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Abstract - -  Zusammenfassung 

Iterative Improvement of Componentwise Errorbounds for Invariant Subspaces Belonging to a Double or 
Nearly Double Eigenvalue. In this paper we present a systematic method which computes bounds for 
invariant subspaces belonging to a double or nearly double eigenvalue. Furthermore an algorithm based 
on interval arithmetic tools is introduced which improves these bounds systematically. 
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Iterative Verbesserung von komponentenweisen Fehlerschranken fiir invariante Teilriiume, die zu einem 
doppelten oder fast doppelten Eigenwert gehiiren. In dieser Arbeit bringen wir eine systematische 
Methode zur Berechnung von Schranken ffir invariante TeiMiume, die zu einem doppelten oder fast 
doppelten Eigenwert geh6ren. Aul3erdem wird ein auf intervallarithmetischen Hilfsmitteln aufgebauter 
AIgorithmus angegeben, tier diese Schranken systematisch verbessert. 

0. Introduction 

In this paper we consider the eigenvalue problem for a real (n, n) matrix which has a 
real double eigenvalue or a real pair of nearly equal eigenvalues. 

Starting with sufficiently good approximations we construct bounds for the 
elements of a two by two matrix whose eigenvalues are eigenvalues of the given (n, n) 
matrix. Furthermore using the Jordan normal form of this (2, 2) matrix the 
generators of the invariant subspace belonging to these eigenvalues can be enclosed. 

The first section contains a careful description of the problem and a reformulation 
which was already discussed in [3]. See also [6]. In Section 2 we construct bounds 
for the unknown terms. Furthermore we introduce an iterative method which 
improves these bounds and which has the property that these bounds are 
converging to the exact values. 
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The computation of these bounds and the iterative improvement is based on the 
contents of Theorem 1 from Section 1. This theorem was implicitly already used 
in [3]. 

In Section 3 we list some numerical examples. These examples were computed on 
an APPLE l ie  using the programming language PASCAL SC which has available 
the exact scalar product. See [4], [5]. 

In concluding we note that in principle it is not difficult to discuss the more general 
case in which the matrix and the eigenpairs are complex. Furthermore we also could 
consider the case of an eigenvalue which has multiplicity larger than two or a set of 
more than two eigenvalues which are nearly equal. These problems will be discussed 
in a future paper. 

I. Formulation of the Problem 

Assume that A = (aij) is a real (n, n)-matrix which has the real eigenvalues 71 and 72. 
We assume either that 

a) 71 ~= 72 and 71,72 are both simple eigenvalues or that 

b) 71 =72 =7 holds and that 7 is double eigenvalue. Then 7 either has two linear 
elementary divisors or one quadratic elementary divisor. 

From a numerical point of view we are in case a) especially interested in the situation 
that 71 is close to 72. 

Under our assumptions there exist two linearly independent real vectors fi and/7 
from ~" such that 

A (tL ~)=(t~, ~)A (1.1) 

where 

and where (t~, ~7) is an (n, 2)-matrix which has t~ and/5 as its columns. 

We now assume that approximations x 1 =(x~) and x 2 =(x  2) to t~ and ~ are given. 
Furthermore m11, m12 and rn22 are given real numbers which are considered as 
approximations to 71, b and 72. In [33 it is described in detail how to find such 
approximations using the QR-algorithm. See also [63. 

We are now looking for vectors 371 =(37]) and 372 =(372) and furthermore for real 
numbers #11, #12, #21 and #22 such that 

A (x 1 + 371, x 2 + 372) = (x 1 + 371, x 2 + ;2) ( m l  
+ 1 /-211 

\ #21 
holds. 

Defining the (n, 2) matrix X by 

X = ( x l  _[_371 X 2 _t_;2) (1.4) 

m12+#12~ (1.3) 
m22 + #22 / 
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and the (2, 2) matrix D by 

D=( mll+#H m12 -t- #12~ (1.5) 
\ #21 1"n22 "~ #22 / t .. 

then (1.3) can be written as 

AX=XD. (1.6) 

If the (2, 2)-matrix Y= (Yij) transforms D by a similarity transformation to upper 
Jordan normal form then 

AXY=Xyy-IDy,  
o r  

where 

and 

A (u, v) = (u, v) A 

A=Y-1DY=( 70 72b) (1.7) 

(u, v) = X Y. (1.8) 

If 71 z~= 72 or if 71 = 72 =7 and if there are linear elementary divisors belonging to 7 
then b = 0. The vectors u and v are then eigenvectors of A corresponding to the 
eigenvalues 71 and 72. 

If, however, 72 = 72 =7 is a double eigenvalue with a quadratic elementary divisor 
then b = 1. The vector u then is an eigenvector of A belonging to the eigenvalue 7 and 
v is a principal vector of grade two belonging to the eigenvalue 7. 

In every case the linearly independent vectors u and v span a linear space called the 
invariant subspace belonging to the eigenvalues 71 and 72 or 7, respectively, u and v 
are called generators of the subspace. 

After having solved (1.3) the computation of 72 and 72 and of the generators u and v 
is, because of (1.7) and (1.8), essentially reduced to the eigenvalue problem for the 
(2, 2)-matrix D, defined by (1.5). 

The system (1.3) is a nonlinear system of 2 n equations and 2 n + 4 unknowns. In 
order to compute a unique solution we perform the same normalization as in 1-3]. 
(See also [-6]): 

If x 1 =(x])  and x2=(x  2) are sufficiently good approximations for the (linearly 
independent) vectors ~i and g then they are also linearly independent. Therefore, if we 
define the integers p and q such that 

[x~[ = max Ix 1 [ (1.9) 
l <i<_n 

and 

1 2 1 2 lx~_x~ 2f (1.10) I xp Xq - Xq x/, I = max I Xp xp 
l <_i<n 

then p ~= q. 
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The vectors 371 =(37~) and 372= (37i 2) are now determined in such a manner that 

yp~l _- Yp~2 = yq~i = ;2  =0.  (1.11) 

If we also define vectors yl= (yl) and y2= (y2) by 

f 37~, i=l=P,q 

Y~='] //11, i=p 
L #21, i=q 

and 

~ 372, i~=p,q 

y/2 = l #12 , i=p 

#22, i=q,  

respectively, then (1.3) can be written as 

where 

B yl = r a q_ ypl. 371 q_ y~. 372 

B2 y2 = r 2 + m . -  ;1 + y~. 372 + d "  372 

(1.12) 

(1.13) 

(1.14) 

{ r l = m l l x 1 - A x a  (1.15) 
r 2 ~ m a 2  x 1 -}- m 2 2  x 2 _ A x  2 

and where B~, i=  1,2, is A - m , I  with columns p and q replaced by - x  1 and - x  2 
respectively. The rewriting of the original system (1.3) into (1.14) was already 
performed in [3]. See also [6]. 

This rewriting has two important advantages: 

1. The right-hand sides of(1.14) can be computed by computing 2 n scalar products. 
This has a tremendous impact on the numerical precision if one is computing the 
unknowns 371, y2, #11, #12, #21 and//22- 

2. For sufficiently good approximations x 1, x 2, m~l, m12 and m21 the matrices B~ 
and B 2 are nonsingular. By continuity arguments this follows from the next 
theorem which was implicitly already used in [3]. 

T h e o r e m  1.1 : Assume that the real (n, n) matrix A = (aij) has the eigenvaIues 71 and 72 
and that u and v are the generators of the invariant subspace belonging to ~/a and 72. Let 
the integers p and q be defined analogously to (1.9) and (1.10). 

I f  V1 =~72 then assume that 71 and 72 are both simple eigenvalues. If71 =Y2 =7 then 
assume that 7 is a double eigenvalue with two linear elementary divisors or one 
quadratic elementary divisor. Then the matrices B~, i = 1, 2, where B~ is A - 7~ I with 
columns p and q replaced by - u  and - v ,  respectively, are nonsingular. 

The preceding Theorem 1 is the basis for a method which computes bounds for 371, 
372, ~ i i ,  //12, //21 and//22 and for a method which improves these bounds. This is the 
topic of the next section. 
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2. Computing Bounds and Their Iterative Improvement 

Assume that L1 and L2 are approximations to the inverses of B 1 and Bz (or the 
inverses themselves). Then the equations (1.14) can be written as 

y, = g~ ( r  yy) 
(2. 1) y2 = g2 (yl, y2) 

where 

and 

gl (yl, y2)=LL 1"1 -~- g l  yl + L 1 (yf . fit)+ L1 (y~. #2), 

g2(yl  y2)=L2r2_l_g 2y2-/-L 2(m12. gl(YL y2))_}_L2(22 .ffl)_~_L2(y2. ~2) 

K 1 = I - L  1 Ba, K 2 = I - L z B  z. (2.2) 

Furthermore gl (yl, yy) is gl (yl, yy) with components p and q set equal to zero. By 

g (y ,  y2)= (gl  (yl, y2)'~ (2.3) 
g2 (yl, y2)j 

(y l , . ' ]  
a mapping of the Ny, into itself is defined and a fixed point \y2, . ]  e N2, is a solution 

of (1.14) (and therefore also of (1.3)) if L1 and L 2 are nonsingular. 

Starting with x 1, x 2, rn 11, m~ 2 and m22 we are now constructing interval vectors [y] 1 

and [y]2 such that ~ \ /[Y]I] contains a fixed point of 9- \[yY/ 
For interval vectors [y]l=([y]~) and [y]Z=([y]~) we define interval vectors 
[y~l =-([y~]~)and [y-j2 =([y~]~) by 

~ [Y]~, i=t=P,q 
[Y~]~ = {0,  i=p ,q  

and 

[ f l 2 = { [ y ]  2, i~=p,q 

O, i=p,q ,  

respectively. We now determine [y]l and [y]2 in such a manner that 

(g ,  ([y]l, [y]2),] c ( [ y ] l )  (2.4) g ([y]X, [232) = \g2 ([y]l, [y]2)J -- \ [y]2J 

holds. Because of the inclusion monotonicity of interval arithmetic (see [1], p. 6) 

(ryr) g (y,,y2) m \ [ y ] 2 j  

holds for all 

\[y]~J 
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Since g is continuous and since ( [y] ~ "] is a compact and convex set in ~2n the fixed \ [y]U 
point theorem of Brouwer implies that there is at least one fixed point of g in (I-Y] ~ 

In order to determine [y]l and [y]2 such that (4) holds we set 

[y]~ = [y]2 = [ _  fl, fl] e (2.5) 
where 

f l ~ ,  fl>O and e =  eR" .  

Defining 
eve = ((evq)i) ~ ~" 

by 

then 

1, i+p,q 
(epq)i= O, i=p,q,  

[y]g. [ ;Y= = [;1'= 
= [y]~.  El]2 = [ _  f12, f12]. epq. 

Denoting by I K1 [, ] K2 ], ] L1 [ and [ L 21 the real matrices which one gets from K1, K2, 
L 1 and L2, respectively, by forming elementwise the absolute value then we obtain 
for the diameters (see [1], p. 14 and p. 125) dgl ([y]l, [y]2) and dg2 ([y] 1, [y]2) 

d g 1 ([y]l, [y]Z)= 2 fl l K 1 [ e + 4 flz l Zl [ epq (2.6) 
and 

d 92 ([y] 1, [y]2)= i mlz I[ L2 [" dgl ([y]l, [y]2)+ 

+ 2flIK2 l e+4flZlLzlepq 

<1m1211Lz[ {2ill Ka [e+4flZ[L1 lepq}+ 

+ 2f l lK2le+4fl2lL2lepq 

=4flZlL2l {I+]m121 ILll} epq+ 

+2fl{lm12 [ IZ2[ IK11 +]K2I} e. 

(2.7) 

For the centers (midpoints) of [y]l,  [y]2, 81 ([y]l [y]2) and g2 ([y]l, [y]2) we have 
m [y] 1 = m [y] 2 = 0 and 

m 81 ( [y ] l  [y]2)= L,  r 1 (2.8) 

m 92 ([Y] 1, [y] 2) = L2 (r 2 + mlz L~I ) .  (2.9) 

We have 

if and only if 
\g= ([yY, [y]=)/-  \.[y]= I 
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1 
I m [yl ~-  m o~([yl l  [y]2)l + 5-  d ~ ( [y ] l  [yy)  

1 
< - -  d [y]i, i = 1,2. 
- 2  

Because of (2.6)-(2.9) this is the case if and only if both 

I La rl l  +/31 K1 I e+2/321L~ l epq</3e 
and 

I L2 (r2 + mi2 L1 rl)l +/3(I m12 II L= II K1 I+1K2 I)e+ 

+ 2/321 L2 I(I m~2 II LI I+I)el, q<_/3e 
hold. 

Defining real numbers 

p l =  max {ILl rl Ii}, 
l<_i<n 

p2 = max {IL2(r2+m12 L i ri)l}, 
l <_i<_n 

K" 1 ~ max 1 ij , 
l <_i<_n j 

11 = max I(L0ij , 
l <_i<_n j 

327 

(2.10) 

p = max {p 1, P2 }, (2.11) 

/s = max (Irnizl IL2I I K l l + l g 2 l ) i j  , 
l <_i<_n j 

tc = m a x  {/s N2} ,  (2.12) 

12= max (IL21(lm121 ILl [+I))ij , 
l <_i<_n j 

/ = m a x  {ll, 12}, (2.13) 

then (2.10) surely holds if the inequality 

p+(tc--1) fl + 2 l fl2 <_ O 

holds. Assuming ~ <  1 and ( ~ - 1 )  2 - 8 p  l_~0 then this inequality holds for all 
/3 e [/31,/32] where 

1 - ~ - T I / ( 1 -  ~)2- 8p l 
/31/2 = 4 l (2.14) 

Hence we have the proof for the following 

Theorem 2.1: Let p, tc and I be defined via (2.11), (2.12) and (2.13). I f  •<1 and 
(1 - ~)2 _ 8 p 1 > 0 and/ f  f le  [fli, f12] where fix and f12 a r e  defined by (2.14) then the 

V*t (E'r)whe e mappin9 9 defined by (2.3) has at least one fixed point \ yZ , ,  j in \ [ y ]2  

[y]i  = [y]2 = [y]O: = E- fl, ,83 e. 
[] 

[ f ' * ~  
g fixed point -~Y2'* -) of 9 is surely a solution of (1.14)(and hence of (1.3))if L i and L 2 

are nonsingular. Under  the assumption x < 1 of the preceding Theorem 1 this is 



328 G. Alefeld and H. Spreuer: 

always the case. This can be seen as follows: From the definition of ~c we have that 

[1 Ki [1oo= II I - L 1  B1 II~ <1.  

Therefore the inverse o f ( / - ( I  - L~ B1)) = Lt B i exists which implies that L ;  1 exists. 
Similarly the existence of L~-1 follows. 

We now consider the iteration method 

{ [y]1,~+~ =9~ ([y]1,~, [y]z,~) 
[y ]  ~,~ +2 = ~ ( [y]  1, L [Y] 2, ~) (V) 

k=0,  1,2,. . . ,  
where 

[y ] i ,o = [y]2,o = [y]O = [_ f i ,  f i ]e.  

Theorem 2.2: Let ~c < 1 and fli :~=f12 where ~l and f12 are  defined by (2.14). I f  then 

~, < _ p < - -  
2 

and [y]o=[_/~,/~] e then (V) is well-defined. 

(V) delivers two sequences {[y]l'k}~~ 0 and {[y]2'k}~= 0 of interval vectors for which 
yi , ,  ~ [y] 1,k, y2,, e [y]2' k and 

lim [y ] l , k=y i , , ;  lim [y]2,k=y2,, 
k--+ oO k--+ oo 

hold. \ y2 , , ]  is the unique fixed point of 9 in ( [y] i ,o~  \[y]2,oj- 

Proof: By the proof of Theorem i we have 

[y ]  2,1 J = g ( [y ]  i, O, [?] 2,0) ~ \ [Y] 2,0 

By complete induction it follows that 

( [Y] i ' k+ '~c([Y] l ' k )  k=0,1 ,2 ,  
[y]2,k+lJ - \ [y]2,kJ . . . . .  

Hence the convergence of the sequences {[y]l'k}~= o and {[y]2'k}[= 0 follows, that is 
we have lim [y ] i , k= [y ] i , ,  and lim [y]2,k=[y]2,,  where [y] l , ,  and [y]2,, are 

interval vectors. By Theorem 1 there exists at least one fixed point of g in 
22, 

[y]=,oj" 

Using the inclusion monotonicity (see [1], p. 6) it follows by complete induction and 
passing to the limit afterwards that 

y2, , j  e \ [y ]2 , , / -  
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Therefore, if we are able to prove that 

lim d[y] l'k= lim d[y]2'k=o 
k--+ oo k ~ o o  

holds then (2.15) and the uniqueness of \ y 2 , , / i n  \ [y ]2 ,o]  follow. 

We define d k to be 

dk=max U <i-<n~max {d[y]~'k}, max {d[y]2'k}} 

and take into account that for two real intervals [a] and [b] (see [11, p. 15) 

d ([a].  [b]) _< ][a][ d [b] + d [a] [ [b] l �9 

The absolute value of interval terms is defined in [1], Chapter 2. 

Because of 

we then get 

[y]  1, k, [y]2,k C I-y]0 = [__ j~, fl] e 

d Fy] 1'k+1 = [K I  l d [y] l ,k_[_lal [d ( [y ] l ' k .  [y-]l,k)_[_ 

+ILl  l d([y]~ 'k . [y-]2,k) (2.16) 

<d k . ( lK  1 l+4 f l lL  1 ])e 

and 

d [y]2,k+ 1 =[ ml 2 [1L21d f i l l , k +  1 _[_ [ K2 [d [y]2,g + 
+l L2 l d([y] 2,k. [y']~'k)+ l L2 ] d([Y] 2,k. [~]2,k) 

<dk[m,2 [ ]L2](]Kl[+4fi]L1])e+dk]K2]e+4dkfi[L2]e (2.17) 

=dk(] K2 ] +4f l  [ L21+] m12 ]] L2 [([ K1 ] +4f l  ] L~ [))e 

= dk ((1 m12 I I L2 IlK1 I+l K2 I)+4fi I L; I(I m12 I I L1 [ + I)) e. 

Using the definition of K and 1 it follows from the last two inequalities that 

dk+ ~ <(to +4f l  l) dk. (2.18) 

Because of 

we have 

fll + fi2 1 -  ~ 
f l < - - - - -  2 4l 

~ + 4 f i l < l .  

Therefore from (2.18) it follows that lira d k = 0 and therefore (2.15) holds. 
k--* oo 

[] 
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3. Numerical Examples 

1. We consider the (7, 7)-matrix 

- 6  0 0 - 1  - 4  - 4  0 
0 4 1 0 0 0 2 
0 1 4 0 0 0 0 

- 1  0 0 - 6  - 4  - 4  0 
- 4  0 0 - 4  - 6  - i  0 
- 4  0 0 - 4  - 1  - 6  0 

0 1 1 0 0 0 4 

A =  

which has the eigenvalues 

21=6 , 22=,~3=3, ).4=1, )~5=26 = - 5 ,  ~7 = - 1 5 .  

To the double eigenvalue 22 =23 = 3 belongs a quadratic elementary divisor, to 
25 =26 = -  5 belong two linear elementary divisors. The eigenvectors and the 
principal vector belonging to the eigenvalue 3 are as follows: 

' 0  
4 
2 

ul = 1 0 
4 0 

0 
\3 I 

/ 

0 
0 

- 1  
; U 2 = 0 ; U 4 = 

0 
0 
1 

"v" 

eigenvector principalvector ~ 

belonging to the eigenvalue 3 / 

/ 

O\ 
11 

- 1 1  
0 I; u3= 
01  
01  
01 

2 k 

1 1 /1  

t25 =__ - -  ; U 6 = - -  ; 127 = 

O '  0 '  \ 

1 
0 
0 
1 

- 1  
- 1  

, 0} 

u 5 and bt 6 a r e  two linearly independent eigenvectors belonging to the double 
eigenvalue - 5. 

As approximations to the real numbers roll , m12 and m22 in (1.3) we choose (4,9999999 ) 
m 2 2  J - -  5 . 0 0 0  0 0 0  O1 
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Correspond ing ly  we consider  

9.999 999 9 E - 1 \ 

1 E - 8  

- 1 E - 8  

x a = --1 

-- 9.999 999 9 E -- 1 

9.999 999 9 E - -  1 

1 E - 8  

and X 2 

1 

1 E - 8  

- 1 E - 8  

- 9.999 999 9 E - 1 

9.999 999 9 E - 1 

- 9.999 999 9 E - 1 

1 E - 8  

as app rox ima t ions  to the eigenvectors  u 5 and U 6. Using  the i te ra t ion  me thod  (V) 
from Section 2 we get the fol lowing inclusions for the solut ion of (1.3): 

rol l  - k # l i  

/221 
/ 

[ - 5 . 0 0 0 0 0 0 0 0 0 0 1 ;  
- 4.999 999 999 99] 

[ - 2 . 6 E - 2 0 ;  2.6 E -  20] 

v 

x 1 + 371 

[9.999 999 999 99 E - 1 ; 
1 . 0 0 0  000 000 01] 

[ -  1 E - 1 9 ;  2 E - 2 0 ]  

[ - 2 E - 2 0 ;  1 E -  19] 

[--1; -13 
[ - -  9.999 999 9 E - 1 ; 

- 9 . 9 9 9  999 9 E -  1] 

[-9.999 999 899 9 9  E - 1 ; 

9.99999999901 E -  1] 

[ - 1 E - 1 9 ;  2 E - 2 0 ]  

ml2 q-~I21 e 
m22 + # 2 2 /  

[ - 1 E - 1 9 ;  3 E - 20] 

[- - 5 . 0 0 0  000 000 01; 
- 4 . 9 9 9  999 999 99] 

x 2 + 9 2  

' [-9.999 999 899 99 E - 1 ; 
9.999 999 900 01 E -  1] 

[ - 2 E - 1 9 ;  1 . 2 E -  19] 

[ - 3 E - 2 0 ;  1 . 0 E -  19] 

[ - 9.999 999 9 E - 1 ; 
- 9.999 999 9 E - 1] 

1-9.999 999 9 E - 1; 
9.999 999 9 E -  1] 

[ - -  9.999 999 900 01 E - 1; 
- 9.999 999 899 99 E -  1] 

I - -  1 E - 1 9 ;  3 E - 2 0 3  

2. In  this example  we replace the zero elements  of the preceding mat r ix  by  numbers  
e~ for which ] eij[ = 1 E -  8. We denote  this ma t r ix  by  A 1. We now choose 

r 0 '  / 0 

1 0 

- 1  - 1  
0 x 2 =  0 

0 0 

0 0 

\ O /  \ 1 

23 Computing 36/4 
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In this case we get the following inclusions:  

( ml  I "~- IfLl I ml2  -[- #12 / E 

~21 m22 -[- Y22 / 

[2.999 999 999 99 .000 000 006 66 [1 
3.000 000 000 00] 1.000 000 006 67] 

[ -  5.925 925 936 25 E -  17; [3.000 000 003 33 ; 
- 5.925 925 936 21 E - 17] 3.000 000 003 34] 

X 1 _}_~1 E X2-I-y 2 E 

/ [4 .027  777 777 77 E - 9; 
4.027 777 777 80 E -  9] 

[ I ;  i ]  
[ - I ;  - i ]  
[1.527 777 777 77 E - 9 ;  

1.527 777 777 79 E -  9] 

[ - 2.222 222 222 24 E - 9; 
- 2.222 222 222 22 E -  93 

[ -  2.222 222 222 24 E - 9 
- 2.222 222 222 22 E - 9] 

[ - 7 . 0 3 7 0 3 7 0 6 7  1 2 E -  17; 
- 7.037 037 067 07 E -  173 

3. As a fina 

) 
[4.828 317 89428 E - 9 ;  
4.828 317 894 33 E - 9 ]  

[0; 0] 
[ - 1 ;  - 1 ]  

[2.640 817 897 29 E - 9 ;  
2.640 817 897 33 E - 9 ]  

[ -2 .51543208806E-9 ;  
- 2.515 432 088 02 E -  9] 

[ -  5.015 432 095 36 E - 9 ;  
-5.O15432O95 31E-93  

[1.000 000 003 33; 
1.000 000 003 34] 

example  we consider  the (7, 7) mat r ix  

0 - 4  - 1  0 

b 0 0 0 

0 - 6  - 4  0 

0 - 4  - 6  0 

0 0 0 c 

1 0 0 0 

0 - 1  - 4  0 

/ 

- 6  

0 

- 4  

A =  - 1  

0 

0 

- 4  

0 - 4  
0 0 

0 - 1  
0 - 4  a + b  
0 0 
a 0 
0 - 6  

The eigenvalues and the cor responding  eigenvectors  

Eigenvalues: 

2i = a ;  

Eigenvectors: 

are as follows: 

2 2 = b ;  2 3 = c ;  R ~ = - 1 5 ;  25 =26 = -  5; 2 7 = 1 ;  

U 1 = 

/ 0  

0 

0 

0 

0 

1 
\ 0  

/ 0 /0\ /-I 

o, o 

0 1  - 1  
u 2 = u 3 = 0 I u 4 = - 1 

i i  0 
0 1  0 I 
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x 1 + )~i e 

[ - 2 E - 9 9 ;  2 E - 9 9 ]  

[0; o] 
[ - 2 E - 9 9 ;  2 E - 9 9 ]  

[ - 2 E - 9 9 ;  2 E - 9 9 ]  

[ - 1.000 901 010 82 E - 7; 
- 1 . 0 0 0  901 010 79 E -  7 ]  

[1; 13 
[ - 2 E - 9 9 ;  2 E - 9 9 ]  

X2 --~- y 2 (~ 

[ - 2 E - 9 9 ;  2 E - 9 9 ]  

[ 2 E - 6 ;  2 E - 6 3  
[ - 2 E - 9 9 ;  2 E - 9 9 ]  

[ - 2 E - 9 9 ;  2 E - 9 9 ]  

[ - 1.002 898 815 04 E -  7; 
- 1.002 898 815 02 E -  7] 

[1; I] 
[-2E-99; 2E-99] 

It is interesting to note that the (2, 2) matrix 

roll +~iI m12 + # 1 2 ~  

g21 m22 + / ~ 2 2 J  

now has a pair of complex eigenvalues. 

All computation was done on an APPLE IIe using the programming language 
PASCAL SC (see [4]). This system uses a decimal number system which has 
12 digits in the mantissa of a floating point number. Note that all rounding errors are 
taken into account using this system. Therefore the bounds computed in the 
preceding examples are absolutely safe. 
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