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Abstract - -  Zusammenfassung 

Graph Isomorphism and Theorems of Birkhoff Type. Two graphs G and G' having adjacency matrices 
A and B are called ds-isomorphic iff there is a doubly stochastic matrix X satisfying XA = BX. 
Ds-isomorphism is a relaxation of the classical isomorphism relation. In section 2 a complete set of 
invariants with respect to ds-isomorphism is given. In the case where A = B (ds-automorphism) the main 
question is: For which graphs G the polytope of ds-automorphisms of G equals the convex hull of the 
automorphisms of G ? In section 3 a positive answer to this question is given for the cases where G is a tree 
or where G is a cycle. The corresponding theorems are analoga to the well known theorem of Birkhoffon 
doubly stochastic matrices. 

A M S  Subject Classifications. 05C05, 05C25, 05C50, I5A24, 15A51, 20B25, 20B35, 52A25, 68E10. 

Key words: Graph isomorphism, doubly stochastic matrices, convex polytops, trees, cycles. 

Isomorphic yon Graphen und Theoreme vom Birkhoff-Typ. Zwei Graphen G und G' werden ds-isomorph 
genannt, wenn eine doppelt stochastische Matrix X existiert mit XA =BX, wobei A und B die 
Adjazenzmatrizen von G und G ' sind. Ds-Isomorphie ist eine Vergr6berung der klassischen Iso- 
morphierelation. In Abschnitt 2 wird ein vollstfindiges Invariantensystem bezfiglich ds-Isomorphie 
vorgestellt. Ffir den Fall A = B (ds-Automorphismus) lautet die Hauptfrage: Ffir wetche Graphen Gist 
das Polytop der ds-Automorphismen gleich der konvexen Hfille der klassischen Automorphismen ? In 
Abschnitt 3 wird diese Frage ffir Kreise und Bfiume positiv beantwortet. Die entsprechenden Theoreme 
sind Analoga zu dem bekannten Satz yon Birkhoff fiber doppelt stochastische Matrizen. 

1. Introduction 

We consider undirected graphs G = (V,, E) with vertex set V, = { 1,2, ..., n} and edge 
set E. The adjacency matrix A = A (G) of such a graph is a symmetric square matrix 
of order n whose entry A~ at the position (i,j) equals 1 or 0 depending on whether the 
edge ( i , j )  is in E or not. 

Let GA = (V,, EA) and GB = (V,, Es) be two graphs having adjacency matrices A and 
B, respectively. GA and GB are called isomorphic iff there exists a permutation matrix 
P of order n such that 

P A  = B P .  (1) 

20* 
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The isomorphism problem for graphs is the problem of deciding whether two graphs 
G A and G B are isomorphic or not. The relative complexity of this problem is 
unresolved. No polynomial time algorithm is known, nor is the problem known to 
be NP-complete. Many generalizations and restrictions of the isomorphism 
problem are known to be polynomial time equivalent (see e.g. [2]). Among these 
there are the restrictions of the problem to particular graph classes such as 
connected undirected graphs, regular graphs, bipartite graphs, chordal graphs, 
lattices and many others. These problems are called isomorphism complete. 
Another isomorphism complete problem is the problem of finding the automor- 
phism partition of a graph. The automorphism partition or G A is the partition of the 
vertex set V, induced by the automorphism group A UT(A) of GA. Two vertices i and 
j belong to the same class iff there is an automorphism in AUT(A)  which sends i toj .  

In this paper we consider a relaxation of the condition (1). Let Xn be the set of all 
doubly stochastic matrices X of order n. An equivalence relation on the set of all 
undirected graphs G = (V,, E) on n vertices which is weaker than (1) is given by 

GA ~-- as GB (2) 

iff there is an X ~ Z, such that 

X A = B X .  (3) 

In the case of (2) we shall call G A and G B doubly stochastically isomorphic (ds- 
isomorphic). Any X ~ Z, satisfying (3) will be called a doubly stochastic isomorphism 
(ds-isomorphism) of GA and G B. 

Analogously, for A = B, any X ~ Z n satisfying 

X A  = A X  (4) 

is called a doubly stochastic automorphism of GA (ds-automorphism). 

Using an n-vector e of l 's and an n x n-matrix 0 of 0's the condition (3) reads 

X A  = B X  

X e = X r e = e  (DSI) 

X>_O. 

(DSI) is equivalent to a linear programming problem in continuous variables xij, 
1 <_ i, j _< n. Hence, given G A and G~ the problem of deciding whether GA "~ ~s G, is 
true or not is polynomial. This follows from the fact that any linear programming 
problem can be solved in polynomial time using the ellipsoid method (see [7]) or the 
algorithm of Karmakar  [8]. But in section 2 we shall see that there is a much less 
complicated method solving the "doubly stochastic isomorphism problem" for 
(undirected) graphs. The restriction on undirected graphs is not an essential loss of 
generality in this context. 

The solution set of (DSI) is a convex subpolytope of the well studied assignment 
polytope Z n (see [1, 3,4]). This subpolytope is denoted by P(A, B), or simply by 
P (A), when A = B. Let IS (A, B) denote the set of all classical isomorphisms of GA and 
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GB. By PIS  (A, B) we shall denote the convex hull of 1S (A, B). P IS  (A, B) is another 
(possibly empty) subpolytope of Z, satisfying 

P I S ( A , B ) ~ P ( A , B ) ~ Z , .  (5) 

When PIS  (A, B) = P (A, B), then any linear programming algorithm which finds a 
basic solution (an extreme point of the solution set ) of (DS1) would solve the 
standard isomorphism problem for G A and GB. Hence, an interesting question 
touched in this paper is the question for which pairs of graphs GA and G B equality 
holds at the first inclusion of(5). In section 3 we present first results in this direction. 

2. A Complete Set of Invariants 

In this section we deal with the general case where G A and G B are arbitrary 
undirected graphs. The relation (2) is an equivalence relation. Hence the 
most natural question to start with is: What are the invariants with respect to 
ds-isomorphisms ? This question will be answered exhaustively in this section. We 
start with the presentation of two lemma's which are basic also for section 3. 

For a graph G A let d A be the vector of its vertex degrees, i.e. dA=Ae .  

Lemma 1: For all pairs of  graphs G A and G B and all X ~ P ( A , B ) :  I f  Xq>0,  then 
dA,i=dB,j (i.e. the degree of  i in G A equals the degree of  j in GB). 

Proof: Without loss of generality we may assume that dA, 1 <--dA, 2 <--... <--dA, n and 
dB,1 <--dB.2 <_ ... <_dB, n. 

X ~ P (A, B) implies 
d B = Be  = B X e  = X A e  = X d  A (8) 

dA= A e =  AT XT  e= XT  BT e= X T  dB. (9) 

Due to a theorem of Hardy, Littlewood, Polya (see [9]) this is equivalent to d A = d B. 
Assume 

dT= (d l '  " " ' - - -w dl'; ~ d 2 '  " ' "  d2' " " "' dP'~" " ~ ~  _ _ _ . ~  (10) 

n 1 n 2 np 
p 

ni=n. 
i=1 

Due to (8), for 1 < i < nl, we find 

• XljdA,j=dl ~ XlJ+ Z XijdA,j =dl" 
j = l  j = l  j>n~ 

This implies Xq = 0 for 1 < i N  nl and j > nj. Analoguously, using (9) we find Xq = 0 
for 1 _ j  < n 1 and i > nl. The proof of the lemma is completed by induction on p, the 
number of different degree values dl, d2 . . . . .  dr. 
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Lemma 2: Let 

be a pair of partitions of V~, i.e. 
k k 

U v': U wi=v., 
i = l  i = l  

and as sume  I V i [ -- I V~ I, 1 <_ i <_ k. 

V 2 ... Vk)  

W2 W k 

Vi c~ VJ=Wi c~ w J = ~  for i~=j 

Define 
A'4 = (A,t)~ v~,t~ v; (11 a) 

i , j _  . . . -(Bs,)s~w,,,~wJ (llb) 
For U c {1,2 . . . .  , k) 2 let A (U) be the matrix deduced from A by annulling all blocks 
Aid, (i, j)e U. Let B (U) be defined analogously. Then if X ~ P (A, B) satisfies Xst = 0 
for all 

k 

(s,t) r U W~xV ~, 
i=1  

then X ~ P(A (U),B(U)) for all U c { 1 , 2 ,  .. . ,k} 2 ( i . e .X .  A(U)= B(U). X). 

Proof: Under  the hypothesis  of the l emma we have X A  = BX  if and only if 

X"~A"J=B";X J'~, l<_i, j<k (12) 
where 

Xi'~=(Xst)s~wqt~v ~, l <i<_k. ( l l c )  

The conditions (12) are not  violated by annulling corresponding blocks A i4 and B i'j. 
This proves  the lemma.  

Next  we want  to associate with a graph  GA a certain code matr ix  L (A). At the end of 
this section it will be proved  that  L (A) represents a complete  set of invariants  with 
respect to ds-isomorphisms.  L(A) is defined by the following rules: 

(1) (Initial step): Start with the degree part i t ion of V,: 

vi'~ l<_i<_p (13) 

where the di's are defined in (10) and where as before d, < . . .  < dp is assumed. Define 
the n x 2-matr ix 

( i if 1 = 0 and k e V i' o 
L~ l d i i f / - - 1  and k e V  ~'~ (14) 

7 - - .  

(2) (I terat ion step): Assume that  in step j, j_> 0, one has found the part i t ion 

V~'J I 1 <_i<_pj, (po = p) (15) 

the n x (pj_ 1 + 1)-matrix L j and a permuta t ion  7rj of V, which assigns a unique row of 
L j to each v e V,. (Let no be the identity and define p _ ~ : = 1.) For  v e V, let N u (v) be 
the number  of neighbours  of v which belong to the class V i'j, 1 < i < pj. To  each v e V, 
assign the list 

_ J Nj ( v ) : -  (L~,(~), o IN U (v)l ... I Np,,j(v)l) (16) 
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and sort the set of lists {Nj (v)[v a V,} lexicographically. Let  pj+ ~ be the number  of 
different lists and select vertices va , v2 . . . .  , vvj+ ~ ~ V, such that  

Nj (v l )  -~ Nj(v2) < . . .  •Nj(vpj+l  ). 

Define the new part i t ion 

V i J+ l :={v~Vn]N~(v )=Nj (v i )} ,  l < i < p j + l .  

Let 

(17) 

i - 1  

nlj: = ~, I vl'J+l I, 1Ni<_pj+l  (18) 
1=1  

and label the vertices of V/J+1 arbi trar i ly but using the numbers  n i j + l  , 
nij + 2, ..., nl + 1,j, 1 _< i _< pj + 1. This labelling defines a permuta t ion  ~j + 1 of V,. N o w  
define 

�9 { i if 1 = 0 and N j  (z  f+ ~, (k)) = N j  (vl) 

L~[ 1: = - Ngj (zc/+~l (k)) otherwise.  

Repeat  this step as long as U + 1 ~ Lj. After at most  Y steps, 0 _< Y < n - 1,. we will find 
L J = L J + 1. At this po in t  define 

L (A): = L J, ~A : = 7rs, 
(20) 

V~(A): = V ~'s, 1 <_i<_pj. 

The matr ix  L (A) is uniquely defined. The permuta t ion  ~A is not  necessarily unique. 
The  par t i t ion ( V ~ (A) ] 1 <_ i < Ps) is determined by ~a and the blocks of equal rows of 
L (A). This final part i t ion will be called the total degree parti t ion of V, with respect to 
G a. It  is a well known tool used in graph  i somorphism algori thms in order to reduce 
drastically the number  of permuta t ions  which are candidates for an i somorphism of 
two graphs  G A and G B (see e.g. [5] or the annota ted  bibliographies [10], [6]). 
Fur thermore ,  it is well known that  L (A) = L (B) is necessary but not sufficient for the 
existence of an i somorphism of G A and GB. 

iI 
8 3 

7 4 

Fig. 1 
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To have an example consider the graph in Fig. 1. Its vertices are labeled according to 
non-decreasing degree values. We have 

gl ,~ = {1, 2}, r2,~ = {3,4, 5,6}, g3 ,~  {7,8} 

L ~  3 3 3 3 4 3 4 ) r '  

Hence 

This gives 

Pl = 4  

No( I )= (1 ,  1, 1, 0) 

No(2)=(1 ,  1, 1, 0) 

No(3)=(2 ,  1, 1, 1) 

No(4)=(2 ,  1, 1, 1) 

No (5)=(2, 0, 1, 2) 

No (6)=(2, 0, 1, 2) 

No (7)=(3, 0, 3, 1) 

No(8)=(3 ,  0, 3, 1). 

N O (1) < N O (5) -< No (3) < N O (7) 

~z I (1) = 1, 711 (2) = 2, ~r 1 (3) = 5, ~1 (4) = 6, 

7 h (5) = 3, ~1 (6) = 4, 7/; 1 ( 7 )  = 7, ~1 (8) = 8. 

In step 2 we find 

Again 

L 1 = 

( 1  1 1 0 
1 1 1 0 
2 0 1 2 
2 0 [ 2 
3 1 1 1 
3 1 1 1 
4 0 3 1 
4 0 3 1 

V1,1={1,2} 

V 2'~ = {5,6} 

V 3, a = {3, 4} 

v~,1={7,8} 

N1(1)=(1 ,  1, 0, 1, 0) 

N1(2)=(1 ,  i, 0, 1, 0) 

N1(3)=(3 ,  1, 0, 1, 1) 

N1(4)=(3,  1, 0, 1, 1) 

N1(5)=(2 ,  0, 1, 0, 2) 

Na(6)=(2 ,  0, 1, 0, 2) 

N 1(7)=(4,  0, 2, 1, 1) 

N1(8)=(4  , 0, 2, 1, 1) 

p; = 4  

N1 (1) < N  1 (5) < N 1  (3) < g ~  (7), 

TC 2 (V) = 7~ 1 (/)), i ~ "/) ~ 8 .  
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This gives 

L 2 

1 1 0 1 0 
1 1 0 1 0 
2 0 1 0 2 
2 0 1 0 2 
3 1 0 1 1 
3 1 0 1 1 
4 0 2 1 1 
4 0 2 1 1 

V 1'2 = {1, 2} 

V z, 2 = {5, 6} 

V3'2={3,4} 

v4,2 ={7,8}. 

Since in this step the partition I#, 1 1 < i_< 4 is not refined, in step 3 we would find 
L 3 = L  2. Thus {1, 2}, {5, 6}, {3, 4}, {7, 8} is the (ordered) total degree partition, and 
L (A) = L 2. 

The following theorem shows that L(A) completely characterizes the ds- 
isomorphism class of GA. 

Theorem 1 : Two graphs G A and GB are ds-isomorphic iff L (A) = L (B). 

Proof: The proof of the sufficiency part is constructive. Given L (A) = L (B) we will 
find a "trivial" c/s-isomorphism. The proof of the necessity part is based on the 
lemma's above. 

First, assume P (A, B) + 0. Let 

L 2 (A), 0 <_j <_ JA 

L 2 (B), 0 <_j <_ JB 

be the sequences of matrices L j leading to L (A) and L (B), respectively. Let 

~'J(A), 1 <_i<pj(A) 

l/"J(B), 1 <_i<_pj(B) 

be the corresponding partitions found in step j. We will show JA=JB and 
LJ(A)=LJ(B) for ONj<_J A. The proof is by induction onj .  

Due to Lemma 1 we have L ~ (A)= L ~ (B) and Xs, = 0 for all X ~ P (A, B) and all 

Po 
(s, t) O/U V/' o (U) x V/, 0 (A). 

i -1  

Assume L j (A) = L j (B) for some j > 0. Let 

V~:= V~4(A), P/q:= V~,J(B), 1 g i g p j  

and assume Xst--0 for all X ~ P (A, B) and all 

Pj 

(s,t)r U W~x v~- 
i--1 
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L j (A) = U (B) implies I V~ I = I Wi L, 1 < i <_ pj. Hence, the pair of partitions (Vi), ( 14 ~) 
satisfies the hypothesis of Lemma 2. For 1 _< k, I_< pj define 

Uk,: = {1, 2 . . . .  , pj}2 _ {(k, l), (1, k)}. 

Due to Lemma 2 we have 

X e P ( A , B ) ~ X e P ( A ( U k 3 ,  B(Uk3), l<_k, l<pj .  (21) 

Now, in step j + 1, for v ~ V k the numbers N~j (v) equal the degrees of v with respect 
to GA(Vk~), 1 <__ 1 <__ p;. The same is true for u e W k, the numbers N~j (u) and the degrees 
of u in GB(vk~) , l < l < p j .  Hence, if Xu~>0, then ( u , v ) E W k x  V k for some k (by 
assumption) and, by (21) and  Lemma 1, the lists 

(NIj (u)), (Nzj (v)), 1 _< l_< Pi 

are identical. The matrix X k,k as defined in (11 c) is a doubly stochastic square matrix 
(apart from the different index sets of its rows and columns). Hence, by the well 
known theorem of Birkhoff (see e.g. [9]) X k,k is a convex sum of permutation 
matrices. Each permutation matrix used in a representation of X g'k defines a 
bijection B: wk--+ V k satisfying 

B ( u ) = v ~  X,~>O.  

But Xu~ > 0 implies Nj (u) = N; (v) where Nj(u) is used in the computation o f U  + 1 (B) 
whereas Nj (v) is used in the computation of L j+l (A). This proves that L ~+1 (B) and 
L;+ 1 (A) have the same multiset of rows. Thus U +1 (A)= L j+ 1 (B) and by Lemma 1 
X~ = 0 for all X ~ P (A, B) and all 

Pd + 1 
(s, t) r (_J V/'J+I (B) x V $'j+1 (A). 

i= l  

Hence, we see that P (A, B)+ 0 implies JA = JB and L (A)= L (B). 

Now, assume L ( A ) = L ( B ) = L  for some matrix L. Let p (=L, ,o)  be the number of 
different rows of L. Define 

1/4: = V~(A), W~:= V~(B), l<_i<_p, 

)L:=~A, ]2:=7"C B. 

We have IV ~ 1=1 Wil,  1 <_i<_p. Associated with these two total degree partitions 
there are block decompositions 

A ~'j, B ~'j, l<_ i , j<p  

as defined by (11 a), (11 b) in Lemma 2. Since L = L (A) is not changed by applying an 
additional iteration step (2), for any fixed pair (i,j) the column sums 

i , j__ Ast - L;.(t),i, t E V j 
s~V i 

are independent of E ~ V j. Analogously, the row sums 

Z i , j__ Ast -- Lx(~),j, se  V / 
~ V J  
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are independent of s t  V ~. Hence, the blocks A ~'j have constant row sums and 
constant column sums. By the same argument the numbers 

s ~ W  i 

L,(s),J= E Bis?, se  Wi 
t e W J  

are independent of t ~ W i and s ~ W i. Furthermore, summing up all entries of A ~d 
gives for any (s, t) ~ ~ x F J: 

] V i ] L~(t),i = I V~ [ L~(s)d. (22a) 

Analogously, for any (s, t) e W ~ x W j: 

[ W i ] L~(t),i=[ Wil L.(~,~. (22b) 
Now, define 

E(A 'B)s ' :={IoVi[ - '  otherwise, if (s' t)~ W~ x V/f~ s~ i (23) 

Let E ~'~, l<<_i<p, be the blocks of E(A,B)  as defined in ( l lc) .  We find for 
(s, t)e W~• VJ: 

( Ei'i Ai'S)~t = I V~l -~ L~(~),~, 

(Bi,JEj, J)st=[ VJl 1 L.~s),j=lW~l-~ L.(.), i 

where u~ W j is arbitrary. But Lz(~),i=Lu(.),~ for all tE V j, ue  W J. This implies 

E~"A"J=B"JE J'J, l<_i,j<_p. 

Hence, E (A, B) e P (A, B). 

This proves the theorem�9 [] 

Let us say that a matrix Y covers a matrix X if there is a real number t > 0 such that 
t .  X_< Y. The proof of Theorem 1 shows that E (A, B) covers any X ~ P (A, B). We 
also see that deciding whether G A ~--cls G~ or not is equivalent to deciding whether 
L (A)= L (B). The latter problem is, of course, polynomial. 

It is a well known fact in graph theory that for almost all graphs the total degree 
partition is of the form ({vi} [ 1 < i N  n), i.e. each partition class contains exactly one 
vertex. This implies that the automorphism group of almost all graphs is trivial. 
In all these cases L(A)  has no equal rows and L ( A ) = L ( B )  implies 
P (A, B)= PIS  (A, B)= {P} where the permutation matrix P represents the unique 
isomorphism of G A and G B which is related to nA and ~B by P~j = 1 iff ~z A (i) =nB (J), 
l<_i , j<n.  

Theorem 1 provides us with a simple polynomial algorithm for deciding whether G A 
and GB are ds-isomorphic or not. But if the answer is "Yes", then the computed ds- 
isomorphism E (A, B) in (_3) ~s a trwml one (having constant posture enmes only). 
This is in general not an extreme point of P (A, B). To see this assume A = B and let 
GA be a regular graph of degree r. For such a graph L (A)---L ~ (A) and V, is not 
partitioned at all. Furthermore, 

E ( A , A ) = n  -1 �9 E 
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where E is the matrix of order n all of whose entries are equal to 1. n- 1. E is the 
center of Z, and, hence, is an interior point of Z, while any extreme point of P (A) lies 
on the boundary of Z n. 

3. Theorems of Birkhoff Type 

In this section we restrict our considerations to the (technically) more simple case 
where A = B. We want to find a characterization of the subpolytope P (A) of Z,, the 
polytope of all doubly stochastic matrices which commute with A. Of course, this 
polytope is completely determined by the set E X T R  (P(A)) of its extremal points. 
Clearly, we have 

A UT(A) ~ E X T R  (P (A)) (24) 

Now the question is, for which graphs G A equality holds in (24). Assume that 91 is a 
class of adjacency matrices for all of which (24) is true with equality. This fact could 
be formulated in the following way: 

For all A e 91 and all X e Z~ : I f  X commutes with A, 
then X is a convex sum of automorphisms of G A. 

(25) 

We propose to call a theorem of this kind a theorem of Birkhofl type because of the 
following reason. Birkhoffs theorem on doubly stochastic matrices states that any 
such matrix is a convex sum of permutation matrices. Since the unit matrix I 
commutes with any matrix of the same order and since any permutation matrix 
represents an automorphism of G r Birkhoffs theorem could be stated in the 
following (more complicated) way: 

I f  X e Z~ commutes with I, then X is a convex sum of automorphisms of G~. (25 a) 

Hence (25) is an analogous statement involving a class of matrices instead of the 
single element class {I}. 

In this section we shall prove two theorems of Birkhoff type, one for the class ~ of 
cycles and one for the class 3; of trees. The theorems represent first research results 
concerning Birkhoff type theorems. One may hope to find more important classes 
for which (25) is provable. 

Theorem 2: Let A be the adjacency matrix of a cycle. Then any X ~ P (A) is a convex 
sum of automorphisms of G A. 

Theorem 3: Let A be the adjacency matrix of a tree. Then any X e P(A) is a convex 
sum of automorphisms of G A. 

Proof of Theorem 2 : Without loss of generality we may assume that 

{10 i f j = i + l ( m o d n )  o r j = i - l ( m o d n )  

AiJ = otherwise. 
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Hence, if we take all indices i and j mod (n), from 

(XA),j=(AX)ij 
it follows 

This implies 

Xi+ l,j-~- X i -  l , j= Xi, j -  i -}- Xi, j+ 1 

l<i,j<_n. 

Xi+ l , j - i -  Xi, j_i_ I : X l , j - -  Xn, j -  1 (26) 
Xi+ l,j+i-- Xl, j+i+ l = X I , j -  Xn, j+ I 

(27) l <_i,j<n. 

For fixedj the expressions of the right sides of (26) and (27) are constants. Suppose 
X ~ P (A) is such that 

X l , j - - X n , j  1 >0.  

This implies 
X i + l , j _ i > X i , j _ i _ l ~ O  for l <_i<_n. 

Hence, X covers the reflection 

{ lo fOrk=j+l- i (modn)  
Pik = otherwise 

P is a reflection at the axis through the points j + 1 and n + j +  1 (see Fig. 2). An 
2 2 

result follows when XI,j-X,,j_ ~ <0 (reflection at the axis 

/ 

analoguous through 

the points j -  1 and n + j -  1 
\ 

2 2 / 

i+! 

i -1  

n+j+! ~ ~j-i 
2 

Fig. 2 

Now suppose that Xld-X,,j+ 1 > 0. This implies 

Xi+ l,j+ i >Xi, j+i+ 1 ~ 0 .  
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Hence X covers the rotat ion (see Fig. 3) 

1 if k = j -  1 + i (mod n 

Pik = 0 otherwise. 

i+I 

I j+l 

+I-I 

Fig. 3 

Again, we find an analoguous result when X1, j - X n ,  j+ 1 < 0. 

Now in any of the four cases let 

2 = M i n  {Xik I Pik = 1}. 
If 2 < 1 define 

X - 2 . P  
Y= 

(i -2) 

Clearly, Y~ P (A), but the number  of non-zero entries of Y is strictly less than the 
number  of such entries in X. 

Finally, suppose that for some X e P (A) 

XI,j-~-Xn, j_I=Xn,j+I for l<_j<_n. 
In this case 

Xi  + l , j=  Xi, j+ l ~-Xi -  l , j=  Xi, j -1 

for all 1 <i,j<n. Hence, X =  U +  V where 

{ ~ for i - j  = 0 (rood 2) 

Uij = 0 otherwise 

V~j=ffi for i - j = l  (mod2) 

otherwise. 

If c~ > 0 then U covers a sum of reflections, and so does V, if fi > 0. In  any case we can 
proceed like in the previous cases, i.e. we can decompose X into a convex sum 

X = ( 1 - 2 )  Y+2P 

where P is an au tomorphism of GA and Ye P (A) having at least one less positive 
entry than X. If  c~ = fi = O, then X = O. 
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Now the theorem follows by induction on the number of positive entries of X. [] 

The theorem cannot be extended to a disjoint union of cycles. A disjoint union of two 
cycles of length 3 and 4, respectively, possesses the "trivial" ds-automorphism (23) 
which, of course, is not a convex sum of automorphisms. 

To prove Theorem 3 we first present some lemma's. 

For a tree T =  (V,, E) let C be the center of T and define 

VCS)={i~V~ld(i,C)=s}, l_<s_<3 

where d (i, C) is the edge-distance of i from the center C and 6 is the excentricity of T, 
i.e. b = M a x  {d(i, C) l ie  V,}. Considering T as rooted at its center the sets V (~) are 
usually called the levels of T. The following lemma tells us that the levels of a tree are 
invariant under ds-automorphisms. 

Lemma 3: 

Proof: Let 

Let A be the adjacency matrix of a tree T. Then for any X ~ P (A) 

X i j > O ~ { i , j } c  ~ )  for some s, O<s<<_3. 

{~A,i for i = j  
D A ,  i j  = for i # j .  

Clearly, X D  A = D A X for any X E P (A). Define 

1 if the unique path between i and j has length t 

DI~= 0 otherwise. 
We have 

D (I) = A, D (2) = A 2 - D A .  

Thus X ~ P (A) implies 
XD ~~ (~ X,  t= l ,2 .  

Assume XD ") = D (~ X for all X ~ P (A), 1 _< t _< k and some k >_ 2. We have 

D (k) A = D (k + 1) + L(k), 
where 

L!k . )  = ( d A ,  j _ 1) D (k - 1) 
zJ - - i j  " 

Due to Lemma 1 we find X L  ~k) = L ~k) X for x ~ P (A). Hence, D (k + 1) X = XD tk + 1), and 
we have proved that X ~ P ( A )  implies X ~ P ( D  (~ for all t ~  1. Now, let D = D  ~+1). 
We have 

0 if iEC 

dD'~= > 0  if i~:C 

by definition of C. This proves 

Xij=O for i ~ C =  V(~ V (s), s > 0 .  

Assume that Xij = 0 is true for X 6 P (A) and 

k 6 

i ~ U = ~ _ J  lAs), j ~ W =  [,_J lAs) (28) 
s=0 s = k + l  
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and some k_> 0. Then X is of the form 

and according to Lemma 2 Xu=O for all ie  D k+l), j e  ~s), s > k +  1, since i has 
exactly one neighbour in U whereas j has no neighbour in U. Thus, Xij = 0 for all i 
and j satisfying (28) for some k, 0 _< k < 6. This proves the Lemma. 

Lemma 4: Let A be the adjacency matrix of a tree T. For i e V (~), s >_ 1, let v ( i) be the 
unique neighbour of i which belongs to V ~- 1). Let N (i) be the set of neighbours of i 
which belong to V (S + 1), 0 <_ s <_ 6. For any X e P (A) the following statements are true: 

(a) For 0 <_ s < 6 and all i, j e V ~) we have 

Xzk for any k e N ( j )  
X i  j : l~N(i) 

Xtk for any leN( i ) .  
keN(j) 

(b) I f  X i j = O  , then Xlk=O for all leN(i) ,  keN( j ) .  

(c) I f  Xij>O, then X~(0,,c;)>0 (provided s>0).  

( d) I f  X , ,  > 0 for some u e N ( i), v e N (j), then there is a bijection B: N ( i)--* N (j) with 

B (u) = v 

B(1) = k ~ X l k > 0 ,  for all l~N(i),  keN( j ) .  

/! 

"~ N(i) 
I \ 
i \ 
I \ 

\ 
\ \  

\ 

\/~N N(j) (k) 
Fig. 4 

Proof: (a) (XA)I k = (AX)i k, k e N (j), implies 

Xi,~(k) + ~ X , =  X~(i),k + ~ Xz~. 
leN(k) 1EN(i) 

Hence, due to Lemma 3, since j = v (k) (see Fig. 4) we find 

Xij= ~ Xlk. 
feN(i) 
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Analogously,  ( X A ) u  = ( A X ) u ,  1 e N (i), implies 

Xij~- Z Xlk" 
keN(j) 

This proves (a). (b) and (c) are immediate consequences of (a). 

In  order to prove (d) assume X , v > 0  for some u e N ( i ) ,  y e N ( j ) .  By (c) this implies 
X i j > O ,  and by Lemma 1, I N(i)I = I N(j)P. Thus 

Y ~ k = X ~  ~ �9 X ~ ,  l e N ( i ) ,  k e N ( j )  

is a doubly stochastic matrix which by Birkhoffs theorem is a convex sum of a set of 
permutat ion matrices p(r), r =  1,2, .... Each p(r) is covered by Y and defines a 
bijection between N (i) and N (j). Since Xu~ > 0 there must be an r such that  P(j~ = 1. 
This proves (d). 

P r o o f  o f  Theorem 3: Start with a pair (i,j) such that  

X u = Min {Xu~ [ Xuv > 0}. 

W.l.o.g. we may  assume Xiy< 1. Assume i , j ~  V (~ and let 

W i = ( i  t = i, i t_ 1 , . . . ,  io) 

W y =  (j ,  =J ,J , -1  . . . .  ,Jo) 

be the un iquepa ths  from i a n d j  to the center C of T. Since X u > 0, by Lemma 4c we 
have X~y, > 0 for 0 _< r _< t. For  w _ 0 let 

w 

U(W~ = [_J 1~ ~.  
s=O 

By L e m m a  4d there is a bijection B: N (io) --+ N (Jo) with B (il) =Jl. Let us extend B to 
a permutat ion B ~ of U u~ defining 

B 1 (io)=Jo 

B 1 (u) = B (u) for all u ~ N (io). 

Now assume that  B TM is a permutat ion of U (~), w >  1, satisfying 

(a) BW(i~)=j~, 0 _ < a < M i n { t , w } .  

(b) BW(k )=  1 ~ B " ~ ( N ( k ) ) = N ( I )  for k, l e  U ~w)- V (w). 

(c) B w (k) = l ~ XkZ > 0 for k, 1 ~ U (w). 

We will show how one can extend B TM to a permutat ion B '~ + ~ of U (w + ~) preserving 
the conditions (a) - (c). Let V (w) = {rl, r2, ..., r~}. Let B TM (r~) = s~, 1 < fi _< g. If rp = i~ 
for some fi and some ~ < t, then s B =j~, by assumption,  and due to Lemma 4d there is 
a bijection B~: N (i~) ~ N (j~) satisfying B~ (i~ + 1) =J~ + 1. If  r~ ~ {io, il, ..., it- 1 }, then 
again by L e m m a  4d there is a bijection B ~ : N  (@-> N (s~). In  both cases B B (k)= l 
implies Xk~ > 0. Thus define 

B w (r) if r e U (w~ 

BW+l(r)= (Bp(r)  if r e X ( @ ,  l _ < f l < # .  

21 Computing 36/4 
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B W+l is a permutation of U w+l satisfying (a)-(c) .  By construction, B ~ is an 
automorphism of the tree T. Hence, any X ~ P (A) covers a permutation matrix P 
which represent an automorphism of T. The proof of the Theorem is completed by 
induction on the number of positive entries in X. 
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