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Abstract - -  Zusammenfassung 

Computing the Range of Values of Real Functions with Accuracy Higher than Second Order. Given a 
continuous function f :  D-~ ~ on a compact interval D _~ ~ we consider the problem of finding an interval 
V(f, X) that contains the range of the values off,  W(f, X): = {f(x)[ x e X}, on a subinterval X G D~. To 
reach this goal we use methods from interval-~rithmetic. When V(f, X) is computed by one of the well- 
known methods from literature for a sequence {X,,} of intervals with decreasing diameters d (X~)~0;.then 
generally the overestimation of W(f, Xn) by V(f, Xn) will decrease at most quadratically with d (X~). The 
method, presented in this paper, however, allows the computation of V(f,X,,) such that this 
overestimation decreases with an arbitrary power s>0  of d(X,,). Theoretically any power s~N is 
possible, in practice, however, lJ _< s __ 4 can be reached with little or moderate amount of work and s = 5 or 
s=6  with some more work. A generalization to functions f :  R"~ ;~ is given at the end of the paper. 

AMS Subject Classifications: 65G10, 65D05, 65D 15, 65B99, 41A25. 

Key words: IntervaI arithmetic, centered form, mean value form, interpolation form, quadratic 
convergence, high order convergence. 

Die Berechnung des Wertebereiches reeller Funktionen mit Verfahren yon hiiherer als zweiter Ordnung. 
Fiir eine stetige Funktion f :  D ~ ~ auf einem kompakten Intervall D ~_ L~ betrachten wit das Problem, ein 
Interwll V(J, X) ra finden, das den Wertebereich W(f, X):= {f(x) I x E X} yon f auf einem Teitintervall 
X _~ D enth~ilt. Um dies zu erreichen, verwenden wir Methoden der Intervallrechnung. Wird V(f, X):mit 
einer aus der Literatur bekannten Methode ftir eine Folge {X,} von Intervallen mit abnehmendem 
Durchmesser d(X,)-.O berechnet, dann wird i.a. die OberschStztmg von W(f,X,) durch V(f,X~) 
h/Schstens quadratisch mit d (X,) abnehmen. Das in dieser Arbeit vorgestellte Verfahren erlaubt es, 
V(f, X,) so zu berechnen, dab diese Obersch~itzung mit einer beliebigen Potenz s > 0 von d (X,) abnimmt. 
Theoretisch ist jede Potenz s e N erveichbar, in der Praxis jedoch kann 1 <_ s _< 4 mit wenig oder m~13igem 
Aufwand und s = 5 oder s=  6,mit etwas gr/SBerem Aufwand erreicht werden. Eine Verallgemeinerung auf 
Funktionen f :  N"-~ N wird zum Schtul3 der Arbeit angegeben. 

1. I n t r o d u c t i o n  

Le t  f :  D--> ~ be a c o n t i n u o u s  func t i on  de f ined  o n  a c o m p a c t  in t e rva l  D _~ ~ a n d  let 

X :  = Ix ,  s  _~ D be  a n y  s u b i n t e r v a l  o f  D. T h e n  the  r a n g e  of  va lues  of  f o n  X 

W(f ,  X):  = { f ( x )  I x ~ X}  (1) 

is o b v i o u s l y  a g a i n  a c o m p a c t  i n t e rva l  in N. In  gene ra l  t he  n u m e r i c a l  c o m p u t a t i o n  of  

this  in t e rva l  W(f ,  X)  is n o t  poss ib le .  T h u s  it i s  de s i r ab l e  to  h a v e  c o m p u t a t i o n a l  
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procedures for the construction of an interval V(f, X) that approximates W(J', X) 
with a high degree of accuracy such that W(f, X) is contained in V(f,X): 

w(j; x) =_ v (L x). (2) 

Sometimes also an inner approximation _V(f, X) of W(f, X) is useful: 

w(f, x) =_ _v(L x). (3) 

In order to be able to get a high accuracy of the approximations the function f will 
have to satisfy additional assumptions: 

let f be m times differentiable and let each 
derivative f~k), k = 1 (1)m, 
have an interval evaluation for any interval (4) 

X _  D (see Section 2). 

If we introduce a metric q(. , .)  for (nonempty) real intervals, then 
q(W(f, X), V(f, X)) is a measure for the amount by which V(f, X) overestimates 
W(f, X). If there holds an estimation of the form 

q(W(f,x), v(f,x))<_c, d(X)" (5) 

with fixed n ~ N and c = c (D) > 0, where d (X) = :~ -_x is the diameter of X ~ D, then 
V(f, X) is called an n-th order approximation of W(f, X). It is obvious that for small 
d (X) it is desirable to have approximations of as high order as possible. To the 
knowledge of the authors there are at the present time only methods available where 
n = 1 or n = 2 in (5) can be reached. Some of these methods will be described shortly 
in Section 2 where we also introduce our notations and basic definitions. Herzberger 
[8] mentions a special case where a higher than second order can be reached in (5) 
for a certain class of intervals, however, in this case f has to satisfy a very strong 
condition which is almost never satisfied in practice. 

After the discussion of known results in Section 2 we present a basic theorem in 
Section3 which allows a great variety of procedures for the construction of 
approximations V(f, X) and V(f, X). In Section4 several realizations of such 
possible procedures are presented and discussed which use interpolation and 
Taylor-expansions. This section contains the most important results for practical 
applications: among others we present explicit expressions (42), (43) and (44) for 
third-order approximations which can be evaluated directly using interval- 
arithmetic. In Section 5 we discuss some connections between our results and the 
mean value form. Section 6 illustrates the methods with numerical examples and 
finally in Section 7 we discuss a generalization of our method to functions f :  ~"-+ ~. 

2. Notations, Definitions and Known Results 

In this paper we will use capital letters A, B, C,. . .  for real compact (nonempty) 
intervals, and the set of all these intervals is denoted by /(N): 

I(~):={x=f_x,~] f x_<~, _ x , ~ }  ; 

analogously the set of all intervals contained in D is called I(D): 
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I(D):={X=[x_,2] l x<_2,_x, geD}, 

where _x and 2 are the lower and the upper  bound of X. Ari thmetic  operat ions are 
defined for intervals according to Moore  [14], [15] or Alefeld/Herzberger  [2] by 

X +  Y : =  [ x + y , 2 + 3 5 ] ,  X -  Y :=  [ x - ) 5 , ~ - y ] ,  

X .  Y: = [min {xy, _xy, )~y, 29}, max  {xy, _xy, fly, 235}], 

X~ Y:=X. [1 ,1] , i fO~_  Y 

where there hold 

X .  Y = { x . y f x e X ,  y ~ ,  . ~ { + , - , . , / } ,  

and the inclusion monotonic i ty  

At_X, Be_ Y ~ A  , Be_X, Y, , e { + ,  - , . , / } .  

For  x e X and y e Y this is the inclusion p roper ty  

x . y ~ X .  I1, . ~ { + , - , . , / } .  

Using the notat ions  f rom Alefeld/Herzberger  [2] we define 

d (X): = 2 -  x, the d iameter  of X, 

] X l: = max  ] x ] = max  {[ _x 1, [ 2 1}, the absolute value of X, 
x e X  

q (X, Y): = max  {[ _x - y 1,1 2 -  351}, the distance between X and Y. 

The distance-function q( . , . )  is the Hausdorff-dis tance which makes  I (R)  to a 
complete  metric  space. 

We will need the following propert ies  which hold for all X,  K Z e I (~): 

OeX~lXj<_d(X), (6) 

ae ~ ~d(a + X)=d(X), (7) 

d(X)<_ZiXI, (8) 

OeX, Oe Y ~ d ( X .  Y)<_d(X). d(Y), (9) 

X~_ Y~_Z~q(X, Y)Nq(X,Z). (10) 

With  the exception of (9) the proofs can be found in Alefeld/Herzberger  [2] or Moore  
[14], [15]. P rope r ty  (9) can be shown as follows" 

Since 
O<_-_x,~Y<_d(X) and O<_-y,f<_d(Y) 

we have:  

d(X. Y)= max  {xy, 235} - m i n  {_x35, ~y} = 

= max  {x_y, 235} + max  { - _x35, - 2_y} = 

= m a x  {_x_y-xy, x y - 2 y ,  )~35-xy, ~35-2y}  = 

= m a x  {(-_x)d(Y),(-y)d(X),35d(X),~2d(Y)} <_d(X) . d(Y). [] 
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The following theorems are well known in literature. The interval evaluations used 
there are defined as in Alefeld/Herzberger [2] or in Moore [14], [15]. 

Theorem 1 : 
Let the function f : D ~  be represented by an expression f (x )  in which the 
independent variable x occurs exactly one time. Then for the interval evaluation f (X), 
X ~ I (D), there holds: 

f(X) = W(f, X). (11) 

Theorem 2: 
I f  f :  D--+~ satisfies certain Lipschitz-conditions (jor details see Atefeld/Herzberger 
~-2] or Moore [14], [15]) then the interval evaluation o f f  satiffies for all X e I (D): 

{ w(Lx)~_f(x), 
q(W( f ,X ) , f (X ) )<_c l ,  d(X) with cl =const.>_0, (12) 

d(f(X))<_c2 . d(X) with c2=const.>_0. 

Thus, if d ( X,,)~O for a sequence {X,} of intervals, then the overestimation of W ( f  , X,) 
by f ( X , )  converges to zero at least linearly with d(X). 

Theorem 3: 

Let f :D~'~  be differentiable and let f '  have an interval evaluation ~haz L satisfies 
Theorem 2. Then for the mean value form 

F,, (f, X): = f(y) + f '  (X).  (X - y), y ~ X fixed, (13) 

there holds for all X ~ I (D): 

W(f ,  X lc_F , ( f ,X ) ,  (14) 
q ( W (f, X), Fy (f, X)) _< c3. d (X) 2, c3 = const. > 0. 

Thus, if d(X,)--+O for a sequence {X,} of intervals, then the overestimation of 
W(f ,  X.) by Fy (f, X,) converges to zero at least quadratically with d (X). 

~Many investigations have been done during the last fifteen years concerning this 
mean value form and related forms. One of the related forms is the centered form 

f ( X ) : = f ( y )  + h ( X -  y). ( X -  y) 

for polynomials and rational functions which has also the properties (14) and thus 
quadratic convergence. Krawczyk and Nickel [10] defined a more general centered 
form 

F (X): =f(y)  + H (X, y). (X - y) 

and showed quadratic convergence in the case that H satisfies a Lipschitz-condition 
in the first argument. They also showed that the mean value form (13) is a special 
case of this centered form. Ratschek [16] introduced centered forms of "higher 
order" for rational functions followed by further investigations by Ratschek and 
Rokne [18], Ratschek [17], Ratsehek and Schr/Sder [19] and Alefeld and Rokne 
[3]. Although these centered forms use higher derivatives o f f  and give in general 
better approximations than a centered form of "lower order", their order of 
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convergence is still quadratic. Adams and Lohner [1] use Taylor-approximations 
with remainder terms of higher order, however, the overestimation is still of second 
order. The only case with higher than quadratic convergence that seems to be 
mentioned in literature is in the paper by Herzberger [8] cited already in the 
introduction and this is a very unrealistic case. A construction of an outer and an 
inner approximation of W(f,X) is presented by Krawczyk [9]. He also shows 
quadratic convergence of these approximations to W(f, X). 

3. The Basic Theorem 

Let f :  D ~ R have a representation of the form 

f(x)=g(x)+r(x) for all x~D (15) 

with continuous functions g and r. Furthermore, let R (X), R (D) ~ I (R) be intervals 
such that 

r(x)~R(X)GR(D) for all x~X,  X~I(D). (16) 

The function g can be interpreted as an approximation of f and r is the 
corresponding remainder term. The intervals R (X) resp. R (D) are estimations of 
this remainder term for all x ~ X resp. x e D. 

Now we define the basic evaluation procedure for (15) on an interval X e I (D): the 
remainder form of the representation (15) o f f  is defined as 

v(y, x ) :  = W(g, x) + R (X). (17) 

/ 
YK4x) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ g'<? 
~(~Z) / ' ,  g 

- /  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ,, 

.yA/-' 

i , ~  i t 

. . . . . . . . . . . . . . .  1 . . . .  3 
i 

Fig. I 

Clearly V(f, X), W(g, X)~ I (~). Note that-we do not use an interval evaluation of 
g (x) but rather we use the exact range of g on X, W(g, X), to compute V(f, X). 
However, R (X) can be an interval evaluation of r (x) or any other estimation of r (x) 
on X. The use of W(9, )~) implies that, in practical applications, wecan choose only 
very simple functions g~e: g. polynomials of degree at most 5, or monotone functions. 
Fig. 1 indicates~that;W(f, X) is contained in V(f, X) and that the maximumdistance 
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between both intervals is not greater than d (R (X)). This is formally proved in the 
following 

Theorem 4: 

Let the continuous function f :  D-+,~ have the representation (15) and let V (f  , X) be the 
remainder form (17). Then for all X ~ I (D) there holds 

(a) W ( f , X ) c  V(f ,X),  
(18) 

(b) q (W(L X), V(f, X)) <_ d (R (X)) <_ 2t R (X) t. 

Proof: 
Because of (15) and (16) there holds for any x ~ X: 

f(x)=fg(x)+r(x)eg(x)+R(X)~_ W(g,X)+R(X)--  V(j;X). (19) 

Since this is true for all x ~ X, we have shown (a). 

Now we prove part (b). Since f is continuous on the compact interval X, there exist 
two points x, ,  x* e X where f takes its minimum and its maximum: 

f (x , )~f(x)<_f(x*)  for all x e X ,  (20) 

WOe, X) = [f (x . ) ,  f(x*)].  

Since g is also continuous there exist two points y, ,  y* e X with 

g(y,)<_g(x)<_g(y*) for all x ~ X ,  (21) 
W (g, X) = [g (y ,), g (y*)]. 

With Er, f]: = R (X) we then have 

q (W (j; X), V(f, X))= q ([f(x.) ,  f(x*)], [g 0',), g (Y*)] + ~,  ~ ) =  

=max  {t f ( x , ) - g  ( y , ) - r  1, ] f ( x* ) -g (Y*) - f f } .  (22) 

Estimating the arguments separately yields: 

I f (x , )  - g (y,) -_r I = f ( x , )  - g  (y,) - r  -< f (Y,)  - g (y,) - r  <-- (a) (20) 

~) (g  (y,) + ~) - g ( y , ) - r  = ~ - r  = d (R (x)) 

and 
! f ( x * )  - g (Y*) - f i = g (Y*) + f - f  (x*) <_ g (y*) + , ~ - f ( y * )  <_ 

(a) (20) 

-< g (Y*) + f - ( g  (Y*) +f ) - -  f - r  = d (R (X)). 
(19) 

Together with (22) and (8) finally: 

q (w(f ,  x) ,  v(f ,  x)) _< d (R (X)) _< 21R (X) I 

which completes the proof. []  

The estimation (18 (b)) of this theorem shows that d (R (X))is a direct measure for the 
amount of the overestimation of WO e, X) by VOe, X). This fact can be used to 
construct inner approximations _V(f, X) of W(f, X): if there holds the relation 

g(y , )+f+d(R(X)) -=g(y , )+f<g(y*)+r=g(y*)+f-d(R(X))  (23) 
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then 
D (y,) + ~, 9 (y*) + r ]  -= w(f, x) 

is an inner approximation of W(f, X) since for any 

z ~ [g (y,) + e, 9 (y*) +r3 
there holds 

f(y,) < g(y,)+f<_z<g(y*)+r_ <_ f(y*). 
(19) (19) 

Because of the continuity of f there is a y E X  (between y ,  and y*) with 
z = f (y )  ~ W(f, X). We can even remove condition (23) in the case when f(Xo) has 
been computed for at least one value Xo ~ X. This is in general no restriction since all 
the methods discussed in the next section which have at least quadratic convergence 
require the computation o f f  for one or more arguments. Thus, if the computation of 
V(f,X) requires m>  1 evaluations o f f  at xl, ...,xm~X, then we define 

V(f, X): = [min {g (Y,) + L f(xO,...,f(xm)}, 
(24) 

max {g (Y*) + r, f(xO,...,f(x,,)}] 

and it is very easy to see that V(f, X) is always defined and nonempty whenever 
V(f,X) is defined and that V_(f,X) is an inner approximation of W(f,X), i.e. 
_V(f,X)_c W(f, X). For V(f ,X) we also have the same estimation as for V(f,X):  

q (W(f,  X), V(f, X)) _< d (R (X)) _< 21R (X)[ 

thus, whenever V(f, X) is an outer  approximation of n-th order then _V(f, X) is an 
inner approximation of n-th order. We omit the simple proof of these facts. In the 
following sections we will only discuss outer approximations, the construction of a 
corresponding inner approximation is then obvious. 

4. Realizations of High Order Approximations 

For numerical applications of Theorem 4 it is important to use simple functions g in 
order to be able to compute W(g, X). On the other hand the remainder r should be 
small enough to get a small value ofd (R (X)) and thus a good approximation V(f, X) 
of W(f, X). Interpolation- and Taylorpolynomials of moderate degree (_< 5, say) 
seem to be well suited for this purpose. Both are specia! cases of the Hermite 
interpolation problem. 

Let p, (x) be the uniquely defined interpolation polynomial of degree s >_ 0 solving the 
Hermite interpolation problem 

p~l~(x~)=fO)(xi) ' j=O(1)mi- l ,mi~ ,  

i=O(1)n,n>O, (25) 

where Xo,..., x, ~ X are n + 1 distinct points in X 
n 

and m o , . . . , m . > 0  are such that s + l =  ~ m~. 
i=0 

If f is s + 1 times continuously differentiable, then for all x E X 

1 fI f ( x ) = p , ( x ) + ~  f(~+l)(~(x)) (x-xi)m',~(x)~X. (26) 
�9 i=0 

23 Computing 33/3-4 



338 H. Cornelius and R. Lohner: 

Let L~+ 1 (X) and Ls+ 1 (D) be intervals with 

f(~+l)(x)~L~+t (X)~_L~+~ (D) for all x6X,  XsI(D).  (27) 

If we take (26) as a representation o f f  of the form (15), then we can define the 
interpolation form V~(f, X) according to (17) by: 

1 
V,(f,X):= W(ps, X ) + - - -  L~+~ (X) 1-[ ( X - x y  "~ (28) 

(s+l)!  ~=o 

where the powers (X-x~) m~ are to be evaluated as products of the same interval: 

( x -  x,y': = H ( x -  xi). 
j = l  

I f j  ~+ ~) has an interval evaluation j.~s+ ~)(X) over X satisfying Theorem 2, and if" 
n# +I) is an arbitrary but fixed point out off(s+l)(X), 

,n(~+ i) ef(~+ l)(X) (29) 
then we use 

n 

(f~s+ ~ (r (~))_ m~S + ~) [I (~-  ~,r" (30) f(x) = q~,~ (~) + [~Ti~i 
i = 0  

where 
m(S+ 1) n 

- - - - ~ 0  
q~+t(x):=ps(X)+ (s+l)!  i= (x-xi)m" (31) 

as a representation of the form (15) and define the interpolation ,form U s (j; X) by 

1 
U~(f,X):= W(qs+~,X)+z_-~((f(s+~'(X)-m (~+~)) 1~ (X-xi)""" (32) 

~-t- lj.. i = 0  

Clearly V~ (f, X) and U~ (f, X) are intervals. The following theorem shows that both, 
V~ and U~ can be approximations of high order: 

Theorem 5: 

Let V s (f, X) be defined as in (28) such that (27) holds, and let U~ (f, X) be defined as in 
(32) such that Theorem 2 holds for f(s+ 1). Then for all X e I (D) there'hold 

(a) W( f ,X )~  V~(f,X), 
(33) 

(b) q(W(f,X),  V~(f,X))<<_cq+l d(X) ~+I with cq+l =~§  (D)>_0, 

and 

(a) W(f, X)_~ U~ (J; X), 
(34) 

(b) q(W(f,X),  U~(f,X))<_fls+ zd(X) s+ 2 with fls+ z=13s+ z(D)>_ O. 

Proof: 
Since both V~(f,X) and Us(f,X) are special cases of the remainder form (17) it 
follows immediately from Theorem 4 that (33 (a)) and (34 (a)) must hold. 
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In the case of V~(f, X)we have (see (28)): 

1 n 
R ( X ) - -  t s + l ( X )  ~I ( X - x i )  ml 

(s+ 1)! ~:0 
n 

2 Ics+,(x)[ [I I X - x ~ l  ml q ( W ( f ,  X) ,  V s (f ,  X))  _< 2 1 R  (X)[ - (s + 1~! ,= o (1S (b)) 

< - - I L s + ~ ( D ) [  d(X)"' = G+~d(X) s+t 
(6),(27) (S"~- 1)! ~=0 (25) 

J 

= : O~s+ 1 _>0 

where G+I =CCs+~ (D). Thus (33 (b))is true. 

tn the case of U s (f, X) we have (see (32)): 

1 
R ( X ) -  (f(s+l)(X) -re(s+1)) ~I ( X - x y "  

(s+l)!  i=o 

q(W(f,X),  Us(f,X))<21R(X)[ = 
(I s (b)) 

_ _ _ 2  lf(~+l)(X)-m(S+l)[ I] l X - x i [  "~ 
(s+l) !  i:o 

2 
<-- - - d ( f ( s + l ) ( X ) )  ~I d(X)"' 

(6),(7),(29) (S-~- 1)[ i=0 

2 
< - -  c2 �9 d(X). d(X) s+~ =/~s+2 d(X) ~+2 

(12),(25) (S-l- 1)[ 
k ~  j 

=:Ps+2>0 

where fls+2:fls+2(D). Thus (34(b)) is also true. This completes the proof of 
Theorem 5. [] 

Now we know that V~(f, X) is an (s + 1)-st order outer approximation of W(f, X) and 
U s (f, X) is an (s + 2)-nd order outer approximation. In order to get higher than 
quadratic convergence it is sufficient to use V~ (f, X) with quadratic interpolation or 
with a quadratic Taylor-polynomial (s = 2) and for Us (f, X) it is even sufficient to use 
linear interpolation or a linear Taylorapproximation (s= 1)! Obviously in these 
cases the computation of W(g, X) is almost trivial (see (42)-(44)) since g is a 
quadratic polynomial. 

R e m a  rks:  

1. Comparing the definitions of V s, (28), and Us, (32), we see that the highest 
derivative of f used in both forms is f(s+l) and that for both forms s + 2  
evaluations of f and/or derivatives of f a r e  necessary. Nevertheless with U s we get 
an order ofs + 2 and with V~ an order of only s + 1. The reason for this is that in Us 

23* 
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we use the stronger assumption on f(s+ ~) to improve the approximation ps o f f  
and to estimate d (f(s+ i)(X))_< c 2 �9 d (X) by Theorem 2. The improvement of Ps 
can also be done in the case of V s, however, the resulting term d(L~+ ~ (X)) in the 
estimation of JR(X)[ cannot be estimated further. Thus, if we want an 
approximation V(f, X) of a given, fixed order ~, it is cheaper to use U~_ 2, where 
only f(~- ~) and g function-/derivative-evaluations are needed, as compared to 
V~_ 1, whe re f  (~) and ~+ 1 evaluations are needed. In both cases the exact range of 
a polynomial of degree s  1 must be computed. 

2. The forms V~ (f, X) resp. Us (j; X) reduce the problem of computing the range o f f  
to the simpler problem of computing the range of a polynomial of degree s resp. 
s + 1. The reduced problem can be easily solved for 0 _< s _< 3 resp. 0 _< s _< 2 thus 
obtaining a maximum order of 4, and it can be solved with some more work for 
4 < s_< 5 resp. 3 _< s_<4 thus obtaining a maximum order of 6. 

3. A further advantage of U s as compared to V s is, that when using rounded interval 
arithmetic (which must be used on a computer) the highest coefficient of q~ + ~ can 
be chosen as a machine representable number, whereas all other coefficients of 
qs + 1 and all coefficients of Ps will be non-degenerate intervals in general, because 
of rounding errors. 

4. If 0 ef(s+l)(X) then m(S+l): = 0  can be chosen in Us; instead of W(q~+I,X) only 
W(ps, X) has to be computed then! 

5. If f(s+l) has an interval evaluation for all XeI(D), then of course 
L~ + i (X): =f(s  + l) (X) can be chosen in (27) and there holds f(s + l/(X) _c f(~ + 1) (D) 
for all X s I (D). 

We can still further improve the approximations V s and U s by refining the method of 
evaluating the products in the remainder terms. Since 

H ( x -  x~)"' ~ w x -  ~0"', ~- w ~ -  x,)", x )  ~_ 
i = 0  i i = 0  

___ lcI ( X - x y %  xeX, XeI(D), 
i = 0  

we can improve (28) by defining 

1 
~'s (f, X): = W(ps, X)+ (~+ 1)! 

and 

Ls+~.(X). w(,~o(X-X~)"',x ), 

~;(f, x) :  = W(ps, X ) + - - -  1 Ls +1 (X) (I  W((x - x,)"', X). 
( s + l ) !  i=o 

Also (32) can be improved analogously by defining: 

1 
(Ys(f,X): = W (qs + i, X ) + ~  (f(s+ ~)(X)-rn(S + i)) . 

�9 w ( [ I  ( x - x , ) " ' , x  , 
\ i = 0  / 

(35) 

(36) 

(37) 

(38) 
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and 
1 

U, (f, X): = W(q,+ 1, X)--~ ~ (f(s+ l) (X)-m(*+ l)) . 

�9 ( l  ve((~- ~i) m,, x).  
i=0 

(39) 

Because of (35) it is obvious that 

w (f,x)=_ ~s(L x)=_ ~'~(L x)=_ v~(L x)  (40) 

and with (10) it follows that 

q ( W ( L  X), f / s ( f , x ) )<q(W (L  x),  f /s( f ,x))< 

<_q(W(f,x), vs(f,x))<_~s+~ . d(x) s+l . 
(41) 

For Us and Us (40) and (41) hold analogously. Thus Theorem 5 also holds for these 
modified forms and ff's resp. Us are in general the best ones as compared to Vs and V~ 
resp. U~ and U s. At the end of this section we give the explicit expressions for some 
forms with cubic convergence which can be evaluated directly by using interval 
arithmetic. 

(I) U 1 (f, X) and (Y 1 (f, X) using TayIorexpansion at y e X: 

Using 

1 
f (x)  =f(y)  + f '  (y) (x - y) + 5-  f "  (4) (x - y)2 = 

m 
=f(y) +f'  (y) (x- y) + 5- (x- y)2 + ~ (f,, (4)- m)(x- y)2 = 

= f ( y ) + ~ -  - y +  + ~ ( f " ( ~ ) - m ) ( x - y )  2 
\ m / j  

we get (with Theorem 1): 

1 
+ 5 -  (f" (X) - m) (X - y)2 

(42) 

where 0 ~ m ~ f "  (X). The first expression of the difference in the square brackets 
must be evaluated exactly whereas ( X - y ) 2  =(X-y)-(X-y). If this latter ex- 
pression is also evaluated exactly, then we obtain the form [91 (f, X) (which is 
identical with U1 in this case). 
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(II) U 1 (t", X) and 01 (f, X) using linear interpolation of f (_x) and f(2): 

Using 

f (x )=f(x)§  

_ f (~ )+ f (2 )  
2 

f ( x ) - f ( Y )  
.~ -- X 

f ( 2 ) - f ( x )  
2 - x  

1 
(x - _x) + -2- f ' '  (~) (x - 2) (x - 5) = 

m 
( x - ~ ) + ~ - ( x - g ( x - x ) +  

1 
+ 2 - ( f " ( ~ ) - m ) ( x - x ) ( x - 2 ) =  

m X~_~ 2_ 2 
k 2- x -  2 + 4 j +  

+ ~ ( f " ( ~ ) - m ) ( x - x ) ( x - 2 )  

where 
f ( Y ) - f ( x )  

A:= 

we get (again with Theorem 1): 

f(_x)+f(2) ~_2 [ ( X _ _ _  ~ u~ (f, x )  = 2 

Since 

and 0 + m e l "  (X), 

! 
+ 2-  (f' '  (X) - m) (X - _x) (X - Y). 

( x 4 # ) 2 ]  ~- 

W((x- "x)(x- x),X)=[--14 d(X)2,0] 

(43) 

we get for Oa (f,X): 

n~ X -~- .~ 2 _  2 
(71 (f, X ) f ( x ) + f ( 2 ) 2  F~-- X - ~ + 2  - -  4 ] +  

(44) 

+ ( f ' ; ( X ) - m )  - 8 ' ' 

In (43) and (44) the first expression in the square brackets must also be evaiuated 
exactly, like in (42). 

5. Connections with the Mean Value Form 

One of the most commonly used forms for the approximation of W(j; X) is the mean 
value form Fy(f,X), see (13), whose convergence is quadratic when f '  satisfies 
Theorem 2. Thus, if we want to compare it with one of our forms then we have to do 
this with Uo(f,X) which is also quadratically convergent under the same 
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hypotheses. In general there does not hold equality because of subdistributivity 
of interval arithmetic (see e.g. Alefeld/Herzberger [2] or Moore [14], [15]). If 
m eJ" (X) is arbitrary then: 

Fy (f, X) =f(y) +f '  (X)(X - y) =f (y )  + (f '  (X) - m + m) (X - y) _~ 

~f(y)  + m (X - y) + (f '  ( X ) -  m)(X - y) = (45) 

= W(f(y) + m (x - y), X) + (f '  (X) - m) (X - y) = U o (f, X). 

(Uo (f, X) is obtained from interpolation at y e X with the constant Po (x)=- f (Y)). 

However, equality can always be forced in (45) when m is chosen in a suitable way. 
This is the first statement of the following Theorem 6. The second statement shows 
another case where both forms are equal. 

Theorem 6: 

Let F~, (f, X) and U o (f, X) exist and let f '  satisfy Theorem 2. 

(a) I f  f ' (X )=  : [_k,]~] and m in Uo(f,X) is chosen as 

k-, /f l~<0, 
m:= 0, /f _k<0_</~, 

k , / f  _k>0, 
then Fy (f, X) = Uo (f, X). 

a + d  
(b) Let mid(A):= 2 denote the midpoint of an interval A= [_a, d] eI(N). 

I f  y = mid (X) and m = mid (f' (X)) then Fy (f, X) = U o (f, X). 

We omit the proof which makes use of the distributive law 

( a + b ) A = a A + b A  for a,b~N, AeI(N) ,  i r a . b > 0 ,  

and elementary interval operations. 

Theorem 6 and (45) show that in the quadratically convergent case the mean value 
form Fy (f, X) should be preferred to U 0 (f, X) since it requires less arithmetic 
operations. 

6. Numerical Results 

We have compared the intervals U 1 (f, X) from (43), U- 1 (f, X) from (44) and ~ (f, X) 
fi'om (42) - denoted here as U~" (f, X) - with the mean value form Fy 0 c, X) and the 
interval arithmetic evaluation f (X)  of f.  The computations were done in the 
programming language PASCAL-SC, which is an extension of PASCAL with a 
maximum accuracy arithmetic. Furthermore the type " INTERVAL" is a standard 
type in PASCAL-SC, so that one can use all operations on intervals just as for 
floating point numbers. The numbers are represented in the decimal system with a 
12 digit mantissa. See for details Kulisch/Ullrich [11]. 
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The assertions of Theorem 5 are only interesting for a small diameter d(X) of X. 
Therefore all the examples are as follows: given a midpoint m e R we consider the 
intervals 

X i : = m + l O  - i .  [ - 1 , 1 ] ,  i=0 (1 )7 ,  

for which the range of values PVi: = W(f,  X~) is to be enclosed. The following tables 
contain the rounded distances q (., .) from W(f,  XO = Wi to the individual intervals 
mentioned above. 

Table 1 

Example 1: f (x) 

d(Xi) q(Wi, F(Xi)) 

2 . 1 0  ~ 5 10 ~ 
2 . 1 0  -1  3 10 -1 

2 . 1 0  - 2  3 10 - 2  

2 .  10 -3  3 10 - 3  

2 .  10 -4 3 10 -4 
2 . 1 0  - s  3 10 - s  

2 .  I0  -~ 3 10 - 6  

2 . 1 0 - :  3 10 -7  

X 2 - - 5 x + 9  
, m i d p o i n t  m = 2,  

x - 5  
i n t e r v a l s  X i  = 2 + 10 ~ [ -  1, i ] ,  i = 0 (1) 7. 

(X  2 w a s  c o m p u t e d  as  X 2 =  W ( x  2, X))  

q(G,  Fm(f, Xi)) q(W,, Ui (f,X,) ) q (W~, 0t (f, X,)) 

4 10 ~ 
2 1 0 2  

2 1 0  - 4  

2 1 0  - 6  

2 10 -8 

2 1 0  - I 0  

2 .  1 0 1 2  

1 .  10 -12  

2 , 1 0  ~ 
I - 10 -3  

1 - 10 -6  

i .  10 -9  

2 -  10 - l l  

2 .  10 - i l  

2 .  10 - l l  

2 - 1 0  l l  

8 . 1 0  -1  
4 -  10 - 4  

3 -  I 0  - 7  

4 . 1 0  - 1 ~  

2 . 1 0  -11 

2 ,  t 0  - I i  

2 . 1 0  -11 

2 . 1 0  - l l  

q(VC,, v[ ~ xo) 

6 . 1 0  -1 

3 , 1 0 7  r 

3 �9 10 -7  

3 . 1 0  - l ~  

1 - 10 - u  

1 - 10 - l~  
1 . 1 0  - i t  

1 , 1 0  - i t  

Table 2 

x + 2  
Example2: , m i d p o i n t  m = 2,  

f(x)= VxTT- i n t e r v a l s  X i = 2 + 1 0  ' [ - 1 , 1 ] , i = 0 ( 1 ) 7 .  

d (X) q (W;, F (X,)} 

I 

2 .  I 0  ~ 2 -  10 ~ 
2 . 1 0  -1 2 . 1 0  -1  

2. t0 .2 1 . 10 .2 
2 . 1 0  - 3  1-  10 -3  

2 .  10 - 4  1 . 10 - 4  

2 . 1 0  -5  1 �9 10 -5  

2 . 1 0  -6  1 . 1 0  - 6  

2 -  10 - v  1 . 10 - 7  

q(W~,F~(f, Xi)) 

5 . 1 0  -1  

2 -  10 -3  

2 -  10 -5  

2 . 1 0  - v  
2 . 1 0  - 9  

2 . 1 0  - l i  

1 . 1 0  - i l  
1 �9 10 - l i  

q(W,,Vlff, x,)) I q(W,,Oy,,xo) 
i 

3 -  10 ~ 1 �9 10 0 

7 . 1 0  - 4  2 -  10 - 4  

7 -  10 - 7  2 , 1 0  - 7  

7 -  10 - 1 ~  2 .  10 - 1 ~  

5. 10 -11 5 .  10 - * l  

6 . 1 0  -11 6 . 1 0  - n  

5 . 1 0  - u  5 . 1 0  - n  

4 -  10 - l l  4 .  i0 -u i 

q(W~, UT (s X)) 

, 9 - 1 0  - I  

2 . 1 0  -'~ 
2 - 1 0  - 7  

2 . 1 0 -  lo 

L 2 . 1 0  - l i  

I 1 .  1 0  - i i  

', t .  10 - u  
{ 1 10 - l i  
I 
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Table 3 
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Example 3 : 
In x 

f ( x )= , m i d p o i n t  m = 1.5, 
x 

i n t e r v a l s  X ~ =  l .5 + 1 0 - 1 [ -  l , 1 ]  i = 0 ( 1 ) 7 .  

d(X~) 

2 . 1 0  ~ 
2 -  10 -1 

2 . 1 0  -2  

2 . 1 0  -3  

2 10 - 4  

2 10 s 

2 . 1 0  -6  

2 . 1 0  -~ 

q(WI, F(X~) ) q(W~,Fm(J~Xz) ) q(W~,U,(f,,X,)) q(Wi, U~(f,,X,) ) q(W~,ur(f,,Xi)) 

2 . 1 0  ~ 
4 . 1 0  -2  

4 . 1 0  -3  

4 -  10 - 4  

4 . 1 0  -5  

4 . 1 0  6 

4 . 1 0  -7  

4 . 1 0  -8  

7 .  10 ~ 
1 . 1 0  -2  

1 . 1 0  - 4  

1 - 10 -6  

1 . 1 0  - s  

1 . 1 0 - 1 o  

2 . 1 0  -12 

1 �9 10 i2 

4 .  101 

4 .  i 0  -3  

3-  10 -6  

3-  10 -9  

4 . 1 0  -12 

1 �9 10 -12 

1 - 10 -12 

t - 10 -12 

2 . 1 0 1  

9 .  10 -4  

9 .  10 -7  

9 . 1 0  -1~  

1 - 10 -12 

1 - 1 0  - 1 2  

1 �9 1 0  - 1 2  

1 - 1 0  - 1 2  

2 . 1 0 1  

7 . 1 0  -4  

6 . 1 0  7 

6 .  I0  -1~  
i .  10 12 

t .  10 -12 

2 . 1 0  -12 

2 .  t 0  -12  

Table 4 

Example4: f(x)=eY-~*"X- l, m i d p o i n t  m = - 1 . 5 ,  

i n t e r v a l s  X ~ = - 1 . 5 + 1 0 - i [ - 1 , 1 ] , i = 0 ( 1 ) 7 .  

d(Xi) q(Wi, F(X,)) q(Wi, Fm(f,,Xi)) q(Wi, Uj (f,,Xi)) q(Wi, Ol (f,,X,)} q(Wi, Ur (f,,X~)) 

I 2 . 1 0  0 

I 2 ' 1 0 - I  

2 .  10 - 2  

2 .  10 -3  

2 . 1 0  - 4  

2 . 1 0  - s  

2 .  10 -6  

2 .  10 - 7  

7 .  I0  -1 

1 �9 10 - 2  

9 . 1 0  - 4  

9 -  10 -5  

9 -  10 -6  

9 . 1 0  -7  

9 .  i 0  - s  

9 . 1 0  -9  

3 - 10 ~ 
1 �9 10 -2  

1 . 1 0  - 4  

1 - 10 -6  

1 - 10 -8  

1 �9 10 - l ~  
2 . 1 0  -12 

i - 10 -12 

9 -  10 ~ 
4 .  10 -3  

3 . 1 0  -6  

3 -  10 -9  

3 .  10 -12 

1- 10 -12 

1 . 1 0  -12 

1 . 1 0  -12 

2 . 1 0  ~ 
1 �9 1 0  - 3  

6 . 1 0  -7  

6-  10 - l ~  
1 - 10 -12 

1- 10 -12 

1 . 1 0  -12 

1 . 1 0  -12 I 

3 . 1 0  0 

8 . 1 0  - 4  

8 .  i 0  -7  

8 . 1 0  -1~  

2 .  !0  -12 

2 . 1 0  -12 

2-  10 -12 

2 . 1 0  -12 

Table 5 

Example 5: f ( x ) = ( 1 6 x Z - 2 4 x + 5 ) e  -~, m i d p o i n t  m = 2 . 9 ,  

i n t e r v a l s  X ~ = 2 . 9 + 1 0 - ~ [ - 1 , 1 ] , i = 0 ( 1 ) 7 .  

(X  2 c o m p u t e d  as X 2 =  W(x 2, X)). 

d(X,) q(W~,F(X~)) q(W~,Fm(f,,X+) ) q(W~,Ut(f,,Xr ) q(Wi, Ol(f,X~) ) q(lG, ur(f,,X~)) 

I 2 . 1 0  ~ 
2 . 1 0  -1 

2 . 1 0  -2  

2 . 1 0  -3  

2 . 1 0  -4  

2 . 1 0  -5  

2 . 1 0  -6  

2 . 1 0  - v  
I 

3 . 1 0 1  

1 �9 10 ~ 
1 . 1 0  -1 

1- 10 -2  

1 �9 1 0  - 3  

1 . 1 0  - 4  

1 . 1 0  - s  

1 - 10 -6  

3 . 1 0 1  

1 �9 10 -1 

9 -  10 - 4  

9 - 10 -6  

9 -  10 -8  

9 - 1 0 -  lO 

3 . 1 0  -11 

4 . 1 0  -11 

6 .  i01 

2 . 1 0  -2  

2 . 1 0  - s  

2 . 1 0  -8  

3 -  10 -11 

1 �9 10 -11 

1 . 1 0  -11 

1 - 10 -11 

1- 10 I 

6-  10 -3  

6 . 1 0  -6  

6 . 1 0  -9  

1 . 1 0  - ! 1  

1 �9 10 -11 

i . 10 -11 

1 . 1 0  -11 

1 �9 10 I 

7 . 1 0  -3  

6 . 1 0  -6  

6 -  10 -9  

2 . 1 0  -11 

2 . 1 0  -11 

3 . 1 0  -11 

3 . 1 0  i i  
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7, The n-Dimensional Case 

I f f : D ~ R  where D_c ~", ns  N, is an n-dimensional interval, i.e. 

D: =D 1 x .,. x Dn, Die I (N), i=  1 (1)n, 

andf i s  continuous on D, then Section 3, and thus Theorem 4, can be applied literally 
in the same way as in the one-dimensional case. The outer approximation V(f, X) 
and the corresponding inner approximation _V(f, X) of W(f ,  X)  on a subinterval X 
of D can be defined as in (17) and (24) whenever a representation like (t5) holds. 
Theoretically it is also possible to obtain approximations of arbitrary order. 
However, in general it is very hard to find functions g such that W(g, X) can be 
computed exactly. E.g. if we want to construct a third-order approximation by using 
Taylorexpansion at y e X with a second-order remainder term like in (42), then we 
have to compute the maximum and the minimum of a quadratic form in n variables 
over the interval X. This can be done in principle, it is, however, in most cases a very 
lengthy computation. 
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