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Abstract - -  Zasammenfassung 

On Computing the Range of Values. A simple algorithm is given for computing the range of values of a 
differentiable function over an n-dimensional rectangle. 

Die Berecllnung des Wertebereiehs. Gegeben ist ein einfaches Verfahren zur Berechnung des Wertebe- 
reichs einer differenzierbaren Funktion auf einem n-dimensionalen Quader. 

1. Introduction 

A problem of fundamental importance in computing is that of finding good upper 
and lower bounds on the range of values of a function of several variables in an n- 
dimensional rectangle. This includes: finding bounds on the solution to a problem 
with initial data or contants known only to lie in certain intervals (sensitivity 
analysis, perturbation analysis), finding the ranges of remainder terms and bounds 
on norms of functions and operators in error analysis, and finding minimum or 
maximum values in mathematical programming problems. 

Techniques of interval analysis have been developed for just such purposes (Moore 
(1976, 1979)). 

In Moore (1979, p. 49) a simple algorithm using "cyclic bisection" was suggested. 
Unfortunately, however, as pointed out by N. S. Asaithambi, the algorithm pre- 
sented there contains errors. In this paper, we give an algorithm which avoids those 
errors and is almost equally simple. In particular, our algorithm does not use the 
matrix of second partial derivatives and so is simpler than the method proposed by 
Hansen (1980). On the other hand, the method of Hansen is designed to find the 
location of the global minimum and, while our method can be adapted to do that 
also, the method of Hansen is undoubtedly more efficient for that purpose. 

We consider the problem of computing upper and lower bounds on the range of 
values 

0010-485 X/82/0028/0225/$ 02.60 



226 N.S. Asaithambi, Shen Zuhe, and R. E. Moore: 

f ( X  (~ = { f ( x l ,  x2, .., x , ) "  (01 �9 x i e x i  , i =- 1 (1 )  n }  
(1.1) 

= If(x(~ f(x(~ 
where 

x(O) ,X(O) =~ ,_ , . . . ,  x(,~ 

is an n-dimensional vector of intervals 

X} ~ ,_--iF;g(~ , X(~ j, i = 1 (1) n, 

and f is continuous in X (~ 

We suppose that we have an interval extension (Moore (1979)) F of' the function j(i 
Thus, if x a X __ X (~ then f (x )  ~ F (X). We can compute F (x  (~ and obtain, with a 
single evaluation of F, an interval containing the range of values of f :  

f ( X  (~ <_ F (X (~ = [.F (X(~ F (X(~ (1.2) 

�9 l x  However, the width of F (X (~ may exceed the width of the exact range of values (1. / 
by an unacceptable amount. 

We define the excess width of an interval bound [a,b] on the ranges of values 
f(X(O)) c_ [a, b], as: 

E = b - f ( X  (~ + f ( X  (~ - a = u, ([a, b]) - w ( f  (X(~ (1.3) 

Thus, i f f ( X  (~ [a, b], then the excess width of [a, b] is the sum of the differences 
between corresponding endpoints. As a result of the definitions (1.1) and (1.3), a and 
b are respectively the minimum and maximum values o f f  in X (~ if and only if E = 0. 

What we seek is a simple, reasonably efficient algorithm for finding an interval 
containing f ( X  (~ with arbitrarily small excess width - in other words, an 
algorithm which converges to the exact range of values. 

If F has the reasonable properties 

l. Xc_ Yc_X (~ implies F (X)~_F (Y) IF is inclusion monotonic], 

2. for some L and all X c X (~ w ( f  (X)) _< L w (X) IF is Lipschitz], where ~v (X) is the 
width of the interval X, 

then we can subdivide each x ~~ into N sub-intervals of equal width and obtain ~ 4  

(Moore (1979)) �9 

U F (X v)) = f ( X  (~ + E (1.4) 
J 

with w (E) <_ L w (X(~ The union is taken over all N" parts of the subdivision. 

While this result enables us to make the excess width E arbitrarily small by taking N 
large enough, it would require an enormous amount of computation for large values 
of N even if n is fairly small. 

We can make a vast reduction in the amount of computation required by using an 
idea which is due to Skelboe (1974). In this paper, we further reduce the amount of 
computation required by modifying the method of Skelboe in a number of ways. 
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Suppose we subdivide the initial region X ~~ imo two parts by bisecting it in one of the 
coordinate directions so that X (~ can be written as the union of two regions X (1) and 
X (2). If we find that F (X (1)) < v where v is the value of f (x)  for some x in X (2), say the 
midpoint of X (2~, then we can exclude the entire region X (~ from further 
consideration in seeking an upper bound on the range of values off .  The maximum 
value of f must lie in X (2). We call this the midpoint test. However, ifv is contained in 
F(X(I~), then further subdivisions of both X ~) and X (2~ may be necessary. 

In the next section, we present an algorithm which makes use of this idea and others 
to compute the range of values in a reasonably efficient manner. 

The cyclic bisection method proposed in Moore (1979, p. 49) has at least three flaws. 
First, as noticed by N. S. Asaithambi, step (9) should follow step (11) and should 
read: set b o = F (X). But even with this change, there are two additional problems. 
Shen Zuhe has constructed simple two-dimensional examples for which the cyclic 
choice of coordinate directions in which bisections are to be done produces a 
sequence of thinner and thinner slit-shaped regions so that the method does not 
appear to converge. The third problem we have found is that the method may stop 
prematurely (while still far from the exact range of values). By bisecting a region in a 
coordinate direction in which the region has maximum width, the second problem 
disappears. The third problem was the most troublesome. In order to avoid 
premature stopping, we must be sure we have bisected (possibly different regions) in 
each of a certain set &coordinate directions at least once. There may be one or more 
coordinate directions in which bisection does not change the lower bound at all; 
whereas bisection in other directions may still be increase the lower bound. 

2. Problem with Premature Convergence 

The third problem with cyclic bisection is the danger of premature convergence. The 
problem was detected when we attempted to use the cyclic bisection method to find 
the range of values of 

f (xl,xa, x3)_  xl  +x2 x~ (2.1) 
XI --  X2 

where xl ~ X1 = [-1, 23, x2 e X2 = [5, 10] and x3 e X3 = [2, 3]. 

The actual range of (2.1) can be easily computed as [ - 7 ,  ~ ] .  With the natural 
interval extension, the cyclic bisection method converged with a single bisection 
yielding a lower bound of - 1 2  instead of - 7 .  

A straight forward substitution for xl,  xz, x3 in (2.1) with X1, X2, X 3 as intervals 
yields a lower bound of - 12. This means that the condition b _< bo is satisfied at the 
very beginning and hence the procedure stops prematurely. It is found that 

b o = F ( X o ) =  - 12; 

F(x~:'f= -9.s57, F(x;~")= -12; 

b = rain ( -  9.857, - 12) = - 12 = bo. 
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(X(o u, X(o 2t resulting after a bisection along direction 1), hence the first b=bo is no 
indication that  we have hit the lower bound and the condition of step (7) should be 
altered. On the other hand, for a rational function, the first b = bo sometimes does 
indicate that  we have hit the lower bound. The following results are useful in this 
respect. 

Let f be said to be in rational canonical .form if it can be expressed as 

ao +a ~ x +.. .  +anx" 
f(x) = 

bo +b~ x +.. .  +bmx m 

for a one dimensional case and a similar form for n-variables. 

Lemma 2.1" Suppose X is an interval, p (x) is a polynomial canonical form on X. 
P(X) is its natural extension. Let bo=P(X) .  Suppose X=X(1)~aX~a~: f f  
b=Min(P(X~lt), P(X(Z)))=bo, then there exists an x ~ X  such that 

Proof: Let 

p (x) = bo. 

p (x) = ~ ~ x ~. 
i = 0  

For  the abbreviation of notation, set 

I={i1  c~i>_0, i=0 ,1  . . . .  ,n};  

II={il~i<O, i=0 ,1  . . . .  ,n}; 

t I I =  {i I i = odd, i = 0, 1 . . . . .  n} ; 

I V =  {il /=even, i=O, l . . . .  ,n}; 

First of all, suppose X > 0 ,  X =  [_X, 3~], then 

P (x) = ~ ~ Ex_, X]'+ F, ~ Ex_, s 
I I I  

and 

b 0 = P ( x ) = Z  ~,x_'+Z ~,x'. 
I I I  

If b0 =P(XlU),  then 

bo = g :~, _Xi+ F~ ~, m (X) '. 
I I I  

F rom  (2.2) and (2.3), we have 

F, ~, ( ~ -  m (x)  ~) = o. 
I I  

We must have cq=0 (ieIl),  since X - m ( X ) i > O ,  (i~lI); therefore 

p(_X)=bo. 

If b o = P (XI2~), then 

! I I  

(2.2) 

(2.3) 

(2.4) 
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From (2.2) and (2.4), we have 

therefore 

and 

E cz~ (X_ i -  m (X) ~) = O, 
I 

~i = 0 (i e l )  

bo = p (X). 

For X_< 0, the proof is the same as above. 

Now suppose X = [X, )(], _X < 0 < X, then 

e ( x ) =  ~ ~iExi,2*]+ Z ~i[~ *] 
I I I I  I IV  

II  I I I  II IV  

and 
bo=P(X)= ~ ~,X_'+ y, .iX_Z+ Z ~ilxl ' .  

I I I I  II  I I I  I I  IV  

If m(X)<O and b o =P(X(lt),  then 

P(X(1)) = E oq [_X i, m (X)/] + E ~i [m (XL _X ij 
1 I I I  I I V  

+ Y. chE_X~,m(X)i]+ ~ "~[m(X)~,_X *] 
I I  I I I  I I  I V  

and 
bo=P(X(1)) = ~ chX_i+ ~ cqm(X) i 

I I I I  I IV  

+ E ~ m(X)i+ E ~i _x i. 
i I  I i I  I1 I V  

From (2.5) and (2.6), we have 

- Z ~ ~+ Z ~ + E ~i(IX[i--X~) =0,  
I IV  I I  I I I  I I  IV  

therefore 

and 
cr = O, (i e I I V, I I  III,  II  I V), 

(2.5) 

(2.6) 

bo -- p (x). 

The proof for the cases bo = P (X (2)) and m (X) > 0 is exactly the same. 

Note: Lemma 2.1 is no longer valid in the case m (X) = 0. However, we can change 
the subdivision of X = X (t) u X (2) and avoid this case. 

Lemma 2.2: In addition to polynomial p (x), lemma 2.1 is valid for any function in 
rational canonical form on X. 

Proof: Suppose 
p(x) 

r(x)- 
q(x) " 
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Without loss of generality, suppose q (x) > 0. Because of the similarity of other cases, 
we only give the proof of the case X > 0 and P (X)> 0. In this case 

[P (X), P (X)] 
R ( x ) =  

[Q (x), Q (x)] 

and 
P ( x )  

b o = R ( X ) =  
Q. (x)  

Since bo = rain (R (X(I)), R (Xt2))), if b o = R (X(1)), then 

P(X) P(X  tl)) 

Q (X) Q (X (1)) 
Because 

P(X)_<P(X(1)), Q (X)_> Q (Xr 
so 

P (x)  = P(X!l~), ( / ( x %  = Q (x) ,  
a n d  

r (X) = bo. 

If bo = R (X(2)), then r (){) = bo. Lemma 2.2 is proved. 

Lemma 2.3: In addition to rational junctions r(X), lemma2.2 is valid jot  any 
functions in rational canonical form with in terva l  coefficients. 

The above results are also valid in the case of n-variables; so we have 

Theorem 2.1: Suppose that 

X = (X1, X2,.,~, X,) c_ R", x i ~ Xi; f ( x l ,  x2 ..... x,) 

is a rational function on X;  

F (X D X2,..., Xn) 

is its natural extension; 

bo = F (X1,X2, ,.., X,) . 

g J b r  some i (1 <_i<_n), Xi=Xi'-~w XI 2), with 

bo=min(F (X1, X2, . . . ,Xi_l,X~li,  Xi+ l, ..., X,), 

V (X~, X2,... ,  X~_ ~, Xl ~, X, + ~,..., x~ ; 

then there exists  an x ie  X i such that 

bo= F (X1 ..... Xi_ l, xi, Xi+ l, . . . ,X,) .  
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Corollary: Suppose 

bo = F (XD X2,..., X~), X i = XI1) ~) X} 2). 

I f  for i= 1 (1)n, 

b o = m i n ( F ( x  o, ,.o ~(1) Xi + X,,), 
�9 ' ' ~ i - l , ~ i  ~ 1~ " " ~  

.,.~i-1~-"~i ~ . , . ~  

then 
�9 xO 0 J (  ~ , ' " ,  G)  = min f ( x  1 . . . .  , x~). 

x g X  

Since "b = b0" with the natural interval extension F of f, when f is a function in 
rational canonical form, ensures that one of the arguments is reduced to a point from 
an interval; repeatedly applying these results for each subsequent reduced problem, 
one can either end up with a single point, in which case, the lower or upper bound is 
readily known, or a much smaller region over which bisection can be carried out to 
get the bound. Therefore, this theorem can be used to reduce the dimensionality of 
the problem or avoid the premature convergence. Putting all these things together, 
we conclude that, before starting any search for the bound, it would better to use this 
theorem to reduce (if it is possible) the region X to X; if Jf is not a single point, in 
general, an m-dimensional region (m < n) is produced for further search to obtain the 
bound. 

3. Finding the Range of Values 

The ideas behind the algorithm to be presented in this section are these: 

1. we seek first a good lower bound on the minimum value o f f  over X(~ we then 
apply the same method to - f  in order to find a good upper bound on the 
maximum value o f f  over X(~ this follows the strategy suggested by Skelboe 
(1974); 

2. from the initial region X (~ we generate a list of subregions whose union must 
contain the global minimum; the elements in the list are generated in pairs; each 
pair is the result of a bisection in a single coordinate direction of some previous 
region on the list; the elements are entered into the list in order of increasing 
lower bounds so that thefirst  element in the list always corresponds to the lowest 
current lower bound; it will be examined next (this also is Skelboe's strategy); this 
differs from Skelboe's method in that he bisected simultaneously in all coordinate 
directions to generate 2 ~' new regions at each step; we generate only two new 
regions; 

3. we choose, as our direction in which to bisect a region X, the first direction in 
which X has maximum width; this prevents slit-shaped regions and insures that 
the diameters of the regions will decrease; 

4. we do not list a region at all if it can be determined by the midpoint test (see 
section 1) that the region cannot contain the global minimum o f f  on X(~ we also 
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delete all elements on the list which would follow such an element if it were 
inserted in proper order; 

5. we assume that f is continuously differentiable in X (~ and that we have interva! 
extensions D~ F of the partial derivatives Of/axi, i = 1 (1) n; we us e monotonicity 
tests to reduce the dimension of a region as much as possible before listing it; thus, 
instead of listing X, we can list Y with: Yi=X~ if D~F(X)>_O or Y~--X~ if 
D i F (X) <_0 or  Y~ = Xi otherwise, where X;=  [X~, Xi], i = 1 (1) n; 

6. we make use of the mean value form 

FMv(X)=f(m)+ ~ D~F(X)(X~-m,), (3 1) 
i = 1  

where m is the midpoint of X, for an interval extension o f f  (Moore (1979)); 
Alefeld and Herzberger (1974, Satz6) have shown that the excess width of 
FMv(X ) is of the order w(X)2; thus, for small, regions X, as we come close to 
convergence to the minimum value off ,  the convergence will be accelerated by 
use of FMr instead of a "naturaF extension o f f ;  actually, we combine the mean 
value form with the monotonicity tests and use the interval extension (monow- 
nicity test form, Moore (1979)) 

FMT (X) = [f(u), f(v)] + ~ D~ F (X)(X~- m,) (3.2) 
~s 

where S is the set of integers i such that D~ F (X) properly contains zero and 

[-(X~,X) if DiF(X)>_O 

(ui, vi)= ~(Xi, X_) if D~F(X)<_O 
[ (m i,mi) if i t S ;  

7. we terminate the computation when there is no further increase in the current 
lower bound; this will always happen in a finite number of steps using rounded 
interval arithmetic, Moore (1979); 

8. during the computation of FM r (X) defined by (2.2), we also find the set S and the 
reduced region Z with components Z~ given by 

~[ u~, u~] for i r S with u~ defined by (3.2) 

Zi=[ X~ for ieS. 
(3.3) 

Our algorithm for finding the range of values is as follows: 

We first find a lower bound on the range of values o f f  over X ~~ (see (1.1)); we then 
apply the same procedure to find a lower bound on - f  over X (~ ~o get the upper 
bound; 

step 1: compute bo=FMr(X~~ S, and Z(~ 

step 2: if S is empty, stop; 

step 3: set X=Z(~ 

step 4: initially, the list is empty; 
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stel x 5: 

step 6: 
step 7: 

step 8: 

step 9: 

step 10: 

step 11: 

step 12: 

step 13: 

step 14: 

step 15: 

step 16: 

step 17: 

step 18: 

step 19: 

step 20: 

step 21: 

step 22: 

step 23: 

let w = max w (Xi); if w = 0, stop; otherwise set 
iES 

/= the  first element of S such that w(Xj)= w; 

bisect X in direction i to obtain X ~1) and X~2); 
compute bl = F~ r (X~I)), S(1), and Z ~1 ~; 

ifS (1) is empty and Z (1) does not intersect the boundary of Z (~ discard Z (1~ 
and to to step 12; 

apply the midpoint test using region Z (x) to delete all unnecessary elements 
from the list (if any); 

insert (Z (a), bl, S (1)) into the list in proper order (of increasing second 
components - thus lowest b is first); 

if list overflows, print message and stop; 

compute b 2 = F u r  (X(2)), S ~2), and Z(2); 

i fS ~z) is empty and Z (2) does not intersect the boundary of Z (~ discard Z (2) 
and go to step 17; 

apply the midpoint test using region Z ~2~ to delete all unnecessary elements 
from the list (if any); 

insert (Z (2), b2, S (2)) into the list in proper order; 

if list overflows, print message and stop; 

set b=b  I if Z (~) was listed but not Z(2); 
set b = b  2 if Z (2) was listed but not Zm;  
set b = m i n  (ba, b2)if both Z (~) and Z (2) were listed; 

if neither Z ~a) nor Z (2) was listed, go to step 20; 

if b<bo, stop; 

if the list is empty, stop; 

set b0 = lower bound (second component) in the first element on the list (see 
steps 10 and 15); 

set X = region (first component) in the first element on the list; S-- index set 
(third component) in the first element on the list; 

go to step 5. 

Comments: If the computation stops at step 2, then f is monotonic in all directions 
and b o is the minimum value and f takes on its minimum value over X (~ at the point 
u defined in (3.2); this will, of course, be a boundary point. If we stop at step 5, then 
the global minimum value occurs at the point X. If the list overflows at step 11 or 
step 16, then we would need more storage space allocated for the list in order to do 
the problem. If the computation stops at step 19, then further bisections will not 
improve the lower bound using the finite precision rounded interval arithmetic 
employed; a sharper lower bound might be found by going to higher precision 
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interval arithmetic. Finally, if the computation should stop at step 20. then we have 
found the lower bound on the range of values. In any case, when the computation 
stops (except for storage overflow at steps 11 or 16), the value b o is a lower bound on 
the range of values o f f  over X (~ When the procedure is applied to -J~ the value bo 
is an upper bound tO the range of values of f over X m). 

The computation will always stop after a finite number of steps. In fact. unless the 
computation stops at steps 2, 5, 11, 16, or 20, it must stop at step t9 after some finite 
number of executions of various steps because we obtain a monotonic ~ increasing 
sequence of lower bounds, bounded above by f(X(~ contained in a finite set of 
machine numbers. 

Thus, we have proved the following. 

T h e o r e m :  The algorithm given by steps t - 2 3  always converges in a finite i~umber oj 
computational steps to an interval containing the range of values of over X (~ 

How close to the exact range of values the resulting interval will be depends on the 
precision of the arithmetic we use and on the particular function f and the region 
x(o). 

4. N u m e r i c a l  Resul ts  

In this section we will report on a number of examples we have run using the 
algorithm of the previous section. The computations have been carried out on the 
UNIVAC 1110 computer using single precision (about 8 decimals) interval arith- 
metic with directed rounding (see Moore (1979)). 

For each example we will give: the fimction f ,  the region X ~~ two integers indicating 
the maximum list sizes which occurred during the computation of the minimum and 
maximum values of f,  the total number of bisections required, and the interval 
bounds on the range of values. The full algorithm and a simplified version without 
the midpoint tests (steps 9 and 14) gave almost exactly the same results for all but the 
last example we will show. Therefore, we only indicate the results for the simplified 
version for the final example. 

E x a m p l e  1 : f ( x )  = x (1 - x) 

Region List sizes Bisections Bounds 

[0, 1] 2, 2 2 [0, 0.253 
[ -0 .5 ,  1] 2, 1 17 [-0.75,0:25] 
[ - 1, 1] 2, 2 3 [ - 2, 0.253 
[ - 2, 6] 2, 2 5 ~- - 30, 0.25] 
[ - 3, 6] 2, 1 20 E- 30, 0.253 

Until b<_b o as tested in step 19. 
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X 2 --X2) Example2:f(x)=xl(1-xl)(1-5/8xz+3/2 2 3 

Region List sizes Bisections Bounds 

([0, 13, (0, 1]) 12, 16 26 [0, 0.253 
([0, 1], [ - 1, 1]) 14, 6 18 [0, 1.03125] 
( [ -  1, 1], [0, 1]) 11, 18 30 [ -2 ,0 .25]  
( [ -  1,1], [ -  1,1]) 4,9 14 [-8.25,1.03125] 

Example 3:f(x)=(1-xl)(xl-5/8XxX2+3/2x2x2-x~x~) 

Region List sizes Bisections Bounds 

([0, 1], [0, 1]) 30, 68 118 [0, 0.25] 
([0, 1], [ -  1, 1]) 32, 37 75 [0, 0.69279174] 
( [ -  1, 1], [0, 1]) 5,4 7 [ -2 ,4 .25]  
( [ -  1, 1], [ - 1 ,  1]) 19,8 28 [-2.25,4.25] 

Example 4: The so-called "three hump camel function"; see Hansen (1980): 

f ( x )  = 2 x 2 - 1.06 x 4 + 1/6 x 6 - x 1 x2 + x 2, 

which has three minima and two saddle points in 

X(~  [ -2 ,4 ] ) .  

Region List sizes Bisections 

( [ - 2 , 4 ] , [ - 2 , 4 ] )  65,13 212 

Bounds 
[ -  1.8208 x 10-14 
457.86667] 

The simplified version (with midpoint tests) required 416 bisections, by comparison. 
The global minimum was found to !ie in the two dimensional rectangle given by 

([-2.9802322 • 10 -s, 5.9604645 x 10-8], 

[-2.9802322 x 10 -8, 5.9604645 x 10-8]). 

The exact range of values of the function in example4 over the given X (~ is 
contained in and very close to the computed bounds shown above: 
[-1.8208 x 10 -14, 457.86667]. In contrast to this, if we were to subdivide X ~~ in 
both the x 1 and x2 direction and evaluate the natural interval entension for each of 
the N 2 parts according to (1.4), it would require some 101 s evaluations to reduce the 
excess width to about 10 -5. The algorithm given in this paper produces such a result 
in 424 evaluations of (3.2) - two for each bisection. 

Example 5: f ( x ~ ,  X2,  . . ,  Xn) = f l  (xi)f2 (x2)J; (xs)f4 (x4)f5 (XS) where 

f~ (xl)=0.01 x~ (x~ + 13)(xl -- 15) 

f2 (x2) = 0.01 (x 2 + 15) (x 2 + 1) (x2 - 8) 

f3  (Xs) = 0.01 (X 3 q- 9) (X 3 --  2) (x3 - 9) 

f4 (x4) = 0.01 (x 4 + 11)(x 4 + 5) (x4 - 9) 

fs (xs) = 0.01 (x s + 9)(x s - 9) (x 5 - 10) 
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Different 5-rectangles were experimented with, all enclosing the maximum point. 

(1) Region 

x 1 �9 [8.00, 9.00] 
x a �9 [ - 10.00, -9 .00]  
x~ �9 [ -  5.00, -4 .00]  
x 4 �9 [3.00, 4.00] 
x 5 ~ [ -  3.00, - 2.00] 

List sizes Bisections Bounds 

67, 213 313 [22110.018, 25426.918] 

(2) Region 

xl ~ [8.50, 9.00] 
x2 ~ [ - 10.00, -9 .00]  
x3 �9 [ -  5,00, -4 .00]  
x ,  �9 [3.50, 4.00] 
x5 � 9  -2 .50]  

List sizes Bisections Bounds 

109, 121 231 [23603.552, 24936.918] 

(3) Region 

x 1 �9 [8.70, 8.80] 
xz �9 [ -  9.40, - 9.30] 
x3 �9 [ - 4.60, - 4.50] 
x 4 �9 [3.50, 3.60] 
x s �9 [ -  2.90, - 2.80] 

List sizes Bisections Bounds 

2, 2 4 [24054.508, 24774A 19] 

(4) Region 

x ! �9 [8.75, 8.76] 
xa �9 [ -9 .36 ,  -9 .35]  
x3 �9 [ -4 .58 ,  -4 .57]  
x 4 �9 [3.59, 3.60] 
xs �9 [ -2 .85 ,  -2 .84]  

List sizes Bisections Bounds 

5, 3 9 [24400.432, 24431565] 

We conclude that the algorithm given in this paper is a simple and reasonably 
efficient method for finding the range of values of a differentiable function over an n- 
dimensional rectangle X (~ 

If X (~ is a small region, a single evaluation of the monotonicity test form (3:2) may 
suffice. The excess width will be of the order w 2 where w is the maximum width of 

X (~ in any coordinate direction. For large X ~~ the algorithm given in this paper will 
produce arbitrarily sharp bounds on the range of values given sufficiently high 
machine precision (long enough word length in the representation of machine 
numbers). The stopping criterion in step 19 of the algorithm allows the maximum 
accuracy available for the given machine precision which is used. As an alternative, 
we could replace step 19 by a test which stops the computation when the 
improvement in the lower bound is less than some fixed amount and stop the 
computation sooner with a less sharp bound. 
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