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Abstract — Zusammenfassung

Iterative Improvement of Componentwise Exrorbounds for Invariant Subspaces Belonging to a Double or
Nearly Double Eigenvalue. In this paper we present a systematic method which computes bounds for
invariant subspaces belonging to a double or nearly double eigenvalue. Furthermore an algorithm based
on interval arithmetic tools is introduced which improves these bounds systematically.

AMS Subject Classification: 65F15.

Key words: Errorbounds, invariant subspaces, double eigenvalue.

Iterative Verbesserung von komponentenweisen Fehlerschranken fiir invariante Teilrdume, die zu einem
doppelten oder fast doppelten Eigenwert gehoren. In dieser Arbeit bringen wir eine systematische
Methode zur Berechnung von Schranken fiir invariante Teilrdume, die zu einem doppelten oder fast
doppelten Eigenwert gehéren. AuBlerdem wird ein auf intervallarithmetischen Hilfsmitteln aufgebauter
Algorithmus angegeben, der diese Schranken systematisch verbessert.

0. Introduction

In this paper we consider the eigenvalue problem for a real (n, n) matrix which has a
real double eigenvalue or a real pair of nearly equal eigenvalues.

Starting with sufficiently good approximations we construct bounds for the
elements of a two by two matrix whose eigenvalues are eigenvalues of the given (n, n)
matrix. Furthermore using the Jordan normal form of this (2,2) matrix the
generators of the invariant subspace belonging to these eigenvalues can be enclosed.

The first section contains a careful description of the problem and a reformulation
which was already discussed in [3]. See also [6]. In Section 2 we construct bounds
for the unknown terms. Furthermore we introduce an iterative method which
improves these bounds and which has the property that these bounds are
converging to the exact values.
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The computation of these bounds and the iterative improvement is based on the
contents of Theorem 1 from Section 1. This theorem was implicitly already used
in [3].

In Section 3 we list some numerical examples. These examples were computed on

an APPLE lle using the programming language PASCAL SC which has available
the exact scalar product. See [4], [5].

In concluding we note that in principle it is not difficult to discuss the more general
case in which the matrix and the cigenpairs are complex. Furthermore we also could
consider the case of an eigenvalue which has multiplicity larger than two or a set of
more than two eigenvalues which are nearly equal. These problems will be discussed
in a future paper.

1. Formulation of the Problem

Assume that 4 =(a,;) is a real (n, n)-matrix which has the real eigenvalues y; and y,.

We assume either that

a) y, =7, and y,,y, are both simple eigenvalues or that

b) 7, =y, =7y holds and that y is double eigenvalue. Then y either has two linear
elementary divisors or one quadratic elementary divisor.

From a numerical point of view we are in case a) especially interested in the situation
that y, is close to y,.

Under our assumptions there exist two linearly independent real vectors @ and ©
from R" such that
A, 0)=(a,0) A (1.1)

= {7 b _
A= , beR (1.2)
0 7

and where (i, 0) is an (n, 2)-matrix which has @ and 7 as its columns.

where

We now assume that approximations x* =(x;) and x*=(x?) to # and ¢ are given.
Furthermore m,, m,, and m,, are given real numbers which are considered as
approximations to y,, b and 7y,. In [3] it is described in detail how to find such
approximations using the QR-algorithm. See also [6].

We are now looking for vectors 7' =(j}) and j*=(j7) and furthermore for real
numbers gy, 12, 4y and pu,, such that

Mg+ Uy m1z+ﬂ12>

A +7, P+ )=+ 7, P+ 57 (
U2y Mo+ las

(1.3)
holds.
Defining the (»,2) matrix X by

X=(x'+7', x*+77%) (14)
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and the (2,2) matrix D by

my+ My, +

D=< 11 T H11 12 #12) (1.5)
M2y Mz + Has

then (1.3) can be written as

AX=XD. (1.6)

If the (2,2)-matrix Y=(y;;) transforms D by a similarity transformation to upper
Jordan normal form then

AXY=XYY DY,

or
A, v)=(u,v) A
where
b
A=Y 'DY= <V1 ) (1.7)
0 7y,
and
(u,v)=XY. (1.8)

If y, #7v, or if y; =y, =7y and if there are linear elementary divisors belonging to
then b=0. The vectors u and v are then eigenvectors of A corresponding to the
eigenvalues y; and y,. ’

If, however, y; =7y, =1y is a double eigenvalue with a quadratic clementary divisor
then b=1. The vector u then is an eigenvector of 4 belonging to the eigenvalue y and
v is a principal vector of grade two belonging to the eigenvalue .

In every case the linearly independent vectors u and v span a linear space called the
invariant subspace belonging to the eigenvalues y, and y, or y, respectively, u and v
are called generators of the subspace.

After having solved (1.3) the computation of y, and y, and of the generators z and v
is, because of (1.7) and (1.8), essentially reduced to the eigenvalue problem for the
(2,2)-matrix D, defined by (1.5).

The system (1.3) is a nonlinear system of 2 n equations and 2n+4 unknowns. In
order to compute a unique solution we perform the same normalization as in [3].
(See also [6]):

If x'=(x{) and x*>=(x?) are sufficiently good approximations for the (linearly
independent) vectors & and ¢ then they are also linearly independent. Therefore, if we
define the integers p and g such that

|x}| = max |x}| (1.9)
1<i<n
and _
1.2 1.2 1,2 1,2
Xp Xgq —Xg Xy | = max |x,x; —x; x, (1.10)
l1<i<n

then p=+gq.
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The vectors 7! =(!) and j* =(§?) are now determined in such a manner that
Jr=jr=jt=72=0. (1.11)

If we also define vectors y* =(y}) and y*=(y?) by

Ji, i*p.g
yi=< H1, i=p (1.12)
Har, =4
and
¥, iEp.q
V=9 M2, i=Pp (1.13)
U2z, =4,

respectively, then (1.3) can be written as

Byyl=r' 4y, §ltyy - 7 114
2__ .2 ~1 2 1 2 =2 ( )
By =ridmyy - Yty ¥V vy
where
r=my x' —Ax!
) . ) 5 (1.15)
Fe=my, X+ My, X°—AX

and where B;, i=1,2, is A —m; I with columns p and g replaced by —x' and —x?
respectively. The rewriting of the original system (1.3) into (1.14) was already
performed in [3]. See also [6].

This rewriting has two important advantages:

1. Theright-hand sides of (1.14) can be computed by computing 2 n scalar products.
This has a tremendous impact on the numerical precision if one is computing the
unknowns .)71: )727 Uity H125 H21 and Haa-

2. For sufficiently good approximations x*, x?, m,, m;, and m,, the matrices B,
and B, are nonsingular. By continuity arguments this follows from the next
theorem which was implicitly already used in [3].

Theorem 1.1: Assume that the real (n, n) matrix A=(a;;) has the eigenvalues y, and v,
and that u and v are the generators of the invariant subspace belonging toy, and y,. Let
the integers p and q be defined analogously to (1.9) and (1.10).

If y{ £y, then assume that y, and y, are both simple eigenvalues. If y, =y, =1y then
assume that vy is a double eigenvalue with two linear elementary divisors or one
quadratic elementary divisor. Then the matrices B;, i=1,2, where B, is A—vy; 1 with
columns p and q replaced by —u and —v, respectively, are nonsingular.

The preceding Theorem 1 is the basis for a method which computes bounds for j*,
P2, 111, Hia» oy and U,, and for a method which improves these bounds. This is the
topic of the next section.
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2. Computing Bounds and Their Iterative Improvement

Assume that L, and L, are approximations to the inverses of B; and B, (or the
inverses themselves). Then the equations (1.14) can be written as

V=g, 0%y
a0 (2.1)
y=6,(y",y%)

where

g1 ) =Lir + Koy + Ly (vy - FY+ Ly (v - 77,
gz(ylay2)=L27'2+K2y2+L2(m12'é1(ylay2))+L2(Y§')71)+L2(J’§'J72)
and
K,=I-L,B,, K,=I—L,B,. (2.2)

Furthermore §, (y*, y*) is g, (y', ¥*) with components p and g set equal to zero. By
9.0/, y2)>

2.3
g2 (v, v%) (@3)

g(yl,y2)=<
1,%

a mapping of the R*" into itself is defined and a fixed point <y > € R?"is a solution

2,5%
v
of (1.14) (and therefore also of (1.3)) if L; and L, are nonsingular.

Starting with x!, x2, m, ,, m,, and m,, we are now constructing interval vectors [ y]*
s ’ 11 L 12 22

and [y]* such that <[y]2
]

For interval vectors [y]'=([y]}) and [y)*>=([¥]?) we define interval vectors

[71' =([71}) and [77°=([3]7) by

) contains a fixed point of g.

i i*p.g
1_
= { D A
and
» S i%pg
mi—{O, i=p.q,
respectively. We now determine [y]* and [y]? in such a manner that
1 2y _ gl([y]la[y]2)>c<[y]1> 24
ACREER <gz 01,01 S \DP ¢4

holds. Because of the inclusion monotonicity of interval arithmetic (see [1], p. 6)

L2 [y]1>
g(y,y)6<m2

<y1> ([y]‘>
(S .
¥ [v1?

holds for all
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1
Since g is continuous and since <[ ] 2) is a compact and convex set in R?” the fixed
y

1
point theorem of Brouwer implies that there is at least one fixed point of g in (Ey% 2) .
y

In order to determine [y]' and [y]? such that (4) holds we set
V) =01 =[-pB.hle (2.5)

where
1
peR, >0 and ez( ) e R".
1
Defining
€pq =((epq)i) eR”
by
1, i$p,q
(e”)i_{O, i=p,q,
then

Dl 01 =Dl UP=D1; - [ =
=[1s- UP =[5 51 ey

Denoting by | K |,| K, |,| L, | and | L, | the real matrices which one getsfrom K, K,
L, and L,, respectively, by forming elementwise the absolute value then we obtain
for the diameters (see [1], p.14 and p.125) dg, ([¥1*,[¥1?) and d g, ([y1', [v]?)

dg (V1. V1) =2BIK|e+48*| L e, (2.6)
and

dg, V1L D) =Imy,| | Ly |- dg (] D) +
+2ﬁ|K2|e+4ﬁ2|L2|epq
<Imiy || Ly | {2B1 K le+4 52| Ly ey} +
+2ﬁ|K2|e+4ﬁ2|L2|epq
=4 B2 | Ly [ {I+|myy || Ly 1} e+
+2B{lmp [ | Ly || Ky [+ K, [} e.
For the centers (midpoints) of [y1*, [¥1?, g, ([¥]}, [¥1?) and g, ([y]', [y]*) we have
m[yl'=m[y]*=0 and
mgy (V1 1) =L, ! (2.8)
mga (V1,11 =Ly (2 +my, L), 29)

. gl([y]h[yJZ))C([y]l)
90101 (gz([y]h[m oy

We have

if and only if
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. 1
|m [yl —mg;([y]", [y + dg;(v]'. 1)

1 (2.10)
S_d[y]l> i=1,2.

2

Because of (2.6)—(2.9) this is the case if and only if both

|L171|+ﬂIK1|e+2ﬁ2|L1|epqSﬁe
and
2 T
| Ly (r*+myy Lir)+B(Impp [ Ly | Ky [+ K ) e+
+282 Ly (Imyy | | Ly |+ De,,<fe
hold.
Defining real numbers
1 2 (et
p1:1n<1?-i‘n{|Llr i} Pzzlngl_a}n{le(r +my, L)},
p=max {p;,p,}, (2.11)
K1=1r1<1§3.x { Z |(K1)z‘jl}a K2=1max { Z (Imyo ]| Ly | |K1|+|K2|)ij},
<i<n j=1 <i<n j=1
xk=max {K;,K;}, (2.12)
l1=1n<lax {Z |(L1)ij |}: lz=1m?lx {Z (|L2|(|m12| | Ly H‘I))i,};
<i<n J=1 <i<n J=1

I=max {l,,1,}, (2.13)

then (2.10) surely holds if the inequality
pHKr—1)p+214<0
holds. Assuming k<1 and (x—1)>~8p1>0 then this inequality holds for all

BelBi,B,] where
1-xkF)(1—xf—8pl

41

Bi2= (2.14)

Hence we have the proof for the following

Theorem 2.1: Let p,x and | be defined via (2.11), (2.12) and (2.13). If k<1 and
(1—x)>*—8p1>0 and if B[P, B,] where B, and B, are defined by (2.14) then the

1, % 1
mapping g defined by (2.3) has at least one fixed point (yz *> in (Ey]]2> where
e Yy

D1 =01 =01":=[-B,Ble.
|

> of g is surely a solution of (1.14) (and hence of (1.3))if L, and L,

yh*
A fixed point <

2, %
y

are nonsingular. Under the assumption k<1 of the preceding Theorem 1 this is
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always the case. This can be seen as follows: From the definition of k we have that
I Kilo=IT—Ly By <1

Therefore the inverse of (I —(I — L, By))=L, B, exists which implies that L; ! exists.
Similarly the existence of L;* follows.

We now consider the ireration method
{[y]“‘“ =g, (1% D1*H
1% % =g, (1% [v1>9
k=0,1,2,...,

v)

where

10 =D1*"=01°=[-B.Fe.
Theorem 2.2: Let k<1 and B, 5, where §, and B, are defined by (2.14). If then

Bi+p2
Bi<B< 5

and [y1°=[—8, B] e then (V) is well -defined.

(V) delivers two sequences {[y]"*} and {[y1**}1, of interval vectors for which
yhEely]tE, v *e[y]** and

lim [y]"*=y"*; lim [y]>*=y>*
k— k— o0

yh* [1h°
hold. < 2.5 | 18 the unique fixed point of g in L0 )
y= Y-

Proof: By the proof of Theorem 1 we have

[y]1’1>_ 1,0 2,0C<[y]1’°>
<[y]2,1 —"g([y] 5[.})] )— I:y]z’o .

By complete induction it follows that
1,k+1 1,k
BT e
Hence the convergence of the sequences {[y]"*17%, and {[y]**};2, follows, that is
we have hm 1% =[y]** and hm [V1**=[y]** where [y]"* and [y]>* are

1%
interval vectors. By Theorem 1 there exists at least one fixed point (y ) of g in
<[y]1 °> v
[y]*°
Using the inclusion monotonicity (see [ 1], p. 6) it follows by complete induction and
passing to the limit afterwards that

(yl’*> <[y]1’*>
(S .
yoE > *
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Therefore, if we are able to prove that
lim d[y]"*=lim d[y]**=0
k— k— o
yh* [y1+°
holds then (2.15) and the uniqueness of in < follow.

ok [v1*°
We define d, to be

1<i<n

dy, =max { max {d[y];""}, max {d [y]?”‘}}

and take into account that for two real intervals [a] and [b] (see [1], p. 15)

d([a] - [b])<|[all d[b]+d[a]|[P]].

The absolute value of interval terms is defined in [1], Chapter 2.

Because of
D1V, DI e’ =[-8.8]e
we then get
dy1"* =Ky [d ]V F Ly [d (D] D09+
+| Ly 1Dyl * - D% (2.16)
<d,-(|K(|+4B[L])e
and

ALVTE = myy |1 Ly 1A 4 Ko | d DY)+
| Ly | d (25 [F1H9 4] Ly 1 d (]2 [v1*H)
<di|my,| | Ly (| Ky |+4BIL;|)e+dy| Kyle+4d, Bl L, e (2.17)
=d (| K, |+ 4B Ly | +|mya | | Ly || Ky [+4 81 Ly 1) e
:dk((lm12| | Ly || Ky |+ K2 ) +4 B Ly [(|my ] |L1l+1))€-

Using the definition of x and [ it follows from the last two inequalities that

dp 1 <(k+4p1))d,. (2.18)
Because of
Bi+B, 1—x
p< =
2 4]
we have
k+4p1<1.

Therefore from (2.18) it follows that klim d, =0 and therefore (2.15) holds. |
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3. Numerical Examples

1. We consider the (7, 7)-matrix

-6 0 0 -1 -4 -4 0

0 4 1 0 0 0 2

0 1 4 0 0 0 0

A=| -1 0 0 -6 —4 -4 0
—4 0 0 -4 -6 -1 0

—4 0 0 -4 -1 -6 0

0 1 1 0 0 0 4

which has the eigenvalues
)\,1 =6, },2:/13:3, /14=1j ).,Szlﬁz “5, 17: '—15.

To the double eigenvalue A, =41;=3 belongs a quadratic elementary divisor, to
As=A¢=—35 belong two linear elementary divisors. The eigenvectors and the
principal vector belonging to the cigenvalue 3 are as follows:

0 0 0 1

4 1 0 0

2 1 1 0
w=—101; w*=1| 0}; u>=| 0|; u*=| 1
410 0 0 1

0 0 0 —1

3 0 1 0

« )
N

( eigenvector  principalvector
belonging to the eigenvalue 3

<
I
f
[ ==
<
o
I
I
O = e kOO -
~
)
O = = OO =

u® and u® are two linearly independent eigenvectors belonging to the double
eigenvalue — 5.

As approximations to the real numbers m;,, m;, and m,, in (1.3} we choose

myy myy)  (—4.99999999 1E—38
my,) —5.00000001 )"
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Correspondingly we consider

99999999 E —1 1
lE-8 1E-8
—1E-8 —1E-8
xt=| -1 and x*=| —9.9999999 E—1

—9.9999999 E —1 9.9999999 E — 1
9.9999999 E —1 —9.9999999 E—1
1E-8 1E—8

as approximations to the eigenvectors u° and u®. Using the iteration method (V)
from Section 2 we get the following inclusions for the solution of (1.3):

(mn + gy mlz‘f’ﬂlz) c
Ma1 Mg+ Usy

" [ =5.000 000000 01; [—1E-19; 3E-20]
—4.999 999999 991

[—2.6 E—20; 2.6 E—20] [ —5.00000000001;
—4.999999999 997]

x'+7le
[9.999999999 99 E — 1 ;
1.000 000000 01]
[—1E—19; 2E—20]
[—2E-20; 1E-19]
[—-1;-1]
[—9.9999999E—1;
—9.9999999 E—~1]

[9.999999 89999 E —1;
999999999901 E—1]

[-1E—-19; 2E-20]

x2+jte

/[9.99999989999 E —1

999999990001 E—1]
[-2E-19; 12E-19]
[-3E-20; 1.0E-19]
[—9.9999999E—1;

—~9.9999999 E—1]

[9.9999999E—1;
99999999 E—1]

[—9.99999990001 E—1;
—9.999999 89999 E—1]

[—1E—19; 3E-—20]

2. In this example we replace the zero elements of the preceding matrix by numbers
&;; for which |g;;]=1E—8. We denote this matrix by 4;. We now choose

(mll m12>_<3 1>
My, B 3)

=
I
CoOCO R, ~=O
=
fl
—_-o OO = oo

23 Computing 36/4
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In this case we get the following inclusions:
(m11 il My +,u12> i

Uzt Moo+ oy
[2.99999999999; [1.000 000 006 66;
3.000000 000 007 1.000 000 006 67]
[—592592593625E—~17; [3.000 000003 33;
—592592593621 E—17] 3.000000 003 34]
xt4+9te x4+t e
[4.02777777777 E-9; [4.82831789428 E—9;
402777777780 E—9] 4.828317894 33 E—9]
[; 1] [0, 0]
[-1;—-1] [—1;—1]
[1.52777777777 E-9; [2.64081789729 E—9;
1.52777777779 E—9] 2.64081789733 E—9]
[—2.22222222224 E—9, [—2.51543208806 E—9;
—2.22222222222 E—9] —2.51543208802 E—9]
[—2.22222222224E—-9 [—5.01543209536 E—9;
—2.22222222222 E—9] —5.01543209531 E—9]
[—7.037037067 12 E—17; £1.000 000003 33;
—7.03703706707 E—17] 1.000 000003 34]
3. As a final example we consider the (7,7) matrix
/
—6 0 -4 -1 0 0 —4
0 b 0 0 0 0 0
—4 0 —6 —4 0 0 -1
A=| —1 0 —4 -6 0 0 —4 a%h
0 0 0 0 ¢ 0 0
0 1 0 0 0 a 0
—4 0 -1 -4 0 0 —6

The eigenvalues and the corresponding eigenvectors are as follows:
Eigenvalues:
M=a; l,=b; Az=c; A=-15; Is=lg=-5; A;=1;

Eigenvectors:

0 0 0 —1
0 b—-a 0 0
0 0 0 -1
ul=10 w=| 0 w=|0 ut=| —1
0 0 1 0
1 1 0 0
0 0 0 —1
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<
|
— D D = = O =
=
il
|
_-0 O == O =
=
Il
—_ O O e = O

We slightly modify this matrix to 4 defined by

—6 0 -4 -1 0 0
0 b 0 0 —-1E-10 —1E-10
—4 0 -6 —4 0 0
A=| -1 0 -4 -0 0 0
0 —1E~-10 0 0 c 1E—10
0 1 0 0 1E-10 a
—4 0 -1 -4 0 0
and choose
a=15.000001
b=4.999 999
¢=5.001.
In (1.3) we choose
myy myy )\ {5.000001 0
< m22> B ( 0 4.999 999)’
0 0
0 2E—6
0 0
x'=10 x?= 0
0 0
1 1
0 0

The inclusions computed by (V) are

Myt Myy+g, c
Ha1 Mys + U

[5.000050999 99; [5.399999 498 54 E—5;
5.000051 000 00] 5.399999 498 S5 E —5]
[—4.999999499 55 E—-5; [4.999 949 000 000;

—4.999999 499 54 E - 5] 4.999949000001]

23*

—4
0
—1
—4
0
0
—6

333
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x' it e x>+ e

[-2E—-99; 2E—-99] [-2E—-99; 2E-99]
[0; 0] [2E—6; 2E—6]
[-2E—-99; 2E-99] [—2E—-99; 2E-99}
[—2E—99; 2E-99] [—2E-99; 2E-99]
[—1.00090101082E—7; [—1.002898 81504 E—17;
—1.00090101079 E—T] —1.002898 81502 E—7]
(L, 1 [ 1]

[-2E—-99; 2E-99] [-2E—-99; 2E-99]

It is interesting to note that the (2,2) matrix

My + gy Myt
H21 Moy Ttz

now has a pair of complex eigenvalues.

All computation was done on an APPLE Ile using the programming language
PASCAL SC (see [4]). This system uses a decimal number system which has
12 digits in the mantissa of a floating point number. Note that all rounding errors are
taken into account using this system. Therefore the bounds computed in the
preceding examples are absolutely safe.

Acknowledgement

The authors are indebted to several members of the Institut fiir Angewandte Mathematik at the
University of Karlsruhe, Germany, for introducing them to the CPM-System of the APPLE Ile and to
the use of PASCAL SC.

References

[1] Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press 1983.

[2] Alefeld, G., Platzdder, L.: A quadratically convergent Krawczyk-like algorithm. SIAM J. Numer.
Anal., 20, 210 —219 (1983).

[3] Dongarra, J. J., Moler, C. B., Wilkinson, J. H.: Improving the accuracy of computed eigenvalues
and eigenvectors. STAM J. Numer. Anal. 20, 23 —45 (1983).

[4] Kulisch, U., Miranker, W. L.: A new approach to Scientific Computation. Notes and Reports in
Computer Science and Applied Mathematics. Academic Press 1983.

[5] Rump, S.: Solving algebraic problems with high accuracy. In [4], 53 —120.

6] Symm, H. J., Wilkinson, J. H.: Realistic error bounds for a simple eigenvalue and its associated
eigenvector. Numer. Math. 35, 113—126 (1980).

G. Alefeld, H. Spreuer

Institut fiir Angewandte Mathematik
Universitit Karlsruhe

Kaiserstrasse 12

D-7500 Karlsruhe

Federal Republic of Germany



