by Springer-Verlag 1975

On Primitive Recursive Wordfunctions

F. W. v. Henke, K. Indermark, G. Rose*, and K. Weihrauch, Bonn

Received October 21, 1974

Abstract — Zusammenfassung

On Primitive Recursive Wordfunctions. In order to compare primitive recursive functions and
transductions defined by automata in a natural way independent of encodings, we generalize the
Grzegorczyk hierarchy, the recursion number hierarchy and the loop hierarchy from arithmetical to
wordfunctions. We observe several differences between the arithmetical and the non-arithmetical
theory. By means of Turingmachines and generalized sequential machines all inclusion problems
for the function classes of these hierarchies are solved. Transductions and languages defined
by automata are classified within these hierarchies. Moreover, we introduce and study primitive
recursive transformations between different monoids.

Uber primitiv-rekursive Wortfunktionen. Um einen natiirlichen, von Kodierungen unabhingigen
Vergleich zwischen primitiv-rekursiven Funktionen und Automatentransduktionen zu ermdglichen,
werden die Grzegorczyk-Hierarchie, die Rekursionszahl-Hierarchie und die Loop-Hierarchie von
arithmetischen auf Wortfunktionen veraligemeinert. Dabei ergeben sich einige Unterschiede zum
arithmetischen Fall. Unter Benutzung von Turingmaschinen und verallgemeinerten endlichen
Automaten werden alle Inklusionsprobleme der Funktionenklassen dieser Hierarchien geldst. Von
Automaten definierte Funktions- und Sprachklassen werden innerhalb dieser Hierarchien klassi-
fiziert. AufBerdem werden primitiv-rekursive Transformationen zwischen verschiedenen Monoiden
behandelt.

Introduction

There exist essentially two methods of defining computable functions: by machines
operating on symbol strings or by closing a set of functions under certain
operations. We focus our attention here on Turingmachines and p-recursiveness
as representatives. In spite of their equivalence with respect to the whole class of
computable functions, these methods allow different ways of studying the sub-
recursive structure of these classes of functions. Machines can be restricted in
their use of storage during the computation {(pushdown automata, sequential
machines), and in the second case one can delimit the application of the closure
operations. These restrictions leed to hierarchies which give some information

* This research was conducted at the Institut fiir Theorie der Automaten und Schaltnetzwerke
(GMD) while the third author stayed there for one year. His present address: Case Western
Reserve University, Cleveland, Ohio. Support was given by the Gesellschaft fiir Mathematik
und Datenverarbeitung mbH, Bonn,

218 F. W. v. Henke, K. Indermark, G. Rose, and K. Weihrauch:

on the complexity of computable functions. The question whether this sort of
complexity depends on the definition or not leads us to a comparison of the
different hierarchies.

But as p-recursiveness is based on positive integers and Turingmachines on
symbol strings we have to compare classes of arithmetical functions with classes
of wordfunctions. In the past this difficulty has been dealt with by translating word-
functions into arithmetical functions [11], [14], [15]. So, the results depend on
this translation, often called encoding.

One aim of this paper is to remove that dependency. Instead of restricting the study
to arithmetical functions we extend the theory of g-recursive functions along the
lines developed by Asser [1], Eilenberg and Elgot [4]. The essential idea is to
regard finitely generated, free monoids as monadic algebras where we have several
successor functions instead of only one as in the arithmetical case. Although most
theorems carry over directly to the general case there are some points where we
have a difference between the arithmetical and the non-arithmetical theory.
The reason lies in the fact that the use ot two symbols allows alternatives
within the recursion scheme. So, in the non-arithmetical case, some results were
strengthened, some problems could be solved.

In the first part of this paper we generalize primitive recursive hierarchies: the
Grzegorczyk hierarchy [16], the recursion number hierarchy [2], [6] and the loop
hierarchy [12], [18]. For the corresponding classes of functions all inclusion
problems are solved. As a main tool we use a description of Turing machines by
primitive recursive wordfunctions that shows a close connection between com-
plexity classes of Turing machines and those hierarchies. Of particular interest
is a simple characterization of the first Grzegorczyk class in the non arithmetical
case. Furthermore we need a special construction of GSM’s (generalized sequential
machines) in order to characterize the second loop class and the second recursion
number class.

In the second part we introduce primitive recursive transformations from one
monoid to another with the intention of classifying encodings. Two different
definitions turn out to be equivalent. Moreover we define Grzegorczyk classcs
of transformations and study the relation between transformation and function
classes, in particular closure properties with respect to composition and the in-
fluence of encodings.

In the last part we give some applications. Transductions and languages defined
by automata are classified within primitive recursive hierarchies.

This is the final version of a series of reports on this subject. Detailed proofs can
be found in [7], [8], [9], [10], [17], [20], [21], [22].

Notation

N denotes the set of non-negative integers and 2™ the free monoid generated
by an alphabet X={a,, ..., a,} with e as the empty word. For weZ™ |w]
denotes the length of w. In most cases we write X for (xy,...,x,} and | X| for

On Primitive Recursive Wordfunctions 219
(1% 15 ..0r X). F®(2) is the set of all functions f: (Z*)*— Z* and
F(2):=J F% ().
k=0

For each K < F (2) we define K™ : =K F™ ().

The index 2 is dropped for r=1. For two sets A and B we write AcBiff A< B
and A4 B. A partial function f from A to B is denoted by f: A — B.

Part 1: Hierarchies of Primitive Recursive Wordfunctions
1. Basic Definitions

Primitive recursive wordfunctions were introduced by Asser [1] and studied by
Eilenberg and Elgot [4]. The concept of primitive recursiveness can be generalized
from N to 2* using r successor functions instead of only one (r:=| X |; N={a,}*).
This means in particular that the primitive recursion scheme must contain a
recursion equation for each successor function. Now, we have the choice of
starting from right- or left-successors. Without affecting the results we choose
left-successors for the base.

Definition 1: Base Functions

The set B(2) of base functions is the subset of F (2) that consists exactly of the

left-successors A; (i=1, ...,), the zerofunctions w'® and w'') and the projections

7 (k=1, 1<I<k). They are defined by 4 (x)=a,x, w@=¢, w) (x)=e and
() _

X, s X)) =X

Definition 2: Operations

a) Composition: For fe F® (X)and g4, ..., g, € F® (X) the composition h e F® (%)
is defined by h (x)=1 (g, (), ..., g (x)). Notation: h=fc(gy, ..., gi)-

b) Primitive recursion: From fe F® (Z) and g,,...,g,€ F**2 (Z) the function
he F¥* V(%) is formed by primitive recursion iff
h(X, e)=f(X)
h(;caazy)zgz(iyyoh(i:y)) (izla“'ar)~
Notation: h=B (1. ().

c) Limited recursion: If in addition to h=%(/,(g,)) as in b) there is de F** V()
limiting h by |h(2)|<|d(Z)] for all Ze(Z*¥*!, we say: h is formed by
limited recursion from f and g, ..., g, resp. d. Notation h=2(f, (g,); d).

d) Simultaneous recursion: From f,e F®(X) and g,,,...,g,€ F**"* () the
functions h;e F&*V (Z) (i=1, ...,) are formed by simultaneous recursion iff
hi (X, e)=1, (%) (I<i<))
hi (ia aj y):gij (;C’ Vs hl (ia Y), ARAE] hl (i: y)) (1 S.Jgr)

Notation: h,, =&, ((f), (g;) for L<m<L.

) Limited simultaneous recursion: If in d) the functions h; are limited by
d;e FE* V() ie | h(3)|<|d;(2)] for all Ze(Z*}*! (1<i<l), we say: the

220 ¥, W. v. Henke, K. Indermark, G. Rose, and K. Weihrauch:

functions h; are formed by limited simultaneous recursion from f; and g, resp. 4.
Notation: h,,=2G,((f), (4;); (d)) (1<m<]).

By repeated application of these operations to the base functions we construct
the class of primitive recursive functions over X together with three hierarchies.

Definition 3: Primitive Recursive Wordfunctions.

The class Pr(Z) of primitive recursive wordfunctions (over X) is the smallest
class K < F(2) that contains B(Z) and that is closed under composition and
primitive recursion.

Definition 4: Recursion Number Hierarchy
The recursion number classes R, (Z) (n>0) are defined by induction:

1) Ry () is the smallest class K < F () that contains B(X) and that is closed
under composition.

(i) R, (Z) is the smallest class K = F () that contains R, (2) and that is closed
under composition and under primitive recursion over R, (Z), i.e. from f,
(9) € R, (Z) and h=" (£, (g)) we have he R, ; (5).

Definition 5: Loop Hierarchy
If we replace “primitive recursion” by “simultaneous recursion” in Definition 4
we get the loop classes L, (%) (n=0).

In order to define the Grzegorczyk hierarchy we need a sequence of “growth
functions”. We generalize Ritchie’s definition [16] which is slightly different
from the original one in Grzegorczyk [5].

Definition 6: Generalized Ackermann Functions

In Pr®(Z) we define the sequence (A2),.y by Aj(x,y):=a,y Af(x,¢e):=x,
A3 (x, e):i=e, Af (x, e)i=a; (0123), AL, (X, @ V)i=A; (x, 474y (%,)) (120,
i=1,...,r).

Definition 7: Grzegorczyk Hierarchy

For each ne N the Grzegorczyk class E,(2) is the smallest subclass of Pr (%)
that contains B (Z) together with A2 and that is closed under composition and
limited recursion.

These hierarchies are generalizations from the corresponding notions in the
arithmetical case: see Heinermann [6] and Axt [2] for the recursion number
hierarchy, Meyer [12] for the loop hierarchy which turns out to be equivalent
to Schwichtenberg’s definition [18] based on simultaneous recursion, and
Ritchie [16] for the Grzegorczyk hierarchy. Grzegorczyk classes are defined
as growth classes: E,(Z) contains only functions with a growth of | x;|+k,
E, (2) functions with linear growth, E, (2) functions with polynomial growth,
E, (%) functions with exponential growth, and so on. In general, primitive re-
cursion produces functions with much more growth; limited recursion restricts
this growth. As we used the length of words in Z* in the definition of limited
recursion we have strong analogies between arithmetical and non-arithmetical
Grzegorczyk classes.

On Primitive Recursive Wordfunctions 221
2. Elementary Inclusion Properties

In the next three sections we solve the following inclusion problem: is A< B
for4,Be{R,(2),L,(2),E,(2)| neN}?

The solution shows in particular that these classes form three hierarchies which
are nearly identical.

From the definitions we conclude directly the following properties:

R,(Z)ER,(2), L,2)S L, 1 (2), R, (2)= L, (2), Ry (Z)=L,y (2), "
w w 1
U R, (Z)=Pr (%) and | J E,(Z)< Pr(Z). (neN)

n=0 n=0

There is a close relationship between arithmetical and non-arithmetical functions
that is demonstrated by Lemma 1. It is very useful in generalizing results from
the arithmetical case to the non-arithmetical one.

Lemma 1. Each Ke {R,, L, E, | n>0} has the following properties:
(i) For each f € K thereis f*e K (£)such that f (| %)= f* (%)].
(ii) For each f* e K (%) there is f € K such that | fZ (X)| < f (| X]).

The proof is straightforward by induction on the structure of K resp. K (2).
As an immediate consequence we have Theorem 1 which enables us to show the
hierarchical structure of the Grzegorczyk classes.

Theorem 1. Let f* be defined by primitive recursion over E,(X). Then f*e EP(2)
iff there is d e E® with | f*(X)| <d (| X|) for all X e (Z*).

For the arithmetical Ackermann functions we know that
A (%,)< A; (x+2,y+2)< Ay, (x+2,p+2)

and furthermore that A4,,,; grows more than each function of E{¥. By Lemma 1
and Theorem 1, this can be generalized to wordfunctions:

Lemma 2. Let ne N. For all k<n we have:
A €E,(2) and Ay, ¢E,(2).
This result proves that the Grzegorczyk classes form a hierarchy:
E,(X)cE,.,(2) (neN). 2

Although E, (2) contains only functions which grow very slowly we can show
that every recursively enumerable subset of X* can be enumerated with a
function of E{V (2). The “conditional definitions™ are other examples of functions
in E,(Z) for feF®(Z) which is constant almost everywhere we have
feEy(Z) AR, (2).

Our next aim 1s to compare loop classes with Grzegorczyk classes. Using encoding
and decoding of word tupels we reduce simultaneous recursion to simple recursion.
Essentially, we require the following theorem on pairing functions which demon-

Computing 15/3 16

222 F. W. v. Henke, K, Indermark, G. Rose, and K. Weihrauch:

strates in particular the difference between arithmetical and non-arithmetical
function classes.

Theorem 2. There exist functions n:(Z*)2— Z* and n,, 1, : Z*-> % which have
the following properties:

O mon=n (=12
@) If fori=1,2 | x;1 <|y:l, then |n(xy, X)| <r-|n(yy y2)l.
(jii) For r=1 there isne R, n E, and n, 1, € Ry N Ey,
forr>1thereispe R (ZYn E (X)) and 1,1, R, (XY Ey (2).

Moreover, it can be shown that for r=1 there are no functions y, %,, #, such that
(i) and 7€ R, v E,! The following functions satisfy Theorem 2:

10 y)=x+yP+y (r=1)
and
ni{a, ... a, a;, ..aj')-—zatlaz‘zial..Aala"z"alalaé‘a1 ca aka; {r>1).

But there does not exist any linear bounded injection 7 : N?— N. Now, we can prove
the following theorem:

Theorem 3. E, is closed under limited simultaneous recursion for n=2. But E, (X)
with | X | =2 has this property even for n>1. '

So, we can show some relations between loop classes and Grzegorczyk classes:
LoQ)S Eo(2), Li(X)S E (), L(D)SE, () (r2D) ¢)

As a corollary we have:

g R, (Z)= U L,(%)= U E,(2)=Pr(2))
In the next section we develop some theorems on Turing machines that give
more insight into these relationships.

3. Inclusion Properties Proved by Turing Machines

The arithmetical Grzegorczyk classes form complexity classes. This fact follows
immediately from the Union Theorem of McCreight and Meyer for Shepherdson-
Sturgis machines [18] and for Turing machines [3]. In the latter case we see
again some dependence on encodings. This difficulty is solved here by comparing
functions over the same alphabet. It can be shown that the transition function of
a Turing machine is describable by very simple primitive recursive wordfunctions.

The class 9 (2) of turing machines we have in mind is specified in the following
way: M e M (2) is deterministic and has »n input tapes, m storage tapes and one
output tape. M starts in its initial state with empty output and storage tapes
reading with each input head the blank b on the left to each input word (b ¢ 2).
At each step M prints from left to right a symbol, possibly b, on the output tape.
Occasionally, M stops in its final state with that word as output word which is
obtained from the output tape by omitting the blanks. Without loss of generality

On Primitive Recursive Wordfunctions 223

we assume furthermore that all tapes, except the output tape, are always of the
form ... bbwbb ... (weZ*), w called “inscription”, and that the heads do not ex-
ceed the first blank to the left and to the right of w. Finally, it is convenient to
change this model such that M does not really stop in its final state but continues
working without affecting the output. This can be achieved by a loop not leaving
. the final state and printing blanks.

We shall now describe the computation process of M by some wordfunctions. For
simplicity we assume n=m= 1. Furthermore, we take the set § of states, the set
D= {left, right, not} of moves and Z,=2 u {b} as disjoint subsets of Z* such
that b becomes ¢ and a € £ remains unchanged.

a) The transition function of M g,, : (£*)®— (£ *)® determines for each instantaneous
description of M the successor description that is achieved in one computation
step. An instantaneous description X=(x,, ..., x3) has the following components:
x, is the reverse of the word on the left to the input head, x, the symbol below the
input head, x; the word on the right to the input head, x,, x5 and x, give the
corresponding parts of the storage tape, x, is the word on the output tape
and xg is the state.

b) The function 0, : (£*)*>— Z* is defined such that 0, (x, y) is the inscription of
the output tape after | y | steps of M beginning with input x.

c} The step counting function T, :Z*— X* has the following property: if M
reaches its final state on input x in k steps then Ty (x)=a*; T\, (x) is undefined
iff M does not reach a final state on x.

d) The function computed by M f,,: Z*— Z* gives for each input x the output
word that is on the output tape when M enters the final state, else undefined.

Thus: fi, (x) =0 (x, Ty (x))-

Theorem 4. Let MeWR(X) and t:=3n+3m+2. The transition function
Gu (E¥ = (Z*) can be extended to §:(Z*Y— (2% such that §,:=nP.§ is in
R, (Z)AE,(2) (i=1,.... 1)

Proof: Again we assume n=m=1. M can then be given by a function
0:8xZox o> SXEex gxDXD-5(s, ¢y, cp)=(5, Ch, 35, dy, dy)

means: reading in state s ¢; on the input tape and ¢, on the storage tape, M
changes into state s, printing ¢, on the storage and c; on the output tape
and moving input resp. storage head by d, resp. d,. With the embedding from
above we have §:(X*)*-»(Z*)® which we extend to 4:(Z*)>—(Z*) by de-
fining 4(%):=(e,e,e,e,e) if X¢domain(d). It can be shown easily that
d;:=7n o4 is in Ry ()N Ey (2) (i=1, ..., 5), see the remark following property
(2). As auxiliary functions we need the concatenation of words cn: (Z¥)*— I*,
the function d f : Z*— Z* that deletes the first symbol of a word and the function
S5:Z%—Z* that gives the first symbol of a word, additionally df (e)=fs (e)=e.
They are all in R; () E, (2).

Now, we can describe the desired function §=(g,, ..., js) over 4,, ..., 45, cn and
df by definition of cases. Let ¥=(x, ..., xg) and J={(xg, X5, Xs).

16%

224 F. W. v. Henke, K. Indermark, G. Rose, and K. Weihrauch:

(x, if 4, (¥)=not
; (56):3 Af () if A, (7)=left
! cn(xy, x,) if 4, (y)=right
Xy otherwise
(xz if 4, (F)=not
i, (%)= fs{x,) if 4,(y)=left
g fs(xs) if 4, ()=right
X, otherwise

g5 is symmetrical to §; da, Js, ¢ are defined in a similar way with 4, instead of
4, and by using 4, in addition.

g7 (X)=cn (x7, 45 ()N’))

gs (X)=4,(9)
All functions used in this definition are in R, {Z)n E, (Z). As this class is closed
under definition by cases we have proved the theorem. Q.E.D.

Theorem 5. For M € WM () with n input tapes the function Oy : (Z*)***— X% is in
LnEif|Z|=landin L, X)nE, (2)if| Z|>1.

Proof: We define G: (Z*\'" !> (X% (n:=3 (n+m)+2) by G (X, e)=u(X), where
o (X) is the initial instantaneous description of M with input X, and G (%, 4; y)=
=3 (G (%). As we have [§(zy, ..., 2z,)| <|z;|+1 for all i=1,...,%, G is
defined by limited simultancous recursion over R, (X)n E{(X). The assertion
follows now from Theorem 3 and 0,,=7%2 , - G.

Theorem 6. Let M eI (Z) such that | Ty (X)) < |t (X)] for some t:(Z¥) 2%,
Then the following holds:

(i) teE,(2)= fycE,(2) (if (r=1 and n>1) or (r>1 and n=1))
(i) teL,(X)=fyeL,(2) (n=2)
(iii) teR,(2)= fyeR,(X) (n23)
Proof:: f(X)=0(%,1(%)). See Schwichtenberg [18] for a proof of (iii) in the
case r=1.

Theorem 7. For feE,(2) (n>2) there is a Turing machine M ¥R (%) and a
tcE,(2) suchthat fy,=f and | T\ (X)| < |t (X)| for all X € domain (f).

This theorem can be proved by induction over the construction of f in E, (Z).
For the base functions there are simple machines, composition and primitive
recursion can be simulated by combining the corresponding machines appro-
priately.

Theorem 6 (i) and Theorem 7 characterize Grzegorczyk classes E, {(Z) for n>2
as complexity classes. If |2 |>2, we can characterize even E, (Z) by Turing
machines.

Theorem 8. Let | X |>2 and f € F (2). Then we have f € E{ () iff there is M e MM (Z)
such that = fy; and | Ty (X)| < |t (%) for some t € E, (X) and M is linear bounded

On Primitive Recursive Wordfunctions 225

on all tapes by the input length (i.e. M computes f in polynomial time and on
linear bounded tapes).

As we do not need this theorem to prove any inclusion properties we omit the
proof.

These results enable us to show that the three hierarchies are nearly identical:
L, (2)=E;(2), R, (2)=L,(2)=E,., (2) (n=3). (5)

Proof: See Schwichtenberg [18] for |2 |=1. Let |2|=2 and feE;(Z). By
Theorem 7 there is M eI (2) with f,=f and | T, (X)| <|t(X)| for some
te E,(Z). By Lemma | wehave t' ¢ E; with [t (X)| < t' (| X]).

Now, we can apply a lemma of Schwichtenberg by which each g€ E, ., can be
bounded by some g R, (n>2). So, together with Lemma 1, we conclude:
| T () <[t (X) | for some t” € R, (X). As R, (X) < L, (2) we see from Theorem 6
that f'e L, (2). In just the same way we prove that E,, , ()< R, (Z) for n>3. We
conclude this section with the following result: ‘

For|X|>2wehave R, (2)=L, (2).
(Note added in proof: R, =L,, shown by H. Miiller, Miinster.)
Proof (Sketch): We have only to show that E; (X)< R, (X). This problem can
be reduced to the problem of proving that E((Z) < RS ().
For feE{(Z) there is a Post machine P over X together with functions

¢, d,t€R, (2) such that f=do fpoc and | Tp(c(x))| <|t(x)| for all xeZ* The
assertion follows now from the fact that 0, € R, (2).

(6)

4. Inclusion Properties Proved by Generalized Sequential Machines

In order to give a complete solution to the inclusion problem we still have to
investigate the relations between the following classes:

Ro(2), Ry (%), Lo (2), L (2), Eo (2), E, (2).

The diagram shows what we have proved already.

Ro(D)=L, (2)

¥ \\\

R, (3) "

i Eo(2)
L@

B, ()

A—Bstandsfor A=B, A->Bfor A< B.

Moreover, as the concatenation is in R, (2), but not in R, () and the Ackermann
function A7 in R, (), but not in E, (), we have:

Ro(Z)=R;(2), Ry Q) F Eg(2), Ly (2) & E (2). ™

226 F. W. v. Henke, XK. Indermark, G. Rose, and K. Weihrauch:

The remaining problems are solved by characterizations of R, {2) and Z, (&).
This is quite simple in the arithmetical case [19], for | 2| >1 we use Generalized
Sequential Machines (GSM for short).

Definition 8. M is a Generalized Sequential Machine over X (M e GSM (2)) iff
M=(K;qq, 0, A, @) where K is a non-empty, finite set of states g, € K the initial
state, 0: K x 2 — K the transition function, 1: K x X — Z* the output function
and w:K—2* the last-output function. M computes a function f,: Z*—2*
in the following way: let 8,,: £*—~K be the function that gives the state of M
after input w, i.e. Oy (e)=qo, Oy (Wa))=5(6y W), @) (i=1,...,7) and fy: Z*—-> I*
be the function that describes the output without recognizing the end of the
input tape, i.e. fyr(e)=e, fir (wa)=fy;y (W) 4 (55 (W), @), then we can define f, by
Sar W)= 3y (W) (85 W)).

Thus, a GSM computes a one-place function. In order to compute many-place
functions, too, we introduce GSM-products.

Definition 9. Let n>1. P™ is a GSM-product over X (P™ e GSMP (X)) iff
PO=(M,, M,, ..., M, is,ms)where M, ..., M, € GSM (2)(g>1),is: {1,2, ..., g}~
—$ 1,2,...,n} the input-selector function and ms: K — {1, ..., ¢} (K disjoint union
of K, ..., K,) the machine-selector function.

For each d>1 P™ computes a function fpm 4: (Z*)'— (Z*): let dpm 4 (Z¥)"— K
be the function that gives the state of P™ after d GSM-computations, more
exactly we define by induction

Opin) 1 (Wis ooes Wy)=0p, (Wis(l))a Op) ,a+1 Wiy ooy W) =0, (Wis(k)}
where
k=ms(6pm 4 (W5 ..., W)
then we get fowm ,d by fpm W s Wn):fM1 (wis{l))’
frey av1 (We, ooy w,)=fp0 awes o w,) ka (Wis(k)) (k as above).

Finally, we call f : (£*)"— Z* GSM P-computable iff there is P™ e GSMP (Z) and
d>1with f=f,® ,.

Now we have a tool to characterize L, (2).
Theorem 9. Let f € F(X). Then fe L, (2)iff f is GSMP-computable or { € F'O (X).

Theorem 10. The range of an fe L, (2) is context-sensitive.
The last result can be shown as a consequence of Theorem 8 and the fact that
each GSM P-computable f: (Z*}"— Z* has the following property:

VoA \ z=fE) Alxy Xy x, [<k(lz]+1)

keN zerange(f) Xe(Z*
As we know on the other hand that every recursively enumerable set is the
range of an f € E, (2), we have the corollary

Eq)E L, (2), Eg Q)& R (2), Ro(X)=Eo(Z) and L, Z)=E,; (2). (8

As an example we note that the reversal function is in E, (X), but not in L, (X).

On Primitive Recursive Wordfunctions

227

Now, it remains to solve the problem whether L, (£} R, (Z) or not. For the

solution we characterize R, (2) by loopfree GSM’s.

Definition 10.
(i) Let M=(K; gy, 0, 1, 0) € GSM (2).
M is called loopfree iff for all p, g € K and x, y € Z* we have

Orp (D: X)=4q, Oy (g, y)=p=p=4q.

(ii) Let PW=(M, ..., M, is,ms)e GSMP (Z).
P® is called loopfree iff M; is loopfree for i=1, ..., g.

Theorem 11. For fe F(Z) we have:

feR, (Z)iff fis computable by a loopfree GSM-product or f € F® (2).

Ly Q)¢ R, (2)
For the proof we can show that f: £*— X* defined by

e 1if 2 divides | x|

isin L, (£), notin R, (2).
a, else

f ()= {

We summarize our results in the following diagram:-

R,y =L,,, =E,

Part 2: Primitive Recursive Transformations

©)

A—B means A< B
A--B means A< B

and B& A

The notion of a primitive recursive function between different monoids cannot
be defined in the same way as for wordfunctions. We shall discuss two possibilities

that prove to be equivalent.
Let X={a,,...,q,} and I=1{b,, .

..» b} be two, not necessarily disjoint alphabets.

The generalization can be achieved by taking special functions for the transition

from 2* to IT*.

228 F. W. v. Henke, K. Indermark, G. Rose, and K. Weihrauch:

Definition 11.
(i) A function c¢: Z*— IT* is called encoding (c € K (X, IT)} iff for each fe Pr(Z)
thereis f' e Pr(II) such thatco f=f" o c.

(ii) The class Pr, (X, IT) of primitive recursive transformations from Z* to {I* is
defined by Pry(Z,I):=K(Z,II)s Pr(Z)(={coflceK(Z,I)A fePr(X)})

On the other hand we can start from Pr (X v IT) and then restrict these functions

appropriately.

Definition 12.

(i) Let 1: Z*— (X u I)* be the embedding and v:(Z U IT)*— II* the projection
defined as monoid homomorphisms by 1(a)=a, v{(b)=b, v(¥')=¢ for all
aeX, belland b e(Z v IT\I.

(ii) The class Pr, (Z, IT} of primitive recursive transformations from Z* to II* is
defined by Pr, (Z,H):={vo¢ot|pePr(X¥u)} (As v can be understood
as an element of Pr (X w IT) we could have taken without loss of generality
those ¢ with range (¢) < IT*))

In order to show that these definitions are equivalent we give some preparatory
lemmas and theorems.

Lemma 3. For fe Pr(X)thereexist f'e Pr(X U D withf=vof ot

Proof: The base functions over X* are natural restrictions of corresponding
functions over (ZuUIl)* If f=g, 0.9, and g;=g,.1 with gie Pr(Z u II), then
f=(g} - 95) o1 with (g} o g3) € Pr(Z U II). If f is defined by primitive recursion
over g, hy,....h, and g=¢ o1, and so on, then f’ can be given by the following
recursion schema:

I (% e)=¢' (%)

f & awy=h(Xwf Xw) (@(=1,..7

f,(i7bjw)=f,()~ca W) bJE(ZUH)\Z

The proof shows in particular that the embedding : is an encoding.

Lemma 4. For eachce K(Z, Il) thereis ¢ e Pr(X v H) withc=v.¢ o1,

Proof: For an encoding ¢:X*— [T* we have ¢, e Pr(Il) such that cod4;=¢;0¢
(i=1,...,r). Let ¢ be the corresponding function in Pr(Z v II) according to
Lemma 3. Now, the assertion can be satisfied by the following ¢’ € Pr(Z u II):

¢ {e)y=c(e)

¢ (@g;w)y=¢,(c' (w) (i=1,...,7)

c' (b;w)y=c (w) for b;e(Z v II\Z.

This means that encodings are primitive recursive functions in a certain sense,
in particular: K (X, %) € Pr(Z). — The next lemma is obvious.

Lemma 5. The composition of two encodings is an encoding.

We shall construct now two encodings that are of special importance. A word
we £* can be understood as the r-adic representation of a natural number.

On Primitive Recursive Wordfunctions 229

Let f:N—Z* be defined by f(0)=e and (m+1)=h (B (m)), where h is given
byh(e)=ay, h(g;wy=a, wl(i=1,...,r—1)and h(a, w)=a, h(w).

The functiona : Z*— N, where o (¢)=0and « (a; w)=i+7r - « (w)is the corresponding
“decoding”, i.e. 2o f=id,,

Theorem 12. o and j are encodings, i.e.

(i) For each f€ Pr(X) thereis f € Prwitho o f={"oca.

{iiy For each g € Pr thereisg e Pr(Z)ywith fog=g - f.

Proof : The proof is by induction on the structure of Pr (Z) resp. Pr.

{i) For f=2/; the assertion is proved by f’ with f'(m)=i+r.m. The other base
functions and compositions are dealt with in an obvious way. If f is defined by

primitive recursion we construct f’ e Pr such that the recursion over words is
simulated in N. To this end we need the following auxiliary functions:

Ky (m):[(m"l) mod i‘]—f—l and 5r (m)z[’n;lj}

They allow a recursion formula for f: ff (m)=4, ¢, (B (3, (m))).

The function #, with #, (m)=| § (m)} gives the number of recursions which have to
be simulated. J,,#,, 4, are primitive recursive. The details together with the
construction of /' are rather lengthy and must be omitted here.

(1)) The function h from above proves the assertion for the successor function.

Primitive recursion is simulated by means of a function ¢ where ¢ (w)=a{*™",

Corollary. There exist a bijective f: X* — IT* such that f and f~! are encodings.

Now, we are able to prove the equivalence of our definitions.

Theorem 13. Pr (2, H)=Pr, (X2, II)

Proof: 1. For fePr, (Z,1II) we have f=co f where ce K(Z, II) and f’ e Pr ().
By Lemma 4, c=vo ¢’ o1 with ¢’ e Pr(Z U IT) and by Lemma 3, f'=v . f" o1 with
f" e Pr(X v II). (Note that we use different v’s!) So, we conclude f=voc o10Vo
o f"o1ePry (X,) because 1o ve Pr(Z v II).

2. For fePr, (X, IT) we have f=v. f' o1 where f” € Pr(Z u II). By the corollary
there is a bijective ¢, : [I*— (X U II)* such that ¢, and c; * are encodings. Using
Lemma 4 we see that c;ovePr(Zull) and so f=c;loc;ovof ot with
¢y ovof e Pr(Z uIl). Now we take a bijective encoding ¢, : X*— (X U IT)* that
allows to represent f by f=c;'oc,0c50¢,0vof ot As c; ' is an encoding
there is f” e Pr(Z) such that ¢; ' oy ovof'=f"0c5 ', and so fe Pr, (Z, IT).

This result justifies the notion of a primitive recursive transformation. From now
on we simply write Pr (2, IT). The second definition implies a natural generalization
of Grzegorczyk classes.

Definition 13. For neN we call E,(Z,II):={vofo1|fe€E,(Zu I} the n-th
Grzegorczyk class of transformations.

230 F. W. v. Henke, K. Indermark, G. Rose, and K. Weihrauch:

As an immediate consequence we see that these classes form a hierarchy for
Pr(Z, IT).

Theorem 14,
@) E,(X,INcE, (& MHforallneN
(i Pr2, =) E, .1

neN
In the remaining part of this section we investigate the relation between
Grzegorczyk classes of transformations and those of wordfunctions.
Lemma 6. For all ne N the following holds:
E,(Z,I)- E, (2)=E, (2, I)=E, (I} E, (2, II)
The proof is similar to that of Theorem 13.

Let y: Z*—IT* be the bijective encoding of Theorem 12 and its coroilary. Then
we can give a stronger version of that theorem.

Theorem 15, For all n>3, if [I{=1, or for all n=1, if |H|>1, we have:
E,(2)=y" ' E,(IDoy.

For the proof we proceed as in the proof of Theorem 12. It is possible to take
the auxiliary functions from E, resp. E, () or E {IT). The difference depending
on | IT | is due to the fact that for | [T |>1we have ye E, (I, [I)and y~ ' € E, (I1, Z),
whereas in the case of | [T|=1 the function y(i.e. o of Theorem 12) has
exponential growth that cannot be eliminated in the proof. However, we can
show a weaker result for | IT |=1 and n=0, 1, 2:

En (Z)z(x_l o E"+1 ol
Unfortunately, we do not know anything about the other inclusion direction.

This difference between arithmetical and non-arithmetical theory turns out to
be fundamental. We abbreviate for the following

T)e 1if [fT]>1
*U0):= 3if =1

Lemma 7. Let I1,,I1, be non-empty subalphabets of X. Then we have for
n> 4 (I1, U I1,) the following property: for each f € E, (Z) there is {' € E, (Il , IT,)
with f'=vo foiwhere1: Hf—X* and v: 2*— I, as above.

Theorem 16, Let I1,, I1,, I1, < 2. Then we have for nz 41, u II;)
E,(1,,113)- E, (1, IT,) S E, (I, IT5)

Proof: Using Lemma 3 we show for feE,(Il,,II,) and geE,({Il,, {I;) the
existence of heE,(2) such that gof=vohoi1 From Lemma 7 we have
gofekE, (I, IT3).

Corollary. For n>max (# (%), % (IT)) we have:
(1) En (H’ Z“) c En (Z: H)=En (2)
Gi) Pr(I1, Z)« Pr(Z, T)=Pr (%)

On Primitive Recursive Wordfunctions 231

This coroliary shows in particular that the definitions of primitive recursive
wordfunctions and of primitive recursive transformations are compatible.

As encodings are special primitive recursive transformations our results give
some information about their influence: let ce€ E,(Z, IT) be an encoding and
deE, (I,)y with d - c=idy,, then we have for n>max (# (), 4 (I)) by Lemma 6
and Theorem 15thatco E, (2)od € E, {(Il}orco E, (2} < E, (2) - c. So, encodings
have no influence on the complexity of these classes of functions provided that
n is not too small. Yet, the example of the encoding « shows that small
Grzegorczyk classes may be shifted.

Part 3: Applications to Automata Theory

The theory of primitive recursive wordfunctions as developed in Part 1 enables
us to give a natural classification of transductions defined by automata within
primitive recursive hierarchies. First we introduce primitive recursive relations
by which we can define partial primitive recursive functions on the one hand, and
classify languages on the other hand.
Definition 14. Let fe F(X)and K = F (2).

(i) Rel(f):=f"1({e})is called the relation recognized by f.

(i) Rel(K):={Rel(f)|feK}
(i) P(K):={f|thereis g€ K and R € Rel (K) such that f =g | R}.
In particular, we call fe P (Pr(2)) partial primitive recursive. This is justified
by the following result.

Theorem 17. Let |2 (>2 and n>1. If for M € M (Z) there is t € E, (Z) such that
| Ty ()| <[(X)] for all % € domain (fy,) then we have fy, € P (E, (2)).

It is easy to prove that the primitive recursive relations form hierarchies ana-
loguous to functions.
Theorem 18. For all k, n e N we have

(i) Rel(E¥ (X)) < Rel (E¥., ()

(i) Rel(RY (X)) < Rel (R, (%))
(iti) Rel(LP (2)) < Rel (LY, ()

For k=1 and n=2 we can even show that

(iv) Rel(E¥ (X)) = Rel (E®. | (2))

It is an open problem whether Rel (E, (2))# Rel (E, (2))=+ Rel (E, (2)).

Furthermore, we investigate some closure properties of these classes. The results
are put together in the following theorem.

Theorem 19.
() Rel(RP (2)), Rel (LY (X)) and Rel (EY (X)) are closed under the operations
of complement, union and intersection if k>0, n>1 and m=>0.
(i) Rel(R,(2)), Rel(L,(Z)) and Rel(E,, (X)) are closed under cartesian product
ifn=1and m>0.

232 F. W. v. Henke, K. Indermark, G. Rose, and K. Weihrauch:

(iii) For all neN Rel(E{" (2)} is closed under inverse mappings from E{(Z).
{Analoguous for R, and L,.}

(i) Forn>1 Rel (E" (2)) is closed under concatenation.

(v) For n=3 Rel(E{" (2)) is closed under crossproduct (M :=M o M*u ..).

Meyer and Ritchie [13] call feF elementary honest iff graph (f)e Rel(Es).
There are such functions with arbitrary growth, We can prove a stronger result.

Theorem 20. Let | X |>2. For each recursive feF (X) there is ge F(Z) such
that | f (%)|<| g (R)| for all X e domain (f) and graph (g)€ Rel (E, (2)).

We have now provided the necessary tools for the classification of functions and
sets defined by automata. It turns out that the primitive recursive hierarchies
do not form an appropriate framework for this task. Restricted Turing machines
define functions that are on a very low hierarchical level.

53]

Theorem 21. Let | X | > 2. The non-regular language {a5) |ne N} and the non-
context-free language {d; a d" | ne N} are in Rel (E, (2)).

Theorem 22. The class Reg (X) of regular languages over X is properly contained
in Rel (E{" (2)).

FS (2) shall denote the set of finite state transductions over 2, i.e. the set of those
functions which are computable by M e M (2) without storage tapes. We use lower
index 1 to denote one-way input and lower index ¢ to denote total functions.

The following results hold for the case | 2 |=2, most of them are also true for
[Z|=1.

Theorem 23,

(i) FS{ (2)#Ey (2)

(i) Ro(Z)=FSy, ()<L, (2)

(i) RV (Z)EFST (2)

(i) FSV (2)<EP (2)

(v) FS,(2)<E,(2)

Let PD(X) be the class of all pushdown transductions, i.e. those functions

which are computable by M € M (X) with exactly one pushdown store as storage
tape. Indices are used as above.

Theorem 24.
(i) PD,(Z)=P(E,(2)
() PDY) (X)#EY (2)
(iii) PDY) (Z)# R (2)
Let Cf (Z) resp. Cfd (2) be the class of all context-free resp. deterministic languages
over 2.

Theorem 25.
(@) Cfd(E)c:Re_l(E‘l”(Z))
(ii) Rel (Eg” (Z))$ Cfd(2)

On Primitive Recursive Wordfunctions 233

(iii) Cf(S)=Rel (B ()
(iv) Rel (E (D)ECS(Z)

Let LB(2) be the class of all functions that are computable by a linear tape
bounded M € M (X).

Theorem 26. E, (X)S LB ().

Finally we conclude by Theorem 6 that the functions and languages defined by
linear bounded automata or stack automata are in E; (X) (P (E5 (2)), Rel (E; (X))
both types of automata are time bounded in E;.

References

[1] Asser, G.: Rekursive Wortfunktionen. Zeitschr. math. Logik Grdl. Math. 6, 258-—278 (1960).

[2] Axt, P.: Iteration of primitive recursion. Zeitschr. math. Logik Grdl. Math. /7, 253255
(1965).

[3] Cobham, A.: The intrinsic computational difficulty of functions. In: Logic, Methodology,
and Philosophy of Science (Bar-Hillel, Y., ed.), Amsterdam: North-Holland Publ. Comp. 1965.

[4] Eilenberg, S., Elgot, C. C.: Recursiveness. New York-London: Academic Press. 1970.

[5] Grzegorczyk, A.: Some classes of recursive functions. Rozprawy matem. 4, 1—46 (1953).

{6] Heinermann, W.: Untersuchungen iiber die Rekursionszahlen rekursiver Funktionen. Dis-
sertation, Miinster, 1961.

[7] v. Henke, F. W.: Verallgemeinerte primitiv-rekursive Funktionen zwischen freien Monoiden.
GMD Seminarbericht Nr. 46 (1972).

[8] v. Henke, F. W.: Primitiv-rekursive Transformationen. Diss. Bonn 1973, to appear in: Berichte
der GMD.

[9] v. Henke, F. W., Indermark, K., Weihrauch, K.: Hierarchies of primitive recursive word-
functions and transductions defined by automata, in: Automata, Languages, and Programming
(Nivat, M., ed.), Amsterdam: North-Holland Publ. Comp. 1972.

[10] Indermark, K.: Pushdown transductions as primitive recursive wordfunctions. GMD Seminar-
bericht Nr. 56 (1972) and Proc. IRIA Sem. (1972).

{11} Kreider, D. L., Ritchie, R. W.: A universal two-way automaton. Archiv math. Logik Grdl. 9,
43—58 (1966).

[12] Meyer, A. R, Ritchie, D. M.: Computational complexity and program structure. IBM Research
Report RC 1817 (1967).

[13] Meyer, A. R., Ritchie, D. M.: A classification of the recursive functions. Zeitschr. math.
Logik Grdl. Math. 18, 71—82 (1972).

[14] Miiller, H.: Uber die mit Stackautomaten berechenbaren Funktionen. Archiv math. Logik Grdl.
13, 60—73 (1970). '

[15] Ritchie, R. W.: Classes of predictably computable functions. Trans. AMS 106, 139—173
(1963).

{16] Ritchie, R. W.: Classes of recursive functions based on Ackermann’s function. Pacific J. Math.
15, 10271044 (1965).

[17) Rose, G., Weihrauch, K.: Eine Charakterisierung der Klassen L; und R, primitiv-rekursiver
Wortfunktionen. GMD Seminarbericht Nr. 63 (1973).

[18] Schwichtenberg, H.: Rekursionszahlen und die Grzegorczyk-Hierarchie. Archiv math. Logik
Grdl. 12, 85—97 (1969).

[19] Tsichritzis, D.: A note on comparison of subrecursive hierarchies. Inf. Proc. Letters /, 42—44
(1971).

234 F. W.v. Henke ef ai.; On Primitive Recursive Wordfunctions

[20} Weihrauch, K.: Hierarchien primitiv-rekursiver Wortfunktionen I. GMD Seminarbericht Nr. 49
(1972).

[21] Weihrauch, K.: Hierarchien primitiv-rekursiver Wortfunktionen II. GMD Seminarbericht
Nr. 57 (1972).

[22] Weihrauch, K.: Teilklassen primitiv-rekursiver Wortfunkiionen. Dissertation, Bonn, 1973; to
appear in: Berichte der GMD.

Dr. F. W. v. Henke Prof. Dr. G. Rose

Institut fiir Rechner- und Programmstrukturen Case Western Reserve University
Gesellschaft fiir Mathematik und Datenverarbeitung Cleveland, Ohio

SchloB Birlinghoven U.S.A.

D-5205 St. Augustin 1
Bundesrepublik Deutschland

Prof. Dr. K. Indermark

Dr. K. Weihrauch

Institut fiir Angewandte Mathematik und Informatik
Universitdt Bonn

Wegelerstrafie 6

D-5300 Bonn

Bundesrepublik Deutschland

