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Abstract - -  Znsammenfassung 

Linear Interval Equations. Necessary and sufficient criteria are given for the existence and uniqueness of 
solutions of linear interval equations. Explicit formulas are given for the solution set when the solution 
set is convex. Necessary and sufficient conditions are given for the convexity of the solution set. 
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Lineare Intervallgleiehungen. Es werden notwendige und hinreichende Kriterien ffir die Existenz und 
Eindeutigkeit von L6sungen linearer Intervallgleichungen vorgestellt. Ist die L6sungsgesamtheit 
konvex, woffir auch notwendige und hinreichende Bedingungen angegeben werden, ist sie durch 
geschlossene Formeln charakterisierbar. 

1. Introduction 

Let  ~ be the set of real  compac t  intervals  and let A �9 B = {a * b: a e A, b ~ B} for A, 
B ~ ~ and  �9 ~ { + ,  -~ . ,  :}, where it is under s tood  that  A : B is not  defined when 0 ~ B. 
This in terval  a r i thmet ic  is of great  interest  bo th  for the au tomat i c  roundoff  analysis  
on computers  and  for general  error  analysis,  see for example  M o o r  e [5]. Even 
though interval  a r i thmet ic  may  be considered to be a real a r i thmet ic  where errors  
are taken into account,  it differs from real a r i thmet ic  in some essential points.  The 
dis t r ibut ive law is for example  only valid in except ional  cases. The  equat ions  
A + X = B and A Y =  B over I do not  have X = B -  A and Y =  B : A as solutions. (A 
survey of the a lgebra ic  proper t ies  of I m a y  be found in [9].) 

Since the dis t r ibut ive  law is not  val id it follows tha t  the m a p  X ~. A X  with A, X c 0 as 
well as the "l inear" interval  equat ion  systems 

~ Aii X i = B~ with Aji , Bj ~ ~ (j = 1,... ,  m) (ES) 
i=1 

are not  linear. They  are  at  most  "formal ly  linear". Ins tead  of(ES) we write the system 
abbrev ia ted  as 9.1 x = b with an m x n interval  mat r ix  9.1 = (A~i) and  interval  vectors 
b = ( B  1 ... Bin) r and  t = ( X  1 ... X,)  r. 

8 Computing 28/2 0010-485X/82/0028/0105/$ 02.20 
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Systems of equations formulated as interval systems of equations are of interest 
numerically when the coefficients of a system over R, the reals, are only known to a 
certain tolerance. Coefficients of this type occur in systems of equations arising from 
measurements, observations, numerical calculations etc. 

In this sense we define ~-num = {.~: .'~ ~ ~-- b ,  .~  ~ ~[, b @ b}  c R n as the numerical solution 
of (ES), The notation 9/.. ,.t,b. means matrices and vectors over N, that is point 
matrices [vectors] as opposed to interval matrices [vectors]. By 9/e  9/ i t  is implied 
that aji ~ Aji for all i,j when ~ =(aj~) etc. The set lknu ~ is generally not representable as 
an arithmetic expression over 9". The  interval arithmetic solution of (ES) is therefore 
defined as the interval hull km~ of ~-num which is the smallest interval vector Li~t for 
which 

.~ ~ 0-num ::=~ t ff 0-int . (1)  

We also allow the interval vector 0_in t to contain unbounded interval components. 
The converse of (1) is generally not valid. 

The interpretation of this concept is based upon the fact that 9 / i s  the matrix of 
tolerances of an (not exactly known) matrix .9/and b the column vector of tolerances 
of an (not exactly known) column vector b.. Relation (1) implies that each solution x of 
the system 9/. ~. = b. lies in U_ . . . .  that means, if there exist solutions then they are 
included both in n_,~n~ and kintr (A survey of the kind of problems described above is 
found for example in [1], [2], [4].) 

The numerical solution Q_ . . . .  is contrasted with the (algebraic) solutions of (ES). These 
algebraic solutions are defined as interval vectors t satisfying 9 / t  = b (corresponding 
to the usual concept of a solution). Let n_-=-{~: 9/~ =b} be the totality of soturions. 
While ~-~,t gives an inclusion of D_~u ~ according to (1) it follows that [k does guarantee 
the existence of vectors from D_,~, that is, 

x. Ex,  t ~ _ ~ . e ~ _ , ~  m. 

It is known that the converse of this implication is not valid. The equation 

{1, 2] X = [1, 43 

has for example the solution set ~_= {[1,2]}. Furthermore 

~_,u~ = [1, 4]/[1, 2] = [1/2, 43 = D-~t. 

For x = 4 we have x ~ l_,,~. There is, however, no X ~ 0_ for which x ~ X. 

It is the aim of this paper to investigate the solution set l_ of (ES) for the case m = !. 
This case is of particular theoretical interest since it is possible to give criteria for the 
existence, uniqueness and convexity of 0_ through explicit formulas (see also [10]). 
The question of convexity of D_ is of importance since it is possible to represent the 
solution set in an elegant manner in this case. 

It is not possible to solve (ES) using the methods for linear systems of equations over 
R since H does not have the same algebraic structure as N. 
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2. Interval Analytic Tools 

The definition of the ari thmetic operations on n leads to the following formulas for 
addit ion and multiplication: 

[a,b]+[c,d]=[a+c, b+d], 

[a,b] [c,d] = [ m i n  {ac, ad, bd, bc}, max {ac, ad, bd, bc}]. 

Intervals [a, a] are called' point intervals. They are written .a and also a so that 
a +  I-c, d], a [c, d] etc. are defined. The set R' denotes the set U without the point 
interval 0. The subdistributive law is fundamental,  that  is, 

A ( B + C ) ~ A B + A C  for A,B, CeD. 

Some interval functionals are useful for describing certain classes of intervals: For  
A = [a, b] and B = I-c, d] :~ 0 let 

A = (a + b)/2 (midpoint), ~ A = ( b -  a) (width), 

A -- max {[ a J, I b [} (modulus), a A = sgn (a + b) (sien), 

1, if ~A>_O, ~c/d, if ]c[_<]d], 

a' A = - 1, otherwise, Z B = ( d/c, otherwise. 

The functionals ~0: (~, + ) ~ ( N ,  + )  and 2: (D, +)--,(N, + )  are homomorphisms as well 
as a:(L')-- '(N, ') ,  ~b:(0,.)~(N,.) and Z: (~ ' , . ) -~([-1,  1],0) with x Lly=xy, if x , y > 0 ,  
respectively rain {x, y} otherwise. 

An interval A is uniquely determined by the values ~0 A and 2 A as well as by the 
values ~rA, 0 A, z A  if A~:0, and it follows that (details are found in [81): 

A = ( p A + [ - 1 ; 1 ] ( 2 A ) / 2  and A=(c/ A) (O A) [z A, 1]. (2) 

Two intervals are called unidirectional if (aA)(aB)>>_O. A and B are called 
proportional if A = tB for some t > 0. An interval A e l' is a point interval iff zA = 1. 
Let A, B e ~'. It then follows that 

a) z(A B)_<min {zA, zB}; (3) 

b) )~A=zB iff A = t B  for some t s N ,  t + 0 ;  

c) z(A+B)<_max{)~A, zB}, if A + B ~ : 0 ;  

equality holds iff A and B are either both proport ional  or both point intervals; 

d) z ( A + B ) > m i n  {)~A,)~B}, if A and B are unidirectional; 

equality holds iff A and B are proportional .  

The components  of interval vectors are always denoted by the corresponding Latin 
letters without explicit mention. That  is 

t~---(Xl . . . .  Xn), t9 =(~lfl, . . .  Yn), ~ = ( Z 1 ,  ..'Zn) for t,O,3eB". 

A finite sum ~0 = ~, a~ x~, with a~ s ~, ~ ~ H ~ is called a linear combination of the ~. If 
a~ = 1 and a~ _> 0 then t~ is called a convex combination of the xl. The linear hull [M] 
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and the convex hull con M of a set M ~ Q" is defined as the set of linear respectively 
convex combinations of vectors from M. 

If con {x, y} ~ ~ for all ~, 1) e N~ then we call M convex. If z ~ ~" then we write 

(~) = max{tpXi :i = 1,..., n} 

and we take ~ to be a "modulus" on U". In this manner we may use the concepts of 
bounded and unbounded subsets of D". 

3. A Criterion for a Solution, the Structure of the Solution Se~ 

We investigate the interval arithmetic equation 

A1XI  + . . . + A , X , = B  for n>_2, A1 ..... A~e~',BE~, (E) 

where we have assumed xA 1 =max  {zA1, ...,zA,} without loss of generality. The 
functional Z answers the question (as in [8] for n = 1) of the solvability of (E), even 
though Z only is a homomorphism with respect to the multiplication (see Section 2). 

Theorem 1: The equation (E) is always solvable if B = O. I f  B ~= 0 then (E) has a 
solution if( "z A 1 >_ )~ B. 

Proof: Let B ~ 0. Suppose t) is a solution and suppose that J = {i : I(/+ 0}. From (3) it 
follows that 

;~B=z ( ~  Ai Yi)_< max {z(Ai Y i ) i ~ J }  <_max {zAi i e J }  <_zA1. 

Conversely suppose zAt >_xB. From [8] it follows that there is a Y t ~  I with 
A1 Y1 =B, and (I11,0, ...,0) therefore solves (E). 

The following equation is dependent on fewer parameters than (E) and therefore 
easier to solve than (E), 

[ z A ~ , l d X ~ + . , . + [ z A , , 1 ] X , = [ z B ,  1], if B + 0 .  (NE) 

This equation is called the normalized equation (NE) of (E) and Theorem 2 and 
Remark 1 ensure that (E) and (NE) are in some kind equivalent. 

Theorem 2: Suppose B4=O. Then (E) is solvable !ff (NE) is solvable. 

Proof: Since Ai + 0, ;(Ai =Z [xA~, 1], and xB =Z [B, 1] it follows that the conditions 
for solvability of (E) and (NE) are both either satisfied or not satisfied: 

Remark 1: Suppose B~=0. Then both (E) and (NE) have the same solution set: 
Suppose t is a solution of (E). Then it follows that r) where 

Yi (a' Ai) ~ A~ 
(a' B) ~B  x i  

is a solution of (NE). If r~ is a solution of (NE) then it follows that z where 

X, Y~ 
(a' Ai) ~1 A i 
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is a solution of (E). The verification of these s ta tements  is done by simple 
calculations. 

For  describing the solution set k of (E), it is of great impor tance  to point  out the 
connections between the convexity propert ies  of subsets M c l_ and the distributivity 
relation 

[I)= {(A,B, C)e ~ a : A (B + C)= AB + AC}, 

introduced in [7]. 

Lemma 1 : Let E be the solution set of(E) and let ~ c E. The set ~ is convex iff ( Ai, Yi, 
Zi) e D for all rj, ~ e ~ .  

Proof: Let ~ be convex. It then follows that  

Ai(Yi+ Z,)=2 ~ A , (Y j2  + Z~ /2 )=2B=~ (A~ Y~+ A,Z,). 

F r o m  
Ai(Yi+ Z 3 c A i  Yi+ AiZi 

(subdistributivity) it follows that  

(Ai, Yi, Zi) e D for i = 1 . . . .  , n. 

I t  then follows that  

according to [7]. 

Fu r the rmore  

E A,(ceYi+flZ,)=~ E A~ Y~+I? E A,Z~=(~+f l )B=B 

according to [7]. 

The  following notat ions  simplify the description of the connections between 
distributivity and convexity:  Let t e [ - 1, 0] and define 

U~ ={XED' :aX>_O, zX>_t} u {0} 

V, = { X ~ l '  : z X  <_t} u {0}, 

W,= {X ~l' : crX <O, z X  >_t} u {0}. 

If one defines ~ A = m i n  {zA,0} for Ael ' ,  then one obtains  the following l emma  
directly from [7]:  

Lemma 2: Let A e l' wi~h z A < 1 and B, C e D. Then it follows that ( A, B, C) e D iff 
B, Ce U~A or B, Ce ~/zA or B, C~WvA.  

The structure of the solution set is described by: 

Theorem 3: The solution set E of (E) is a union of at most 3 n convex sets. 

Proof: Let i = 1 . . . .  , n and j = 0 . . . . .  3"-  1 and let 

n - - 1  

J = E J .  ~ 3~ 
.=0 
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be the triadical expansion ofj ,  Then we define 

U=ai, if k = 0 ,  ] 

~dji= V~m,  i f j ~ - l ,  f and M s = ~ J ~ x - . ' x M ~ ,  

~/F~m, if Ji= 2, 

It follows that V'= ~ {~d~ : j=0 ,  ...,3"-~}. From Lemma 2 and Lemma 1 it ~bllows 
that the sets M s and ~;.i=kc-, Mj are convex. From this it follows that 
~-=U {Kj : j=O .. . .  ,2"-i}.  

4. Uniquely Solvable Equations 

In contrast to the equation a 1 x i -}- ... -}- a n x n = b with ai, b ~ R, n > 1 it is possible that 
(E) is uniquely solvable. The following lemma gives criteria for this~ 

Lemma 3: Let z A I = z B >  xAi for i=2 , . . . ,n .  It  then follows that 
Y2 = I73 . . . . .  I1, = 0 for every solution O of (E). 

Proof: Let l) be a solution of(E). Writing C = A 1 Y1 and D= A 2 Y2 + ... + A~ Y, and 
assuming D q=0 we prove the lemma by contradiction. Using formula (3) and the 
assumptions it follows that 

)~D<_I~(A~ Y~)<_;gA~< zAI  = z B = z ( C  + D)<_max {zC,)~D} 

for i=2, . . . ,n .  

Because of the proper inequality, the chain may be continued by 

max {zC, z D } = z C = x ( A ~  Y1)<zA~ = zB .  

This means that Z (C + D)=max {)~C, )~D} and C and D are either proportional or 
point intervals by (3). Therefore it follows that )~C = ){D from (3 b) which gives the 
required contradiction. 

Theorem 4: Let B ~- O. Equation (E) is uniquely solvable iff 0 < Z B = 2~ Ai > z Ai for 
i=2,  .,., n. In this case the solution is given by 

o) 
(o" Ai) I//A1 ' 0, 

Proof: Let (E) be uniquely solvable. From Theorem 1 it follows that zA~ >_zB. 
Furthermore we have Z Az < Z B for i = 2, ..., n. Contrary, if 7, A2 -> Z B (without loss 
of generality) then there would exist intervals Z1, Z2 ~ ~ for which A ~ Z. = B and 
A 2 Z 2 =B  according to [-8]. The interval vectors (Z~,0 ..... 0) and (0, Z>0, ...,0) 
would then be different solutions of (E). Further we get 7~A1 =;(B: If contrary 
xA1 > xB then it would follow that 

x B - z A 2  x A ~ - ; ( B  0,. 0)  and ([~,1], 0, . . ., 0) 
"~1 ~A2' xAi --zA2 ' "', 

were different solutions of (NE) when ce = z A~/)~B for )~ B > 0 and ~ = ;(B for 7,B _<0. 
From Remark 1 it would follow that (E) had several solutions which is a 
contradiction. 
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Let now 0 < x B = z A 1  > z A I  for i = 2 ,  ...,n. F r o m  Theorem 1 it follows that  there 
exists a solution of (E). This solution has the proper ty  that  Z 2 . . . . .  Z ,  = 0 f rom 
L e m m a  3 and we therefore have A~ Z~ = B. F r o m  [8] we have that  there exists only 
one such Z1 since 0<)~B. 

If  the solution of (E) is unique then it is easy to see that  the given interval vector is a 
solution. 

Example: The equat ion [2, 3] X~ + [1, 2] X 2 + [ - 4 ,  5] X 3 = [ - 6 ,  - 4 ]  has the 
unique solution ( - 2, 0, 0). 

Theorem 5: Let  B = O. The equation (E) is uniquely solvable iff )~ A i < 1 for  i = 2 , . . ,  n. 
The solution is in this case (0,... ,  0). 

Proof: Let (E) be uniquely solvable. Assume without  loss of generali ty that  ;(A 2 -- 1. 
This means  that  Ai and A z are point  intervals, that  is Az, A 2 ~ N. The equat ion 
A 1X~ + A 2 X 2 = 0  has several solutions in ~ and therefore in (E). This gives the 
required contradiction.  Conversely let zA~ < 1 for i = 2 ,  ..., n. Clearly (0 . . . . .  0) is a 
solution of (E). Each further solution ~3 satisfies 

O = 2 B =  i 2(A~ Y~) 
i=1 

from the additivity of 2 (cf. Sec. 2) from which Y~ = 0 since Ai 4 0. 

Remark 2: Cont ra ry  to the case of  linear equations over  ~ the solution set of (E) 
may  be bounded if (E) is not uniquely solvable, cf. Example  in Sec. 6. 

5. Convexity of the Solution Set 

If the solution set ~_ is convex then it is possible to give an explicit representat ion for 
the set (see Sec. 6). In the present  section we give criteria for the convexity of n_. F r o m  
R e m a r k  1 it follows that  the solution set of(E) is convex iff the solution set of (NE) is 
convex. It  is not  necessary to consider the case o fB = b s ~ and therefore also the case 
B = 0 since 1_ m a y  then be determined as the solution set of an equat ion over  ~ which 
implies that  ~ is convex. We therefore restrict our at tention to the case z B  < 1 here 
and in the sequel. As before we assume zA 1 = m a x  [zA1,- . - ,X A~}. 

Lemma 4: Let  z A I = z B and let 13 be a solution of(E). From z A i < X B it follows that 
Y,=0  ( i = 2  . . . . .  n). 

Proof: Let zA1 . . . . .  )~Ar = z B  > xA~ for i = r + 1,.. . ,  n without  loss of generality. 
Let  J = {j : 1 _<j < r, Yj ~= 0}. We have that  J ~= ~ since we would otherwise get a 
contradict ion by setting 

z B = z  Ai Yi < - m a x { 7 ~ A i ' i = r + l , . . . , n } < ) ~ B .  
\ i = r + I  

Similarly one shows that  

A: Z Aj Z +0. 
j ~ J  
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Since zA<_zB there exists a Z I ~ ~' from [8] for which BZ 1 =A. We then get 

r~ 

BZI + ~ Ai Yi= B, 
i = r + l  

from which Y~ = 0 for i=  r + 1 ... . .  n according to Lemma 3. 

R e m a r k  3 :  From the assumption z A I = ' I B  and L e m m a 4  one may ignore 
coefficients A~ for which zA~ < zB. This means that (NE) may be written in the form 

[zB, 1] X~ + . . .  + [zB, 1] X,  = [zB, 13. (NE*) 

L e m m a  5: Let - 1 < zA~=zB  for i= 1, ...,n and let ~ be a solution of(NE). It then 
follows that: 

n 

a) ~ O Yi<_l, 
i = 1  

b) a g i=l ,  if Yi~=O and 

c) )~ B <_ Z Yi for z B <_ 0 respectively )~ Yi = 1 for z B > O, provided Y~. q= O. 

Proof: The assertion is proven using Lemma 4 and some simple calculations where 
the relation 

2 (CD) = (O C)(OD) [1 - (Z C 0 zD)] for C, D s ~' 
is used. 

T h e o r e m  6 :  Let ~ B < 1 and assume that (E) is solvable. The solution set L is convex ~f 

a) z A I = I  ,for i = l  ..... n or 
b) 7 A I = z B > - I .  

Proof: If both a) and b) do not hold we show that L is not convex. We therefore 
assume without loss of generality that 

z A 2 < I  and ~) z A I > X B  or ]~) z B = - I .  

For the case ~) we consider the following two solutions of (NE), 

1 - (zA2)  ZB zB-)~A1 0 .... ,03 
1 ) = \ I _ ( z A 1 ) z A z ,  1-(zA1);~A2'  / 

and 
( /  z B - z A ~  z A i - ) ~ B  \ 
| |  ~ ~ ,  " ~ - - ,  0 . . . . .  0 / ,  if ;gB>_zA2 
J \ z A I - z A 2  z A ! - z A 2  ) 

3 = | [  z B - z A 2  1 - ( z A 1 ) z B  \ 
| 1  "~ "~ ~- - - - -  0 . . . .  0 1 ,  if Z / ~ < z A 2 .  
[ \ I - ( z A , ) z A 2 '  1 - ( z A t ) z A 2 '  ' / 

Since z A I < I  it follows that (A> Y2, Z2)~D by [7J, that is, k is not convex 
(Lemmal) .  For the case fi) we assume zAI=)~B since zA1 > z B  was already 
considered in ~). The vectors (1,0,..-, 0) and ( -  1, 0,..., 0) are solutions of (NE): The 
convex combination (0,..., 0) of these two vectors is, however, not a solution. 
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Conversely we assume that a) is valid. The distributivity relations required in 
Lemma 1 follow immediately from [7]. If b)holds then, using Remark 3, we consider 
(NE*). If I) and ~ are solutions of (NE*) then one obtains ([zB, 1], Y~, Zi)e D from 
Lemma 5 and [7] and from this the convexity of ~_ from Lemma 1. 

6. The Representation of Convex Solution Sets 

It is sufficient to represent the solution sets of(NE) by Remark 1 Let ~ ,  M~ c P and 
define 

Let the vectors 

e, = (Ell . . . . .  El,), ~i = (FiI . . . . .  F,,) e H" 

be defined by E 0 = F~j (the Kronecker symbol) and F~j= 5~j [xB, 1]. The remaining 
notation was introduced in Sec. 2. 

Theorem 7: The solution set 0_ of (NE) with z B <  1 is 

a) H_=[%-e2 , . . . , e l - e , , ]+con{f l , . . . ,~n}  , / f z A i = I  for i=1  ..... n, 

b) ]_=con{%, ...,%}, if O<)~A~=zB for i=1  ..... n, 

c) ~=eon{e l  ... . .  %, ~t, .. ., ~n}, /f - l < z A i = z B < - O f o r  i=1  .. . .  ,n. 

Proof: It  is easy to check that the above sets are subsets of the solution sets of (NE). 
We only show that U_ is contained in the above sets: 

Case a): Let ~ be a solution of (NE) with Y~= [y~, Y~2]- It then follows that 

Setting 

one obtains 

where 

From 

r / i - 1  

it follows that 

2Y~ 
and ~ i=Y~I -~ i xB ,  

1 -xB~ 

Y~ = ~ + r/i [zB, 1J. 

n 

t h = l  and ~i>0.  
i = 1  

i = 1  

(~-1 . . . . .  ~~  ~ [ r  - e 2  . . . .  , e l  - e,], 

that is there exists numbers fi2,---, ft, e [~, so that 

i = 2  j = l  
is on the desired form. 
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Case b): Let t) be a solution of (NE*). We then have a I(/= 1 =Z Yi from Lemma 5, 
that is Y~ = yf ~ N, yl > 0. F rom [7] it follows that 

[xB, 11 = D/B, 1] ~ Yi. 
i = 1  

Since the equation [xB, 11 = D/B, 11 X has a unique solution i because of 0 < ZB, cf. 
[81, it follows that 

~ y i = l  
i = 1  

and r~ is on the required form. 

Casec): Let ~ be a solution of (NE*). We obtain first Yi=~+fi~[)~B, 11 with 

z Y~-zB I - z  Y ~ 
:q=qo Yi >0, fii=qo Yi - - > 0  

1 - z B  1 - 7 ~ B  - 

and :q + fii-< 1. It is to show that  

that is r~ is on the desired form. 

n 

E + fii) = 1, 
i = l  

Since ~i, fli [xB, 1] ~ UxB it follows that  

[zB, 11 Yi = ai [zB, 1] + flf [Z B, 13 [zB, 1] = (ai + fi;) [zB, ! ]  

from Lemma 2 and the fact that 2B_< 0. This means that (NE*) takes on the form 

[zB, 1] = [)~B, 1] ~ (e,+fii), 
i = l  

from which 
n 

+ B,) = 1 
i = 1  

follows according to [8]. 

Example: The solution set of the equation 

[ - t, 23 Xt  + [ - 3, 3/2] X 2 = [ - 2, 4] 
is 

]_ = con {(2, 0), (0, - 4/3), ([ - 1, 2], 0), (0, [ - 4, 2]/3)}. 

7. Concluding Remarks  

If the solution set k of (NE) is not convex then Theorem 3 implies that ~_ is the union 
of finitely many convex sets ~j. Using the algori thm of Motzkin-Burger  [3] it is 
possible to connect each ~j  with certain fragments of (NE), which are interval 
equations in two variables, 

[zA;, 11 X; + [zAj, 1] Xj = [zB, 1]. 
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The solution sets ~_~j are explicitly representable and the sets ~j may be derived from 
the sets [l_ij in a simple manner, cf. [10]. 

Considering the solution of a linear interval equation system (ES) it is possible to 
form the solution set as the intersection of the solution sets of the individual 
equations. It is, however, almost impossible to give explicit formulas. The details 
may be found in [10]. 
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