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Abstract - -  Zusammenfassung 

A Quasi-Newton Method with Modification of One Column per Iteration. In this paper we introduce a new 
Quasi-Newton method for solving nonlinear simultaneous equations. At each iteration only one column 
of  B/c is changed to obtain B k + 1. This permits to use the well-known techniques of  Linear Programming 
for modifying the factorizafion of  B k. We present a local convergence theorem for a restarted version of 
the method. The new algorithm is compared numerically with some other methods which were 
introduced for solving the same kind of problems. 

A M S  Subject  Classification: 65 H 10. 

Key  words: Nonlinear systems, Quasi-Newton methods. 

Ein Quasi-Newton-Verfahren mit Veri~nderung einer Spalte pro Iteration. Wir stellen ein neues Quasi- 
Newton-Verfahren vor zur L6sung von nichtlinearen simultanen Gleichungen. Bei jeder Iteration wird 
lediglich eine Spalte yon B k ver~indert, um B k +; zu erhalten. Dies erlaubt, wohlbekannte Techniken der 
Linearen Programmierung zur Faktorisierung yon B k zu bentitzen. Wir beweisen einen $atz fiber die 
lokaie Konvergenz ffir die Methode. Der neue Algori thmus wird mit anderen bezfiglich seiner 
numerischen Eigenschaften verglichen. 

1. Introduction 

Many problems require the numerical solution of a system of n nonlinear equations 
in n unknowns: 

given F : R'~--+ ~n, find x*~ N" such that F (x* )=0 .  (1) 

The numerical solution of this problem is usually iterative, proceeding at each 
iteration from an estimate x k of x* to a better estimate x k*t. The Newton step s~v is 
the solution of the linear system 

F'  (x  k) s~ = - ~ (xk), 
where 

(~,(x)b :o]i (~), 
o xi 

f~ the i-th component function ofF,  xj thej-th component of the vector x, (F' (X))ij the 
component of the matrix F'  (x) in row i and column j. 
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When analytic derivatives are ~ot available, secant methods ([ i  I, !3, i~5, 21, 23J) 
and Quas i -Newton  (Q - N) methods ([3, 4, 7]) represent  a significant improvement  
over the discretized version of the classical Newton ' s  me tho& Q -  N methods  are 
based in the formulae:  

Bk s k = - F (xk),  

xk+ t = x k + s k, (2) 

where yk=F(xk+l ) - -F(xk ) ,  t'or alt k = 0 ,  t ,2 ,  .. . .  

(2) is called the Fundamenta l  Equat ion of Q -  N Methods.  If  n >_ 2 and sk< 0, many  
matrices will obey (2). If the Jacobian  F '  (x) has special properties,  such as symmetry  
of sparsity, we may  restrict the choice of Bk + ~ to the set of matrices which I'm ve these 
properties. Schubert  ([223), Dennis-Marwil  ( [ 5 J ) a n d  Mart inez  [ i5J  introduced 
methods which allow to keep the sparsity structure of the Jacobian  matr ix  and 
therefore, are able to deal with large-scale problems.  

In this paper  we introduce a new Quas i -Newton  method  where at each iteration 
only one column of Bk is changed to obtain  B~,+~. Provided we store a suitable 
factorization of Bk, the factorization of B~ ~ is obta ined using the ciassical 
procedures used in Linear  P r o g r a m m i n g  ([1,103) even in the sparse case. The 
sparsity structure of F '  (x) remains and the equat ion (2) is satisfied in most  cases. 

In Section 2 we define the method  and prove  a local convergence theorem. In 
Section3 we describe the computa t iona l  implementa t ion  and present  some 
numerical  experiences. Finally, in Section 4 we state some conclusions and suggest 
lines for future research. 

2. Local Convergence Theorem 

General Hypotheses: Let F" D c ~"--, ~ , F a C 1 (D), D an open and convex seL. Let 
F ( x * ) = 0  and F ' (x*)  be a nonsingular  n x n matrix.  We assume that  for a!! x e D  

:! F' ( x ) -  F' (x*) [] <_K II x - x *  It p, K , p > 0 .  

ii.  11 will denote the 2-norm throughout  the paper.  

Lemma 2.1 : For all u, v ~ D 

i F(v)-F(u)-F'(x*)(v-u)ii <_ 
(3) 

_<Kmax  {1 v - x *  i1 p, ]l u - x *  IIp } il v-~.~ II. 

Prooj: See [6]. 

- ~ / r / ,1 The Proposed Method: Let x ~ ~ D an arbi t rary  initial point,  ~- 6 ~0, 1/[/n,, m a positive 
integer, B o a nonsingular  n x n matr ix.  We define recursively a sequence of points (x ~) 
and matrices B k by 

:r + ~ = x ~ _ B ~  1 F (x  l') 

S k  ~ X k + l __ X k 

L '12 --- F ( x .  k + 1 ) _ F (xk). 
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tf k + l  is not a multiple of m, let j be such that I s~l>~ II s k [[. Then define 
Bk+ 1 =(b~ +~) as being equal to Bk=(bf  1) except perhaps at column j. Set I~ be a 
subset of {1, .. . ,n}. Then if icI~, we define 

b~; +~ = (~~ - Z b~ s,~)/4 

and 
=bb if 

k , n} then the equation It is easy to see that  if k + 1 is not a multiple of m and Ij = t  1, ..., 
(2) is verified. The choice o f ly  is made in order  to preserve the structure o fB k. Notice 
that  from [1 sk !1/I s~l< 1/'~ it follows that [ sf [/I s~l< 1/~ for all i =  1,. . . ,  n. We refer to 
the choice of Bk+~ when k +  1 -=0 rood(m) in the following theorem. 

Theorem 2.1: Let r~(0,1) .  Then there exist c=c,(r) and 6 = 6 ( r )  such that if 
l x ~  x* [[ <_ ~ and I[ B k -  F' (x*)II-< 6 whenever k -  0 mod (m) then the sequences (x k) 

and (Bk) are well defined and if F(xk)r  thenl[ x ~+1 - x *  [I <_r I[ x k - x *  I[ jo t  all 
k - - 0 , 1 , 2  . . . . .  

P r o @  Define cl = [ /~ K/a, c2 = nZ/2/L Given e, 6 > 0, define bo, bl . . . .  , b,,_ 1 = b (e, 6) 
by bo=5 ,  bk+ l = c 2 b k + c l e  r, k = 0 ,  1 . . . .  , m - 2 .  We verify that lim b(e. ,6)=0 and 
0 < b o < b ~  < . . . < b m _ ~ .  ~,6~o 

Let e and 6 be such that 

b (e, 6) + K d ~ <_ r/(2 [I f '  (x*) ~ II) (4) 

We shall prove by induction on k that if k ~ q (rood m) then Bk is nonsingular (then 
x ~+ ~ is well-defined), 

!i x k+l - x *  
and 

For  k =0 ,  by hypotheses,  

Now, by (4), 

Then 

I1 ~ r  II x k - x *  I[, I 1 G - F ' ( x * ) [ I  ~b~ 

[I B ~  ~ II ~ 2 ii f '  ( x * ) -  1 II. 

!i Bo - f '  (x*)i i  -< 6 = bo. 

6 + Kg~---r,/( 2 lJ F'(x*) -1 ,I). 

6 _ 1 / ( 2  [l F ' ( x * )  -~ l!). 

Therefore,  by Banach lemma of per turbat ion (see El9]) 

[] Bo -* l[ -< 2 i! F ' ( x * )  -~ [[. (5) 

Then, the fact that ! [ x l - x  * n <-rH x ~  1[ follows from (3) using classical 
arguments (see [4, 6]). 

Consider now an arbi t rary k. I fq  = 0  the proof  is the same as in the case k =0 .  Ifq > 0 
let us prove first that [i Bk-F'(x*)JL <_bq. We use ]i Bk-i  - - f ' (x*) j [  < b q _  1 . Le t  us call 
s = x k - x  k - l ,  y = F ( x k ) - F ( x k - 1 ) .  If F(x  k 1) r  we may suppose s=/=-0. 

Put  B k = (bf~), Bk- 1 ----t(bk-i~ 1~, F '  (x*)= (b~). Let j be the index of the column which is 
changed from B k_ 1 to Bk. Then r sj.[ > ~ II s il > 0. 
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So, if i ~ I~ 

Thus, 

J. M, Martinez: 

bf, = * s , ) / s j =  
ls~j 

= (Y~- 2 b~ s, + 2 b~ s~- 2 b~?'st)/sJ. 
t=-j l~ j  ITj  

n 
k ] b z 2 - b * l ~ l y ~ -  ~ b~s,l/"lsi] 

/ = 1  

+ ~ ]b*-b~z-xilsz[/'lsj]<- 
lv:j 

< H y - f ' ( x * ) s i i / I s j ] +  [h* ~.~,-~ ~ . - . .  [ /~ <- 
I 

<- il y -  F' (x*) ~ il/(~ ii s il) + (n/~) il B~ ~ - F' (x*)II 

<_(K/~) II x k- x - x* IlP + n bq_ l/c~ < 

<__K sP/ct + nbq_ l/o:. 

Of course, the same inequality holds for ir i~', therefore, 

II S ~ -  F' (x*) i] <_ l /n  K d'/~ + n 3'~ b~ ~/c~ 
(6) 

= C  1 8 p + c 2 b q _ l  = b q .  

Let us now prove that Bk 1 exists and [I B~- 1 H -< 2 H F '  (x*)- t [I. In fact, by (4) and (6) 

i[ Bk--F'(x*)l[ <- bq<-b(a,6)~b(~,6)+ K ~ < - 

<-r/(2 H F'(x*)  -1 i[)< 1/(2 II F'(x*)-* it). 

Then, by the perturbation lemma, B[* exists and 

II B ~  * IL <- 2/I i~, ( x * ) -  1 Ik, 

Finally, by (3)-(6) 

lkx k §  ;I = i S ~ - x * - B k  I f ( x ~ ) i l = i i x  k - x * -  

- B~- 1 I F  ( x  k) - F '  ( x * ) ( x  k - x * ) ]  - B [  1 F'  ( x * ) ( x  k - x*)i[  <- 

[i Xk-- X* -- B[  1F'(X*)(xk--X*)[[-t-!l Bk  1 It [I F ( xk ) -  F ( x*} 

- f '  ( x* ) (x  ~ -  x*)~[ <_ Ii I - B ;  1 f '  (x*)JL II x ~ -  x*  11 + 

+ H ~ / -~  II K H x k - x  * II ~ §  -< 

<-II B[  ~ I! Jl B ~ - F ' ( x * ) l l + g e ?  l[ B[  1 l[ H x k - x *  II <- 

<2 iI F' (x*) -1 '~[ (bp + K ~p) [I Xk-- X* I[ <-- 

<_ 2 H F' (x*) III (b (z, g~) + K ~P) Ii x~ - x* II <- 

<_ r II x k -  x* II . 
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3. Numerical Experiences 

We implemented the method defined in the previous section using the Q - R  
factorization of B k. The modification of the Q - R  factorization was performed using 
the procedures described in [9, 16]. The implementation for large sparse problems 
uses the L - U  factorization and the classical updating techniques of Linear 
Programming ([1, 10]). 

We claim that, if the new method is reliable for large sparse problems, it should also 
be reliable for small dense problems. We decided then to test our method for a 
number of classical small problems. Of course, the advantage of this approach is that 
there exist many  well-known small problems in the literature with different kinds of 
difficulties (see [14, 16, 17]). 

The test functions were the following: 

Problem 1, n =  2 (Rosenbrock) 

A (x)= lO (x~ - x~) 

J2 (x)  = 1 - x l  

I: x ~  -1 .2 ,  1) 
II:  10x ~ 

III:  100x ~ 

Problem 2, n = 2 (Freudenstein-Roth)  

J l  (X) = --  13 -}-X 1 -1- [(5 - -X2)  X 2 - - 2 ]  X 2 

f2 (x) = - 29 + xl + [(x2 + 1) x2 - 14] x 2 

I: x ~  

II: 10x ~ 

I I I :  100 x ~ 

Problem 3, n = 5 (Broyden) 

J l  (X) = ( 3  - - 2 X 1 )  X 1 - - 2 X  2 + 1 

f ,  (x) = (3 - 2 x , ) x , - x , , _  1 + 1 

fi  ( x ) = ( 3 - 2 x i ) x i - x i - 1 - 2 x i + 1  + 1, i=2 ,  . . . , n -  1 

I: x ~  

II: lOx ~ 

III :  100x ~ 

Problem 4, n = 4  (Powell) 

J [  (x) = x l  + 10 x2 

f3 (x) = (x 1 -- 2 X3) 2 

A(~)=I/F6(x~ - x O  ~ 
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! :  x ~  - i , 0 ,  !) 

I i :  lOx  ~ 

t i t :  tOOx ~ 

Problem 5, J,.=2 (Powei1) 

./'~ (x) = 10000 x~ x2 - ! 

,/~ (x) = e -  -~ + e - ' 2  _ 1.0001 

~: x~ = ( 0 ,  1) 

I t :  i O x  ~ 

t l l :  lOOx ~ 

Problem 6, n = 3 (Helical  valley) 

r = arc  tan (x2/x l ) / (2  re) 

O = t  if x 1 ~ 0  and  O = t + 0 . 5  if x~ < 0  

./i ( x ) =  lO(x3 - 10 O) 

,/i (x)= lo [ (~  + x]) ~'~- - 1] 

A (x) = x~ 
I:  x~ = ( -  t , 0 , 0 )  

I I :  l O x  ~ 

] I I :  100x  ~ 

Problem 7, J~ = 5 (Brown) 

t~ 

. f ( x ) = x i +  ~ x j - ( n + l ) ,  i = 1  . . . . .  n - 1  
j = l  

o 

.s (~)= H ~ j - !  
j =  1 

[ : x ~ = ( 0 . 5  . . . . .  0 . 5 )  

I I :  l O x  ~ 

I I I :  !OOx ~ 

Problem 8, n = 3 (Brown-Con~e 

A ( x ) = 3 x l + x  2 t - 2 x ~ - 3  

f 2 ( x ) = - 3 x ~  + 5 x ~ + 2 x ~ x 3 - ~  

./; (x) = 25 xl  x2 + 20 x3 + 12 

I:  x~ = ( 0 , 0 , 0 )  

1I: x ~  10) 

I l l :  x ~  100) 

Problem 9, n = 6 (Deist-Sejor)  

f, (x)= Y_ cot (f~i x j) 
j - ~ i  



A Quasi-Newton Method with Modification of One Column per Iteration 359 

with fi=(0.02249, 0.02166, 0.02083, 0.02, 0.01918, 0.01835) 

I: x~ =(75, ...,75) 

II:  10x ~ 

III :  100x ~ 

Problem 1 O, n = 3 

:/i (x)= x~ ' + x?+x3 -3 

Ji (x) = sin 0z xl/2 ) + cos (7~ x2/2) + log (x3) - 1 

. f; (x )  = ( ~ / x ,  i + (2 /x~)  - (1 /x~)  - 2 

I: x ~  

II:  10x ~ 

lII :  100x ~ 

We tested the new algorithm against the following methods: 

(N) Discretized Newton Method 

(MN) Modified Discretized Newton Method 

(DM) Dennis-Marwil ([5]) 

(,9/) Martinez ([15]). 

The discretized Newton Method was included only as a point of reference. In fact, 
the other algorithms were introduced for cases where the application of Newton's 
method is very expensive which may be not the case of classical test problems. For 
assuring a fair comparison, the same routines for orthogonal factorizations used in 
N, M N  and the new method, and the same procedures for discretization, stopping 
criteria and step control were used in all the methods. 

The positive integer m has the same meaning for MN, DM, M, and the new method: 
the method is restarted with a discretized Newton step each time k -  0 (mod m). We 
used 2 values for m: the optimum value in the sense of Ostrowski ([2, 13, 20]), and 
m = 2 n + ! .  

The results are presented in Table 1. The triplet "C, k s, k2" means that the method 
converged in ks iterations including k 2 Newton iterations. The triplet D,k~,k2 
means that the method diverged ( II F (x k) i] ~, -> 10 s) with the same meaning for k s and 
k 2. Finally, "E, 100, k2" means that convergence was not achieved after 100 
iterations. The experiments were performed in a microcomputer HP-85A, with a 
machine precision of 2 -3v. Convergence was accepted when [ F(x k) i] o~ < 2 - l s . s  

4. Conclusions 

In this paper we have introduced a new Quasi-Newton method for solving nonlinear 
simultaneous equations. The main feature of this method is that one column of the 
matrix Bk is changed from one iteration to the next. In the numerical implemen- 
tation, this column corresponds to the coordinate where the ma• modulus of 
the step s k occurs. We obtained a local convergence theorem of the same type as 
Dennis-Marwil 's theorem ([5]). 
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1 

~= 
o 

C, 3,1 C,3,1 
C, 4,1 C.4,1 
C, 5,2 C15,1 

),44,1 
9,36, g 
,100,~ 

D. 39,8 
D135,7 
C(73,15 

C,7,2 C, I2,2 
Y, 17,3 C,23,3 
3,25,5 C,35,4 

C, 37,5 
C,46,6 
C, 56,7 

Table f 

Z ~  Z ~  

C, 3.1 C,3,1 
C,5,2 C, 5,1 
C, 6,2 C,6,2 

I C, 11 C,23,6 C, 26.6 
5 II I C,4 C 134 C, 1113 

in=R] III]  D,3 ] D,9,3 1C,46,1( 

C,8 

C, 26,6 i C, 20,5 
C,21,5 C, 73,19 
C,26,6 C 53.14 

i 6 
I 

'1 t1=3 
II 

C,6,1 
C,9,2 

C, 16,4 
C,20,4 
C,25,5 

D,40,6 D, 33,9 
D,44,7 D,87,22 

C, 6,1 
C, 12,2 
C, 14,2 

C, 16,2 
C,21,3 
C,25,3 

C, 164 
C,6,2 

C, t5,4 
C, 5,2 
D,2,1 

C, 45,12 
D,35,9 

C; 8, l 
C, 14;2 
C, 17,2 

C, 16,2 
C20.3 , 

C, 18,4 i 
C, 6,2 ' 
D, 211 

0 ,27 ,4  
D,23,4 

D, 10,2 
D, 2,1 
D,I,1 

C, 21,4 [ C, 31,Z 
D,I,1 I D,I,1 

C,9,1 
C,24,3 
D,t,t 

ii  I IE, 100, i7 |  iE, 100, SI C,24,4 IE, X00,NI C , 9 , 2 C , 6  ,100 ,17  
9= I IE, 100,17/ /E, 100.8 /E, 100,171 " ' . . n 6 E, 100 E, 100,8 le, 100,17 E, 100, S !E, loo, v7 

! E, 100 E, 100,8 [E, 100, 17 E, 100, t7 E, 100, 17 

] in I ] C,5 C,9,3 . D,23 ,4  C, 19,5 C,50,8 C, 10,2 
D,4,1 
D,4, I 

C, 13,4 
D, 11,3 
D, 11,3 

C6,2 
DI3,1 
D13,i 

C, 17,3 
C, 19,3 

The numerical experiences show that the new method is clearly more efficient than 
Newton 's  Modified method.  In general, it appears to be also more rdiabte than 
Martinez method ([15]) and it seems to be as efficient as Dennis-Marwil 's  method. 
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In some cases, we expect that the performance of the new algori thm should be better 
than the performance of Dennis-Marwi l ' s  method.  In  fact, when the variables of 
F(x)  separate, that  is, 

[7 (X)= ~Er I (Xl)-~ ...-~- .U,, (xn) 

and  we have good initial estimates ['or some of them, it seems to be useful not  to 
change the columns of F (x ~ corresponding to these variables, as the new method 
natura l ly  does. This seems to be the reason why the new method outperforms 
Dennis -Marwi l ' s  in the case I of the problems 9 and 10. 

As happens to be with Dennis -Marwi l ' s  method,  the convergence theorem is 
obta ined only for a restarted version of the method. We don ' t  know if a general 
convergence result for a nonres tar ted  implementa t ion  exists, as in Mart inez  ([15J) 
method. However,  the numerical  experiences show that the convergence properties 
of these methods are less unders tood;  and  we think that much research should be 
expected in the following years along the lines of [8]. A curious fact is that we have 
performed a number  of numerical  experiences with a nonres tar ted version of the new 
method against  Broyden 's  first method (whose convergence is known to be 
superlinear) and  no meaningful  differences of efficiency where detected. 

As in the case of Dennis -Marwi l ' s  and  Mart inez  ([15]) method an efficient version 
for sparse large scale problems deserves future implementat ion.  
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