
Comput ing 15 ,217- -234 (1975)
�9 by Springer-Verlag 1975

O n P r i m i t i v e R e c u r s i v e W o r d f u n c t i o n s

F. W. v. Henke, K. Indermark, G. Rose*, and K. Weihrauch, Bonn

Received October 21, !974

Abstract - - Zusammenfassung

On Primitive Recursive Wordfunetions. In order to compare primitive recursive functions and
transductions defined by automata in a natural way independent of eneodings, we generalize the
Grzegorczyk hierarchy, the recursion number hierarchy and the loop hierarchy from arithmetical to
wordfunctions. We observe several differences between the arithmetical and the non-arithmetical
theory. By means of Turingmachines and generalized sequential machines all inclusion problems
for the function classes of these hierarchies are solved. Transductions and languages defined
by automata are classified within these hierarchies. Moreover, we introduce and study primitive
recursive transformations between different monoids.

fQSer prlmitiv-rekursive Wortfunktionen. Um einen natiirlichen, yon Kodierungen unabh~ngigen
Vergleich zwischen primitiv-rekursiven Funktionen und Automatentransduktionen zu erm6glichen,
werden die Grzegorczyk-Hierarchie, die Rekursionszahl-Hierarchie und die Loop-Hierarchie yon
ar]thmetischen auf Wortfunktionen veraltgemeinert. Dabei ergeben sich einige Unterschiede zum
arithmetischen Fall. Unter Benutzung von Turingmaschinen und verallgemeinerten endlichen
Automaten werden alle Inklusionsprobleme der Funktionenklassen dieser Hierarchien gel6st. Von
Automaten definierte Funktions- und Sprachklassen werden innerhalb dieser Hierarchien klassi-
fiziert. AuBerdem werden primitiv-rekursive Transformationen zwischen verschiedenen Monoiden
behandelt.

Introduction

There exist essentially two methods of defining computab le functions: by machines
opera t ing on symbol strings or by closing a set of functions under certain
operations. We focus our a t ten t ion here on Tur ingmachines and #-recursiveness
as representatives. In spite of their equivalence with respect to the whole class of
computab le functions, these methods allow different ways of s tudying the sub-
recursive structure of these classes of functions. Machines can be restricted in
their use of storage dur ing the compu ta t i on (pushdown automata , sequential
machines), and in the second case one can delimit the appl icat ion of the closure
operations. These restrictions leed to hierarchies which give some informat ion

* This research was conducted at the Institut far Theorie der Automaten und Schaltnetzwerke
(GMD) while the third author stayed there for one year. His present address: Case Western
Reserve University, Cleveland, Ohio. Support was given by the Gesellschaft fiir Mathematik
und Datenverarbeitung mbH, Bonn.

218 F.W.v. Henke, K. Indermark, G. Rose, and K. Weihrauch:

on the complexity of computable functions. The question whether this sort of
complexity depends on the definition or not leads us to a comparison of the
different hierarchies.

But as /~-recursiveness is based on positive integers and Turingmachines on
symbol strings we have to compare classes of arithmetical functions with classes
of wordfunctions. In the past this difficulty has been dealt with by translating word-
functions into arithmetical functions [11], [14], [15]. So, the results depend on
this translation, often called encoding.

One aim of this paper is to remove that dependency. Instead of restricting the study
to arithmetical functions we extend the theory of #-recursive functions along the
lines developed by Asser [11, Eilenberg and Elgot [4]. The essential idea is to
regard finitely generated, free monoids as monadic algebras where we have several
successor functions instead of only one as in the arithmetical case. Although most
theorems carry over directly to the general case there are some points where we
have a difference between the arithmetical and the non-arithmetical theory.
The reason lies in the fact that the use ot two symbols allows alternatives
within the recursion scheme. So, in the non-arithmetical case, some results were
strengthened, some problems could be solved.

In the first part of this paper we generalize primitive recursive hierarchies: the
Grzegorczyk hierarchy [16], the recursion number hierarchy [2], [6] and the loop
hierarchy [12], [18]. For the corresponding classes of functions all inclusion
problems are solved. As a main tool we use a description of Turing machines by
primitive recursive wordfunctions that shows a close connection between com-
plexity classes of Turing machines and those hierarchies. Of particular interest
is a simple characterization of the first Grzegorczyk class in the non arithmetical
case. Furthermore we need a special construction of GSM's (generalized sequential
machines) in order to characterize the second loop class and the second recursion
number class.

In the second part we introduce primitive recursive transformations from one
monoid to another with the intention of classifying encodings. Two different
definitions turn out to be equivalent. Moreover we define Grzegorczyk classes
of transformations and study the relation between transformation and function
classes, in particular closure properties with respect to composition and the in-
fluence of encodings.

In the last part we give some applications. Transductions and languages defined
by automata are classified within primitive recursive hierarchies.

This is the final version of a series of reports on this subject. Detailed proofs can
be found in [7], [8], [9], [10], [17], [20], [21], [22].

Notation

N denotes the set of non-negative integers and I;* the free monoid generated
by an alphabet N={a 1,..., at} with e as the empty word. For w ss [wi
denotes the length of w. In most cases we write 2 for (x 1 xk) and !2[for

On Primitive Recursive Wordfunctions 219

(I x l I Xk 1). F (k) (Z) is the set of all functions f : (z*)k-~ 2:* and

F (Z) := ~j F (k) (Z).
k=O

For each K _ F (2) we define K("): = K n F (~) (Z).

The index Z is dropped for r = 1. For two sets A and B we write A c B iff A _ B
and A :~ B. A partial function f from A to B is denoted by f : A ~ B.

Part 1: Hierarchies of Primitive Recursive Wordfunctions

1. Basic Definitions

Primitive recursive wordfunctions were introduced by Asser [1] and studied by
Eilenberg and Elgot [4]. The concept of primitive recursiveness can be generalized
from N to Z* using r successor functions instead of only one (r := [Z [; N ~ {al }*).
This means in particular that the primitive recursion scheme must contain a
recursion equation for each successor function. Now, we have the choice of
starting from right- or left-successors. Without affecting the results we choose
left-successors for the base.

Definition 1 : Base Functions
The set B (Z) of base functions is the subset of F (Z) that consists exactly of the
left-successors ;t i (i---1, ..., r), the zerofunctions w (~ and w (1) and the projections
~I k) (k>_l, l<l<_k). They are defined by 2 i (x) = a i x , w<~ w<l)(x)=e and

k) (x , . . . , =

Def'mition 2: Operations
a) Composition: For f e F (k) (Z) and gl, .-., gk e F (z) (X) the composition h e F ~) (Z)

is defined by h (x)= f (g 1 (x), ..., Ok (X)). Notation: h= f o (gl Ok).

b) Primitive recursion: From f e F (k) (Z) and gl gr ~ F(k+2) (~F) the function
h e F (k+ 1) (Z) is formed by primitive recursion iff

h (:~, e) = f (2)
h (2, a~ y) = gl (2, y, h (s y)) (i = 1, ..., r).

N0tation: h = ~ (f, (gi)).

c) Limited recursion: If in addition to h - - ~ (f, (gi)) as in b) there is d e F (k + 1)(Z)
limiting h by Ih(5)l_<ld(~)l for all 5e(Z*) k+l, we say: h is formed by
limited recursion from f and gl, -.-, gr resp. d. Notation h= ~ (f, (gi); d).

d) Simultaneous recursion: From f i~ F(k) (Z) and 9~1 gi~ ~ F(k+l+ 1) (Z) the
functions hl e F (k+ 1)(Z) (i= 1, . . . , /) are formed by simultaneous recursion iff

h~ (2, e)=f~ (2) (1 < i< l)
h~(Yc, a jy)=g~j(s y) h~(2, y)) (1 <_j_<r)

Notation: h,~ =~,, ((f~), (glj)) for 1 _< m_< l.

e) Limited simultaneous recursion: If in d) the functions h i are limited by
di~F(k+l)(Z), i.e. [hi(~)l<ldi(~)l for all ~e(Z*) k+l (l_<i<_l), we say: the

220 F.W.v. Henke, K. Indermark, G. Rose, and K. Weihrauch:

functions h~ are formed by limited simultaneous recursion from f~ and g~j resp. di.
Notation: h,, =~, ,((f~), (gij); (di)) (1 _< m_< l).

By repeated application of these operations to the base functions we construct
the class of primitive recursive functions over X together with three hierarchies.

Definition 3: Primitive Recursive Wordfunctions
The class Pr (Z) of primitive recursive wordfunctions (over Z) is the smallest
class K ___ F (Z) that contains B (Z) and that is closed under composition and
primitive recursion.

Defmition 4/: Recursion Number Hierarchy
The recursion number classes R, (Z) (n > 0) are defined by induction:

(i) R o (Z) is the smallest class K c F (Z) that contains B (Z) and that is closed
under composition.

(ii) R,+ 1 (Z) is the smallest class K _ F (Z) that contains R, (Z) and that is closed
under composition and under primitive recursion over R, (s i.e. from f,
(g~) ~ R, (27) and h =~3 (f, (gi)) we have h ~. R,+ 1 (X).

Definition 5: Loop Hierarchy
If we replace "primitive recursion" by "simultaneous recursion" in Definition 4
we get the loop classes L, (X) (n_> 0).

In order to define the Grzegorczyk hierarchy we need a sequence of "growth
functions". We generalize Ritchie's definition [16] which is slightly different
from the original one in Grzegorczyk [5].

Definition 6: Generalized Ackermann Functions

In Pr (2) (Z) we define the sequence x (A,) ,~ by A~(x,y):=al y, Aftx, e):=x,
A t (x, e):=e, a , ~ (x, e) :=a 1 (n>3),_ A,+lz (x, a, y):=A~, (x, A,+ 1 ~ (x, y)) (n>0,_
i=1, ..., r).

Definition 7: Grzegorczyk Hierarchy

For each n ~ N the Grzegorczyk class E, (Z) is the Smallest subclass of Pr (22)
that contains B (Z) together with A, ~ and that is closed under composition and
limited recursion.

These hierarchies are generalizations from the corresponding notions in the
arithmetical case: see Heinermann [6] and Axt [2] for the recursion number
hierarchy, Meyer [12] for the loop hierarchy which turns out to be equivalent
to Schwichtenberg's definition [18] based on simultaneous recursion, and
Ritchie [16] for the Grzegorczyk hierarchy. Grzegorczyk classes are defined
as growth classes: Eo(Z) contains only functions with a growth of]x~t+k,
E 1 (X) functions with linear growth, E 2 (Z) functions with polynomial growth,
E 3 (I2) functions with exponential growth, and so on. In general, primitive re-
cursion produces functions with much more growth; limited recursion restricts
this growth. As we used the length of words in Z* in the definition of limited
recursion we have strong analogies between arithmetical and non-arithmetical
Grzegorczyk classes.

On Primitive Recursive Wordfunctions 221

2. Elememary Inclusion Properties

In the next three sections we solve the following inclusion problem: is A __ B
f o r & B � 9 {R. (S), L. (S), E. (~) [n � 9 N}?

The solution shows in particular that these classes form three hierarchies which
are nearly identical.

From the definitions we conclude directly the following properties:

R, (2) c R.+ 1 (Z), L, (S) ___ L,+ 1 (X), R. (X) c__ L, (Z), R o (X)=L 0 (X),
(1)

i v i v
U R, (X)=Pr (X) and U E. (Z) c Pr (X). (n �9 N)

n=0 n=0

There is a close relationship between arithmetical and non-arithmetical functions
that is demonstrated by Lemma 1. It is very useful in generalizing results from
the arithmetical case to the non-arithmetical one.

Lemma 1. Each K �9 {R,; L,, E, [n_>0} has the following properties:

(i) For each f �9 K there is f z �9 K (X) such that f (1 2 1) = i f r (2)[.

(ii) For each f~ �9 K (X) there is f �9 K such that I f z (2) 1 _< f (I 21).

The proof is straightforward by induction on the structure of K resp. K (Z).
As an immediate consequence we have Theorem 1 which enables us to show the
hierarchical structure of the Grzegorczyk classes.

Theorem 1. Let f z be defined by primitive recursion over E, (X). Then f s �9 E(k) (Z)
iff there is d �9 E (f) with I f z (2)[< d (1 2 1) for all 2 �9 (X*) k.

For the arithmetical Ackermann functions we know that

A i (x, y)<Ai (x+2, y + 2)<Ai+ 1 (x+2, y+2)

and furthermore that A,+ 1 grows more than each function of E (2). By Lemma 1
and Theorem 1, this can be generalized to wordfunctions:

Lemma 2. Let n �9 N. For all k <_ n we have:

A k �9 E, (S) and A,+ 1 dg E, (Z).

This result proves that the Grzegorczyk classes form a hierarchy:

E, (Z) c E,+~ (X) (n �9 N). (2)

Although E o (X) contains only functions which grow very slowly we can show
that every recursively enumerable subset of S* can be enumerated with a
function of E(o ~) (S). The "conditional definitions" are other examples of functions
in Eo(S): for f � 9 which is constant almost everywhere we have
f �9 E o (Z) c~ R 1 (Z).

Our next aim is to compare loop classes with Grzegorczyk classes. Using encoding
and decoding of word tupels we reduce simultaneous recursion to simple recursion.
Essentially, we require the following theorem on pairing functions which demon-

Computing 15/3 16

222 F . W . v . Henke, K. Indermark, G. Rose, and K. Weihrauch:

strates in particular the difference between arithmetical and non-arithmetical
function classes.

Theorem 2. There exist functions t/: (2;,)2 _> 2;, and t h , tl: : X*-+ 22* which have
the following properties:

(i) 7 , ~ (i = 1, 2)

(ii) I f for i= t, 2 [xi [<_ [Yi l, then I t/(Xl, x2) [<_r.] t/(Yl, Y2)].

(iii) For r= 1 there is tl e R 2 r~ E 2 and tl 1, q2 ~ R3 c~ Eo,
for r> 1 there is t t ~ R 1 (Z) m E 1 (2;) and th, rtz ~ R 2 (2;) c~ E 0 (22).

Moreover, it can be shown that for r = 1 there are no functions ~/, ~/1, v,: such that
(i) and t/e R 1 U E l i The following functions satisfy Theorem 2:

t l (x , y) = (x + y) Z + y (r= l)
and

t I (air . . . aik , a j l . . . aj l)~---a 1 a~ 1 a 1 . . . a 1 a~ k a I a I a jl a 1 . . . a 1 a~ a 1 (F~> [) .

But there does not exist any linear bounded injection t/: N z ~ N. Now, we can prove
the following theorem:

Theorem 3. E, is closed under limited simultaneous recursion for n >_ 2. But E n (2;)
with [X [>_ 2 has this property even for n >_ 1.

So, we can show some relations between loop classes and Grzegorczyk classes:

Lo(2;)~__.E0(2;) , L 1 (2 ;) ~ E l (2;), Ln(2;)~...~_En+l(z~..,) (n_>2) (3)

As a corollary we have:

U R . (Y.)--- U L . (X)= E. (2;)= Pr (2;) (4)
n=0 n=0 n=0

In the next section we develop some theorems on Turing machines that give
more insight into these relationships.

3. Inclusion Properties Proved by Turing Machines

The arithmetical Grzegorczyk classes form complexi ty classes. This fact follows
immediately from the Union Theorem of McCreight and Meyer for Shepherdson-
Sturgis machines [-18] and for Turing machines [3]. In the latter case we see
again some dependence on encodings. This difficulty is solved here by comparing
functions over the same alphabet. It can be shown that the transition function of
a Turing machine is describable by very simple primitive recursive wordfunctions.

The class 9J~ (Z) of turing machines we have in mind is specified in the following
way: M ~ 93l (Z) is deterministic and has n input tapes, m storage tapes and one
output tape. M starts in its initial state with empty output and storage tapes
reading with each input head the blank b on the left to each input word (b ~ 2;).
At each step M prints from left to right a symbol, possibly b, on the output tape.
Occasionally, M stops in its final state with that word as output word which is
obtained from the output tape by omitting the blanks. Without loss of generality

On Primitive Recursive Wordfunctions 223

we assume furthermore that all tapes, except the output tape, are always of the
form ... bb w bb ... (w eZ*), w called "inscription", and that the heads do not ex-
ceed the first blank to the left and to the right of w. Finally, it is convenient to
change this model such that M does not really stop in its final state but continues
working without affecting the output. This can be achieved by a loop not leaving
the final state and printing blanks.

We shall now describe the computat ion process of M by some wordfunctions. For
simplicity we assume n = m = 1. Furthermore, we take the set S of states, the set
i) = {left, right, not} of moves and Zo = X w {b} as disjoint subsets of Z* such
that b becomes e and a s E remains unchanged.

a) The transition function o f M 9M : (Z*)8 ~ (2")8 determines for each instantaneous
description of M the successor description that is achieved in one computat ion
step. An instantaneous description :2 = (x, Xs) has the following components:
xl is the reverse of the word on the left to the input head, x 2 the symbol below the
input head, x 3 the word on the right to the input head, x4, x 5 and x 6 give the
corresponding parts of the storage tape, x 7 is the word on the output tape
and x s is the state.

b) The function 0M : (X*)2~ X* is defined such that 0 M (x, y) is the inscription of
the output tape after I Y l steps of M beginning with input x.

c) The step counting function TM: Z * ~ X * has the following property: if M
reaches its final state on input x in k steps then T~t (x)= a~; T~ (x) is undefined
iff M does not reach a final state on x.

d) The function computed by M f g : Z * ~ E * gives for each input x the output
word that is on the output tape when M enters the final state, else undefined.
Thus: f u (x) = 0 M (x, T u (x)).

Theorem 4. Let M~gJt(X) and t : = 3 n + 3 m + 2 . The transition function
gM:(Z~*)t-+(~-,*) t can be extended to O:(X*)t~(Z*) t such that 0i:=rcl 0 og is in
R 1 (Z) n E 1 (X) (i= 1,. . . , t).

Proof: Again we assume n = m = 1. M can then be given by a function

6 : S x X 0 x X 0 --+ S x X 0 x X 0 x D x D. ~ (s, c 1, c2)= (s', c~, c 3, dl , d2)

means: reading in state s c 1 on the input tape and c 2 on the storage tape, M
changes into state s', printing c~ on the storage and c a on the output tape
and moving input resp. storage head by d~ resp. d2. With the embedding from
above we have 6:(2")3-- ,(X*) 5 which we extend to A: (X*)3~(Z*) 5 by de-
fining A ()2):=(e, e, e, e,e) if)2 d/ domain (g). It can be shown easily that
A~ :---r~Is) o A is in R1 (Z)c~ Eo (X)(i= 1 ,5), see the remark following property
(2). As auxiliary functions we need the concatenation of words c n : (S *) z ~ X *,
the function d f : 2 2 * ~ X* that deletes the first symbol of a word and the function
f s : X * ~ X* that gives the first symbol of a word, additionally d f (e) = f s (e)= e.
They are all in R 1 (X) c~ E 1 (X).

Now, we can describe the desired function 0 =(gl , ..-, .qs) over A 1, .--, As, cn and
d f b y definition of cases. Let)2 = (xl, ..., Xs) and ~ = (Xs, x2, xs).

16"

224 F.W.v. Henke, K. Inderrnark, G. Rose, and K. Weihrauch:

i
x 1 if A 4@)=not

2~xX2! if A,~ @)-- left
g~ (2)= x~) if A 4 (~)=right

k xa otherwise

x z if A 4 @)=not
Oz(2)= f s (x l) if A4(~)-=left

f s (x s) if A~ @)=right
x 2 otherwise

93 is symmetrical to 9~; 94, 95, g6 are defined in a similar way with A s instead of
A 4 and by using A 2 in addition.

~ (~)-- cn (~, ~ (~))
0~ (2)= A~ (~)

All functions used in this definition are in R 1 (X) c-~ E a (2;). As this class is closed
under definition by cases we have proved the theorem. Q.E.D.

Theorem 5. For M e 9~ (Z) with n input tapes the function 0M : (Z*) "+ i ~ S* is in
L 2 c~ g 2/f[2; [= 1 and in L z (2;) c~ E 1 (Z) if[Z [> 1.

Proof: We define G : (~*)"+ 1 ~ (~ .) , , (n': = 3 (n + m) + 2) by G (2, e)=e (2), where
c~ (2) is the initial instantaneous description of M with input 2, and G (2, a~ y)=
=0 (G (2, y)). As we have [~I "') o 0 (zl z,,)[_< [z~]+ 1 for all i= 1, ..., n', G is
defined by limited simultaneous recursion over R~ (1:)c~ E 1 (2;). The assertion
follows now from Theorem 3 and 0M = ~'("'),o,, _ ~ o G.

Theorem 6. Let M e g)I (2;) such that lTM(2) l<_t t (2) l for some t : (X*)"- ,S *.
Then the followin9 holds:

(i) t~E,(2;)=' , f ~ E , (2 ;)

(ii) t ~ L , (2;) ~ fM ~ L , (Z,)

(iii) t E R . (S) ~ fM ~ R , (~,)

(/f (r = l and n > !) or (r > l and n_>l))

(n_>2)

(n>_3)

Proof: fM (2)=0(2, t(2)). See Schwichtenberg [18] for a proof of (iii) in the
case r = 1.

Theorem 7. For f e En (X) (n __> 2) there is a T u r i n machine M e ~ (I;) and a
t s E. (S) such that fM = f and] T M (2) 1 < [t (2) 1 for all 2 e domain (f) .

This theorem can be proved by induction over the construction of f in E, (1:).
For the base functions there are simple machines, composition and primitive
recursion can be simulated by combining the corresponding machines appro-
priately.

Theorem 6 (i) and Theorem 7 characterize Grzegorczyk classes E, (2;) for n_>2
as complexity classes. If [2;1___2, we can characterize even E 1 (X) by Turing
machines.

Theorem 8. Let I S I >- 2 and f ~ F (S). Then we have f ~ E t (Z) iff there is M ~ ~ (22)
such that f = fM and [T M (2)1 _< [t (2)1 for some t ~ Ez (2;) and M is linear bounded

On Primitive Recursive Wordfunctions 225

on all tapes by the input length (i.e. M computes f in polynomial time and on
linear bounded tapes).

As we do not need this theorem to prove any inclusion properties we omit the
proof.

These results enable us to show that the three hierarchies are nearly identical:

L 2 (Z)=E 3 (Z), R.(Z)=L.(X)--E.+~ (X) (n>_3). (5)

Proof: See Schwichtenberg [18] for IX[=1. Let 121>_2 and f e E 3 (S). By
Theorem 7 there is M e ~) l (X) with f M = f and [TM(2)I_<[t(2)[for some
t ~ E 3 (Z). By Lemma 1 we have t' e E 3 with [t (2)] <_ t' (I)2]).

Now, we can apply a lemma of Schwichtenberg by which each g e E,+ 1 can be
bounded by some g 'e R, (n>-2). So, together with Lemma 1, we conclude:
[T~t (2) [_< [t" (2) [for some t" e R 2 (X). As R 2 (27) __ L 2 (z~) we see from Theorem 6
that f e L z (X). In just the same way we prove that E, +, (N) ~ R, (27) for n_> 3. We
conclude this section with the following result:

For [Z [>- 2 we have R 2 (Z)= L 2 (27).
(6)

(Note added in proof: R 2 = L2, shown by H. Mtiller, Miinster.)

Proof (Sketch): We have only to show that E 3 (27) _~ R 2 (N). This problem can
be reduced to the problem of proving that E~ 1) (27)~ R(21) (X).
For feE(3~)(27) there is a Post machine P over Z together with functions
c, d, t e R 2 (27) such that f = d o fv o c and] Tv (c (x))l _< [t (x)[for all x e 27*. The
assertion follows now from the fact that 0 e e R 2 (27).

4. Inclusion Properties Proved by Generalized Sequential Machines

In order to give a complete solution to the inclusion problem we still have to
investigate the relations between the following classes:

R o (Z), R, (S), L o (X), L~ (Z), E o (Z), E 1 (2).

The diagram shows what we have proved already.

/R o (X)= L o (Z)
/ '.,

R 1 (2) ",.

o" + E (z)
�9 L (z 2. /

E~ (z)

A --+ B stands for A -- B, A ---~ B for A __ B.

Moreover, as the concatenation is in R 1 (X), but not in R o (Z) and the Ackermann
function Af in R1 (N), but not in E o (Z), we have:

R o (r) c R1 (Z), R a (S) ~; Eo (S), LI (S) ~; E o (Z). (7)

226 F.W.v. Henke, K. tndermark, G. Rose, and K. Weihrauch:

The remaining problems are solved by characterizations of R 1 (22) and L~ (S).
This is quite simple in the arithmetical case [19], for [S] >_ 1 we use Generalized
Sequential Machines (GSM for short).

Definition 8. M is a Generalized Sequential Machine over Z (M ~ GSM (X)) iff
M = (K; %, fi, 2, o9) where K is a non-empty, finite set of states qo s K the initial
state, 6 : K x Z ~ K the transition function, 2 : K x X ~ Z* the output function
and ~o : K ~ Z* the last-output function. M computes a function f~u : Z * - ' Z*
in the following way: let 6M : S*-- 'K be the function that gives the state of M
after input w, i.e. 6 M (e)=%, 6g (wai)=6 ((~u (w), ai) (i= 1 r) and f~ : Z * ~ S*
be the function that describes the output without recognizing the end of the
input tape, i.e. f~t (e)=e, f~t (wai)=f~t (w))~ (6M (w), ai), then we can define f~u by
f ~ (w)=fs (w)(6 M (w)).
Thus, a GSM computes a one-place function. In order to compute many-place
functions, too, we introduce GSM-products.

Definition 9. Let n_> 1. P(") is a GSM-product over Z (pc,o~ GSMP (Z)) iff
P(")= (M 1, M2, ..., M~, is, m s) where M 1,..., Mq ~ GSM (Z) (q >_ i), is: { 1, 2 q }--*

{ 1,2, . . , n} the input-selector function and m s: K ~ { 1 , q} (K disjoint union
of K 1 Kq) the machine-selector function.

For each d > 1 pc,) computes a function fe('),d : (Z*) '~ (Z*): let 3e(,),d : (Z*)"--, K
be the function that gives the state of pc,) after d GSM-computations, more
exactly we define by induction

,~p(.~, ~(Wl w.) = ~M, (w~.)) , ~ . (,) . ~+ ~ (w~ w.) = ~M~ (w~(~)

where
k = ~ s (~ ~ ~ (w~ w,)).

then we get fP(.) ,d by fe(.t 1 (wl w.)=fM1 (wig(i)),

fpc./,d+l (wl, ..., w.)=J~(.I ,d (Wl W.) fg~ (Wis(k)) (k as above).

Finally, we call f : (Z*)"~ Z* GSMP-computable iff there is P(") ~ GSMP (2) and
d_> 1 with f =fec "~ ,d.

Now we have a tool to characterize Lx (Z).

Theorem 9. Let f ~ F (2). Then f E Lx (N) iff f is GSMP-eomputable or f e F ~~ (X).

Theorem 10. The range of an f ~ L 1 (F.) is context-sensitive.
The last result can be shown as a consequence of Theorem 8 and the fact that
each GSMP-computable f : (N*)"-~N* has the following property:

V A V z=f(2)^lx~x2...x,,l<_k(lzl+l).
k e N z ~ range (f) 2 E (X*)"

As we know on the other hand that every recursively enumerable set is the
range of an f e E o (2), we have the corollary

Eo(22)~L~ (Z), Eo(S)q~Rl(Z), R o (Z) c E o (X) and L I (Z) c E I (X). (8)

As an example we note that the reversal function is in E o (Z), but not in L 1 (Z).

On Primitive Recursive Wordfunctions 227

Now, it remains to solve the problem whether L 1 (Z)~_R~ (Z) or not. For the
solution we characterize R~ (Z) by loopfree GSM's .

Definition 10.
(i) Let M = (K; qo, J, 2, o)) ~ G S M (Z).

M is called loopfree iff for all p, q e K and x, y e Z* we have

6M (P, X) = q, 6 M (q, y) = p=~p = q.

(ii) Let P(") = (M1, ..., Mq, is, ms) ~ G S M P (Z).
P(") is called loopfree iff M i is loopfree for i = 1, ..., q.

Theorem 11. For f e F (Z) we have:
f ~ R 1 (Z) i f f f is computable by a loopfree GSM-product or f e F w) (Z).

For the proof we can show that f : Z*--} Z* defined by

f (x) = ~ e if 2 divides [x j is in L 1 (S), not in R1 (al else

We summarize our results in the following diagram:-

o = Lo i: 0
E1

Ez

R 2 = L z = E a

R , = L ~ = E ~ + 1 (n>3)

R.+ 1 = L , + 1 =En+2

(9)

A ~ B means A c B
A @ B means A ~ B

and B ~= A

Part 2: Primitive Reeursive Transformations

The notion of a primitive recursive function between different monoids cannot
be defined in the same way as for wordfunctions. We shall discuss two possibilities
that prove to be equivalent.

Let Z = {al, ..., a,} and H = {b 1 bt} be two, not necessarily disjoint alphabets.
The generalization can be achieved by taking special functions for the transition
from Z* to / /* .

228 F.W.v. Henke, K. [ndermark, G. Rose, and K. Weihrauch:

Def'mition 11.
(i) A function c : S * ~ F I * is called encoding (c s K (2,1-1)) iff for each f s Pr (E)

there is f ' s Pr (11) such that c o f = f ' o c.

(ii) The class P q (2;, 1I) of primitive recursive transformations from Z* to H* is
defined by Pr 1 (S, 11):= K (Z, 11) o Pr (22) (= {co f l c s K (Z, 11) A f s Pr (S)}).

On the other hand we can start from Pr (S w 11) and then restrict these functions
appropriately.

Definition 12.
(i) Let z: S * ~ (S u 17)* be the embedding and v : (X u 11)*~ 17" the projection

defined as monoid homomorphisms by ~(a)=a, v (b)=b , v (b ')=e for all
a s S , b s11 and b' s (Z • 177)\17.

(ii) The class Pr 2 (X, 17) of primitive recursive transformations f rom Z* to H* is
defined by Pr z (E, H): = {v o ~9 o t I 49 ~ Pr (S w H)}. (As v can be understood
as an element of Pr (S w 17) we could have taken without loss of generality
those ~b with range (qS) ~ 11".)

In order to show that these definitions are equivalent we give some preparatory
lemmas and theorems.

Lemma 3. For f s Pr (Z) there exist f ' s Pr (X ~ 17) with f = v o f ' o ~.

Proof: The base functions over 2;* are natural restrictions of corresponding
functions over (S w H)*. If f = g l ~ gz and gi-2g'i o ~ with g'i s Pr (Z t j H), then
f=(g'~ o 9'2) o ~ with (g'l o g'z) E Pr (X w H). If f is defined by primitive recursion
over g, ht hr and g = g' o z, and so on, then f ' can be given by the following
recursion schema:

f ' (2, e)= g' (~)

f ' (2, a i w) = h'i (2, w, f ' (2, w)) (i = 1, r)

f ' (2, bj w) = f ' (2, w) bj e (X w H) \Z

The proof shows in particular that the embedding t is an encoding.

Lemma 4. For each c s K (22, 11) there is c' E Pr (22 w 11) with c = v o c' o t.

Proof: For an encoding c : Z * ~ 1 1 * we have r ~ Pr (11) such that c o 2i=r o c
(i= ! , - - . , r). Let ~b' i be the corresponding function in Pr (22 u 11) according to
Lemma 3. Now, the assertion can be satisfied by the following c' e Pr (s w 11):

c' (e) = c (e)

c' (a, w) = (c' (w)) (i = 1 r)

C' (bj w) = c' (w) for bj s (Z w H)\Z.

This means that encodings are primitive recursive functions in a certain sense,
in particular: K (I2,-22) c Pr (2 ;) . - The next lemma is obvious.

Lemma 5, The composition of two encodings is an encoding.

We shall construct now two encodings that are of special importance. A word
we12* can be understood as the r-adic representation of a natural number.

On Primitive Recursive Wordfunctions 229

Let fi: N ~ * be defined by f i (0) = e and f l (m + l) = h (f l (m)) , where h is given
by h (e) = a t, h (a i w) = ai+ t w (i = 1, . . . , r - 1) and h (a r w) = a t h (w).

The funct ion c~ : Z* ~ N, where e (e) = 0 and a (al w) = i + r . e (w) is the cor responding
"decoding", i.e. c~ o fi = ida.

Theorem 12. ~ and fi are encodings, i.e.
(i) For each f e Pr (Z) there is f ' e Pr with c~ o f = f ' o ~.

(ii) For each g ~ Pr there is g' e Pr (Z) with fi o 9 = g' o ft.

Proof : The p roo f is by induct ion on the s tructure of Pr (Z) resp. Pr.

(i) Fo r f = 2 i the assert ion is p roved by f ' with f ' (m)= i + r . m. The other base
functions and composi t ions are dealt with in an obvious way. If f is defined by
primit ive recursion we const ruct f ' ~ Pr such that the recursion over words is
s imulated in N. To this end we need the following auxiliary functions:

(m) : = [(m - 1) m o d r] + l and ~ (m) : = [~ - ~]

They allow a recursion formula for fl: fl (m)= 2,~(,,)(fl (~5 (m))).

The function ~ with t b (m) =] fi (m)[gives the n u m b e r of recursions which have to
be simulated. ~ , ~/, #~ are primit ive recursive. The details together with the
const ruct ion o f f ' are ra ther lengthy and mus t be omi t ted here.

(ii) The funct ion h f rom above proves the assert ion for the successor function.

Pr imi t ive recursion is s imulated by means of a function ~ where q~ (w)= a~ ~ ~> i.

Corollary. There exis t a bijective f : Z * ~ II* such that f and f - ~ are encodings.

Now, we are able to prove the equivalence of our definitions.

Theorem 13. P r 1 (N, H) = Pr 2 (N, H)
Proof : 1. Fo r f e P r 1 (Z, H) we have f = c o f ' where c a K (Z, H) and f ' ~ Pr (Z).
By L e m m a 4, c = v o c' o ~ with c' E Pr (E u H) and by L e m m a 3, f ' = v o f " o ~ with
f " ~ Pr (E u H). (Note that we use different v's !) So, we conclude f = v o c' o l o v o
o f " o z E Pr 2 (2, H) because l o v ~ Pr (Z • H).

2. Fo r f e P r 2 (Z, H) we have f = v o f ' o t where f ' e P r (Z w H). By the corol lary
there is a bijective c 1 : H * ~ (N w H)* such that c 1 and c~-1 a r e encodings. Using
L e m m a 4 we see that c l o v e P r (2 w 1 7) and so f = c ; l o C l o v o f f o l with
c i o v o f ' e P r (N u H). N o w we take a bijective encoding c2 : 2 " ~ (Z u H)* that
allows to represent f by f = c [1 o c z o c~ 1 o c I o v o f ' o L As c ; t is an encoding
there is f " E Pr (E) such that c 2 1 o cl o v o f ' = f " o c 2 1, and so f e Pr 1 (N, H).

This result justifies the not ion of a pr imit ive recursive t ransformat ion. F r o m now
on we s imply write P r (N, H). The second definition implies a na tura l genera l iza t ion
of Grzegorczyk classes.

Definition 13. For n e N we call E. (Z, H): = {v o f o z I f ~ E . (Z u H)} the n-th
Grzegorczyk class o f transformations.

230 F.W.v. Henke, K. Indermark, G. Rose, and K. Weihrauch:

As an immediate consequence, we see that these classes form a hierarchy for
Pr (2;, H).

Theorem 14.
(i) E, (22,/7) c E, § x (22,/7) for all n E N

(ii) Pr (22, H)= [,..J E. (X, H)
h E N

In the remaining part of this section we investigate the relation between
Grzegorczyk classes of transformations and those of wordfunctions.

Lemma 6. For all n e N the following holds:

E, (22, H) o E n (22) = E, (22, H) = E~ (n) o E, (22,/7)

The proof is similar to that of Theorem 13.

Let 7: Z*--*H* be the bijecfive encoding of Theorem 12 and its corollary. Then
we can give a stronger version of that theorem.

Theorem 15. For all n>3, /f [H I = l , or for all n_>l, /f I H] > I , we have:
E. (22) = ~,- ~ o E . (/7)~ ~.

For the proof we proceed as in the proof of Theorem 12. It is possible to take
the auxiliary functions from E I resp. E I (22) or E I (H). The difference depending
on [H [is due to the fact that for [/7 1> 1 we have ? e E1 (22,/7) and ?- 1 e E~ (H, 22),
whereas in the case of 1/71=1 the function y(i.e, e of Theorem 12) has
exponential growth that cannot be eliminated in the proof. However, we can
show a weaker result for I H [= 1 and n = 0, 1, 2:

En (•) - . -1 oE.+ 1 o~

Unfortunately, we do not know anything about the other inclusion direction.

This difference between arithmetical and non-arithmetical theory turns out to
be fundamental. We abbreviate for the following

1 if [H t > I

@(/ /) := 3 if] H I = I

Lemma 7. Let H1, H 2 be non-empty subalphabets of 22. Then we have for
n >_ @ (/71 u 112) the followin9 property: for each f e E, (22) there is f ' e E, (/71, 1-12)
with f ' = v o f o z where t:/7*--+X* and v : Y}*-+/7 2 as above.

Theorem 16. Let/71,/72,/73 ~- 2. Then we have for n>_ ~ (I I 1 w Ha)

E n (H2, H3) o En (H1, H2) ~- E n (/71, H3)

Proof: Using Lemma 3 we show for f e E , (/ 7 1 , H2) and g e E . (I I 2 , H3) the
existence of h eE,(22) such that 9 o f = r o ho ~. From Lemma 7 we have
g o f e E. (H 1, H3).

Corollary. For n > max (# (Z), # (H)) we have:

(i) E. (/7, S) o E. (S,/7) = E. (S)
(ii) Pr (/7, X) o Pr (X,/7) = Pr (22)

On Primitive Recursive Wordfunctions 231

This corollary shows in particular that the definitions of primitive recursive
wordfunctions and of primitive recursive transformations are compatible.

As encodings are special primitive recursive transformations our results give
some information about their influence: let c e E, (Z,/ /) be an encoding and
d e E, (/7, ~) with d o c = i dz. , then we have for n > max (:~ (r), ~ (/7)) by Lemma 6
and Theorem 15 that c o E. (Z) o d _ E, (H) or c o E, (Z) __ E, (~) o c. So, encodings
have no influence on the complexity of these classes of functions provided that
n is not too small. Yet, the example of the encoding ~ shows that small
Grzegorczyk classes may be shifted.

Part 3: Applications to Automata Theory

The theory of primitive recursive wordfunctions as developed in Part 1 enables
us to give a natural classification of transductions defined by automata within
primitive recursive hierarchies. First we introduce primitive recursive relations
by which we can define partial primitive recursive functions on the one hand, and
classify languages on the other hand.

Definition 14. Let f E F (~) and K _~ F (X).

(i) Rel (f) : = f - 1 ({e}) is called the relation recognized by f .
(ii) Rel (K):= {Rel (f)] f E K}

(iii) P (K): = {f[there is g ~ K and R ~ Rel (K) such that f = g [R}.

In particular, we call f e P (Pr (Z)) partial primitive reeursive. This is justified
by the following result.

Theorem 17. Let [Z [>_ 2 and n > 1. I f for M ~ 9~ (Z) there is t ~ E. (Z) such that
J T u (2) [< I t (2) 1 for all 2 e domain (fM) then we have fM ~ P (E, (Z)).

It is easy to prove that the primitive recursive relations form hierarchies ana-
loguous to functions.

Theorem 18. For all k, n ~ N we have
c (k) (i) Rel (E~, k) (~.1) _ Rel (E, +1 (Z))

(ii) Rel (R~) (Z)) (k) ~_ Rel (R. +1 (2;))
(iii) Rel (L~, k) (X)) ~_ Rel (L~k)+ l (Z))

For k >_ 1 and n >_ 2 we can even show that
(iv) Rel (e~ k) (Z)) = Rel (E~+ I (Z))

It is an open problem whether Rel (E o (Z)) + Rel (E, (X)) + ReI (E 2 (X)).

Furthermore, we investigate some closure properties of these classes. The results
are put together in the following theorem.

Theorem 19.
(i) Rel (R~ k) (2)), Rel (L(. k) (Z)) and Rel (E~) (Z)) are closed under the operations

of complement, union and intersection if k>_ O, n>_ 1 and m>_ O.

(ii) Rel (R n (Z)), Rel (L. (Z)) and Rel (Em (~)) are closed under cartesian product
if n>__l andm>_O.

232 F.W.v. Henke, K. Indermark, G. Rose, and K. Weihrauch:

(iii) For all n e N Rel (E(, l) (S)) is closed under inverse mappings from E~ l) (S).
(Analoguous for R, and L,.)

(iv) For n>_ 1 Rel (E(~ l) (2`)) is closed under concatenation.
(v) For n>_3 Rel(E(~l) (S)) is closed under crossproduct (M + : = M u M2w ...).

Meyer and Ritchie]-13] call f e F elementary honest iff graph (f)eRel(E3) .
There are such functions with arbitrary growth, We can prove a stronger result.

Theorem 20. Let [N [>- 2. For each recursive f e F (2,) there is g e F (Z) such
that t f (2) 1<-I g (2)I for all 2 e domain (f) and graph (9) e Rel (E 1 (Z)).

We have now provided the necessary tools for the classification of functions and
sets defined by automata. It turns out that the primitive recursive hierarchies
do not form an appropriate framework for this task. Restricted Turing machines
define functions that are on a very low hierarchical level.

Theorem 21. Let l X 1>-2. The non-regular language {a~ a'[] n e ~} and the non-
context-free language {a] a~ a~ I n e ~} are in Rel (E o (2`)).

Theorem 22. The class Reg (X) of regular languages over X is properly contained
in Rel (E~o l) (2`)).

FS (X) shall denote the set of finite state transductions over S, i.e. the set of those
functions which are computable by M e 9J~ (2`) without storage tapes. We use lower
index 1 to denote one-way input and lower index t to denote total functions.

The following results hold for the case [Z] >_ 2, most of them are also true for
t2`1=-1.

Theorem 23.
(i) FS(I'} (Z)#+ t' (z)

(ii) R o (N)cFSlt (X)cL1 (2)
(iii) R] :t) (2)*FSi~t) (X)
(iv) FS " (2)̀= (z)
(v) FSt (2)̀ = E2 (X)

Let PD (2`) be the class of all pushdown transductions, i.e. those functions
which are computable by M e 931 (2)̀ with exactly one pushdown store as storage
tape. Indices are used as above.

Theorem 24.
(i) PD i (2,)ce(E I (2))

(ii) PD(~t) (2`)~ E(o ') (2̀)
(iii) PD(I't) (X)@ R(~) (2,)

Let Cf (2) resp. Cfd (2`) be the class of all context-free resp. deterministic languages
over 2,.

Theorem 25.
(i) Cfd (2,)~Re! (E~ ~) (X))

(ii) Rel (E(o ~) (X))~ C f d (X)

On Primitive Recursive Wordfunctions 233

(iii) C f (X) c R e l (E(z 1) (Z))

(iv) Rel (E(o 1) (Z))~ C f (Z,)

Let LB (~) be the class of all functions that are computable by a linear tape
bounded M e 93l (~).

Theorem 26. E 1 (Z)~_LB (Y,).

Finally we conclude by Theorem 6 that the functions and languages defined by
linear bounded automata or stack automata are in E3 (Z) (P (Ea (~)), Rel (E a (Z))):
both types of automata are time bounded in E 3.

References

[1] Asser, G. : Rekursive Wortfunktionen. Zeitschr. math. Logik Grdl. Math. 6, 258---278 (1960).
[2] Axt, P.: Iteration of primitive recursion. Zeitschr. math. Logik Grdl. Math. 11, 253--255

(1965).
[3] Cobham, A.: The intrinsic computational difficulty of functions. In: Logic, Methodology,

and Philosophy of Science (Bar-Hillel, Y., ed.), Amsterdam: North-Holland Publ. Comp. 1965.
[4] Eilenberg, S., Elgot, C. C. : Recursiveness. New York-London: Academic Press. 1970.
[5] Grzegorczyk, A.: Some classes of recursive functions. Rozprawy matem. 4, 1 4 6 (1953).
[6] Heinermann, W.: Untersuchungen fiber die Rekursionszahlen rekursiver Funktionen. Dis-

sertation, Miinster, 1961.
[7] v. Henke, F. W. : Verallgemeinerte primitiv-rekursive Funktionen zwischen freien Monoiden.

GMD Seminarbericht Nr. 46 (1972).
[8] v. Henke, F. W. : Primitiv-rekursive Transformationen. Diss. Bonn 1973, to appear in: Berichte

der GMD.
[9] v. Henke, F. W., Indermark, K., Weihrauch, K. : Hierarchies of primitive recursive word-

functions and transductions defined by automata, in: Automata, Languages, and Programming
(Nivat, M., ed.), Amsterdam: North-Holland Publ. Comp. 1972.

[10] Indermark, K. : Pushdown transductions as primitive recursive wordfunctions. GMD Seminar-
bericht Nr. 56 (1972) and Proc. IRIA Sere. (1972).

[11] Kreider, D. L., Ritchie, R. W. : A universal two-way automaton. Archiv math. Logik Grdl. 9,
43--58 (t966).

[12] Meyer, A. R., Ritchie, D. M.: Computational complexity and program structure. IBM Research
Report RC 1817 (1967).

[13] Meyer, A. R., Ritchie, D. M.: A classification of the recursive functions. Zeitschr. math.
Logik Grdl. Math. 18, 71--82 (1972).

[14] Mtiller, H.: [Jber die mit Stackautomaten berechenbaren Funktionen. Archly math. Logik Grdl.
13, 60--73 (1970).

[15] Ritchie, R. W.: Classes of predictably computable functions. Trans. AMS 106, 139--173
(1963).

[16] Ritchie, R. W. : Classes of recursive functions based on Ackermann's function. Pacific J. Math.
15, 1027--1044 (1965).

[17] Rose, G., Weihrauch, K.: Eine Charakterisierung der Klassen L1 und R1 primitiv-rekursiver
Wortfunktionen. GMD Seminarbericht Nr. 63 (1973).

[18] Schwichtenberg, H. : Rekursionszahten und die Grzegorczyk-Hierarchie. Archiv math. Logik
Grdl. 12, 85--97 (1969).

[19] Tsichritzis, D.: A note on comparison of subrecursive hierarchies. Inf. Proc. Letters 1, 424-44
(1971).

234 F.W.v. Henke et al. : On Primitive Recursive Wordfunctions

[20] Weihrauch, K. : Hierarchien primitiv-rekursiver Wortfunktionen [. GMD Seminarbericht Nr. 49
(1972).

[21] Weihrauch, K.: Hierarchien primitiv-rekursiver Wortfunktionen II. GMD Seminarbericht
Nr. 57 (1972).

[22] Weihrauch, K.: Teilklassen primitiv-rekursiver Wortfunktionen. Dissertation, Bonn, 1973; to
appear in: Berichte der GMD.

Dr. F. W. v. Henke Prof. Dr. G. Rose
Institut fiir Rechner- und Programmstrukturen Case Western Reserve University
Gesellschaft fiir Mathematik und Datenverarbeitung Cleveland, Ohio

U.S.A. Schlog Birlinghoven
D-5205 St. Augustin 1
Bundesrepublik Deutschland

Prof. Dr. K. Indermark
Dr. K. Weihrauch
Institut ftir Angewandte Mathematik und Informatik
UniversitM Bonn
Wegelerstrage 6
D-5300 Bonn
Bundesrepublik Deutschland

