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Abstract - -  Zusammenfassung 

On the Correction of Finite Difference Eigenvalue Approximations for Sturm-Liouville Problems. 
The use of algebraic eigenvalues to approximate the eigenvalues of Sturm-Liouville operators is 
known to be satisfactory only when approximations to the fundamental and the first few harmonics 
are required. In this paper, we show how the asymptotic error associated with related but simpler 
Sturm-Liouville operators can be used to correct certain classes of algebraic eigenvalues to yield 
uniformly valid approximations. 

Zur Korrektur der Differenzen-Eigenwertapproximationen bei Sturm-Liouville-Problemen. Die Be- 
nutzung algebraischer Eigenwerte zur n/therungsweisen Berechnung der Eigenwerte yon Sturm- 
Liouville-Operatoren ist bekanntlich nur ffir die Grundschwingung und einige weitere Harmonische 
zufriedenstellend. In dieser Arbeit zeigen wir, wie man den asymptotischen Fehler, der bei ver- 
wandten abet einfachen Sturm-Liouville-Operatoren auftritt, dazu benutzen kann, um gewisse 
Klassen algebraischer Eigenwerte so zu korrigieren, dal3 die gleichm~il3ig gute Approximationen liefern. 

1. Introduction 

When the coefficients involved are sufficiently smooth, the study of Sturm- 
Liouville eigenvalue problems, with appropriate boundary conditions, reduces 
to a study of the canonical Liouville normal form (cf. Paine and de Hoog [6], Sec- 
tion 5, where a numerical implementation of the Liouville transformation can 
be found) 

-y"+qy=2y, q=q(x), y=y(x), y"=d2y/dx 2, O<~x<_~, (1.1) 

y (0)=y (n)=0. (1.2) 

In this paper, we examine numerical techniques for the approximate determination 
of the eigenvalues of (1.1)--(1.2). 

If, on a grid 

G=  {x~; xj=j h,j =0, 1, 2, ..., n+  1, h=zc/(n+ 1)}, (1.3) 

finite difference approximations are used to replace (1.1)--(1.2) by an algebraic 
eigenvalue problem of order n (viz. 
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( -  A + D) y -- 2 (")/~, (1.4) 

where D--0 if and only if q--01 then it is well known that the algebraic eigen- 
values 2(~ "), 2(2 "), ..., 25 ) of (1.4) only yield satisfactory approximations for the fun- 
damental 21 and the first few harmonics 22, 2a, ..., 2,, (m<<n). For example, if 
q -  0 and a central difference formula is used to approximate - y "  on G, then the 
corresponding algebraic eigenvalues (i. e. the eigenvalues of - A )  are given by 

4 sin 2 (k h /2 ) /h  z, k = 1, 2, ..., n, 

while the corresponding error is 

e(k ") = k 2 - 4 sin 2 (k h /2) /h  2, k = 1, 2, . . . ,  n, (1.5) 
which satisfies 

e(k n) -~ 0 (k 4 h2). 

This clearly illustrates the rapid growth of e(k ") as a function of k. 

Numerical techniques which avoid this difficulty and thereby guarantee uniformly 
valid approximate eigenvalues have been proposed by Paine and de Hoog [6] 
(cf. Pruess [7]). They construct the approximate eigenvalues as the exact eigen- 
values of a differential eigenvalue problem which is a suitably close approximation 
to (1.1)--(1.2). In addition, Paine [5] has shown that, when Heun's method is used 
to integrate the modified Prtifer phase for (1.1)--(1.2), uniformly valid approximate 
eigenvalues are generated. 

In this paper, we show how approximate algebraic eigenvalues 2(k ") derived for 
(1.1)--(1.2) for general q can be corrected to yield substantially improved approxi- 
mations. The idea is basically simple. Because the eigenvalues of 

- y " = # y ,  y (0)=y (r~) =0 ,  

are known (viz. #k----k2), and the algebraic eigenvalues defined by 

- A u = #(") u 

can often be evaluated analytically, the error 

k: - # i  ") 

can be ~ased to estimate the asymptotic behaviour of 2 k -2(k "), and thereby generate 
the corrected eigenvalue approximations 

~ ( n )  _ _  ~ ( n )  _ ~ / . 2  _ _  , , ( n )  
k - -  " ~ k  ~ ~ / 'Ok �9 

In the sequel, we limit attention to the situation where central differences have been 
used to approximate - y " +  q y on G. Then 

k2 ,,(n) __o(n) 
- - / ' ~ k  - - ~  " 

where e(k ") is given by (1.5), and the corresponding corrected eigenvalucs are given 

by ~(k, ) = ~(,) j_ o(,) 
~ k  t c,  k . 

We prove that, when q ~ C 2 [0, u], there exists an ~, independent of n, such that 

,~(,) • o(.) - ~ a_ r) (k h2), 1 _< k < c~ n, e < 1 (1.6) 
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Although we do not extend this result to the more general canonical Liouville 
normal form 

- y "  +q  y = 2  y, q =q  (x), y = y  (x), 0 < x  < 7r, (1.7) 

al  y (0)+ 0- 2 y' (0)= 01 y (zr)+ 02 Y' (re)=0, (1.8) 

the extension of this technique to such Sturm-Liouville problems and other dis- 
cretizations is discussed briefly in Section 5. 

2. Notation and Preliminaries 

For the eigenvalue problem (1.1)--(1.2), we derive a number of basic properties 
about its k-th eigenvalue 2 k and corresponding eigenfunction y (x). 

Let G denote the grid (1.3) and introduce the notation 
f = ( f  (xl), . . . , f  (x,,)) T 

for functions f defined on [0, u]. In addition, we shall use the notation 

s (x) -- sin kx .  

Using the standard central difference formula to approximate - y "  on G, the 
eigenvalue problem (1.1)--(1.2) is replaced by the algebraic problem 

with 

and 

( -  A + D) u = 2(') u 

D =diag  (q (xi), ..., q (Xn)), 

- 2  1 
1 - 2  1 

1 - 2  
1 
1] 

- 2  

(2.1) 

(2.2) 

We denote the k-th eigenvalue and eigenvector of (2.1) by 2(k ") and u = (Ux, ..., u,) r. 
When D = 0, it is easy to verify that 

4 sin 2 (k h/2)/h 2, k = 1, 2, ..., n, (2.3) 

and ~. define the k-th eigenvalue and eigenvector of - A ,  respectively; i.e. 

4 sin z (k h/2) 
- A s -  h2 ~, k = l ,  2, ..., n. (2.4) 

We initially derive a number of results about the asymptotic behaviour of 2 k and 
y (x) of (1.1)--(1.2), which will be required subsequently. 

It is well known (cf. Fix [2], Corollary 3) that 

2k = k2 + 1_ ~ q (t) d t + 0 (k- 2). (2.5) 
7"r 0 

9* 
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Without loss of generality, we assume that 

i q( t )d t=O,  
0 

since it imposes the same constant translation on each of the 2 k and 2(k "1. Under 
this assumption, it follows that 

2 k = k 2 + O (k- 2). (2.6) 

Next, we derive a general result about the behaviour of y (x) in terms of the eigen- 
values and eigenfunctions of (1.1)--(1.2) when q (x)-~ 0. 

L e m m a  2.1 : The general eigenfunction of (1.1)--(1.2) satisfies 

y (x) = sin k x + e  (x), (2.7) 
with 

e(x)=lw(x)+~-~2 v ( x ) + ~  z(x) (2.8) 

where 

w (x)= i q (z) sin k ~ sin k ( x - z )  dz,  (2.9) 
0 

and 

v (x)= i w(z) s i n k z s i n k ( x - z ) d z .  (2.10) 
0 

In addition, 
w (~ (x) = 0 (k~), r  (x) = 0 (kz), z C~ (x) = 0 (k~), 

e (l) (x) = 0 (U- 1), e (0) = e (n) = d 2) (0) = e (2) (n) = O, l = O, 1, 2, 3, 4, 

where the superscript denotes 1-th order differentiation w. r. t. x. 

Proof: It is well known that a particular solution of 

y "+ f l  y = f ,  f = f ( x ) ,  

is given by (cf. Courant and Hilbert [1], Chapter V, Section 11, eqn. (10), p. 283) 

1 ~ f ( z ) s i n ~ @ ( x - z ) d z .  

Thus, the most general solution satisfying y (0) = 0 is 

Y(x)=C1 s i n V f l x + ~ f l  o ~ f ( z ) s i n l / ~ ( x - z ) d z "  (2.11) 

Now, consider the eigenvalue problem 

- - y " + q ( x ) y = 2 k y  , y(O)=y(n)=O, 

which can be rewritten as 

y" + k z y = (k 2 - 2  k + q (x)) y, y (0) = y (n)= O. (2.12) 
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From (2.11), it follows that 

y (x)= Cl sin k x + l  i (k2-  2k + q (z)) sin k (x - z) y ('c) dz. 

Since the eigenfunction y is arbitrary up to a scalar multiple, we set C 1 = 1. 
Applying the Picard iteration method (i. eo the method of successive substitutions) 
to this equation with sin k x as the initial iterate and recalling from (2.6) that 
k 2 --2k----0 (k-Z), we obtain the required (2.7) and (2.8). [] 

We now turn to the construction of a discrete analogue of (2.7) on G. 

For an explicit characterization of the behaviour of 2(k ") and u in terms of #(k "), q, 
etc., we require the following two Lemmas. 

Lemma 2.2: For fi ~ p ~, p = O, 1, ..., 
l 

exp ( -  i fl/) ~ exp (2 i fl r) = sin ((l + 1) fl)/sin ft. 
r=O 

Proof: Follows immediately from standard trigonometric manipulations. 

Lemma 2.3: 
equation 

is given by 

(2.13) 

[] 

For fl@r re, r=0 ,  1, 2, ..., a particular solution of the difference 

up+ 1 - 2  cos fl up+up_ a =dp, p= 1, 2, ..., n, (2.14) 

Proof: Writing 

Zp=Up--b Up_l,  1,10 = U  1 = 0 ,  

with a b = 1 and a+b =2  cos fl, (2.14) becomes 

zp+ l - a  zp=dp. 

As an immediate consequence, it follows that 

P 
Z p + l =  Z aP-Jd j ,  

j = l  
and hence, from (2.16) 

P J 
up+l= ~ b p-j ~ aJ-rdr. 

j = l  r = l  

Using summation by parts, (2.17) becomes 
p p 

up+l= Z dj Z ar-JbP-" 
j = l  r=j 

p p--j 

= Z  d i e  a 'b . - , -J  
j = l  r=O 

= dj  b P - J  ~ a r b  - r  . 
j = l  r=O 

(2.15) 

(2.16) 

(2.17) 
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Since a = exp (i fl) and b = exp ( - i  fl), it now follows from Lemma 2.2 that  

P 

Up+l = ~ d~ sin (fl (p + 1 - j ) ) / s in  ft. �9 
j = l  

We are now in a posi t ion to prove  

Theorem 2.1: For k<_n and q (xj) = O (1),j =0 ,  1, 2, ..., n +  1, 

[ ~(") - "(") I -- O ( 1 ) , . ~ k  -k k = 1, 2, ..., n, (2.18) 

and the corresponding eigenfunction u satisfies 

h e J 
u~=sinkxj-~ s i n h k  ~ sink(xj--XI){#(k')--2(k")+qt}ut" (2.19) 

/ = 1  

Proof: The result (2.18) is an immediate  consequence of per turbat ion  theory for 
the eigenvalues of symmetr ic  matrices (cf. Wilkinson [8], Chapter  2, Section 44, 
p. 101). 

To  prove (2.19), we first observe from (2.1) tha t  

_ - h  2 u v + l - 2 u v + u p _ l  (--2(k')+qp)up, 

and hence, on adding h: #(k ~) Up to both sides of this equation,  

Up+ i - 2 cos (k h) up + up_ 1 = h2 "frog ''(') -- "~k~(") + qv} Up. (2.20) 

Since the boundary  condit ions (1.2) imply that  u o =0 ,  it follows that the homo-  
geneous solution associated with the left hand side of (2.20) is C 1 sin k x~. As in 
Lemma 2.1, we may set C 1 - 1 .  Hence, on applying Lemma 2.3 to (2.201 we 
obtain (2.19) as its general solution. �9 

Corollary 2.1 : I f  k h <_ a re, a < 1, then 

u s = sin k xj + fit, 

with fit = O (l/k). 

Proof: This is an immediate  consequence of(2.18), the assumption that q (x j) = 0 (1), 
j = 0 ,  1, 2, ..., n +  1, and the facts that the number  of terms in the summat ion  in 
(2.19) is bounded by O (l/h) and 

k h/sin k h=O (1). �9 

3. Error Estimates  for 2(k ~) 

In order  to derive the error estimate (1.5)--(1.6), it is necessary to examine in 
some detail the asymptot ic  behaviour  of 2k-- 2(k ")" Since 

- - y " + D y = 2 k y  - 
and 

- A u+Dy=2~')u ,  
it follows that  

I]. - ~ ( n ) - f ' ' T  A y - - u  r y.}/Nr y 

provided that u is not  or thogonal  to y. 
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Since, from (2.7), y = s  +g, it follows that  

u r A y-u_ r y" =~(k ") U_T~+U_ r ( A ~ - ( ' )  (3.1) 

after using (2.3), (2.4) and the definition of-s and e~ "). If the result of Corollary 2.1 
(i. e. u =-S +f l  with flj = O (l/k)) is applied to (3.1), we obtain 

.u r A y - u r y "  = e~ ") _u r -S +_s r (A e - e") +_fir (A e - e"). (3.2) 

We now derive estimates for the last two terms on the right hand side of (3.2). 

We consider the third term first. 

L e m m a  3.1 : 

Proof: Let 

w~ + 1 - 2 wj + w j_ 1 e~, ) ,, h2 - wj + wj + 0 (k 3 h2). (3.3) 

x+h 
~r/(x,h)= S q ( z ) s i n k z s i n k ( x + h - r ) d z  

x 
1 

= h S q (x + z h) sin k (x + z h) sin (k h (1 - z)) dz.  
0 

Clearly, using the notat ion r/~p) (x, h) = a p q (x, h)/O h p, 

~/(x, O) =0,  ~/~1) (x, O) =0,  r/~2) (x, 0)= k q (x) sin k x 
and 

n Ip~ (x, O) = o (kP- 1). 

It therefore follows that  

r 1 (x3, h ) -  2 q (xj, O) + ~l (x3, - h) 
h2 ~--t/(2) (xj, 0 ) + 0  (k 3 h 2) 

= k q (x j) sin k xj + 0 (k 3 hE). 

From (2.9)~ it follows that  

w (xj + h) = ~ q (z) sin k z sin k (xj + h - z) d z + tl (x j, h) 
0 

and consequently that  

WJ "~-wj-1 ~ L  " wj+l -2h2  h2 i ~ q ( z ) s i n k z  { s i n k ( x j + h - z ) - 2 s i n k ( x i - z  ) 
o +s in  k ( x ~ - h - z ) }  dz 

+ (tl (x j, h ) -  2 ~ (x j, O) + ~l (x j, - h))/h 2 

4 sin 2 (k hi2) 
= h E w ( x j ) + k q ( x j ) s i n k x j + O ( k a h 2 )  

on using (3.4) and 
fact that  

(3.4) 

appropriate tr igonometric relationships. Incorporat ing the 

k q (x) sin k x = w" ( x ) -  k 2 w (x) 
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into this last expression along with the definition (2.3) of p~"), we obtain the 
required (3.3). �9 

Lemma 3.2: 
(A g)j = e(k ") ej + e)' + 0 (k a h2). (3.5) 

Proof: It follows from (2.8) that 

1 
e (x) =-k- w (x) +~22 g (x), 

g (x) = v (x) + k z (x), and hence, because eo = en + 1 = O, where 

(A e ) j -  e j _ 1 - 2  e~+ej+l 
hE , j - - l ,  . . . ,n 

=~l(wj-1-2wj+wJ+l)+ l h 2  ~ ( g j - l - 2 g j + g j + l  ~ h 2  J 

1 w j_ l -2wj+wj+l  + ~ g j + O ( k  2h2 ) 
k h 2 

on interpreting ( g j - ~ - 2  gj+gj+t)/h 2 as a central difference approximation to 9" 
on G at xj. Using Lemma 3.1, this last equation becomes 

(A e). = 1 e(k. ) Wj + 1 1 
- J k wj" q-~ gj" q - 0  (k 2 h2), 

and hence the required result (3.5) is obtained on using the fact that 

~22e(k ") (k 2 h2). �9 gj=O 

As a direct consequence of this lemma, we obtain the required estimate for the 
third term on the right hand side of (3.2): 

Corollary 3.1 : 
fiT (A g - e " )  = e(k ") fiT g + O (k h). (3.6) 

Proof: It is only necessary to recall that flj= O (l/k). �9 

Because the components of -S are order 1, the estimate (3.5) cannot be used to 
show that 

_s T (A .r - . ( ' )  = e(k ") ~.T s + O (k h). 

It is necessary to exploit the specific properties of -S and e before such a sharp 
estimate can be obtained. Initially, we observe that 

-ST (A g --e") = e(k ")-sT g_-ST (e" + k 2 e). (3.7) 

The required result then follows from (3.7) the moment we prove 

L e m m a  3.3: Under the assumption that q" (x) is continuous on [0, ~z], 

-ST (e,,+ k 2 e )=O (k h+(n-k )  -2 h-l).  (3.8) 
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For the proof of this lemma, we shall make repeated use of the error formula for 
the trapezoidal rule and therefore state it as a lemma (cf. Isaacson and Keller [3], 
p. 316). 

Lemma 3.4: Let f denote any function with a continuous second derivative on the 
interval [0, ~z], and consider the use of the trapezoidal rule on the grid G viz. 

h ~ ' f ( x j ) = h  f ( x o ) + f ( x l ) + . . . + ~ f ( x , +  0 , 
j=O 

for the approximate integration of ~ f (x) d x. Then 
o 

n + l  ~ h 2 

h Z '  f ( x j ) =  S f ( x ) d x + ~ - 2 f ( z ) ( ~ ) ,  ~ (0, rr). (3.9) 
j=O 0 

We now use (3.9) to establish the following estimates 

Lemma 3.5: Under the assumption that q" (x) is continuous on [0, re], 

1 .+1  1 
- -  E '  "z ' ' - ' - z  ] z ( z " ( z ) + k Z z ( z ) ) d v + O ( k h ) ;  (3.10) ka j=o sj t j ~'~ zJ)=-~5-  o sin k 

1 " + 1  . ) ___ J L -  
k2 ~ '  sj(vj +k  z ~ s i n k z ( v " ( z ) + k 2 v ( z ) ) d z + O ( h k ) ;  (3.11) 

j=O J h k2 o 

1 . + 1  ,, w ' ) =  1 _ _  - -  Z '  sj(wj +k2 ~ s i n k z ( w " ( ~ ) + k 2 w ( z ) )  dz 
k j=o ~ h k o  

(3.12) 
1 

2 h 0  

Proof: The estimate (3.10) is an immediate consequence of the application of (3.9) 
to f ( x ) = s i n  k x (z" + k  2 z) on using the result of Lemma 2.1 that z (~ (x)= O (U), 
l=0 ,  1, 2, ..., 4. Once it is observed that 

f (x) = sin k x (v" + k 2 v) = k sin k x q (x) w (x), 

the estimate (3.11) follows using a similar argument. 

For (3.12), we use the fact that 

w" +k  2 w =k  sin k x  q (x) 
and obtain 

1 . + 1  2 1 . + 1  1 n+v,1 , 
- -  ~ '  s j (w) '+k wj)=~-  E '  q ( x j ) - ~ -  Z ,  q(x j )c~  (3.13) 
k j=O j=O j=O 

Using the fact that, by assumption, ; q (z) d z = 0, we obtain, on applying (3.9) to 
o 

the first term on the right hand Side of (3.13), 
n+l  
~ '  q (xj)=O (h). (3.14) 

j=O 
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For the second term, we use the Fourier cosine expansion for q (t); viz. 

q (x )=  ~ qrcosrx, (3.15) 
r=O 

with 

q~=-~ q(x)cosr x dx. (3.16) 
0 

Because of the assumption that q" (x) is continuous on [0, hi, integration by parts 
can be applied to (3.16) to show that 

q, = O  (r-2), r =  1, 2, .... (3.17) 

Substitution of (3.13) into the second term yields 

n + l  n + l  

~ '  q (x j) cos k xj = q, ~ '  cos r xj cos 2 k xj 
j=o ~=o j=o (3.18) 

1 ~ ,+1 
= ~  qr ~' {cos(r+2k)xj+cos(r-2k)xi}. 

r =0 j=O 

Since 
,+1 ( f l j u~=~n+l ,  fl=O, 2 (n+ l ) ,  4 (n+1) , .  

Since 
' COS " "  

~=o \ n + l ]  (0 ,  fl=integer, f l=p0,2(n+l) ,  .., 

it follows that 

n + l  n + l  
~ '  q (xj) cos 2 k xj = - ~ - -  {q2(,+ 1)-k+q4(,+ 1)-2k+ "' "} 

j = 0  

n + l  
" - ~ - T  {q2k + q2(n+ l)+ 2k + "''} 

and hence, on invoking (3.16) and (3.17), 

~' q(xj)cos2kxj= 1 ~q(z)cos2kzdz+ 
j = 0  

+ ~ q(z)cos(2(n+l-k)z)dz +O(h). 
0 

Substitution of this result back into (3.13) along with (3.14) yields 

1 . + 1  1 Y 
,, z - j q (z) cos 2 k z d z - -  ~ ' s j ( w j + k  w j ) -  2 h  o k j=o 

1 ~ q(z)cos(2(n+l-k)z)dz+O(h). 
2 h o  

The required result (3.12) now follows on using the fact that 

1 ~ q ( z )cos2kzdz=l  ~ (w,,(~:)+k2w(z))sinkzd z 
2 o o " 
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We are now in a position to prove Lemma 3.3. 

Proof of Lemma 3.3: Initially, we observe that 

n+l 
s_r(e~"+k2e)=~ sj(wj +k  2 wj) 

~3 n+l 1 n + l  
t t  2 sj(zj +k zj). + u  y; sj% +k vj)+ y; ,, 2 

j=o j=o 

Applying (3.12), (3.11) and (3.10) to the first, second and third terms in this last 
expression, respectively, yields 

..S, T (e" q-k 2 g ) = - ~ -  i sinkz(e" (z)q- k 2 e(z))dz 
o 

1 ~ q ( z )cos (2 (n+l -k ) z )dz+O(kh) .  
2 h o  

Using the fact (from Lemma 2.1) that e (0)=e  (zt)=e" (0)=e" (n)=0, integration 
by parts shows that the first term on the right hand side of this last expression is 
zero. On the other hand, it follows from (3.17) that the second term is 
O (h- 1 (n + 1 - k)- 2) which proves Lemma 3.3. �9 

As an immediate consequence of (3.7) and Lemma 3.3, we obtain 

Lemma 3.6: Under the assumption that q" (x) is continuous on [0, zc] 

~r (A e_e,,)=e~,) ~,r e + o (k h), (3.19) 

forkh<erc,  e<l .  

We are now in a position to use the estimates (3.6) and (3.19) to establish our 
main result: 

Theorem 3.1 : Under the assumption that q" (x) is continuous on [0, rc], it follows 
that there exists an ct < 1 which is independent of n such that 

jt k _ j(n) = e(n) q_ O (k h2), k < an .  (3.20) 

Proof: Substitution Of (3.6) and (3.19) into (3.2) yields 

('~k __,~(,))uT y. =~T A y,. _uT  y ,  =F(kn) U,,,T ~..}_e(n)~T g_~_~(k n) flT g_~ 0 (k h) 
(3.21) 

uT s +O (k h). 

In addition, it follows from Corollary 2.1 and Lemma 2.1 that 

Hence, there exists atc o > 1, independent of n, such that 

u_T y > K n ,  K=const . ,  k>_k o. 

Combining this last result with (3.21) fields the required relationship (3.18) for 
ko<_k<_an. 
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The situation when k < k  0 does not pose a problem. From Keller [-4], Section 5.3, 
p. 135, we have 

12k--;t(k")l<Ch 2, k<ko, 
which, in conjunction with (3.20) for k o < k < e  n, guarantees a uniform error of 
0 (k h) for the corrected eigenvalue 

i (") -  ~(")- e(k "), k < ~  n, ~ <  1, 

since e(k ") = 0 (h 2) for k < k 0 . [] 

4. Numerical Exemplification 

For convenience, we introduce the notation 3"(,) _ ~(.) ~_ ~(n) ~k -- '~k ~ ~  " 

The errors in the standard and corrected eigenvalue estimates for the first ten 
eigenvalnes of 

- y "  +exp  (x) y = 2  y, y = y  (x), (4.1) 

y (0)=y  (1)=0,  (4.2) 

obtained using central differences to approximate - y "  and n=39,  are given in 
Table 1. It is clear from these results that the corrected estimates are greatly 
superior to the original ones. In fact the estimates are so good that the structure of 
the error cannot be seen due to the effects of rounding error. 

Table 1. Error in the standard and corrected finite difference eigenvalue 
estimates for (4.1)--(4.2) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11.5424 
41.1867 
90.5404 

159.6296 
248.4569 
357.0230 
485.3281 
633.3724 
801.1558 
988.6783 

.0057 

.0813 

.4106 
1.2954 
3.1544 
6.5261 

12.0593 
20.5083 
32.7373 
49.7023 

.0006 

.0002 

.0004 

.0007 
- .0002  
- .0006  

.0001 
- .0007 

.0002 

.0001 

A clearer illustration of the behaviour of the eigenvalue error can be obtained if 
instead we consider the eigenvalue problem 

- y "  +exp  (x) y = 2  y, y = y  (x), (4.3) 

y (0) = y (re) = O. (4.4) 
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The errors in the standard and corrected eigenvalue estimates using n = 39 are 
given in Table 2. For the standard estimate, the error is obviously in close 
agreement with predicted k 4 growth. Also the growth in the error for the corrected 
estimates, displayed in Fig. 1, appears to be consistent with that predicted by 
Theorem 3.1. 

~D 

W 

.00, 

- . 02  

- . 04  

- . 06  

- . 08  

- - 10  

F 
~ < x x X X X X X X x x x x  

X X X X X X X x  X 

X 
X 

X 
X 

, I p I ~ I i I v I t I n I ~ I J I [ I i I r I i I , ~  

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

EIGENVRLUE 

Fig. 1. The error (~")-2~) associated with (4.3)--(4.4) 

Table 2. Error in the standard and corrected finite difference eigenvalue estimates for (4.3)--(4.4) 

k -'t-k (2k -- 2{k ")) (2k - 2~"))/k" (2 k - .~")) (2 k - ~"))/k 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

4.89667 
10.04519 
16.01927 
23.26627 
32.26371 
43.22002 
56�9 
71.15300 
88.13212 

107.11668 
128.10502 
151.09604 
176.08900 
203.08337 
232.07881 
263.07507 
296.07196 
331.06934 
368.06713 
407.06524 

.O029 

.0172 

.0546 

.1437 

.3308 

.6720 
1.2326 
2.0889 
3.3283 
5.0477 
7.3538 

10.3617 
14.1947 
18.9835 
24,8648 
31,9814 
40.4804 
50.5130 
62,2331 
75.7968 

.0029 

.0011 

.0007 
.0006 
.0005 
.0005 
.0005 
.0005 
.0005 
.0005 
.0005 
.0005 
.0005 
.0005 
.0005 
.0005 
.0005 
.0005 
.0005 
.0005 

.0024 

.0091 

.0131 

.0124 

.0113 

.0107 

.0107 

.0110 
.0113 
.0118 
.0124 
.0132 
.0140 
.0150 
.0150 
.0173 
.0190 
.0204 
.0224 
.0245 

�9 
.0045 
.0043 
.0031 
.0023 
.0018 
�9 
.0014 
.0013 
.0012 
.0011 
.0011 
.0011 
.0011 
.0011 
.0011 
.0011 
.0011 
.0012 
.0012 

To further investigate the behaviour of the error in the corrected eigenvalue 
estimates, the eigenvalue errors for the first twenty eigenvalues of (4.3)--(4.4) for 
a sequence of values of n are given in Table 3. If we consider the errors for a fixed 
value of k then it is clear that the predicted second order convergence is obtained 
as h--+ 0. 
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Table 3. Eigenvalue errors for the corrected finite difference eigenvalue estimates for (4.3)--(4.4) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

4.8967 
10.0452 
16.0193 
23.2663 
32.2637 
43.2200 
56.1816 
71.1530 
88.1321 

107.1167 
128.1050 

n=  19 

.0095 

.0365 

.0539 

.0539 

.0520 

.0540 

.0595 

.O677 

.0790 

.0944 

.1152 

)~k - ~.~ 

n=39 

.0024 

.0091 

.0131 

.0124 

.0113 

.0107 

.0107 

.0110 

.0113 

.0118 

.0124 

n=79 

,0006 
.0023 
.0033 
.0031 
.0026 
.0026 
.0024 
.0023 
.0024 
.0027 
.0024 

To illustrate that the above technique for correcting algebraic eigenvalues does 
in fact have general applicability, we list in Table 4 for a sequence of values of n the 
error in the corrected eigenvalues for the following almost singular problem 

- - y " + ( x + 0 . 1 )  - z  y = 2 y ,  y = y ( x ) ,  (4.5) 

y ( 0 ) = y  (re)= 0.  (4.6) 

Table 4. Error in the corrected finite difference eigenvalue estimates for (4.5)--(4.6) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1.5199 
4.9433 

10.2847 
17.5600 
26.7829 
37.9644 
51.1134 
66.2364 
83.3390 

102.4250 
123.4977 
146.5596 
171.6126 
198.6584 
227.6980 
258.7326 
291.7629 
326.7896 
363.8133 
402.8343 

n=19 

.0015 

.0080 

.0208 
.0398 
.0646 
.0954 
.1324 
.1762 
.2278 
.2886 
.3601 
.4446 
.5452 
.6658 
.8121 
.9925 

1.2204 
1.5196 
1.9145 

n =39 

.0004 

.0016 

.0042 

.0077 

.0120 

.0169 

.0223 

.0282 

.0346 

.0415 

.0492 

.0575 

.0665 

.0766 

.0876 

.0998 

.1131 

.1280 

.1445 

.1628 

n = 79 

.0000 

.0004 

.0009 

.0017 

.0025 

.0034 

.0042 

.0050 

.0059 

.0066 

.0075 

.0086 

.0092 

.0100 

.0109 

.0118 

.0130 

.0138 

.0151 

.0161 

The choice o f  a: As i n d i c a t e d  in T h e o r e m  3.1, e < 1 a n d  i n d e p e n d e n t  of  n. O n  t h e  

b a s i s  of  n u m e r i c a l  e x p e r i m e n t a t i o n ,  i t  a p p e a r s  t h a t  e =  1/2 is s a t i s f ac to ry .  T h i s  

c l e a r l y  i l l u s t r a t e s  t h e  u t i l i t y  of  t h e  c o r r e c t i o n  p r o c e d u r e  for  g e n e r a t i n g  u n i f o r m l y  

va l id  a p p r o x i m a t i o n s  to  l o n g  s e q u e n c e s  of  e i g e n v a l u e s .  
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5.  P o s s i b l e  G e n e r a l i z a t i o n s  

Although we will not extend the convergence bound given in Theorem 3.1, it is 
worthwhile noting that the above technique for correcting eigenvalue estimates 
can be applied to more general eigenvalue problems such as 

- y " + q y = 2 y ,  y = y ( x ) ,  (5.1) 

a 1 y (0)+a  2 y' (0)=0,  (5.2) 

01 y (re)-02 y' (re)=0. (5.3) 

After using central differences to approximate - y "  on the grid G of (1.3), and to 
approximate y' at the boundary, the differential eigenvalue problem (5.2)--(5.3) 
is replaced by the algebraic problem 

- A  _u +D_u=2~"~_u 

where D =diag (q (x0, ..., q (x,)) and 

f ~ t 1 - 2  1 
A _ 1  "'-..., " ' . . .  - -  ~ " ~  

"'--'2 "1 
0 """'" 1 

2 - 2 +  

(5.4) 

With the ordered eigenvalues of (5.4) denoted by 2~ "), k = 1, 2, ..., n, the corrected 
eigenvalue estimates are given by 

~(n)-- ~(")-a , ,  _ r,~"~ k = 1, 2, n -  1 k - -  "~k ~ / ~ k  PLk ~ ' " " 

where #k, k=1 ,2 ,  ..., are the eigenvalues of (5.1)--(5.3) with q - 0 ,  and #(k "), 
k -- 1, 2, ..., n, are the eigenvalues of (5.4) with D - 0. 

tf we apply this technique with n = 39 to the eigenvalue problem 

- y "  + e x p ( x ) y = ) t  y, y = y ( x ) ,  (5.5) 

y (0)=y'  (re)=0, (5.6) 

then the results given in Table 5 show that the errors in the corrected estimates 
are superior to the original estimates. In fact, the error in the corrected estimates 
is uniformly bounded for the values of k given. 
Clearly, the above technique for correcting algebraic eigenvalues extends naturally 
to general differential eigenvalue problems. The actual implementation will of 
course depend on whether there is a simpler but related differential problem for 
which the eigenvalues can be determined with sufficient accuracy. 

Finally, we note that the eigenvalue estimates generated by a finite element 
method could be improved if they were corrected using an appropriate form of 
the above technique. All that is required are accurate estimates of #k, k = 1, ..., 
and t~k "~, k = 1, 2, ..., n, for a simple but related differential eigenvalue problem. 
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Table 5. Error in standard and corrected eigenvalue estimates for 
(5.5)--(5.6) 

k ,~ ~ -  2~ "1 ;t~-.~"~ 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

4.8957 
9.9995 

15.4684 
21.0369 
28.1890 
37.7905 
49.6135 
63.5203 
79.4643 
97.4277 

117.4022 
139.3837 
163.3697 
189.3590 
217.3505 
247.3436 
279.3380 
313.3334 
349.3296 
387.3263 

.0029 

.0168 

.0405 

.0770 

.2031 

.4641 

.9086 
1.6081 
2.6448 
4.1118 
6.1107 
8.7528 

12.1573 
16.4515 
21.6887 
28.2493 
36.0381 
45.2844 
56.1408 
68.7626 

.0028 

.0142 

.0204 

.0000 
- .0068 
- .0034 
- . 0 0 1 0  

.0003 

.0010 

.0018 
.0024 
.0031 
.0038 
.0047 
.0053 
.0063 
.0073 
.0084 
.0097 
.0112 

For example, if we use the standard linear elements on the grid G of (1.3) to 
approximate the eigenvalues of (1,1)-L(1.2), then it follows that /~k = k 2  and 

/~(k,) = 6 ( l ' c o s  k h) 
h2(2+coskh), k = l ,  2, . . . ,n .  

The finite element eigenvalue estimates 2~ "), k = 1, 2, ..., n, can then be corrected 
as previously. 
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