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Abstract — Zusammenfassung

A Quasi-Newton Method with Modification of One Column per Iteration. In this paper we introduce a new
Quasi-Newton method for solving nonlinear simultaneous equations. At each iteration only one column
of B, ischanged to obtain B ;. This permits to use the well-known techniques of Linear Programming
for modifying the factorization of B;. We present a local convergence theorem for a restarted version of
the method. The new algorithm is compared numerically with some other methods which were
introduced for solving the same kind of problems.
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Ein Quasi-Newton-Verfahren mit Verfinderung einer Spalte pro Iteration. Wir stellen ein neues Quasi-
Newton-Verfahren vor zur Losung von nichtlinearen simultanen Gleichungen. Bei jeder Iteration wird
lediglich eine Spalte von B verdndert, um B, ., zu erhalten. Dies erlaubt, wohlbekannte Techniken der
Linearen Programmierung zur Faktorisierung von B, zu beniitzen. Wir beweisen einen Satz iiber die
lokale Konvergenz fiir die Methode. Der neue Algorithmus wird mit anderen beziiglich seiner
numerischen Eigenschaften verglichen.

1. Introduction

Many problems require the numerical solution of a system of n nonlinear equations
in n unknowns:

given F: R"—R" find x*eR" such that F(x*)=0. N

The numerical solution of this problem is usually iterative, proceeding at each
iteration from an estimate x* of x* to a better estimate x***, The Newton step s& is
the solution of the linear system

F/ (x4 sh=— F (9,
where

, _af;
(F (x))ij_ax

j

(x) 3

Jithe i-th component function of F, x; the j-th component of the vector x, (F' (x));; the
component of the matrix F’(x) in row i and column j.
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When analytic derivatives are not available, secant methods ({11, 13, 6. 21, 23]}
and Quasi-Newton (Q — N} methods ([ 3, 4, 7]) represent a significant improvement
over the discretized version of the classical Newton’s method. Q — N methods are
based in the formulae: ;.

B, s = —F(x%),

B (2)
k__
Biis'=y,
I ’k—F R ST i VAN Y all k=0.1
where y'=F(x""')— F(x*), for all k=0,1,2,....

(2) is called the Fundamental Equation of @ — N Methods. If n>2 and s* 50, many
matrices will obey (2). If the Jacobian F’ (x) has special properties, such as symmetry
of sparsity, we may restrict the choice of B, . | to the set of matrices which have these
properties. Schubert ([22]), Dennis-Marwil ([S7) and Martinez [15] introduced
methods which allow to keep the sparsity structure of the Jacobian matrix and
therefore, are able to deal with large-scale problems.

In this paper we introduce a new Quasi-Newton method where at each 1teration
only one column of B, is changed to obtain B,,,. Provided we store a suitable
factorization of B,, the factorization of B,,, is obtained using the classical
procedures used in Linear Programming ([1,10]) even in the sparse case. The
sparsity structure of F'(x) remains and the equation (2) is satisfied in most cases.

In Section 2 we define the method and prove a local convergence theorem. In
Section3 we describe the computational implementation and present some
numerical experiences. Finally, in Section 4 we state some conclusions and suggest
lines for future research.

2. Local Convergence Theorem

General Hypotheses: Let F: DcR"—R", Fe C' (D), D an open and convex set. Let
F(x*)=0 and F'(x*) be a nonsingular n x n matrix. We assume that for all xe D

JF (x)—=F' (x| <K [ x=x*]7, K,p>0.
i - I will denote the 2-norm throughout the paper.
Lemma 2.1: For all u,veD

VFo)—F)—F (xMu-uj<

o~
(9%
~——

<Kmax {|o—x*|P, ju—x*|7} jv—ul.

Proof: See [6].

The Proposed Method: Let x° € D an arbitrary initial point, 2 (0, 1/]/ a), m a positive
integer, B, a nonsingular n x nmatrix. We define recursively a sequence of points {x*)
and matrices B, by ] N
,‘<k+1 :x"——B,:l F(Xk)
sk e xcE Tk

yhe= F (T — F(xM).
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If k+1 is not a multiple of m, let j be such that is.’;|>o<\| s*ll. Then define
B, =(b5"1) as being equal to Bk—(b ) except perhaps at column j. Set I} be a

subset of {1,...,n}. Then if ie I}, we define
bk f= .y - Z blisl
1%
and

k+1 _ pk 3f ; k

bi " =hbj; if i¢gl;.
It is easy to see thatif k + 1 is not a multiple of m and I* ={1, ..., n} then the equation
{(2)1s verified. The choice of 1¥is made in order to preserve the structure of B. Notice

that from | s* || /] ] < 1/a it follows that | s¥ |/lsil<1/aforalli=1,...,n. We refer to
the choice of B, ., when k+1=0 mod(m) in the following theo:em

Theorem 2.1: Let re(0,1). Then there exist e=¢(r) and 6=0(r) such that if
| x°—x* | <¢and || B,—F' (x*)|| <5 whenever k=0 mod (m) then the sequences (x")
and (B,) are well defined and if F(x*)50 then| x*™1 —x*|| <r | x*—x*|| for all
k=0,1,2,....
Proof: Define ¢, zl/ﬁ Kjo, c,=n%%/. Given g, >0, define b, by, ..., b,y =b (e, )
by bo=20, by 1 =cy b+ &0, k=0,1,...,m—2. We verify that lim b(e, 6)=0 and
O0<by<by<...<h,_,. 5020
Let ¢ and 6 be such that
ble,0)+ KeP <r/(2| F'(x*)"" ) 4
We shall prove by induction on k that if k=g (mod m) then B, is nonsingular (then
x*** is well-defined),
|k s 6 | | Be— F (x| <b,

and

I Bt I <2 ) F/(x*7" .
For k=0, by hypotheses,

| Bo—F'(x*)| <6=by.
MNow, by (4},

S+KeP<r/21 F'(x*)~1 ).
Then
< TA2 | Frx*) ™).

Therefore, by Banach lemma of perturbation (see [19])

IBg <2 F'(x7H . )
Then, the fact that | x!—x*| <r|x®—x*| follows from (3) using classical
arguments (see [4,6]).

Consider now an arbitrary k. If g=0 the proofis the same as in the case k=0.If g >0
let us prove first that || B, —F" (x*) ] <b,. We use || By —F'(x*)| <b,_. Let us call
s=xF—xkT1 y=F (- F(xF1). If F( 150 we may suppose s#r()

Put B, =(bY), By_, =(b 1), F'(x*)=(b};). Let j be the index of the column which is
changed from B, _; to By. Then [s;| >« s| >0.
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So, if ie I}
=(y;— 2 b s)sy=

LFj
ZbﬁﬁLZb,sl Y B!
Yy i)

Thus,
lb?j—bm <|y— Z b sil/1s;]
I=1

+ 3 bE—bl [spl/1s;1 <

1

<|ly—F'(x S/lSN+<Zlb >/’ocg

SHy=F{xsifads Do) | By —F (x9] <
S(Kfo) || x* 7 =x* [P+ nb, ju<
<Keljat+nb,_/u.
Of course, the same inequality holds for i¢ I}, ¢ therefore,

I Bk—F/(x*)'j5]/nKs"/oc+n3"2bq,1/o< /
=c,eéf+cy b, =b,. ©
Let us now prove that B, existsand | By ' | <2 || F'(x*)™ " ||. In fact, by (4) and (6)
I Be— F'(x*}| <b,<b(e,8)<b(e, )+ K<
SHRIF )T D<YRTF (x%7H).
Then, by the perturbation lemma, B, ! exists and

1B <2 Fr(x®)~t .

Finally, by (3)—(6)
kPt x| = Xt = By F () | = xR
— B, U [F (%)= F/ (x*) (¢ —x*)] = By L F (x¥) (X" —x¥) | <
<k —x* = B F () (= x¥) | | Bt RF () = F (x™)
—F () (x* = x| < | T B P F (M) 1 x*=x* [+
B K x| <
< B Be—F )+ Ke? | By || < —x* [ <
S2F ) b, + K eh) | xF —x* <
<2 F'(x*)7 ] (b(e,8)+ KeP) | x* —x* || <

<r | xF—x*|. 0
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3. Numerical Experiences

We implemented the method defined in the previous section using the QR
factorization of B,. The modification of the Q — R factorization was performed using
the procedures described in [9, 16]. The implementation for large sparse problems
uses the L —U factorization and the classical updating techniques of Linear
Programming ([ 1, 107).

We claim that, if the new method is reliable for large sparse problems, it should also
be reliable for smali dense problems. We decided then to test our method for a
number of classical small problems. Of course, the advantage of this approach is that
there exist many well-known small problems in the literature with different kinds of
difficulties (see [14, 16, 17]).

The test functions were the following:

Problem 1, n=2 (Rosenbrock)

fix)= IO(xzwx%)

f(x)=1-x

I x=(=1.2,1)
II: 10x°
II: 100 x°

Problem 2, n=2 (Freudenstein-Roth)

S1(x)=—134x +[(5—x) x; —2] x,

Sa(x¥)= =29+ x; +[(; + D) x; — 14] x,
I: x°=(0.5,-2)

II: 10x°

I11; 100 x°

Problem 3, n=5 (Broyden)

J1()=03-2x1)x;—=2x,+1

So(X)=08-2x)x,—Xx,-1 +1

[ (x)=06-2x)x;—x;_1=2x;51F+1,i=2,...,n—1
I: x°=(—1,..., =1)

m: 10x°

II: 100x°

Problem 4, n=4 (Powell)
fi(x) =2, +10x,

F2 () =)/5(x3 —x4)
fx)=(x; -2 xs)z
Fo(x)=1/10(x; —x,)?
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I x°=3,-1,0,1)
: 10x°
1 100 x°

Problem 5, n=2 (Powell)

11 {x)=10000x, x, —1

fr(xy=e 1 +¢7*2—1.0001
I x9=(,1)

I 10x°

Iil: 100 x°

Problem 6, n=3 {(Helical valley)
t=arctan{x,/x,)/{(2m

f=rif x,>0and 0=r+0.5i x, <0
‘fl (x)=10(x3 - 106)
f(x)=10[(x +x3)'? —1]
f3(x)=1x3

' x°=(-1,0,0

H: 10x°
T 100 x°

Problem 7, n=35 (Brown)

fil=x+ Y x;~n+1),i=1,.. 21

j=1
7]

fulx)= ﬂ

I: x —(05 5, 0.9)
I: 10x°
1 100 x°

Problem 8, n=3 (Brown-Conte;j

fix)=3x;+x,F2x3-3
L00= 3%, +5x34+2x, %3~ 1
S500=25x; x;+20 x5 +12

1: x*=(0,0,0)

H: x°=(10,10,10)
T x°={100, 100, 100)

Probiem 9, n="06 {Deist-Sefor)
=Y cot(ff;x;
jei

Martinez:



A Quasi-Newton Method with Modification of One Column per lteration 359

with §=(0.02249, 0.02166, 0.02083, 0.02, 0.01918, 0.01835)
1. x°=(75,...,75)

I: 10x°

I1: 100 x°

Problem 10, n=3

filx)=x3+x3+x4-3
o (x)=sin(mx,/2)+cos{n x,/2}+log(x;}—1
Sa(x)=(1/x)+(2/x3) ~(1/x3) =2
I: x°=(1,1,1.5)
1I: 10x°
HI: 100 x°

We tested the new algorithm against the following methods:

(N) Discretized Newton Method

{MN) Modified Discretized Newton Method
(DM} Dennis-Marwil ([5])

(M) Martinez ([15]).

The discretized Newton Method was included only as a point of reference. In fact,
the other algorithms were introduced for cases where the application of Newton’s
method is very expensive which may be not the case of classical test problems. For
assuring a fair comparison, the same routines for orthogonal factorizations used in
N, MN and the new method, and the same procedures for discretization, stopping
criteria and step control were used in all the methods.

The positive integer m has the same meaning for MN, DM, M, and the new method:
the method is restarted with a discretized Newton step each time k =0 (mod m). We
used 2 values for m: the optimum value in the sense of Ostrowski ([2, 13, 201), and
m=2n+1.

The results are presented in Table 1. The triplet “C, k,, k,” means that the method
converged in k, iterations including k, Newton iterations. The triplet D, k., k,
means that the method diverged (|| F (x|, > 10%) with the same meaning for k, and
k,. Finally, “E,100,k,” means that convergence was not achieved after 100
iterations. The experiments were performed in a microcomputer HP-85A, with a
machine precision of 2737, Convergence was accepted when | F(x")j <2783,

4. Conclusions

In this paper we have introduced a new Quasi-Newton method for solving nonlinear
simultaneous equations. The main feature of this method is that one column of the
matrix B, is changed from one iteration to the next. In the numerical implemen-
tation, this column corresponds to the coordinate where the maximum modulus of
the step s* occurs. We obtained a local convergence theorem of the same type as
Dennis-Marwil’s theorem ([5]).
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Table [
o =
2 8 = =
& S TP - B - R - TR B s ~ X
< L2 £E% ES | EE | E& £8 1 25 g ~
c 3 3 By 32 S 0 50 50 R 2 0
&0, Z S8 ! 2= Qs a s PR b= Z = Z 8
T
LT C2 63 03| 62 | 62 9.3 | €153 ] €31 0 C3,1
| I G4 Ca c4.1 | 7,2 | ¢,7.2 | D154 | 11,3 | €52 | C,5,1
Al oc4 | Cs, c,51 1 C.62 | C6,2 31| D3] ¢62 | C6,2
, | 1| C27|D,44,11| D398 1 C,78,20| C,26,6 | C,29,8 | €,26,6 | C.20,5 | D, 10,2
oo 1| €23 D,36,9 | D357 1 C,56,14| C,41,9 | C,70,18| C.21,5 | C,73,19| C,36,8
TN | ¢, 19 1E,100,25] €,73,15 | C,46,12 €,52,111 C,69,18 | €,26,6 | C.53.14 | C.69,14
;1 cd4 7216122 €72 €91 | C6L | €61 | €72 | G381
posl |67 C17,3 | €233 | C1L2 | €142 | €92 | C12,2 | C11,2 | C,14,2
=2l | 11 25,5 | C,35,4 | C,15,3 | C.16,2 | C,14,3 | C,14,2 | C,15,3 | C,17.2 |
4 | 1]C121C2661C37,5) €194 €284 | Cl64 | C162 | C16,4 | 162
sl | G151 C33,7 | €466 | C,24,5 1 €284 | C,20,4 | C,21,3 | C,20,4 | €.20.3
M c18 | €,41,9 | €,56,7 | €.29,6 | C,56,7 | C,25,5 | €,25,3 | €,25,5 | €,25,3
s | T[C11]C23,6|C266|Cl154) Ci84 | Cl64]Cl64! CI54 | C184
Lol WG4 C34 | CLL3 | €52 C62 | €62 | €62 €52 | 6.2
=“'mw | b3 | D93 |C4610f D62 | D72 | D21 | D2t D21 D21
¢ | 11 C9| D308 D274 D287 | D406 D339 | D568 | D349 D.80,12
sl I C.8 | D236 D223 D,26,7 | D.44,7 | D,87,22| D,46,7 | C,45,12| D,27.4
ur| ¢.8 | 19,5 | D,18,3 | D,22,6 | D,38,6 | D,20,5 | D,20,5 | D.35,9 | D,23,4
;11|81 D31 | D102] €82 | €91 | C10,2] (152 | C82 | (9.1
5| L[ C16] D21 | D21 | €214 | C31,3 | D41 | D41 |E100,17) C.24.3 |
=lm | b1 p1,1| b1 bt | bt | LT DL DT DL
|
o L1 | ¢,7| pat1 | p4at | c10,3 Co1,13] €298 | €153 | C,12,3 | C.18,3
sl I 68 €185 | C2L3 | G144 | €144 | C16,4 | €234 | CI7.5 | C17.3
=m | o1t €226 | €,36,6 | €,21,6 | C,35,5 | €.20,5 | €,86,13 | C,21,6 | C,19,3
{
| T
o | 1| C6 E100,17 E 1008 E, 100,17 E,100,8 | €,24,4 | E,100.8| €9.2 | C.13,1
Zg| 1L |E100|E,100,17) E,100,8 |E,100,17 E,100,8 |E,100,17| E,100,8 |E, 100,17} E,100,8
"= 111 | E,100 |E, 100,17| E, 100,8 | E, 100,17| E, 100,8 |E, 100, 17| E, 100, 17: E, 100,17| E,100,8
| TGS ] C93 | €102 C134 D234 G195 C508 | CE2 | Col
5| I D3| D4l | DAL DIL3| D163 | D52 | D53 | D31 | D3]
"=lmi| b3 | D41 | D41 | D113 | D163 | D52 | D153 | D31 | D31
1

The numerical experiences show that the new method is clearly more efficient than
Newton’s Modified method. In general, it appears to be also more rejiable than
Martinez method ([157) and it seems to be as efficient as Dennis-Marwil’s method.
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In some cases, we expect that the performance of the new algorithm should be better
than the performance of Dennis-Marwil’s method. In fact, when the variables of
F(x) separate, that is,

F(xy=F (x)+...+F,(x,)

and we have good initial estimates for some of them, it seems to be useful not to
change the columns of F (x°) corresponding to these variables, as the new method
naturally does. This seems to be the reason why the new method outperforms
Dennis-Marwil’s in the case I of the problems 9 and 10.

As happens to be with Dennis-Marwil’s method, the convergence theorem is
obtained only for a restarted version of the method. We don’t know if a general
convergence result for a nonrestarted implementation exists, as in Martinez ([ 15])
method. However, the numerical experiences show that the convergence properties
of these methods are less understood; and we think that much research should be
expected in the following years along the lines of [8]. A curious fact is that we have
performed a number of nimerical experiences with a nonrestarted version of the new
method against Broyden’s first method (whose convergence is known to be
superlinear) and no meaningful differences of efficiency where detected.

As in the case of Dennis-Marwil’s and Martinez ([ 15]) method an efficient version
for sparse large scale problems deserves future implementation.
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