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Abstract — Zusammenfassung

Linear Interval Equations. Necessary and sufficient criteria are given for the existence and uniqueness of
solutions of linear interval equations. Explicit formulas are given for the solution set when the solution
set is convex. Necessary and sufficient conditions are given for the convexity of the solution set.
AMS Subject Classification: 65G 10.
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Lineare Intervallgleichungen. Es werden notwendige und hinreichende Kriterien fiir die Existenz und
Eindeutigkeit von Losungen linearer Intervallgleichungen vorgestellt. Ist die Losungsgesamtheit
konvex, wofiir auch notwendige und hinreichende Bedingungen angegeben werden, ist sie durch
geschlossene Formeln charakterisierbar.

1. Introduction

Let [ be the set of real compact intervals and let A« B={axb:aec A, be B} for A,
Belland xe{+, —,., :}, where it is understood that A4 : B is not defined when O B.
This interval arithmetic is of great interest both for the automatic roundoff analysis
on computers and for general error analysis, see for example Moore [5]. Even
though interval arithmetic may be considered to be a real arithmetic where errors
are taken into account, it differs from real arithmetic in some essential points. The
distributive law is for example only valid in exceptional cases. The equations
A+X=Band AY=B over [ do not have X =B— 4 and Y=B: A4 as solutions. (A
survey of the algebraic properties of [ may be found in [9].)

Since the distributive law is not valid it follows that the map X > A X with 4, X el as
well as the “linear” interval equation systems

Y A4;X,=B, with A, Bel(j=1,..,m) (ES)

i=1

are not linear. They are at most “formally linear”. Instead of (ES) we write the system
abbreviated as Wx=b with an m x n interval matrix A =(4;,) and interval vectors
b=(B,...B,)" and x=(X, ... X )"
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Systems of equations formufated as interval systems of equations are of interest
numerically when the coefficients of a system over R, the reals, are only known to a
certain tolerance. Coefficients of this type occur in systems of equations arising from
measurements, observations, numerical calculations etc.

In this sense we define L, = {z: Wx=0b, U e, heb} = R" as the numerical solution
of (ES). The notation U, x,b means matrices and vectors over R, that is point
matrices [ vectors] as opposed to interval matrices [vectors]. By W e U it is implied
thata;; € A;;for alli, j when ¥ =(a;) etc. The set L, is generally not representable as
an arithmetic expression over 1. The interval arithmetic solution of (ES) is therefore
defined as the interval hull L, of L, which is the smallest interval vector L, for
which

:fzeﬂ-num:jxeu—int' {1>

We also allow the interval vector L, to contain unbounded interval components.

The converse of (1) is generally not valid.

The interpretation of this concept is based upon the fact that U is the matrix of
tolerances of an (not exactly known) matrix U and b the column vector of tolerances
of an (not exactly known) column vector b. Relation (1) implies that each solution g of
the system Wx=D0 lies in 1,,,, that means, if there exist solutions then they are
included bothin L, and L, .. (A survey of the kind of problems described above is
found for example in [17, [2], [4])

The numerical solution L, is contrasted with the (algebraic) solutions of (ES). These
algebraic solutions are defined as interval vectors ¥ satisfying U  =b (corresponding
to the usual concept of a solution). Let L= {x: Wx="0} be the torality of solutions.
While L, , gives an inclusion of L, according to (1) it follows that L does guarantee
the existence of vectors from L, that is,

nuim

num?

rex, xel=xel

num*

It is known that the converse of this implication is not valid. The equation
[1,2] X=[1,4]
has for example the solution set L= {[1,2]}. Furthermore
Lo =[1,41/11,2]=[1/2,4] =L;,.

For x=4 we have xel . There is, however, no X el for which xe X.

1t is the aim of this paper to investigate the solution set L of (ES) for the case m= 1.
This case is of particular theoretical interest since it is possible to give criteria for the
existence, uniqueness and convexity of | through explicit formulas (see also [ 107).
The question of convexity of L is of importance since it is possible to represent the
solution set 1n an elegant manner in this case.

It is not possible to solve (ES) using the methods for linear systems of equations over
R since [ does not have the same algebraic structure as R.
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2. Interval Analytic Tools
The definition of the arithmetic operations on [ leads to the following formulas for
addition and multiplication:
[a,b]+[c, d)=[a+c, b+d],
[a,b] [c,d]=[min {ac,ad,bd,bc}, max{ac,ad bd,bc}].

Intervals [a, a] are called point intervals. They are written g and also a so that
a+[c d], afc,d] etc. are defined. The set " denotes the set | without the point
interval Q. The subdistributive law is fundamental, that is,

A(B+C)c AB+ AC for A,B,Cel.

Some interval functionals are useful for descrlblng certain classes of intervals: For
A=[a,b] and B=[c,d]+0 let

@ A=(a+Db)/2 (midpoint), A A=(b— a) (width),
y A=max {|al,|b|} (modulus), ¢ A=sgn (a+ b)(sign),

Lif oAd> i
a’A:{ ,if 0. A>0, B={c/d, if |cj<ld],

—1, otherwise, d/c, otherwise.

The functionals ¢: (1, +)—(R, +)and 2:{l, +}—(R, +) are homomorphisms as well
as G:(ua ).‘)(RD ')7 lp: (ns )—_)(Ra ) and X: (”/7 )_')([ - L 1]a H) With xt yzx.)/a lf X, ,VZO,
respectively min {x, y} otherwise.

An interval A is uniquely determined by the values ¢ 4 and 1 4 as well as by the
values o 4, y 4, y A if A+0, and it follows that (details are found in [8]):

A=@A+[~1;11(14)2 and A=(c' A)(y A) [y 4,1]. )

Two intervals are called unidirectional if (6 A)(c B)>0. A and B are called
proportional if A=t B for some r>0. An interval A€’ is a point interval iff y 4=1.
Let A, Bel'. It then follows that

a) x(4 B)<min {y 4, y B}; 3)
b) yA=yB iffl A=tB for some teR, t+0;

¢) y(A+B)<max {yA,yB}, if A+B=+0;

equality holds iff A and B are either both proportional or both point intervals;
d) y(A+B)=min {y A, xB}, if A and B are unidirectional;

equality holds iff 4 and B are proportional.

The components of interval vectors arc always denoted by the corresponding Latin
letters without explicit mention. That is

¥=(Xq,... X, ), 9=(Y,... Y.}, 3=(Z,... Z,) for x,,3€l".

A finite sum p=)_ a;¥,, with a,€ R, x;e[" is called a linear combination of the x;. If

iy

Y a;=1and a,>0 then y is called a convex combination of the ;. The linear hull [M]

8*
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and the convex hull con M of a set M < [ is defined as the set of linear respectively
convex combinations of vectors from M.

I con {x, y} =M for all x,yeM then we call M convex. If xe1" then we write
Yx)=max{y X;:i=1,..,n}

and we take ¥ to be a “modulus” on [ In this manner we may use the concepis of
bounded and unbounded subsets of 1",

3. A Criterion for a Solution, the Structure of the Solution Set

We investigate the interval arithmetic equation
A X +...+4,X,=B for n=2,4,,..,4,el,Bel, B

where we have assumed y A, =max {y 4, ...,y 4,} without loss of generality. The
functional y answers the question {as in [8] for n=1) of the solvability of (E), even
though y only is a homomorphism with respect to the multiplication (see Section 2).

Theorem 1: The equation (E) is always solvable if B=0. If B0 then (E) has a
solution iff y Ay =y B.
Proof: Let B#0. Suppose y is a solution and suppose that J = {i : ¥;%0}. From {3} it
follows that

iB=x (Y A Y)<max {x{4;Y) iel} <max{y4;:icJ} <yA4,.

iet

Conversely suppose y A, >yB. From [8] it follows that there is a ¥, el with
A, Y, =B, and (Y,,0, ...,0) therefore solves (E).

The following equation is dependent on fewer parameters than (E) and therefore
easier to solve than (E),

A, X+ + A, 11 X, =[x B, 11, if B0. (NE)

This equation is called the normalized equation (NE) of (E) and Theorem 2 and
Remark 1 ensure that (E) and {NE) are in some kind equivalent.

Theorem 2: Suppose B+0. Then (E) is solvable iff (NE) is solvable.

Proof: Since 4, %0, y A,=x[x A, 1], and y B=x[B, 1] it follows that the conditions
for solvability of (E) and (NE) are both either satisfied or not satisfied:

Remark 1: Suppose B=0. Then both (E) and (NE) have the same solution set:
Suppose x is a solution of (E). Then it follows that y where

_ (6" A) Y A,
" (BYB '
is a solution of (NE). If p is a solution of {NE) then it follows that = where
_(@BYB

o AT
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is a solution of (E). The verification of these statements is done by simple
calculations.

For describing the solution set L of {E), it is of great importance to point out the
connections between the convexity properties of subsets M < L and the distributivity
relation

D={(4,B,C)el®: A(B+C)=AB+ AC},
introduced in [7].

Lemma 1: Let L bethe solution set of (E) and let M <z L. The set M is convex iff (4;, Y,
Z)eD for all y,3e M.

Proof: Let M be convex. It then follows that
Y AY,+Z)=2) A(Y2+Z/2)=2B=) (A, Y;+ A, Z)).

From
A(Yi+Z)< A, Y+ A Z;

(subdistributivity) it follows that
(4, Y, Z)eD for i=1,...,n.

It then follows that
(Apa Y, BZ)eD
according to [7].

Furthermore
Z A @Y +BZ)=u Z A; Y+ B Z A;Z,=(e+p)B=B
according to [7].

The following notations simplify the description of the connections between
distributivity and convexity: Let te[ — [,0] and define

U ={Xel:6X=0,yX=t} U {0}

V, ={Xel:y X<t} u{0},

W, ={Xel':eX<0,yX >t} U {0}.
If one defines 74 =min {y 4,0} for 4el’, then one obtains the following lemma
directly from [7]:
Lemma 2: Let Ael’ with yA<1 and B, Cel. Then it follows that (A, B,C)e D iff
B.CelU, ,or B.CeV 4or B,CeW,_,.

The structure of the solution set is described by:

Theorem 3: The solution set L of (E) is a union of at most 3" convex sets.

Proof: Let i=1,...,nand j=0,...,3" ! and let
n—1

j: Z jn*v3u

v=0
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be the triadical expansion of j. Then we define

UtAi: if Ji=0,
M= V., ifji=l, and M=Mj x ... xM;,.
WrAi.* if jizza

It follows that I"={_J {M;:j=0,...,3""'}. From Lemma2 and Lemma 1 it follows
that the sets M; and K;=L~M; are convex. From this it follows that
L= {K;:j=0, L, 2n

4. Uniquely Solvable Equations

In contrast to the equation a, x; +... +a, x,=b with a;,b& R, n> 1 it is possible that
(E) 1s uniquely solvable. The following lemma gives criteria for this.

Lemma 3: Let yA;=yB>yxd, for i=2..n It then follows that
Y,=Yys=...=Y,=0 for every solution n of (E).

Proof: Let y be a solution of (E). Writing C=A4, Y,and D=4, Y,+...+ 4, Y, and
assuming D0 we prove the lemma by contradiction. Using formula (3) and the
assumptions it follows that

AD=<x(4; Y)<yA;<yd,=yB=y(C+Dy<max {yC, xD}
fori=2,....n
Because of the proper inequality, the chain may be continued by
max {yC,xD}=3xC=y(A, Y )<yA,=yB.

This means that y(C+ D)=max {yC, xD} and C and D are either proportional or
point intervals by (3). Therefore it follows that y C=y D from (3 b} which gives the
required contradiction.

Theorem 4: Let B+0. Equation (E) is uniquely solvable iff 0 <yB=yx A, > yA; for
i=2,...,n. In this case the solution is given by

{(¢’B)y B \
—0,....0 %
((o/Al)wAl’ )

Proof: Let (E) be uniquely solvable. From Theorem 1 it follows that y4, >yB.
Furthermore we have y A; <y B for i=2, ....n. Contrary, if y A, > y B {without loss
of generality) then there would exist intervals Z,.Z, el for which 4, Z, =B and
A, Z,=B according to [8]. The interval vectors (Z,,0,....0) and (0,2,,0,....0)
would then be different solutions of (E). Further we get yA4,=yxB. If contrary
¥4, >y B then it would follow that

( xB—xA, xAi—xB
XA — 1A, 5 XA~ Ay’
were different solutions of (NE) when o=y A,/yB for y B>0 and o=y B for y B <0.

From Remark1 it would follow that (E) had several solutions which is a
contradiction.

0, o) and ([11,0,....0)
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Let now O<yB=yA;>yA, for i=2,..,n From Theorem ! it foliows that there
exists a solution of (E). This solution has the property that Z,=...=Z,=0 from
Lemma 3 and we therefore have 4, Z, = B. From [8] we have that there exists only
one such Z, since O0<yB.

If the solution of (E) is unique then it is easy to see that the given interval vector is a
solution.

Example: The equation [2,3]1X,+[1,2]X,+[—-4,51X;=[—6, —4] has the
unique solution (—2,0,0).

Theorem 5: Let B=0. The equation(E) is uniquely solvable iff y A; <1 fori=2,...,n.
The solution is in this case (0, ...,0).

Proof: Let (E) be uniquely solvable. Assume without loss of generality that y 4, =1.
This means that 4, and A4, are point intervals, that is 4,, 4, €R. The equation
A; X+ 4, X,=0 has several solutions in R and therefore in (E). This gives the
required contradiction. Conversely let y4;<1 for i=2,...,n Clearly (0,...,0)is a
solution of (E). Each further solution y satisfies

i=1
from the additivity of 1 (cf. Sec.2) from which Y;=0 since A;+0.

Remark 2: Contrary to the case of linear equations over R the solution set of (E)
may be bounded if (E) is not uniquely solvable, cf. Example in Sec. 6.

5. Convexity of the Solution Set

If the solution set L is convex then it is possible to give an explicit representation for
the set (see Sec. 6). In the present section we give criteria for the convexity of L. From
Remark 1 it follows that the solution set of (E) is convex iff the solution set of (NE) is
convex. Itis not necessary to consider the case of B=">b ¢ R and therefore also the case
B=0since I may then be determined as the solution set of an equation over R which
implies that L is convex. We therefore restrict our attention to the case y B< 1 here
and in the sequel. As before we assume y A, =max {y A, ...,y 4,}.

Lemma 4: Let y A, =y B and let v be a solution of (E). From y A; <y B it follows that
Y;=0(i=2,..,n).

Proof: Let yA,=...=yA,=yB>yA; for i=r+1,..,n without loss of generality.
Let J={j:1<j<r, Y;+0}. We have that J+0 since we would otherwise get a
contradiction by setting

sz}g( Z A; Yi> <max{yd;:i=r+1,...n}<yB.
i=r+1
Similarly one shows that

A=Y A,Y;+0.

jeJd
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Since y A <yB there exists a Z, =1 from [8] for which BZ, =A. We then get
BZ,+ Y A;Y,=B,
i=r+1
from which ¥;=0 for i=r+1, ..., n according to Lemma 3.
Remark 3: From the assumption y4;=yxB and Lemmad one may ignore
coefficients A, for which y 4; <y B. This means that (NE) may be written in the form
B X, +.. . +[xB 11X, =[xB,1]. {NE¥)

Lemma 5: Let —1<yA;=yB fori=1,...,nand let vy be a solution of (NE). It then
Jollows that:

a) Yy Y<lL,
i=1

by aY;=1, if Y, $0 and
¢) yB<yY,; for yB<0 respectively yY,=1 for yB>0, provided Y;+0.

Proof: The assertion is proven using Lemma 4 and some simple calculations where
the relation

A(CDY=(y COYYDY[1—(xC 0 xD}] for C,Del’
is used.
Theorem 6: Let y B <1 and assume that(E)is solvable. The solution set L is convex iff

ajy yA;=1 for i=1,...,n or
by yA;=yB> —1.

Proof: If both a) and b) do not hold we show that L is not convex. We therefore
assume without loss of generality that

yA,<1 and o) yA,>yB or f) yB=—1.

For the case «) we consider the following two solutions of (NE),

0,..0)

/

I):( 1—(xA)yB  yB—yx4;

L—(x A1) 2 A, 5 L—(y A1) x4, |
and

<xB—xAz 1A 1B
XA1*XA2’ XAI_'XAZ’
(xB—xAz 1—(xA4)yB
1—(KA1)XA2’ 1—(xA) 14,

0, O) if yB>yA,

0, ...,0), if yB<yA,.

Since yA; <1 it follows that {4,, Y,,Z,)¢D by [7], that is, L is not convex
(Lemma 1). For the case ) we assume y A, =xB since x4, >y B was already
considered in «). The vectors (1,0, ...,0)and (— 1,0, ..., 0) are solutions of (NE). The
convex combination (0, ...,0) of these two vectors is, however, not a solution.
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Conversely we assume that a) is valid. The distributivity relations required in
Lemma 1 follow immediately from [ 7]. If b) holds then, using Remark 3, we consider
(NE*). If y and 3 are solutions of (NE*) then one obtains ([yB,1], ¥, Z,)e D from
Lemma 5 and [7] and from this the convexity of L from Lemma 1.

6. The Representation of Convex Solution Sets
It is sufficient to represent the solution sets of (NF) by Remark [. Let M, M, = [" and
define
MA+M,={x+y:xeM,peM,}.
Let the vectors
e,=(E, ... B, 1i=0F, ... F)el”
be defined by E;;=4J;; (the Kronecker symbol) and ¥;;=4,;{ x B, 1]. The remaining

ij
notation was introduced in Sec. 2.

Theorem 7: The solution set L of (NE) with yB<1 is

a) L=fe;—ey o eq—e d+con{fy,...TL fyA,=1 for i=1...n,
by L=con{ey,....e,}, if O0<yA;=yxB fori=1,...,n,

¢) L=con{ey,...e, 1, T} if —1<yd;=yB<0 fori=1,...n

Proof: 1t is easy to check that the above sets are subsets of the solution sets of (NE).
We only show that L is contained in the above sets:

Case a): Let 1 be a solution of (NE) with Y;={y;, y;»]. It then follows that

AY; < [yB,1]=1—yxB.
Setting

and ¢;=y;; —n; (B,

one obtains
Yi=&+n B, 1].
where
Y y=1 and 7,>0.
i=1

From

B

Z fi:O
. i=1
it follows that

(&1, éeleg—ey, e —e,],
that is there exists numbers f§,, ..., ,€ R, so that
n= Z Bife; —e)+ Z 77J'Tj
i=2

) . j=1
is on the desired form.
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Case b): Let v be a solution of (NE*). We then have g Y;=1=y Y, from Lemma 5,
that is Y,=y,e R, y;>0. From [7] it follows that

[xB,11=[xB,1] }, Y.

i=1

Since the equation [y B, 1]={yB, 11X has a unique solution 1 because of 0 < ¢ B, cf.
[8], it follows that

i
A

and 1 is on the required form.
Casec): Let y be a solution of (NE*). We obtain first Y;=o,+ ;[¥ B, 1] with

Y,—xB l—zY;
-1~’C—~ZO, Bi=¢7Y, 4

; >0
"'1—yB

and o;+ ;< 1. It is to show that
2 (ai+ﬁi):19
i=1

that is y is on the desired form.
Since o, §; [x B, 11e U, ; it follows that
[xB. 11 Y;=0; [y B. 11+ B [x B, 13 [ ¥ B, 1] =(o; + B} [x B. 1]
from Lemma 2 and the fact that y B <0. This means that (NE*) takes on the form
xB.11=[xB.11 ) (%+B),

i=1
from which

Y (o4t B)=1
i=1
follows according to [8].
Example: The solution set of the equation
[-1L21 X, +[-3.3/2]1 X,=[~-2,4]
i8
L= con {(27 0)* (0“ - 4/3)" ([ - 19 2}: 0)q (05 [ - 4> 2]/3)} .

7. Concluding Remarks

If the solution set L of (NE) is not convex then Theorem 3 implies that 1 is the union
of finitely many convex sets I, Using the algorithm of Motzkin-Burger [37 it is
possible to connect each [K; with certain fragments of (NE), which are interval
equations in two variables,

LrAp 11 X+ [x A 11 X;=[y B, 1].



Linear Interval Equations 115

The solution sets L;; are explicitly representable and the sets I§; may be derived from
the sets [;; in a simple manner, cf. [10].

Considering the solution of a linear interval equation system (ES) it is possible to
form the solution set as the intersection of the solution sets of the individual
equations. It is, however, almost impossible to give explicit formulas. The details
may be found in [10].

i
(2]

3l
4]

{5]
o]
]
(8]

¢l
{19
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