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Abstract - -  Zusammenfassung 

An Adaptive, Multi-Level Method for Elliptic Boundary Value Problems. Subroutine PLTMG is a 
Fortran program for solving self-adjoint elliptic boundary value problems in general regions of R 2. 
It is based on a piecewise linear triangle finite element method, an adaptive grid refinement 
procedure, and a multi-level iterative method to solve the resulting sets of linear equations. In this 
work/we describe the method and present some uumeridal results and comparisons. 

AMS (MOS) Su.bject Classifications (1970): 65N20. 
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Eine adaptive mehrstufige Methofle flit elliptisehe Runflwertprobleme. Das Unterprogramm PLTMG 
ist ein FORTRAN-Programm zur L6sung selbstadjungierter elliptischer Raudwertprobleme ffir 
beliebige Bereiche des R 2. Es basiert auf einer stiickweise-linearen Finite-Elemeut-Methode, einer 
adaptiveu Gitterverfeinerungsmethode und einer mehrstufigen iterativen Methode zur L6suug des 
resultierenden Systems linearer Gleiehungen. In dieser Arbeit wird die Methode beschrieben, uud 
eiuige numerische Ergebnisse und Vergleiche werden dargelegt. 

1. In troduc t ion  

C o n s i d e r  the  m o d e l  e l l iPt ic  b o u n d a r y  va lue  p r o b l e m  

L u = - V . ( a V u ) + b u = f  in f 2 c R  z 

u = g  t on  (~f2~ 

du  
On = g 2  on  (3f22=c~f2-Of21 

(1.1) 
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where the coefficient a (x, y) (b (x, y)) is positive (nonnegative) in Q. In this work 
we discuss the performance of a program which solves (1.1) using a Rayleigh- 
Ritz-Galerkin method based on piecewise-linear triangular finite elements, a 
multi-level iterative scheme for solving the resulting matrix equations , and an 
adaptive grid refinement procedure. A more detailed discussion of the program 
appears in [14]. 

For expositional convenience, we assume 91 =gz =0, and that f2 is a polygon, 
although our FORTRAN subroutine PLTMG is designed for the more general 
equation (1.1). 

In the Rayleigh-Ritz-Galerkin procedure [10, 117, we seek an approximate 
solution to the weak form of (1.1): Find u s ~,-r (~2) satisfying 

a(u, v)=(f ,  v) for all v ~ J t ~  ((2) (1.2) 

where 

a(u,v)=~ a. Vu. V v + b u v d x ,  

and (., .) denotes the usual L 2 (~)  inner product. We use ~ (f2)__ J(f 1 (f2) to de- 
note the subspace of the usual Sobolev space ~ 1  ((2) whose elements satisfy 
essential boundary conditions [10, 11]. Associated with the bilinear form a (., .) 
is the energy norm Itl u Ill 2 = a (u, u). 

Let 9- denote a triangulation of ~2, and let ~ ~ ~4~ (~2) denote the N-dimensional 
space of C o piecewise-linear polynomials associated with 3-. The finite element 
approximation of u in (1.2) is the function fi s ~/~ which satisfies 

a (fi, v) = (f, v) for all v e J//. (1.3) 

Once a basis {~oi}~= 1 for ~{ has been selected (the nodal basis [-10, 11] is usually 
chosen), (1.3) can be reformulated as a system of linear equations 

A U = V (1.4) 

where A~j = a (q~j, qh), and Fi = (f, (p~). Usually N is large and the stiffness matrix 
A is sparse. 

Our multi-level solution procedure involves a sequence of nested triangulations 
Y-}j, with .~+1 nested in Wjj, j>_l, and the corresponding Nj-dimensional sub- 
spaces, ~#j, of C o piecewise-linear polynomials. (By nested, we mean that each 
triangle of ~ + 1 intersects the interior of exactly one triangle of Wjj.) Corresponding 
to each subspace d/l i is the problem Pj, the analog of (1.3): Find uje  JCZj 
satisfying 

a(uj, v)=(f ,  v) for all v ~ dc'j. (1.5) 

The multi-level method also requires the solution of problems Pj of more general 
form: Find xj ~ Jt'j satisfying 

a (x j, v) = G (v) for all v ~ ~ (1.6) 

where G (v) is a linear functional defined for v ~ ~gj. Both (1.5) and (1.6) require 
the solution of a linear system involving a stiffness matrix like A. 
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The current interest in multi-level methods is primarily due to the fact that they 
are of optimal order in terms of computational complexity [3--5, 8--9, 15]. That 
is, under certain hypotheses on the continuous problem (1.1)m(1.2) and the 
triangulations ~ ,  the work required to compute an approximation fij e JC/j to 
uj ~ JCdj of (1.5), which satisfies 

Ill ~ j - u  II1-< c g j  -q (1.7) 

is proportional to Nj. Here C = C (u, a, b, f2, Yt) and q is the "correct" exponent 
provided by the standard finite element analysis [-10, 11]. Several of these theo- 
retical hypotheses may not be satisfied by some problems which may be solved 
using PLTMG;  nonetheless, as we will see later, the multi-level scheme appears 
empirically to work well even in these cases. 

There are five major organizational blocks within PLTMG: subroutines GRID, 
MATRIX, RHS, MG, and ADAPT. GRID is used to construct a sequence of 
triangulations according to user specifications. ADAPT is used to construct 
triangulations using an adaptive refinement procedure based on the ideas of 
Babu~ka and Rheinboldt [1, 2]. In both cases, the user need only describe f2 using 
a minimal number of triangles. Our approach to the refinement problem is adapted 
from techniques used by Bank and Dupont in the solution of certain non-linear 
parabolic problems, in which the grid was periodically redefined in order to 
track the propagation of fronts and singularities. A brief description of our 
refinement procedure is given in Section 2. 

MATRIX and RHS are used to assemble the matrices and right hand sides for 
problems (1.4). Aside from the interface with our data structures, these routines 
are basically standard, and we will not describe them there. MG is the driver for 
the multi-level iteration; some details of this part of our implementation are found 
in Section 3. 

Since multi-level schemes employ a sequence of triangulations, they are ideally 
suited for use in conjunction with adaptive refinement procedures in which the 
computed solution fij_ 1, corresponding to Jjj_ 1 is used to determine the refine- 
ment pattern for Jjj. Section 4 describes some aspects of subroutine ADAPT. 

Finally, in Section 5 we present some numerical results, including examples with 
domain singularities and comparisons of the solution time required for our 
multi-level scheme with those of several other solution methods. 

2. Grid Ref'mement 

As noted in the Introduction, a major portion of P L T M G  is devoted to grid re- 
finement. In this section we describe some of the procedures used to refine the 
user-supplied triangulation .~o of f2, while in Section 4, we discuss the adaptive 
refinement process. 

7* 
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v~ v 2 

v~ v5 

v 6 ~' ~2 
a b 

Fig. 2.1. a global notation, b local notation 

Initially, the user of P L T M G  supplies a coarse triangulation ~'0 of f2 consisting 
of a small number of triangles ti, l_<i_<maxto (cf. Fig. 2.1 a). Each triangle ti 
contains three vertices v{, 1 <j_< 3, and three edges ei, 1 < j  _< 3, with d opposite v{ 
(cf. Fig. 2.1 b). It is convenient to assign global numbers to the vertices and'edges 
in Yo, denoted by vk, l_<k_<maxvo, and % l_<k_<maxeo, respectively. Thus 
for l_<i_<maxt o and l<j_<3,  vZ=v k for some k, l_<k_<maxvo, and ~]=e~ for 
some l, 1_/_<maxe o. Throughout this paper, we will view local designations 
(e. g. vi) and global designations (e. g. vk) as interchangeable names for a unique 
entity, and we will use whichever designation makes more sense in context. 

Each edge of a triangle t~ either is a boundary edge of ~ or is part of the perimeter 
of one or more other triangles in the grid. We define the neighbor of t~ across 
edge ~{, denoted z{, as the smallest regular triangle with one edge which completely 
overlaps 4. (A regular triangle is one obtained by regular subdivision; see below.) 
If ei is a boundary edge, we define ~ _< 0 (the value depending on the boundary con- 
ditions). Note that the neighbor relation need not be symmetric and is time 
dependent. 

Our refinement algorithm is motivated by three constraints: 

(i) The size of the smallest interior angle of any triangle should be bounded 
away from 0. 

(ii) The transition between large and small triangles i.n the grid should be 
"smooth". 

(iii) The user of P L T M G  should be able to control the amount of refinement in 
various regions of f2. 

I 2 
3 

a 

3 

Fig. 2.2. a regular subdivision, b "green" subdivision. 
(Vertex labels refer to the superscript in ~ notation) 



An Adaptive, Multi-Level Method for Elliptic Boundary Value Problems 95 

To ensure that ( i ) is  met, we allow only two types of triangle subdivision: 
regular and "green ''1. In regular subdivision (cf. Fig. 2.2 a) a triangle t i is divided 
into four smaller triangles, denoted ts, +j, 0 ___j _< 3, by joining the midpoints of its 
edges. Each of the four new triangles (called "sons of t~") is similar to t~ (its 
"father"), so that regular subdivision never reduces the size of the interior 
angles. 

In green subdivision a triangle t~ is divided into two smaller "green triangles", 
denoted t~, and ts,+l , by inserting a "green edge" joining a vertex v i to the 
midpoint of the opposite edge ~ (cf. Fig. 2.2 b). Green subdivision may reduce the 
size of the smallest interior angle, so repeated use could violate (i). Hence we only 
use it to "clean up" the grid by removing degenerate quadrilaterals which 
remain after all regular subdivision has been completed. 

To meet objective (ii), and to insure that the "clean up" will involve only 
degenerate quadrilaterals, we divide a triangle t~ using the regular subdivision 
process whenever two neighbors have been divided once, or one neighbor has 
been divided twice (cf. Fig. 2.3). 

(7 

/@• ti / 

Fig. 2.3. a two neighbors divided once, b one neighbor divided twice. 
(Situations requiring regular subdivision of t~) 

Finally, to allow the user of P L T M G  to guide the refinement process, we introduce 
the notions of triangle and vertex level numbers. The level number of a triangle t i 
is an indication of the number of subdivisions required to obtain ti from a 
triangle of ,Yo, while the level number of a vertex v~ is an indication of the 
amount  of refinement which should occur near v k. These level numbers are used 
to control the refinement process in the sense that any triangle containing a 
vertex v k must be regularly subdivided if its level is smaller than that of v k. 

The vertex levels for vertices in J o  are user-specified, and through them the user 
of P L T M G  can cause different amounts of refinement to occur in different re- 
gions of O. The vertex level of a vertex v k which is created at the midpoint of an 
edge e i during regular dubdivision is defined by a user-specified weighted average 
of the levels of the endpoints of e i. By changing the weighting parameter, the user 
can adjust the sharpness of the mesh grading near vertices of large level 
number. 

To conclude this section we discuss the way that our refinement algorithm fits 
into the multi-level solution scheme. Applying the algorithm to the initial triangu- 
lation causes a sequence of regular triangle subdivision to occur, eventually 

1 The term "green" subdivision was used by Bank and Dupont and can be traced back to Donald 
Rose. 
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leading to a fully-refined grid. However, we can stop the process early by limiting 
the maximum allowable triangle level number and, after adding necessary green 
edges, obtain a partially refined triangulation suitable for use with the multi- 
level scheme. To obtain the necessary sequence of such triangulations, we simply 
make use of an increasing sequence of limits on the triangle level numbers. The 
result is an efficient procedure that generates a sequence of triangulations of f2 
which are nested (except for certain green triangles) and which satisfy the other 
constraints requisite to their use with the multi-level solution scheme (cf. Bank 
and Dupont  [4]. 

3. The Multi-Level Iteration 

The term "multi-level iteration" can be applied to a diverse class of iterative 
methods (cf. [3--5, 8 - 9 ,  15]). In this section we describe the particular algorithm 
within this class which we have implemented in PLTMG.  

Our algorithm is built upon what we shall call the k-level scheme for solving the 
problem P~ introduced in Section 1. Assume that we have a nested sequence _of 
triangulations . ~ ,  9-2,-.., ~ generated as described in Section 2, and let b k (-, .) 
be a symmetric bilinear form associated with ~ .  One step of the k-level scheme 
takes an initial approximation z o e J/lk to a final approximation zm+ 1 e Jdk, where 
m is a parameter of the method which may be specified. This single step may be de- 
fined recursively as follows: 

(i) For l=  1, 2, ..., m, solve the following for zt: 

bk (zl - -  zl  - 1, cp) = G ( qg) - a ( z l -  1, qo) for all (p ~ J g k .  (3.1) 

(ii) Find 3 ~ J g k -  J, an approximation to 6 e M k_  1, the solution of 

a (3, q~) = G (qO - a (Zm, ~0) = G (q0 for all q9 e ~g/d k_ 1. (3.2) 

(iii) Set 
zm+l =zm+3.  (3.3) 

Iteration (3.1) is called a smoothing iteration; its purpose is to damp components 
of the error which oscillate on the order of the mesh size in ~ .  The bilinear form 
bk ( ' , - )  can represent any iterative method [12, 13] for systems of linear equations 
which will do this, although under-relaxed Jacobi-like schemes are typically 
chosen in theoretical studies. In PLTMG,  however, we have chosen to implement 
a symmetric Gauss-Seidel iteration [12, 13]. For other possibilities, see [5]. 

If the smoothing iteration is successful, then the error becomes less oscillatory; 
and we can anticipate that it can be well-approximated by an element in the 
space of smaller dimension J~k-1. Thus in (3.2) we compute 3, an approximate 
elliptic projection of the error into J l k _ l ,  using sparse Gaussian elimination for 
k = 2 or two iterations of the k -  1 level scheme with initial approximation zero 
for k>  2. 

In (3.3) we add the approximate error to z, ,  to obtain z,,+ 1. If ~k is nested in 
~ - i  (i.e. no triangles in ~ intersect more than one triangle in .~_1), then 
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�9 / ~ k _ l C - - J / g k  SO that both 3 and Zm+ 1 will be in J//k. In practice, however, this 
may not quite hold because some triangles which are divided into two green 
triangles in Jk-a  are regularly divided in Fkk. In this event, we simply replace 
in (3.3) by its interpolant into J//k. 

Using the k-level scheme (3.1)--(3.3) as an inner iteration, we can now build the 
overall multi-level iterative process aimed at solving the sequence of problems 
P j, 1 _<j < k, introduced in Section 1. In this process we successively compute the 
approximate solutions fij of P j, 1 _<j _< k as follows: 

(i) F o r j  = 1, compute fil by solving (1.5) directly. 
(ii) For 2 <j_< k, compute fij using r iterations of the j-level scheme applied to 

(1.5) with fij_ 1 as the initial approximation. (Here r is a parameter that may 
be user-specified.) 

As an example, the multi-level process for the case k=3  is summarized below, 
illustrating the relation between the parameters m and r: 

(i) Solve directly for fi~. 

(ii) Starting from ill, carry out r iterations of (a)--(c): 
(a) m smoothing iterations at level 2, 
(b) direct solution at level 1, 
(c) update iterate at level 2. 
Take level 2 iterate as fi2. 

(iii) Starting from fi2 carry out r iterations of (a)--(h): 
(a) m smoothing iterations at level 3, 
(b) m smoothing iterations at level 2, 
(c) direct solution at level 1, 
(d) update iterate at level 2, 
(e) m smoothing iterations at level 2, 
(f) direct solution at level 1, 
(g) update iterate at level 2, 
(h) update iterate at level 3. 
Take level 3 iterate as fla. 

In (iii), the smoothing iterations at level 3 correspond to the original problem 
(1.5) with j = 3 ,  those at level 2 correspond to the residual equations, and the 
direct solutions at level 1 correspond to the residual equations of the residual 
equations. 

To implement the multi-level scheme in general, we need four basic pieces of 
software in addition to a straightforward driver: 

(i) a module to carry out m smoothing iterations for any problem P}, j > 2; 

(ii) a module to compute the righthand side of (3.2) for any pair of spaces 
(J//j_ ~, J/~), j___ 2; 

(iii) a module to carry out (3.3); and 

(iv) a module to directly solve P~. 

In P L T M G  we have written our own subroutines for (i)--(iii) and made use of the 
Yale Sparse Matrix Package [7] for (iv). 
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4. Adaptive Refmement 

In the multi-level scheme described in the previous section, no information about 
the level j grid .~  is required until the approximation fij_ ~ has been computed. 
Although we have assumed thus far that all grids are known in advance, it is 
clear that we may, in fact, use ~j_ 1 to adaptively determine ~-jj. 

Our adaptive refinement procedure is based on the ideas of Babu~ka and Rhein- 
boldt [1, 2]. Let t i E Y-j_ 1 have diameter ht~ , and let 

2 III z I[I,, = ~ a] V z  I a + b  z z d x  (4.1) 
tl 

denote the energy norm associated with t i. Following [1, 2] we estimate the error, 
in energy, in ti using 

III ur-1 - u  II1~--C1 (a, t~) h 2 - t, ~ ( L f i r - l - f ) 2 d x + C 2 ( a ,  ti)h,, ~ j 2 d x  (4.2) 
ti Oti 

where J is the jump in normal derivative in fi~-i across ~t~. C 1 and C 2 are 
computable constants which depend on the coefficient function a (x, y) and the 
geometry of t i (but are independent of the size of ti). The factors of ht, are required 
to make the homogeneity of the right and left hand sides of (4.2) consistent. 
Formula (4.2) is modified slightly for triangles with one or more boundary edges. 
The right hand side of (4.2) is thus computable for each ti ~ 3-~j_ 1 using only 
fij- 1 and the partial differential equation. 

We now describe the adaptive computation of ~ from ~ _  1. Let emax denote the 
largest estimated error in any triangle in f j _  ~, and let tm,x e ~ - 1  be a triangle 
with estimated error e . . . .  Let e I denote the estimated error in the father of ~ . . . .  
assuming it is known from a previous step of the adaptive procedure. If the local 
rate of convergence behaves like C htqm,, for some constants C and q, then the 
regular refinement of t~,• will result in estimated errors of approximate size 

2 e~ = em,x/ey in the sons of tm~ ~. Therefore, to construct ~ from gj_  ~, we divide 
only those triangles in ~-}j-1 which have estimated errors larger than the 
threshold value e2ax/ey. (If e I is not available, we assume q =  1, and set the 
threshold to em~x/2.) 

To save both time and space, we have actually implemented the adaptive scheme 
in P L T M G  with two modifications: 

(i) A triangle t~ may be in both ~jj_ 1 and ~ if its error estimate is less than the 
threshold value. For  such a triangle we do not recompute the error using fir, but 
instead use the estimate computed previously using fir- 1. 

(ii) If there is a severe singularity, it is possible that only a few triangles near that 
singularity will have errors larger than the threshold and be refined. If this were to 
occur in several consecutive refinements, the result  would be a sequence of sub- 
spaces ~gr of slowly increasing dimension, requiring extra storage for unnecessary 
matrices, and extra work for the multi-level iteration. To avoid this, we have in- 
corporated a "level compression" feature into PLTMG. If sufficiently few 
vertices have been added in an adaptive refinement step, we discard the old 
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triangulation ~ _  1 in favor of the newly created one. In this fashion, we generate 
a sequence of subspaces ~/j whose dimensions approximately satisfy 

2Nj-I<-Nj<4Ni-1, 

insuring a geometric increase in dimension. 

We do not know theoretically what effect level compression has on the rate of 
convergence. Current convergence proofs explicitly or implicitly assume a 
sequence of quasi-uniform grids that is unlikely to be produced in situations 
where level compression is employed [3--4, 8--9, 15]. In practice, however, the 
procedure seems to have the desirable effects of reducing both work and storage, 
since it reduces the number of triangulations (and associated algebraic problems) 
that must be stored and used. Moreover, we have observed only a modest 
reduction in the observed rate of convergence. 

5. Numerical Results 

In this section we examine two aspects of the performance of PLTMG: the effective- 
ness of the adaptive procedure in dealing with singularities due to ~(2 and the 
computation time required to approximately solve the discrete problem for fik 
when the triangulations ~ ,  Y2, -.., ~ and the corresponding matrices are already 
available. In the former case, we compare results obtained using PLTMG with 
those expected from the theory; while in the latter case, we compare PLTMG with 
alternative methods for solving the discrete equations (1.4). 

To study the behavior of the adaptive procedure, we consider a sequence of five 
problems defined on portions of the unit circle C centered at the origin. In par- 
ticular, for c~ = 1 + k/4, 0 _< k_  4, we consider the problem 

-Au~=-O in f2~ (5.1) 

u~=rl/~sin(O/oO on Of2~ 2 

Fig. 5.1. ~2~ for c~=1.75 

2 For  expositional convenience, we use polar coordinates to represent the boundary conditions. 
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where f2~ is C with a wedge of central angle ( 2 -  e )~  removed  (see Fig. 5.1). When  
ct= 1, f2~ is a semi-circle with no singularity at the origin; when e = 2 ,  f2~ has a 
crack at 0 <__ x <__ 1, y = 0. The exact solut ion to (5.1), u~ = r 1/~ sin (0/c~), displays the 
principal  par t  of  the singularity (if any), due to the corner  or crack at the 
origin [11]. 

Fig. 5.2. The initial triangulation ,~0 for c~ = 1.75 

F o r  each c~ we solved (5.1) twice using a four-level scheme with ,Y-t =Y-o, where 
Y--o consisted of 4 c~ triangles formed by two radii of C and a circular arc of ~/4 
radians joining them along ~ f2~, (see Fig. 5.2). In the first case, Wj, 2_<j_< 4, was 
constructed by regular ref inement  of each triangle in ~ _  1- In the second case, 
t r iangulat ions were generated by the adapt ive  procedure  using level compression.  
Fo r  ~ > 1, the smallest triangles in the adapt ive  case were always located near  the 
origin and were significantly smaller in size than the smallest triangles in the 
uni form case. Fig. 5.3 shows the finest t r iangulat ion for both cases for ~ - 175. 

c/ 

Fig, 5.3. a ~ for the adaptive refinement case, b ,~r4 for the uniform refinement case 



An Adaptive, Multi-Level Method for Elliptic Boundary Value Problems 101 

1.00 

1.25 

1.50 

1,75 

2.00 

Type 

Uniform 
Adaptive 

Uniform 
Adaptive 

Uniform 
Adaptive 

Uniform 
Adaptive 

Uniform 
Adaptive 

Table 5.1. Convergence of u~.i to u~ 

j = l  

Nj Digits 

6 12.66 
6 12.63 

7 .75 
7 .76 

8 .49 
8 .50 

9 .35 
9 .35 

10 .25 
10 .26 

j=2 

Nj Digits 

15 12.66 
31 12.63 

18 .97 
25 1.04 

21 .69 
30 .78 

24 .53 
27 .51 

27 .42 
32 .44 

j = 3  

Nj Digits 

45 12.66 
131 12.61 

55 1.19 
99 1.39 

65 .88 
90 1.04 

75 .70 
119 .82 

85 .57 
78 .67 

j = 4  
c q 

Nj Digits 

153 12.65 - -  - -  
376 12.59 

189 1.42 .42 .92 
272 1.67 .56 1.16 

225 1.07 .71 .79 
217 1.30 1.06 1.11 

261 .87 .93 .70 
265 1.16 1.60 1.07 

297 .72 1.10 .62 
239 .89 1.68 .93 

In Table 5.1, we indicate the rates of convergence of the sequences u~, j to u~ for each 
where 

Digits = - log10 { Ill u~, ~ -  u~ III/III u~ I11}. (5.2) 

(The C~ interpolant of u~ with respect to the finest grid was 
used for purposes of computing the error.) Using this data, we did a least squares 
fit of the data to an error bound of the form 

Ill uj,~-u~ Ill ~CN;~/2 (5.3) 
Illu~lll 

to obtain C and q. Because of the singularity in u,, the optimal value of q as 
N ~ Go for uniform grids is q = 1/c~ [1, 11]; the best possible rate of convergence 
for piecewise linear finite elements in general is q = 1, a rate which was essentially 
achieved by the adaptive procedure. 

We next did a convergence study to determine, for each c~, the rate of convergence 
of fi,, 4 to u~, 4 as a function of m and r, where 

Dig i t s=  - l o g 1 0  {Ill f i~,4-u, ,4  Ill/Ill u,,4 I[[}. 

Table 5.2. Convergence of fi,,4 to u~,4 for c~ = 1.75 

Uniform Grids 

r n'/ 

1.49 
2.26 
2.91 
3.54 
4.15 

1.87 
2.87 
3.80 
4.71 
5.62 

2.04 
3.16 
4.22 
5.28 
6.33 

2.15 
3.35 
4.52 
5.68 
6.85 

5 1 

2,23 1.06 
3.50 1.30 
4.75 1.44 
5.99 1.56 
7.23 1.68 

Adaptive Grids 

m 

2 3 4 

1.22 1.31 1.38 
1.50 1.66 1.80 
1.71 1.95 2.17 
1.92 2.23 2.52 
2.12 2.51 2.87 

(5.4) 

5 

1.45 
1.94 
2.37 
2.79 
3.21 
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The results for ~= 1.75 appear in Table 5.2; those for other values of c~ are 
similar. 

For the case of quasi-uniform grids, Bank and Dupont [4] have shown that the 
energy norm of the error is reduced by a factor of at least (Cm-?) ", where C and 7 
are positive constants independent of j, but which depend on the geometry and 
sizes of triangles in .~1 and the partial differential equation. Technically, the 
adaptive case can be forced into this framework as well, since we are dealing with 
a fixed, finite number of multi-grid levels. The slower rate of convergence to 
u~, 4 for the adaptive grids appears to be due to a combination of the presence of 
triangles of more widely varying sizes in the adaptive grids (leading to matrix 
elements of more widely varying magnitude), the use of level compression which 
accentuates this variance, and the ordering of the vertices. Note, however, that 
in all cases, for the choice m-- r  = 1, fi~, + already has essentially all the significant 
digits which u~, + has as an approximation to the solution of the partial differential 
equation. 

In terms of computational effort, it can be shown that the work essentially depends 
linearly on m and r. As m becomes large, we derive less benefit from the additional 
smoothing iterations done on the coarser grids. If the bound (C m-?)~ is sharp, 
one can show the optimal choice of m over a large class of interesting problems is 
bounded by a small number, e.g. 3---4. 

To get an idea of the speed of the multi-level solution process, we now turn to a 
more standard partial differential equation: 

- A u = - I  in 
(5.5) 

u = 0  on 0f2 

where ~ is the unit square 0 < x < 1, 0 < y < 1. We discretized f2 using five uniform 
refinements of an initial triangulation Y-o consisting of eight triangles and nine 
vertices (see Fig. 5.4) and obtained a discrete system (1.4) of order N- -  1089. 

/ 
Fig. 5.4. The initial triangulation J0 

We solved the discrete problem with our multi-level solution procedure and six 
other solution methods. For the multi-level procedure, we used a four-level scheme 
with ~--1 chosen as a uniform refinement of J0.  We used the Yale Sparse Matrix 
Package [7] to reorder the linear equations and solve them with sparse sym- 
metric Gaussian elimination. Finally, we used subroutines from ITPACK [6] for 
five different iterative methods (Jacobi with Conjugate Gradient acceleration 
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(J-CG), Jacobi with Chebychev acceleration (J-SI), Successive over-relatation 
(SOR), Symmetric-SOR with Conjugate Gradient acceleration (SSOR-CG), and 
SSOR with Chebyshev acceleration (SSOR-SI)). Each of these methods chooses 
zero as a starting guess and selects its parameters adaptively. 

Two types of timing comparisons are of some interest: first, the time required to 
accurately solve the discrete system of linear equations as a problem in numerical 
linear algebra, and, second, the time required to compute an approximate solution 
which yields an 0 (N-1/z) accurate approximation to u, the solution of (5.5), as 
measured in the energy norm in the finest mesh. For  Gaussian elimination, of 
course, the times will be the same in both cases; but the other methods should be 
substantially faster in the second case. For  our study, we demanded six digits of 
accuracy in the first case and two digits of accuracy in the second, both measured 
in the energy norm. (The two digits in the second case is actually too much 
accuracy for N = 1089, but it is unlikely that one would accept less than this in 
practice.) All times are in seconds on a CDC-6600 using the M N F  Fortran 
compiler. 

Table 5.3. Times for solving the discrete equations with the 
Yale Sparse Matrix Package (Accuracy of approximately 12 digits) 

Domain Preprocessing 

Numeric Processing 

Total 

Minimum Degree Ordering 

Symbolic Factorization 

Total 

Reordering 

Factorization 

Solution 

Total 

3.899 

.590 

4.489 

.208 

2.295 

.280 

2.783 

7.272 

Table 5.4. Times for solvin 9 the discrete equations with iterative methods 

Method 
"Full" Accuracy 

Digits Time 

J-CG 5.98 6.79 

J-SI 6.09 13.35 

0 (N- 1/2) Accuracy 

Digits Time 

2.65 4.13 

2.40 6.87 

SOR 6.10 8.57 2.11 4.15 

SSOR-CG 6.33 14.75 2.02 3.95 

SSOR-SI 6.06 12.55 

PLTMG (r=5, m=2) 6.75 3.44 

PLTMG (r = 1, m = 1) 

2.31 6.11 

2.10 0.49 
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Our results are summarized in Tables 5.3 and 5.4. For  accurately solving the 
discrete equations, it appears that Gaussian elimination is somewhat faster than 
the multi-level scheme if one discounts the cost associated with reordering the 
system of equations and performing other grid-dependent pre-processing 3. The 
other iterative methods are much slower 4. 

On the other hand, when one only wishes to solve the discrete equations up to 
0 (N-1/2) accuracy, the multi-level scheme and the other iterative methods look 
much better than Gaussian elimination. The reason for this, of course, is that it is 
not possible to make use of the lower accuracy requirements to reduce the costs 
of a direct method as one can with an iterative method. It is interesting to note 
that, in this situation, the multi-level scheme is still superior to any of the other 
methods that we tried for this problem. 
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